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Abstract. In this note we discuss several combinatorial problems that
can be addressed by the Regularity Method for hypergraphs. Based on
recent results of Nagle, Schacht and the authors, we give here solutions
to these problems.

In particular, we prove the following: Let F be a k-uniform hyper-
graph on t vertices and suppose an n-vertex k-uniform hypergraph H
contains only o(nt) copies of F . Then one can delete o(nk) edges of H
to make it F-free.

Similar results were recently obtained by W. T. Gowers.

1. Introduction

In 1976, Szemerédi proved the Regularity Lemma [31], a theorem which
asserts that any graph can be partitioned into bounded number of random-
like blocks (ε-regular pairs).

The Regularity Lemma proved to be a very powerful tool in graph theory
with many applications (see [13, 12] for a survey). Many of these applica-
tions are based on the fact that random-like blocks ensured by the Regular-
ity Lemma allow to find small subgraphs. A regularity lemma for 3-uniform
hypergraphs that allows the same phenomenon (i.e. finding fixed size sub-
hypergraphs) was considered in [9]. This lemma was extended to the case
of k-uniform hypergraphs in [22].

This paper presents several applications of the lemma from [22] combined
with the result of [16] and provides complete solutions to the following prob-
lems.

1.1. Erdős-Stone type problem.

For a set V and an integer k ≥ 1, let
(
V
k

)
be the set of all k-element

subsets of V . We call a subset G ⊆
(
V
k

)
a k-uniform hypergraph with the

vertex set V . For a given k-uniform hypergraph G, we denote by V (G) and
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E(G) its vertex and edge set, respectively. We identify hypergraphs with
their edge sets and, consequently, use |G| for |E(G)|.

Let G and H be two k-uniform hypergraphs. We say that H is G-free if
H does not contain a subgraph isomorphic to G. Erdős, Frankl, and Rödl
[3] proved the following theorem.

Theorem 1.1. For every ε > 0 and a fixed graph G with chromatic num-
ber χ, there exists n0(ε, G) ∈ N so that every G-free graph H on n > n0(ε, G)
vertices can be made Kχ-free by removing εn2 edges.

As an extension of Theorem 1.1, they proposed to study the following
question: For integers t ≥ k ≥ 2, s ≥ 1, let K

(k)
t be the complete k-uniform

hypergraph on t vertices and K
(k)
t (s) be the complete t-partite k-uniform

hypergraph with s vertices in each partite class. Note that K
(k)
t (1) = K

(k)
t .

For k < t, denote by ϕ(k, t, s, n) the maximum number of edges needed
to be deleted from a K

(k)
t (s)-free k-uniform hypergraph on n vertices to get

a K
(k)
t -free k-uniform hypergraph. Erdős, Frankl, and Rödl [3] conjectured

that for fixed t > k ≥ 2 and s ≥ 1 the function ϕ(k, t, s, n) = o(nk) as n
tends to infinity. So far the above conjecture was confirmed to be true for
k = 3, t = 4 in [9] and for k = 3, t > 4 and k = 4, t = 5 it follows from
results in [15] and [23], respectively. Based on the recent results of Nagle,
Rödl, Schacht and Skokan [16, 22], in this paper, we establish the conjecture
for all suitable choices of t, k, and s.

Theorem 1.2. For an arbitrary real number ε > 0 and integers t > k ≥ 2,
s ≥ 1, there exists n0(ε, k, t, s) with the following property. Let H be any
K

(k)
t (s)-free k-uniform hypergraph on n > n0(ε, k, t, s) vertices. Then it

is possible to remove εnk edges from H so that the resulting hypergraph is
K

(k)
t -free. In other words,

ϕ(k, t, s, n) = o(nk) .

For graphs, i.e. when k = 2, this theorem implies that the Turán num-
ber ex

(
n, K

(2)
t (s)

)
(the maximum number of edges in a K

(2)
t (s)-free graph

on n vertices) does not differ from the Turán number ex
(
n, K

(2)
t

)
by more

than εn2 for n sufficiently large. This combined with the well-known Turán
Theorem [32] yields

ex
(
n, K

(2)
t (s)

)
=

(
1− 1

t− 1
+ o(1)

) (
n

2

)
. (1.1)

Since (1.1) is the statement of the Erdős-Stone Theorem [7], Theorem 1.2 can
be viewed as a generalization of the Erdős-Stone Theorem to hypergraphs.

In this paper we prove the following more general theorem, which answers
a question of Füredi [10]. The case when F = K

(k)
k+1 also appears in [11, 16].
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Theorem 1.3. For all t ≥ k ≥ 2, every k-uniform hypergraph F on t
vertices, and ε > 0 there exist δ = δ(F , ε) > 0 and n0 = n0(F , ε) ∈ N such
that the following statement holds.

Suppose that an n-vertex k-uniform hypergraph H, with n > n0, contains
only δnt copies of F . Then one can delete εnk edges of H to make it F-free.

As it turns out, it suffices to establish Theorem 1.3 for F = K
(k)
t in order

to verify Theorem 1.2. We formally prove this observation in Section 2.

Proposition 1.4. Theorem 1.3 implies Theorem 1.2.

Theorem 1.2 and Theorem 1.3 have several applications. Some of them
regard density theorems, among which are Szemerédi’s theorem (see Sec-
tion 1.2 and [9]) and related results due to Furstenberg and Katznelson [11,
27, 21]. It also has applications in discrete geometry [26] and to extremal
hypergraph problems [17].

Below we will discuss some of these as well as some other applications in
more detail.

1.2. Szemerédi’s Density Theorem.

Let rk(n) be the maximum cardinality of a set A ⊆ [n] := {1, . . . , n}
containing no arithmetic progression of length k. Answering an old question
of Erdős and Turán [8], Szemerédi [30] established that rk(n) = o(n) for any
fixed integer k.

There are several extremal hypergraph problems that are closely related
to the value of rk(n). Such a problem (related to a well-known (6, 3)-
configuration) was perhaps first suggested by Brown, Erdős and Sós [1, 28]
and considered by Ruzsa and Szemerédi in [24]. Some other problems of
this type were discussed in [24, 5, 2]. The extremal problem related to the
configuration F(k) (defined below) was investigated in [9] (see also [18]).
The particular configuration F(k) was originally suggested by Frankl.

Let Ai = {ai, bi} be pairwise disjoint 2-element sets for i ∈ [k]. Define
Fi = {a1, . . . , ak, bi}\{ai} and F(k) = {F1, . . . , Fk}. Note that |Fj ∩Ai| = 1
for 1 ≤ i, j ≤ k, that is, F(k) is a k-partite k-uniform hypergraph. Also,
Fi ∩ Fj = {a1, . . . , ak} \ {ai, aj}; in particular, |Fi ∩ Fj | = k − 2 < k − 1
holds for 1 ≤ i < j ≤ k. We note that the triple system F(3) is the
(6, 3)-configuration considered in [24].

Let ẽx(n,F(k)) denote max |H|, H ⊂
(
X
k

)
, |X| = n, such that

(i) |H ∩H ′| ≤ k − 2 holds for all distinct H, H ′ ∈ H, and
(ii) H is F(k)-free. (1.2)

Note that for any H satisfying (i),

|H| ≤
(

n
k−1

)(
k

k−1

) ≤ nk−1

k
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must hold. In [9, Proposition 2.1-2.2] it was shown that

ckn
k−2 × rk(n) ≤ ẽx(n,F(k)) ≤ ϕ(k − 1, k, 2, n) , (1.3)

where ck is a constant only depending on k. Consequently, Theorem 1.2
implies rk(n) = o(n), i.e., the famous Density Theorem of Szemerédi.

1.3. Székely’s jack problem.

The following problem was formulated by Székely [29] (see also [14, pages
226-7]).

For a point c = (c1, c2, . . . , ck) ∈ [n]k we define a jack J(c) with center c
as the set of all points that differ from c in at most one coordinate. For i,
1 ≤ i ≤ k, and fixed c1, c2, . . . , ci−1, ci+1, . . . , ck ∈ [n], we also define a line
as the set of n points of the form{

(c1, c2, . . . , ci−1, x, ci+1, . . . , ck), 1 ≤ x ≤ n
}
.

Note that there are knk−1 lines in [n]k and each jack contains exactly k lines.
Let LS(n, k) be the maximum cardinality of a system J of jacks for which

(1) no two distinct jacks share a common line, and

(2)
k⋂

i=1
Ji = ∅ for all distinct jacks J1, . . . , Jk ∈ J .

Condition (1) immediately implies LS(n, k) ≤ knk−1/k = nk−1. Székely
suggested that more is true and conjectured that LS(n, k)/nk−1 tends to 0
as n →∞.

One can show that LS(n, k) is closely related to ẽx
(
kn,F(k)

)
. Indeed,

in Section 3 we show the following.

Proposition 1.5. For every integer k > 1

k!
kk

ẽx
(
kn,F(k)

)
≤ LS(n, k) ≤ ẽx

(
kn,F(k)

)
.

Hence, in view of (1.3) and Theorem 1.2 we infer:

Theorem 1.6. LS(n, k) = o(nk−1).

1.4. Organization.

The paper is organized as follows: in the next section we show Propo-
sition 1.4, i.e., how Theorem 1.3 implies Theorem 1.2. Proposition 1.5 is
verified in Section 3. In Section 4, we describe the notation and statement
of our main tool - the Hypergraph Regularity Lemma. Other results needed
in our proof are presented in Section 5. Then, in Section 6, we prove Theo-
rem 1.3.
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2. Proof of Proposition 1.4

In the proof of this proposition, we make use of the following lemma, which
follows from the theorem of Erdős from [4] by a supersaturation argument
(see also [6]).

Lemma 2.1. For every c > 0 and positive integers t ≥ 2 and s ≥ 1 there
exist n1 = n1(c, t, s) and c′ > 0 such that if G is a t-uniform hypergraph
with n > n1 vertices and at least cnt edges, then G contains c′nts copies
of K

(t)
t (s).

Proof of Proposition 1.4. Let ε > 0 and k, s, t ∈ N be given. We must
show that for any K

(k)
t (s)-free k-uniform hypergraph H on n vertices, n

sufficiently large, it is possible to delete εnk edges from H to obtain a K
(k)
t -

free k-uniform hypergraph. Consequently, ϕ(k, t, s, n) ≤ εnk holds.
We start with defining the constants. With intention to apply Theo-

rem 1.3 later, let δ > 0 and n0 = n0(t, k, ε) be the numbers guaranteed by
Theorem 1.3. Furthermore, let n1 = n1(δ, t, s) be the number guaranteed
by Lemma 2.1 applied with c = δ.

Suppose H is an arbitrary K
(k)
t (s)-free k-uniform hypergraph on n >

max{n0, n1} vertices. Let G be a t-uniform hypergraph with vertex set
V (G) = V (H) and edge set formed by all cliques K

(k)
t of H. Then G is

K
(t)
t (s)-free because H is K

(k)
t (s)-free. By Lemma 2.1, we obtain |G| ≤ δnt

and, therefore, H contains at most δnt copies of K
(k)
t as subgraphs.

Applying Theorem 1.3 yields that H can be made K
(k)
t -free by omitting

εnk edges. �

3. Proof of Proposition 1.5

We start with the second inequality. Let J be the system of jacks sat-
isfying (1) and (2) of maximum size. Our goal is to construct a k-partite
k-uniform hypergraph H of size |H| = |J | that also satisfies conditions (i)
and (ii) in (1.2).

Let V1, . . . , Vk be k copies of {1, . . . , n}. Then we define H by setting

V (H) = V1 ∪ . . . ∪ Vk ,

E(H) =
{
{a1, . . . , ak} : J(a1, . . . , ak) ∈ J , ai ∈ Vi, i = 1, . . . , k

}
.

Clearly,H is a k-partite k-uniform hypergraph on kn vertices with |H| = |J |.
We now prove that H also satisfies (1.2).

By (1), no two jacks share a line and, therefore, the centers of any two
jacks in J differ in more than one coordinate. Consequently, every two edges
of H differ in at least two vertices and (i) holds.

Suppose that (ii) is not true andH contains a copy of F(k) = {F1, . . . , Fk}
and Fi = {a1, . . ., ai−1, bi, ai+1, . . . , ak}, where ai, bi ∈ Vi, i ∈ [k]. By
the definition of H, every Fi corresponds to the jack Ji = J(a1, . . . , ai−1,
bi, ai+1, . . . , ak) ∈ J . Since (a1, a2, . . . , ak) differs from (a1, . . . , ai−1, bi,
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ai+1, . . . , ak) in exactly one coordinate, we have (a1, a2, . . . , ak) ∈ Ji for every

i ∈ [k]. Then, however, (a1, a2, . . . , ak) ∈
k⋂

i=1
Ji, which is a contradiction

to (2). Consequently

LS(n, k) = |J | = |H| ≤ ẽx(kn,F(k)) .

On the other hand, let H̃ be a k-uniform hypergraph on kn vertices sat-
isfying conditions (i) and (ii) in (1.2) such that |H̃| = ẽx

(
nk,F(k)

)
. It is

a well-known fact1 that H̃ contains a k-partite subgraph with k-partition
V (H) = V1 ∪ . . . ∪ Vk such that each partite set has size n and |H| ≥
(k!/kk)|H̃| = (k!/kk)ẽx

(
nk,F(k)

)
. Let J be a system of jacks defined by

J =
{
J(a1, . . . , ak) : {a1, . . . , ak} ∈ E(H)

}
.

Since |J | = |H|, if we prove that J satisfies (1) and (2), then

k!
kk

ẽx
(
kn,F(k)

)
≤ |H| = |J | ≤ LS(n, k) ,

and we will be able to conclude that Proposition 1.5 holds.
Indeed, condition (i) of (1.2) implies that every two centers of jacks in J

differ by at least two coordinates and, thus, no two jacks in J share a line.
Hence J satisfies (1).

Suppose that (2) is not true and (a1, a2, . . . , ak) ∈
k⋂

i=1
Ji for some dis-

tinct jacks J1, . . ., Jk ∈ J . By reordering, we may assume that the cen-
ter of Ji differs from (a1, a2, . . . , ak) at the i-th coordinate. Therefore,
Ji = J(a1, . . . , ai−1, bi, ai+1, . . . , ak) for some bi ∈ [n]. Consequently,
{F1, . . . , Fk}, where Fi = {a1, . . . , ai−1, bi, ai+1, . . . , ak}, is a copy of F(k)
in H ⊂ H̃, which is a contradiction to (ii). �

4. Hypergraph Regularity Lemma

In this section, we present one of our two main tools for the proof of The-
orem 1.3 – the Hypergraph Regularity Lemma from [22]. To this end, we
need to introduce some notation. This notation, which simplifies our earlier
description of regular partition in [22], is taken from a recent paper of Rödl
and Schacht [19] (see also [20]).

4.1. Cylinders and Complexes.

This paper deals mainly with `-partite k-uniform hypergraphs. We shall
refer to such hypergraphs as (`, k)-cylinders.

1This follows, for example, from the observation that there are
(

kn
n

)(
(k−1)n

n

)
. . .

(
2n
n

)
partitions of V (H) into k parts of size n and any given k-tuple of vertices is crossing (i.e.,

it intersects each of the k parts) in
(

k(n−1)
n−1

)(
(k−1)(n−1)

n−1

)
. . .

(
2(n−1)

n−1

)
partitions.
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Definition 4.1 (cylinder). Let ` ≥ k ≥ 2 be two integers, V be a set,
|V | ≥ `, and V = V1 ∪ · · · ∪ V` be a partition of V .

A k-set K ∈
(
V
k

)
is crossing if |Vi ∩ K| ≤ 1 for every i ∈ [`]. We shall

denote by K
(k)
` (V1, . . . , V`) the complete (`, k)-cylinder with vertex partition

V1 ∪ · · · ∪ V`, i.e. the set of all crossing k-sets. Then, an (`, k)-cylinder G is

any subset of K
(k)
` (V1, . . . , V`).

Definition 4.2. For an (`, k)-cylinder G, where k > 1, we shall denote by
Kj(G), k ≤ j ≤ `, the j-uniform hypergraph with the same vertex set as
G and whose edges are precisely those j-element subsets of V (G) that span
cliques of order j in G.

Clearly, the quantity |Kj(G)| counts the total number of cliques of order
j in an (`, k)-cylinder G, 1 < k ≤ j ≤ `, and Kk(G) = G.

For formal reasons, we find it convenient to extend the above definitions
to the case when k = 1.

Definition 4.3. We define an (`, 1)-cylinder G as a partition V1 ∪ · · · ∪ V`.
For an (`, 1)-cylinder G = V1 ∪ · · · ∪ V` and 1 ≤ j ≤ `, we set Kj(G) =
K

(j)
` (V1, . . . , V`).

The concept of “cliques in 1-uniform hypergraphs” is certainly artificial. It
fits well, however, to our general description of a complex (see Definition 4.6).

For an (`, k)-cylinder G and a subset L of vertices in G, where k ≤ |L| ≤ `,
we say that L belongs to G if L induces a clique in G.

We will often face a situation when we need to describe that one cylin-
der ‘lies on’ another cylinder. To this end, we define the term underlying
cylinder .

Definition 4.4 (underlying cylinder). Let F be an (`, k−1)-cylinder and
G be an (`, k)-cylinder with the same vertex set. We say that F underlies G
if G ⊂ Kk(F).

Note that if k = 2 and F = V1 ∪ · · · ∪ V`, then G is an `-partite graph
with `-partition V1 ∪ · · · ∪ V`.

Definition 4.5 (density). Let G be a k-uniform hypergraph and F be a
(k, k − 1)-cylinder. We define the density of F with respect to G by

dG(F) =


∣∣G∩Kk(F)

∣∣∣∣Kk(F)
∣∣ if

∣∣Kk(F)
∣∣ > 0,

0 otherwise.

(4.1)

Through this paper, we will work with a sequence of underlying cylinders.
To accommodate this situation, we introduce the notion of complex .

Definition 4.6 (complex). Let ` and k, ` ≥ k ≥ 1, be two integers.

An (`, k)-complex G is a system of cylinders
{
G(j)

}k

j=1
such that

(a) G(1) is an (`, 1)-cylinder, i.e. G(1) = V1 ∪ · · · ∪ V`,
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(b) (`, j)-cylinder G(j) underlies (`, j + 1)-cylinder G(j+1) for every j ∈
[k − 1], i.e., G(j+1) ⊂ Kj+1(G(j)).

4.2. Regularity of Cylinders and Complexes.

Now we define the notion of regularity of cylinders.

Definition 4.7. Let r ∈ N, G be a k-uniform hypergraph, and F̃ be a system
of (k, k − 1)-cylinders F1, . . . ,Fr with the same vertex set as G. We define

the density of F̃ with respect to G by

dG(F̃) =


∣∣G∩ r⋃

j=1
Kk(Fj)

∣∣∣∣ r⋃
j=1

Kk(Fj)
∣∣ if

∣∣ r⋃
j=1

Kk(Fj)
∣∣ > 0 ,

0 otherwise .

(4.2)

Now we define a regular cylinder .

Definition 4.8 ((δ, d, r)-regular cylinder). Let r ∈ N, δ, d be two posi-
tive real numbers such that 0 < δ < d ≤ 1, F be a (k, k − 1)-cylinder, and
G be a k-uniform hypergraph. We say that G is (δ, d, r)-regular with respect
to F if the following condition is satisfied: whenever F̃ = {F1, . . . ,Fr} is a
system of subcylinders of F such that∣∣ r⋃

j=1

Kk(Fj)
∣∣ ≥ δ

∣∣Kk(F)
∣∣ ,

we have

d− δ ≤ dG(F̃) ≤ d + δ .

We say that G is (δ, d, r)-irregular with respect to F if it is not (δ, d, r)-
regular with respect to F . If r = 1, we simply say that G is (δ, d)-regular
with respect to F .

Moreover, we sometimes say G is (δ, r)-regular (or simply δ-regular if
r = 1) with respect to F if G is (δ, d, r)-regular with respect to F for some
d ∈ [0, 1].

We extend the above definition to the case of an (`, k − 1)-cylinder F .

Definition 4.9. Let k, `, r ∈ N, ` ≥ k, δ, d be two positive real numbers
such that 0 < δ < d ≤ 1, F be an (`, k − 1)-cylinder with an `-partition⋃̀
i=1

Vi, and G be a k-uniform hypergraph. We say that G is (δ, d, r)-regular

with respect to F if the restriction G
[ ⋃

j∈I

Vj

]
is (δ, d, r)-regular with respect

to F
[ ⋃

j∈I

Vj

]
for all I ∈

([`]
k

)
.

Now we are ready to introduce the concept of regularity for an (`, k)-
complex G.
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Definition 4.10 ((δ, d, r)-regular complex). Let r ∈ N and let d =
(d2, . . . , dk) and δ = (δ2, . . . , δk) be two vectors of positive real numbers
such that 0 < δj < dj ≤ 1 for all j = 2, . . . , k. We say that an (`, k)-complex
G is (δ,d, r)-regular if

(a) G(2) is (δ2, d2)-regular with respect to G(1), and

(b) G(j+1) is (δj+1, dj+1, r)-regular with respect to G(j) for every j ∈
[k − 1]\{1}.

4.3. Partitions.

Fix a non-empty set V , an arbitrary integer k > 1 and a vector a =
(a1, . . . , ak−1) ∈ Nk−1. We will define a family of partitions P = {P(i)}k−1

i=1
with properties described below.

Let P(1) be a partition V1 ∪ . . . ∪ Va1 of V . For every j ∈ [a1], denote by
Crossj(P(1)) the set of all crossing sets J of cardinality j, i.e.,

Crossj(P(1)) = K(j)
a1

(V1, . . . , Va1) .

For j = 2, . . . , k − 1, P(j) is going to be a partition of Crossj(P(1)) in
which each partition class P(j) is a (j, j)-cylinder. We denote by P(j)(J) the
partition class of P(j) that contains a given set J ∈ Crossj(P(1)).

Each set J ∈ Crossj(P(1)) defines a disjoint union

P̂(i)(J) =
⋃

I∈(J
i)
P(i)(I)

of
(
j
i

)
partition classes of P(i), i = 1, 2 . . . , j − 1. We use “ ˆ ” to stress

the fact that P̂(i)(J) is not a single class of P(i), but a union of
(
j
i

)
of

them. Also observe that P̂(i)(J) is a (j, i)-cylinder. When i = j − 1, we call
P̂(j−1)(J) a j-polyad and denote by P̂(j) the set of all j-polyads:

P̂(j) =
{
P̂(j−1)(J) : J ∈ Crossj(P(1))

}
.

This set induces a partition{
Kj

(
P̂(j−1)

)
: P̂(j−1) ∈ P̂(j−1)

}
of Crossj(P(1)). Using this partition we will describe an interaction be-
tween P(j−1) and P(j) that we will require in our family of partitions
P = {P(j)}k−1

j=1 for each j = 2, . . . , k − 1.
We say that partitions P(j−1) and P(j) are cohesive if

P(j) refines
{
Kj

(
P̂(j−1)

)
: P̂(j−1) ∈ P̂(j−1)

}
.

In other words, each partition class of P(j) is a subset of Kj

(
P̂(j−1)

)
for

some j-polyad P̂(j−1) ∈ P̂(j). The family of partitions P = {P(j)}k−1
j=1 is

cohesive if P(j−1) and P(j) are cohesive for each j = 2, . . . , k − 1.
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Finally, we will require that the number of partition classes is bounded by
a function independent of the number of vertices of V . This is accomplished
in the following formal definition of the family of partitions.

Definition 4.11 (family of partitions). Let k be a positive integer, V be
a non-empty set, and a = (a1, a2, . . . , ak−1) be a vector of positive integers.

Then we say P = P(k− 1,a) = {P(j)}k−1
j=1 is a family of partitions on V if

• |P(1)| = a1,
• P is cohesive,
•

∣∣{P(j) ∈ P(j) : P(j) ⊂ Kj

(
P̂(j−1)

)}∣∣ ≤ aj for every P̂(j−1) ∈ P̂(j−1).

We also say that P = P(k − 1,a) is L-bounded if max{a1, . . . , ak−1} ≤ L.

Note that if P is cohesive, then

P̂(j−1)
(J) =

{
P̂(i)(J)

}j−1

i=1
(4.3)

is a (j, j − 1)-complex for every set J ∈ Crossj(P(1)) and 1 < j ≤ k.

Furthermore, observe that P̂(j−1)
(J) is determined by its “top layer”, the

j-polyad P̂(j−1)(J). We refer to P̂(j−1)
(J) as a j-polyad complex and denote

by Comj−1(P) the set of all j-polyad complexes.

4.4. Regular partitions.

Definition 4.12 ((µ, δ, d, r)-equitable). Let δ = (δ2, . . . , δk−1) and d =
(d2, . . . , dk−1) be two arbitrary but fixed vectors of real numbers between 0
and 1, µ be a number in interval (0, 1], and r be a positive integer. We say
that a family of partitions P = P(k − 1,a) is (µ, δ,d, r)-equitable if

(a) |V1| ≤ |V2| ≤ . . . ≤ |Va1 | ≤ |V1|+ 1,

(b) all but at most µ
(
n
k

)
many k-tuples K ∈

(
V
k

)
belong to (δ,d, r)-

regular (k, k − 1)-complexes P̂(k−1) ∈ Comk−1(P).

The following definition describes a type of partition we are interested in.

Definition 4.13 (regular family of partitions). We say P is (δk, r)-
regular2 with respect to H, if for all but at most δk

(
n
k

)
many k-tuples K ∈

Crossk(P(1)) we have that H∩Kk

(
P̂(k−1)(K)

)
is (δk, r)-regular with respect

to the polyad P̂(k−1)(K).

In [22], a regularity lemma for k-uniform hypergraphs was proved.

Theorem 4.14 (Hypergraph Regularity Lemma). For every integer
k ∈ N, all numbers δk > 0 and µ > 0, and any non-negative functions
δk−1(dk−1), δk−2(dk−2, dk−1), . . ., δ2(d2, . . . , dk−1), r = r(a1, d2, . . . , dk−1),
there exist integers Nk and Lk such that the following holds.

For every k-uniform hypergraph H with |V (H)| ≥ Nk there exists a family
of partitions P = P(k − 1,a) on V (H) and a vector d = (d2, . . . , dk−1) ∈
(0, 1]k−2 so that

2δ2-regular for k = 2
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(i) P is a (µ, δ(d),d, r(a1,d))-equitable family of partitions,
(ii) P is (δk, r(a1,d))-regular with respect to H, and
(iii) P is Lk-bounded.

5. Counting Lemma

The aim of this section is to state the second main ingredient to our
proof of Theorem 1.3. This is the Counting Lemma which was proved by
Nagle, Rödl, and Schacht [16] (special cases of Theorem 5.2 were shown
in [9, 15, 23]). In fact, here we use a variant of this lemma which can
be derived from the main result of [16] by a standard argument (see [16,
Corollary 12] and [25, Section 9] for a proof).

Before stating Theorem 5.2 we introduce some notation. First note that
in the previous section vectors d = (d2, . . . , dk−1) and δ = (δ2, . . . , δk−1)
were of length k − 2. In the set up below we need to consider quantities dk

and δk as well. In order to be consistent we will use the notation (d, dk) and
(δ, δk) to denote the corresponding vectors of length k − 1.

Definition 5.1. Let F be a k-uniform hypergraph with vertex set [t], d =
(d2, . . . , dk−1), δ = (δ2, . . . , δk−1) ∈ (0, 1]k−2, dk, δk ∈ (0, 1], and r, m ∈ N.

We say a (t, k)-complex H =
{
H(1), . . . ,H(k)

}
is an ((δ, δk),≥(d, dk), r)-

regular (m,F)-complex if the following holds:

(a) H(1) = V1 ∪ · · · ∪ Vt with |V1| = · · · = |Vt| = m, and
(b) for every edge K ∈ F the (k, k)-complex

HK =
{ ⋃

α∈K

Vα,H(2)
[ ⋃

α∈K

Vα

]
, . . . ,H(k)

[ ⋃
α∈K

Vα

]}
is ((δ, δk), (d, d(K)), r)-regular for some d(K) ≥ dk.

Theorem 5.2 (Counting Lemma). For every k-uniform hypergraph F
with vertex set V (F ) = [t] and ν > 0 the following statement holds. There
exist functions δ′k(dk), δ′k−1(dk−1, dk), . . ., δ′2(d2, . . . , dk), r′(d2, . . . , dk) and
m0(d2, . . . , dk) so that for every choice of d = (d2, . . . , dk−1) ∈ (0, 1]k−2 and
dk ∈ (0, 1] the following holds.

If H = {H(1), . . . ,H(k)} is a ((δ, δk),≥(d, dk), r)-regular (m,F)-complex
with δ =

(
δ′2(d2, . . . , dk), . . . , δ′k−1(dk−1, dk)

)
, δk = δ′k(dk), r = r′(d, dk), and

m ≥ m0(d, dk) then H(k) contains at least

(1− ν)
k−1∏
i=2

d
|∆i(F)|
i × d

|F|
k ×mt

copies of F , where ∆i(F) = {I ∈
(
[t]
i

)
: there exists K ∈ F so that I ⊆ K}.

Furthermore, we may assume that the function m0(d2, . . . , dk) is non-
increasing in every variable.

Remark 5.3. Note that under the assumption that d(K) = dk for all K ∈ F
Theorem 5.2 gives the asymptotic bound for the number of crossing and



12 V. RÖDL AND J. SKOKAN

unlabeled copies of F in H(k), i.e., copies with vertex set v1, . . . , vt with
vα ∈ Vα for every α = 1, . . . , t.

6. Proof of Theorem 1.3

The proof of Theorem 1.3 is based on Theorem 4.14 and Theorem 5.2 and
follows the lines of [3, 9]. First we will apply the Hypergraph Regularity
Lemma (Theorem 4.14) to H with δk � ε. Then we delete all k-tuples in
irregular and sparse polyads. Our choice of δk will guarantee that at most
εnk edges are deleted. We conclude the proof by showing that if H′ = H \
{deleted edges} is not F-free, then by the Counting Lemma (Theorem 5.2)
it must contain more than δnt copies of F , which contradicts the assumption
of Theorem 1.3.

Proof of Theorem 1.3. Suppose that ε > 0 and a k-uniform hypergraph F
with vertex set [t] are given. Set ν = 1/4 and let δ′k(dk), δ′k−1(dk−1, dk),
. . . , δ′2(d2, . . . , dk), r′(d2, . . . , dk), and m0(d2, . . . , dk) be the functions guar-
anteed by Theorem 5.2. We also set dk = ε/100. With intention to apply
Theorem 4.14 we choose

δk = min{ε/100, δ′k(dk)},
µ = ε/100, (6.1)

δi(di, . . . , dk−1) = min
{
δ′i(di, . . . , dk−1,

ε
100), di

2

}
, i = 2, . . . , k − 1, (6.2)

r(a1, d2, . . . , dk−1) = r′(d2, . . . , dk−1, ε/100), (6.3)

and obtain integers Nk and Lk. Set

δ =
1
2
×

(
L−2k

k

)2t

×
( ε

100

)(t
k) ×

(
1
Lk

)t

, (6.4)

and

n0 = max
{

Nk,m0(L−2k

k , . . . , L−2k

k , ε/100)× Lk,
2t

δ

}
. (6.5)

Suppose that H is a k-uniform hypergraph with n > n0 vertices and with
at most δnt copies of F . Applying Theorem 4.14 to H yields a family of
partitions P = P(k−1,a) and a vector d = (d2, . . . , dk−1) ∈ (0, 1]k−2 such
that

(i) P is (µ, δ(d),d, r(a1,d))-equitable family of partitions,
(ii) P is (δk, r(a1,d))-regular with respect to H,
(iii) a1, . . . , ak−1 ≤ Lk.

Observe that now, when the family of partitions P is found, the param-
eters δ = (δ2, . . . , δk−1) and r become constants. More precisely, since
Theorem 4.14 gave rise to a family of partitions P and a vector d =
(d2, . . . , dk−1), in view of (6.2) and (6.3) these densities fix the values of δ =
(δ2, . . . , δk−1) and r.

We now delete all edges K from H for which one of the following holds:
(a) K 6∈ Crossk(P(1)),
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(b) K ∈ Crossk(P(1)) but P̂(k−1)
(K) (cf. (4.3)) is not a (δ,d, r)-regular

(k, k − 1)-complex,
(c) K ∈ Crossk(P(1)) but H∩Kk(P̂(k−1)(K)) is not (δk, r)-regular with

respect to P̂(k−1)(K), or
(d) K ∈ Crossk(P(1)) and dH(P̂(k−1)(K)) ≤ ε/100.

It follows from (i) that there are at most µ
(
n
k

)
edges inH satisfying (a) or (b).

Moreover, (ii) implies that the number of edges considered in (c) is bounded
by δk

(
n
k

)
. Consequently, we removed at most (µ+δk+ε/100)

(
n
k

)
≤ εnk edges

from H to obtain H′. We claim this yields a subhypergraph H′ without
a copy of F .

To the contrary, suppose there is a copy F0 of F in H′. Let V (F0) =
{v1, v2, . . . , vt} ⊆ V (H′) and suppose vα ∈ Vhα for α = 1, . . . , t. Unfortu-
nately, for different vertices vα 6= vα′ the set Vhα may still be equal to Vhα′

and Theorem 5.2 is not equipped to directly address this problem.
To overcome this difficulty, we construct an auxiliary (m,F)-complex

G = {G(j)}k
j=1, which satisfies the assumptions of Theorem 5.2 and such

that the number of crossing, unlabeled copies of F in G(k) (see Remark 5.3)
gives a lower bound to the number of copies of F in H′. More precisely, for
each α = 1, . . . , t let Wα be a copy of the set Vhα such that for all α 6= α′

we have Wα 6= Wα′ . Let ϕα : Wα → Vhα be a bijection and for every edge

K ∈ F0 let P̂(k−1)
(K)∪ {H′ ∩Kk(P̂(k−1)(K)} be the unique (k, k)-complex

which contains K and is determined by the partition P and H′. We denote
this (k, k)-complex by H′(K, P).

Consider a copy GK of H′(K, P) on the vertex set
⋃

α∈K

Wα with

ϕK =
⋃

α∈K

ϕα :
⋃

α∈K

Wα →
⋃

α∈K

Vhα

being an isomorphism between GK and H′(K, P), i.e., an edge preserving
bijection for every layer of both complexes. We then set

G =
⋃

K∈F0

GK .

It follows from the definition of G, that G is a ((δ, δk),≥(d, ε/100), r)-
regular (m,F)-complex. Moreover, all but at most tmt−1 crossing, unlabeled
copies of F in G, correspond to copies of F in

⋃
K∈F

H′(K, P) and hence

to copies of F in H′. (Possible exceptions are those copies which contain
two distinct vertices w ∈ Wα and w′ ∈ Wα′ for which Vhα = Vhα′ and
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ϕα(w) = ϕα′(w′).) In view of Theorem 5.2, therefore, there are at least

(1− ν)
k−1∏
i=2

d
|∆i(F)|
i ×

( ε

100

)|F|
×mt − tmt−1

(6.5)

≥ 3
4

k−1∏
i=2

d
(t

i)
i ×

( ε

100

)(t
k) ×

(
n

a1

)t

− δ

2
nt (6.6)

copies of F in H′.
In order to complete the argument, we will prove that

1
2

k−1∏
i=2

d
(t

i)
i ×

( ε

100

)(t
k) ×

(
1
a1

)t

> δ , (6.7)

which in view of (6.6) contradicts the assumption that H ⊇ H′ contains
less than δnt copies of F . Since a1 ≤ Lk (cf. (iii) above), the next claim
implies (6.7) and, hence, concludes the proof of Theorem 1.3. �

Claim 6.1. dj > L−2k

k for j = 2, . . . , k − 1.

Proof. Let 2 ≤ j ≤ k − 1 and suppose dj ≤ L−2k

k . Recall that ai ≤ Lk

(cf. (iii)) for all i = 1, . . . , k − 1. Consequently, the number of (j, j − 1)-
polyads of the partition is at most(

a1

j

) j−1∏
i=2

a
(j

i)
i ≤ L2j−2 ≤ L2k−1

.

We now bound the number of j-tuples in (δj , dj , r)-regular j-polyads of P.
For that we observe mj = (n/a1)j ≤ (n/j)j ≤

(
n
j

)
and, consequently, the

number of j-tuples in (δj , dj , r)-regular polyads is at most

(dj + δj)×mj × L2k−1 ≤ 3dj

2
×

(
n

j

)
× L2k−1

≤
3L−2k

k

2
×

(
n

j

)
× L2k−1

k (6.8)

<
3
4

(
n

j

)
.

The last line follows from the obvious inequality Lk ≥ 2.
On the other hand, each j-tuple J , which is either not crossing or does not

belong to a ((δ2, . . . , δj−1), (d2, . . . , dj−1), r)-regular (j, j − 1)-complex (call
those J bad) extends to

(
n−j
k−j

)
k-tuples in V containing J . Each such k-tuple

necessarily is either not crossing with respect to P(1) or belongs to (δ,d, r)-

irregular P̂(k−1) ∈ Comk−1(P). Since P is (µ, δ,d, r)-equitable (see (i)
above) there are at most µ

(
n
k

)
such k-tuples (containing bad j-tuples).
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Consequently the number of bad j-tuples must be less than

µ
(
n
k

)(
k
j

)(
n−j
k−j

) = µ

(
n

j

)
.

Since µ ≤ 1/4, this contradicts (6.8) and hence the claim follows. �
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