Contents

Introduction

1.1 Notation and basic definitions . . . . . . .. .. ... ...
1.2 Regularity for graphs . . . . . . . ... oL
1.3 Regularity for hypergraphs . . . . . . .. .. ... .. ... ...
1.4 Themainresult . . . . . . . . . ... .

1.5 Structure of the thesis . . . . . . . . . . ...
Proof of the Main Theorem
More Definitions and Facts about Cylinders

The [-graphs Lemma

4.1 Definitions and technical observations . . . . . . . . . ... ... ...
4.2 Some facts about underlying 2-cylinders . . . . . .. .. .. .. ...
4.3 The proof of the l-graphs Lemma . . . . . . ... .. ... ... ...

Properties of 3-cylinders

5.1 Properties of links in the neighborhood of a single vertex . . . . . ..
5.2 Counting . . . . . . . . ..
5.3 Proof of Proposition 2.4 . . . . . ... .. oL

5.4 Properties of links in the neighborhood of a pair of vertices . . . . . .

© oo Ut = NN =

10

22

28
28
31
44



5.5 Proof of Proposition 2.5 . . . . . . .. ... 79

5.6 Counting IT . . . . . .. ... 80
5.7 Additional claims . . . . ... ..o 93
6 Properties of 4-cylinders 99
6.1 Regularity of the links of 4-cylinders . . . . ... ... ... .. ... 99
6.2 Proof of Proposition 2.6 . . . . . . ... ... 0L 107

Bibliography 119



Chapter 1

Introduction

While proving his famous Density Theorem [Sze75], E. Szemerédi invented an auxil-
iary lemma which later proved to be a powerful tool in extremal graph theory. This
lemma and its improved version named the Regularity lemma [Sze78], states that all
sufficiently large graphs can be approximated by “random-like” graphs. This feature
is especially useful in situations when the problem in question is easier to prove for
random graphs.

In particular, one such situation arises when the counting copies of a given small
graph in another graph. Although this problem is very hard in general, there is a
simple counting argument which counts these copies in the approximation produced
by the Regularity Lemma. Since this counting argument applied together with the
Regularity Lemma have had numerous applications (see [KS96] for survey), a natural
question arises whether it can be generalized to hypergraphs.

There were generalizations of the Regularity Lemma [FR92, Chu91]. Yet, they
have failed to produce “random-like” approximations in which one could count copies
of given small hypergraphs and, therefore, the odds for many applications have re-

mainded low.



A breakthrough came when P. Frankl and V. Rodl developed a regularity lemma
for 3-uniform hypergraphs [FR00|, which yields a copy of the complete 3-uniform
hypergraph on 4 vertices K f) in the approximations. This was was later generalized
to the counting of arbitrary small 3-uniform hypergraphs by B. Nagle and V. Rodl
[INR99], and they were also able to find a number of applications [KNR99, NROO,
RR9S].

It also turned out that developing a counting argument is a bigger problem than
the generalization of the Regularity Lemma (although these two issues cannot be
separated completely). The purpose of this work is to develop a counting argument
for 4-uniform “random-like” hypergraphs and show that the level of technical compli-
cation is significantly higher than in the case of 3-uniform hypergraphs (c.f. [FR00]
and Theorem 1.13 below).

However, there is good hope that our approach can be extended to the general

case of k-uniform hypergraphs.

1.1 Notation and basic definitions

We start with some definitions. For a set V and an integer k > 2, let [V]* denote the
system of all k-element subsets of V. An ordered pair G = (V(G), E(G)) = (V, E),
where E = E(G) is a subset of [V]*, is called a k-uniform hypergraph. If k = 2, we
have a graph. We call the cardinality of V' (G) the order of G whereas the cardinality
of the set F(G) is called the size of G.

Let V = ViU- - -UV be a partition, we say that a set e C V' is crossingif [eNV;| <1
for all 7 = 1,2,...,s. Furthermore, a hypergraph G = (V; U --- UV, E) is said to
be s-partite if its all edges are crossing. We shall also denote by K. s(k)(Vl, ..., Vy) the
complete k-uniform s-partite hypergraph with partition V; U--- U V.

Since this paper will deal mainly with partite hypergraphs, it is convenient to



introduce the term cylinder.

Definition 1.1. Let s > k > 1 be two integers. We define an (s, k)-cylinder G as
follows.
For k =1, G is a partition V(G) = V; U...UV,. For k > 1, G is any s-partite

k-uniform hypergraph.

If there is no danger of confusion, we shall identify the hypergraphs (cylinders)
with their edge sets.

Definition 1.2. Let k =1 and let G, G’ be two (s, k)-cylinders, V(G) = V1 U...UVj
and V(G') = V] U...UV/]. We say that G’ is a subcylinder of G if V! C V; for
all i = 1,2,...,s. While for k > 1 and two (s, k)-cylinders G, G', we say that G’
is a subcylinder of G if E(G') C E(G). Moreover, we say that G' is an induced
subcylinder of G if E(G') = E(G) N [V(G")]*.

If s =k + 1, we will often write an (s, k)-cylinder G as G = Ule G:, where G; is
the subcylinder of H induced on [J,, V;.

A subcylinder G’ = (V' E') of G is a clique in G if B/ = [V']*.
Definition 1.3. For an (s,1)-cylinder G = V; U---UV; and 1 < j < s, we define
IC;(G) = Ks(j)(Vl,...,Vs). For an (s, k)-cylinder G, where k > 1, we shall denote
by K;(G), k < j < s, the j-uniform hypergraph whose edges are precisely those
j-element subsets of V (G) that span cliques of order j in G.

Clearly, for k& > 1, the quantity |IC;(G)| counts the total number of cliques of order
J in G. We will often face a situation when we need to describe that one cylinder

‘lies on’” another cylinder. To this end, we define the term underlying cylinder.

Definition 1.4. Let G be an (s, k — 1)-cylinder and H be an (s, k)-cylinder with the
same s-partition. We say that G underlies H if H C ICr(G).

Through this paper, we will work with a series of underlying cylinders. To ac-



commodate this situation, we introduce the notion of a complex.

Definition 1.5. Let s and k, s > k > 2, be two integers. An (s, k)-complex H is a
system of cylinders {H(i)}le such that

(a) HW is an (s, 1)-cylinder V; U --- U Vi,

(b) for every i € [k — 1], H® underlies HV | i.e. HED € ICipq (HD).

1.2 Regularity for graphs

Before we state the Regularity Lemma, we must introduce the concept of regular
pairs.
Definition 1.6 (Szemerédi, 1978). Let G = (V, E) be a graph and 0 be a positive
real number, 0 < 0 < 1. We say that a pair (A, B) of two disjoint subsets of V' is
0-regular if

|d(A", B") —d(A,B)| < é

for any two subsets A" C A, B' C B, with |A'| > §|A|, |B’| > 6|B|. Here, d(A, B) =
|E(A, B)|/(|A||B|) stands for the density of the pair (A, B).

This definition states that a regular pair has uniformly distributed edges. The
Regularity Lemma of Szemerédi [Sze78| enables us to partition the vertex set V(G)
of a graph G into ¢ sets V3 U... UV, in such a way that most of the pairs (V;,V})

satisfy Definition 1.6. The precise statement follows.

Theorem 1.7 (Regularity Lemma). For every ¢ > 0 and ty € N there exist two
integers Ny = Ny(e,to) and Ty = To(e, ty) with the following property: for every

graph G with n > Ny vertices there is a partition of the vertex set into t + 1 classes

V=VWuWhhu...uV



such that
(i) to <t < T,
(ii) [Vo| < en,
(i) |Vi| = ... =|Vi|, and
(iv) all but at most €(}) pairs (Vi,V;), 1 <i < j <t, are e-regular.

Moreover, this lemma is sufficiently strong to ensure the existence of various small
subgraphs in G. The easiest case, when we count copies of K3, is summarized in the

next fact.

Fact 1.8. If all (V;,V}), (V;, Vi), and (V;, Vi) are e-regular pairs with density d and
2e < d, then

(1= 2e)(d — )*[Vil|V3IVi| < IKG5(G 0 K (V;, V;, Vi)
< [2e+ (d+ &) T VillViIVal.

This fact and its extensions (c.f. Fact 3.5) are a key to many applications of the

Regularity Lemma (c.f. [CRST83, KSS97, KS96]) .

1.3 Regularity for hypergraphs

Now we define the notion of reqularity for cylinders:

Definition 1.9. Let G be a (k, k — 1)-cylinder underlying a (k, k)-cylinder H. We
say that H is (0, d)-regular with respect to G if the following condition is satisfied:
whenever G C G is a (k, k — 1)-cylinder such that

K@) = 51K4(9)|



then
(d - 9) [Ku(@)

< \Hmck(gv] < (d+0) ]/ck(g’)\.

Note that for k = 2, Definition 1.9 varies from Szemerédi’s definition of a d-regular

pair (Vi,V3) (cf. [SzeT8]). It is easy to observe that
e (6, d)-regularity implies 0'/2-regularity in the sense of Definition 1.6, and
e J-regularity in the above sense gives also (9, d)-regularity.

For k£ > 2, the situation becomes more complicated and due to the quantification
of constants in the hypergraph regularity lemma (Remark 4.6, [FR00]), Definition
1.9 is not strong enough to have the effect of Definition 1.6 in the case k£ = 2. To
overcome this problem, P. Frankl and V. Rédl introduced in [FRO0] the concept of

(0, 7)-regularity. Here we present this concept in a more general form.

Definition 1.10. Let r € N and G be a (k,k — 1)-cylinder underlying a (k,k)-
cylinder H. We say that ‘H is (0,d,r)-regular with respect to G if the following
condition is satisfied: whenever Gy, ...,G, C G are (k,k — 1)-cylinders such that

L Ki(G))

j=1

>0 |Ke(9)],

then

L Ki(G))

j=1

(d—0) < < (d+50) . (1.1)

O’Ck(gj) HN O’Ck(gj)

We extend the above definition to the case of an (s, k)-cylinder H.

Definition 1.11. Let r € N and G be an (s, k — 1)-cylinder underlying an (s, k)-
cylinder H. We say that ‘H is (6,d,r)-regular with respect to G if H [Ujel VJ} is
(0,d, r)-regular with respect to G [Ujd V;} for all I € [s]".

Now we are ready to introduce the concept of regularity for an (s, k)-complex H.



Definition 1.12. Letr € Nandd = (da, ... ,d;) and § = (da, ..., ) be two vectors
of positive real numbers such that 0 < 6; < d; < 1 for all i = 2,...k. We say that

an (s, k)-complex ‘H is (8, d,r)-regular if
(a) H® is (8, dy)-regular with respect to H"), and
(b) H*V is (§;41,diy1,7)-regular with respect to H" for every i € [k — 1]\{1}.

P. Frankl and V. Rodl proved the regularity lemma which allows splitting of the
edge set of an arbitrary 3-uniform hypergraph into (3, 3)-complexes in a way similar
to the manner in which the Szemerédi Lemma paritions the edge set of the graphs into
biparitite graphs most of which are e-regular. (Here e-regularity has been replaced
by (9, d, r)-regularity of corresponding 3-complexes.) They also proved the following
theorem extending Fact 1.8 from graphs to 3-uniform hypergraphs.

Theorem 1.13 (P. Frankl, V. Rédl [FRO00]). For any v > 0 and any ds € (0,1]
there is a real number 03 such that for any positive real number dy € (0, 1] there exists
92 and r € N such that if H is a (8,d,r)-reqular (4,3)-complex, where d = (da, d3)
and & = (84, 65), then H®) contains (1 & y)clgg)algg)n‘l copies of K.

Here 1 £ v stands for a number in the interval (1 — v,1 + v). This theorem
plays the role of Fact 1.8. Indeed, it enables us to find copies of the complete 3-
uniform hypergraph on 4 vertices K f) in 3-cylinders underlied by a regular sparse
2-cylinder. However, this theorem would be useless without an appropriate version
of a regularity lemma for 3-uniform hypergraphs. Such a lemma was also introduced
in [FRO0]. Moreover, this result was extended by B. Nagle and V. Rddl in [NR99]
who developed an argument for counting copies of complete 3-uniform hypergraphs

on k vertices K ,gg).



1.4 The main result

The aim of this thesis is to extend Theorem 1.13 to 4-uniform hypergraphs.

Theorem 1.14 (Main Theorem). For any v > 0 the following statement holds.
For every dy € (0,1], there is a real number 64 such that for any ds € (0,1],
there exists a real number 03 such that for any dy € (0,1], there is do and r € N
with the property that whenever H = {HW HZ HO) HDY is a (8,d,r)-reqular
(5,4)-complex, where d = (dy,ds, dy) and & = (84, 65,64), then H®Y contains

5 5 5
(1 % )Vl aPs
copies of K§4).

An appropriate version of the regularity lemma for 4-uniform hypergraphs has
been developed in [RS00]. Extending the regularity lemma of Frankl and Rodl, this
lemma allows us to partition the edge set of an arbitrary 4-uniform hypergraph into
(4, 4)-complexes, most of which are regular in the sense of Theorem 1.14.

Perhaps surprisingly, it appears that it is not an extension of the the Regularity
Lemma but rather generalizations of Fact 1.8 which cause the difficulties in the
hypergraphs case. Unlike the proof of Fact 1.8, which is straightforward, the proof of
Theorem 1.13 is already quite complex. Theorem 1.14, as an extension of Theorem
1.13 to 4-uniform hypergraphs, is yet much more difficult prove.

We believe that Theorem 1.14 is the last step towards a proof of the following

general counting statement:

Conjecture 1.15. For any v > 0 and any k € N, the following is true: ¥dy, € (0, 1]
30y Vdi—1 € (0,1] F0k—1 ... Vdy € (0,1] Ir € N 3y such that if H is a (d,d,7)-
reqular (k + 1, k)-complex, where d = (dy,...,dy) and § = (8,...,6;), then H®
contains

Talt)
(1 iy)HdS =/ x nFtt

s=2



copies of K,ii)l.

This together with a general regularity lemma for k-uniform hypergraph intro-
duced in [RS00] (which is proved under the assumption of validity of this conjecture)
is the last step towards a fully applicable regularity lemma for k-uniform hypergraphs.

1.5 Structure of the thesis

The structure of this work is the following: in the next chapter, we first introduce
Propositions 2.2-2.6 and later use these propositions to prove the Main Theorem. In
Chapter 3 we describe various properties of 2-cylinders and prove Propositions 2.2
and 2.3. Then, in Chapter 4, we prove the so-called [-graphs Lemma which counts
copies of K3 in the series of nested regular 2-cylinders. This lemma plays an impor-
tant role in the investigation of properties of 3- and 4-cylinders. In Chapter 5, we
discuss and prove various properties of regular 3-cylinders. The proofs of Proposi-
tions 2.4 and 2.5 are also presented in this chapter. The last chapter, Chapter 6,

provides some theory of regular 4-uniform hypergraphs and proves Proposition 2.6.



Chapter 2

Proof of the Main Theorem

The goal of this section is to prove the Main Theorem. We first state all necessary
concepts and propositions and later use them in the actual proof. One of the central

concepts in the proof of Theorem 1.14 is the notion of the link of a vertex.

Definition 2.1. Let G be a k-uniform hypergraph and x € V(G). We will call the

set
Gx)={e\{z}:e€ G, x e}

the link of the vertex x in G. Note that G(x) is a (k — 1)-uniform hypergraph.
Moreover, if G is an (s, k)-cylinder, then G(x) is an (s — 1,k — 1)-cylinder. For a
subset W C V(G), we define G(W') by

GW) = () G(x). (2.1)

zeW

For simplicity, it W = {x,...,xx}, we write G(x1,...,Tk).

Through the remainder of the paper we fix a (8, d, r)-regular (5, 4)-complex H =
{H(l), HZ HEG) H(4)} and v > 0, and we will assume that H) =V, U...UV;s and
|[Vi| = ... = |V5| = n. The purpose of this condition is to simplify the proof and all

statements remain valid for partite sets with different sizes.

10
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Let us recall the quantification of the constants in Theorem 1.14:
Vd4354Vd3§|53Vd235237’.
Due to this quantification we may assume

v>04>0
1>dy>04>0
1>d3>d3>0
1>dy>0,>0 (2.2)
9y > 93 > 0o,

~100 7100
r>dsdy

The main role of the fourth condition is to simplify the error terms. Without it we
would have to carry on long strings of error terms depending on d,, d3, and d,.

Our proof will be based on the following propositions.

Proposition 2.2. For all but at most 865/271 vertices x € V)

5
2

KOO (@)])] < 208, 2.3)
Proposition 2.3. For all but but at most 165%/271 pairs of vertices x, ' € Vj
(O M (@, 2)])] < 2t (2.4

Proposition 2.4. For all but but at most 465§/2n vertices x € V)

5 5 5

%dgg)d§2)n4 < [Ka(H® A s (HP (2))] < 24 a3 (2.5)

Proposition 2.5. For all but but at most 605?1)/16712 pairs of vertices x, ¥’ € V;

IKa(H® N Cs(H®) (2, 27)))| < 2d30din?. (2.6)
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Proposition 2.6. For all but but at most 105i/4n vertices x € V)
(D ()] = (1 v/ 2) i) o 2.7
Since the proofs of these propositions are rather complex, we defer them until
later. Propositions 2.2 and 2.3 are proved in Chapter 3. In order to prove Proposi-
tions 2.4, 2.5, and 2.6, we need the so called k-graphs Lemma (see Chapter 4) and
a number of additional claims. Therefore, the proofs of Propositions 2.4 and 2.5 are
in Chapter 5, and the proof of Proposition 2.6 is given in Chapter 6.

We will also need the following lemma:

Lemma 2.7 (Picking Lemma). Let V be a set of size m, k be a nonnegative
integer, and P, ... Py be arbitrary graphs on V. Furthermore, suppose that |P;| <
oym?, |Py| < gom?, ... |Px| < oxm?®. Then for every subset W C V with at least cm

elements and a positive integer t such that

20'1t2 1
<2, 2.8
2 <7 (2.8)
there exists a choice of t vertices x1,xo,...,x; € W such that

i) {xy,x} € Py foralll <u<v<t,
ii) for alli € [K\{1}, {zu,z,} & P; for all but at most 25t? pairs 1 <u < v < t.

Proof. Choose randomly a t-element subset R C W. We will show that

1
PPN R 2 1) < 1, (2.9)
and
2/{30'2' 1
P(|P; N [R)?| > 7#) <7 (2.10)

for all i € [k]\{1}, which implies the existence of an t-element subset satisfying

conditions 1) and ii).
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Both (2.9) and (2.10) follow from Markov’s inequality. Indeed, the probability

that a randomly chosen pair {z,y} is an edge of P; can be bounded as follows

om? _ om? 4o
P(xy € E(P;)) < (‘W < e S a2
1

Using (2.8), the expected number of edges in a random selection of ¢ vertices from
W is

t\doy _t*4oy 1

oy < (T)dor  Pdor 1

E(|P. N [R]?]) < <2) Z S5 2 <7
Similarly,

N\ do; 240, 2420
Mﬂmmms()“ Pdo 2o

< —
2/ c2 2 2 c?

At this point we apply Markov’s inequality and we obtain (2.9) and (2.10):

P(PLN[RF] > 1) <E(PuN [R]]) <

El N

and

2ko; 270 1
P. N 2 1,2 c?
(‘ IR = c? ! > = k—Qtjzai k-

Now we are ready to prove the Main Theorem.

Proof of Theorem 1.14. Let W be the set of all vertices x € V) satisfying inequality

(2.7). Thus, for every vertex x € W we have:
KiHO @) = (1 +/2)dd D alPnt, (2.11)
By Proposition 2.6 we know that
W) > (1 . 1005i/4) n.

Since the proof is rather complex and long, we outline its idea first. For every vertex

5 5
x € W there are (1 + V/2)did§3)d§2)n4 copies of K\ in H®W(z). Notice that every
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such K f’) together with x form a copy of (K 554) \ edge) in H®. Therefore, we would
like to apply the (&4, dy, r)-regularity of H* on these copies to obtain the uncounted
for edge.

The number of copies of K f’) in HW(z) is, however, insufficient to apply the
(64, dy, r)-regularity of H®. Indeed, from Theorem 1.13 we have: |[K4(H®))| >
(1/2)dSdin*. To apply the (&4, dy, 7)-regularity of H® we need to satisfy

Ca(HW ()] = 64l Ka(HP)].
Since [K4(HW ()| < (1 + V/2)did§3)d§2>n4, we obtain
(1+ y/2)did§3)d§2)n4 > 04 x (1/2)dSdan*

or (1+ v/2)djdSd; > 64. This is impossible to satisfy due to the order of constants
and quantification of this theorem.

Thus, we must use the full power of r-regularity. We select r = 253 %/ (dAdS) ver-
tices 1, ..., 2, from T in such a way that the size of | J;_, IC4(HW (x;)) is sufficiently
large to apply the regularity of H¥, i.e.

> |Ku(H)). (2.12)

U Ka(HW (25))

In order to choose this r-tuple of vertices with a large union, we will use the Picking

Lemma and the fact that

U Ki(HW (2;))

> KR @) = 30 KO ()]

1<i<j<r
The Picking Lemma and Proposition 2.6 will guarantee the choice of the r-tuple
1, ..., 2, for which 77, |Ka(HW(x;))| is “large”, whereas the same lemma and

Propositions 2.3 and 2.5 will make the second term Z ’K4(H(4)(a:i, ;)| “small”.

1<i<5<r
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Since (2.12) holds, we wil be able to apply the (&4, dy, r)-regularity of H™® to

obtain

U Ka(HO(x;))].

7=1

mUIC4 ‘ (dy £ 0y)

Observe that the left—hand side of the above equation counts the number of copies
of Ké4) that use one of xy,...,z, as a vertex. Also note that this number is O(n?)
which is far less than what Theorem 1.14 promises.

To get a full amount of copies of ké4) as claimed by the Theorem, we will iterate
this process as long as we are able to use the Picking Lemma. At the end we take
care of any remaining vertices, i.e. we estimate the number of K é4) that use vertices
left in W and vertices not satisfying (2.11). Our main tools will be Propositions 2.2
and 2.4.

After describing the idea, we start with a detailed proof. We define two graphs
P, and P, both with vertex set V| and edge sets defined by:

E(P) = {a2": IKs(HPHP (z,2)])| > 2dy'n*},
E(Py) = {az': |[Ki(H® 0 IC(HP (2,2)))| > 2d3°dy n*} .

It follows from Propositions 2.3 and 2.5 that the sizes of P; and P, are bounded,
more precisely, [Py < 1663/*n? and |Ps| < 6085 °n2.

We apply the Picking Lemma on W with parameters o7 = 160. /2, 0y = 60(51/16
t=r = 262/(d4dS), ¢ = 6;'%, and obtain r vertices z1,...,z, € W such that all
pairs {z;, xz;} satisfy

Ky(HP[HP (i, 2;)])] < 2dy"n", (2.13)

and all but <2 x 2 x 6005 /6, ) 2 < 63/%r2 pairs {w;,x;} satisfy

IKa(H® 0 K (KD (24, 25)))| < 2d58dsn* (2.14)



16

This is possible as long as |[W| > ¢ xm = 6i/2m and condition (2.8) is satisfied, in

other words, if

2% 1662 x 2 1
/2 <3 (2.15)
(5%
holds. This is true because
2 x 166,/ x 2 1285,/ st st s a1
= <128 x = x —=— < 128 x 057 x 877 < =.
( 5i/2)2 dsdi? — ds "~ od? ~ R !

Here we used assumption (2.2): dy < ds < 1, d3 < d3 < 1, and Jy < 3.
Now we estimate the size of [J;_, KC4(HW (x;)). We first apply Observation 4.5:

> [RaHO @) = Y [Ka(HW (@) N Ea(H W ()]

j=1 1<i<j<r

U Ka(HW (2;))

The next step is to estimate both terms on the right-hand side. The first term is
easier to handle, we use inequality (2.11):
5

zr: |KCa(HW ()| > 7 x (1 - u/z)did?(,g)dg?)n‘*. (2.16)

To get an estimate for the second term, we must observe several facts:
o Ku(HW (z) N ICy(HW (25)) = Ka(HD (25, 7;)) for every 1 <i < j <.

e It follows from the fact that H® < K4(H®)) that every copy of Kf’) in
HW (24, 2;) is also a copy of K® in HO® N KCs(H®) (34, ).

e Every copy of K\¥ in HW (z;,2;) is also a copy of Ky in HO[HP (z;,2,))).
This again follows from the fact that H® C Ky (H®) and H®) c Ks(HP).

5;/32

Since we know that all but at most 72 pairs {z;, z;} satisfy (2.14), for these pairs

we use the estimate

}IC4(H(4) (a:l,x]))’ < |IC4(H(3) N ICg(H(3)(:1:i,xj)))] < 2d3%dy*n?. (2.17)
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The remaining 63/ **r2 pairs {z, z;} satisfy (2.13), thus we estimate |[KCq(H™ (2, 7;))|
as

[a(H (i, )] < IKa(HPTHE (g, 25)])] < 2dy"n (2.18)

Now we combine (2.17) and (2.18) to obtain

> KM (1) N Ka(HW ()| < (g) x 2di8dMnt + 63321 x 2dy*n?
1<i<j<r

We use the assumption 03 < ds and conclude that 51/ Pr2 5 2dbint < dlbr2diint,
Then,

> KW () N KCa(HW ()))| < 2r°di°dy*n. (2.19)

1<i<j<r

Using (2.16), (2.19), and the definition of r (recall r = 25,/%/(d3dS)), we obtain that

_ a1(5) () a5 916 14 4
>r X (1 —v/2)dyds* dy3¥’ n* — 2r<ds°dy'n

(2.20)
1/2 54 44 16,4 464 22 4 16, 4

Note that 3-cylinder ’H?) is (d3,ds, r)-regular with respect to ’H?) and H?) is
(02, dg)-regular. Furthermore, the quantification of this theorem allows us to choose

03 and (52 so that the assumptions of Theorem 1.13 are satisfied. Thus, we infer that

’IC4 ‘ < 2d3dSn*. Therefore,

x]

>64‘1C4 H(?’)‘

so, by the (04, dg, r)-regularity of H® with respect to H®), we obtain
‘HG) NUj—y Ka(HW (%‘))‘
Uy (1 (@)

dy— 0, < < dy+ 0y (2.21)
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From the above inequality and (2.11), one can easily conclude:

U KM ()

j=1

‘H“) a U Ka(HW ()| < (dy + 64)

j=1

< (da+04) Z [ICa(HW (a5))] < (da + Ga)r(1 + v/2)dtd al .

j=1
In order to get a lower bound on ‘H(‘l) NUj—, Ka(HW ()], (2.21):
YN U Ki(H > (dy — 64) U Ka(HY( j))| . (2.22)
j=1
Second, we want to apply Observation 4.5 with a = 5i/ * and obtain:
O Ka(HW ()] > (1 - 5i/4> Z ICa(HD ()] (2.23)
j=1 =1

In order to do this, we must show that
XY RaHO @) = D0 (M (@) NEa(HD ()] > 0.
j=1 1<i<j<r
This is easy to verify using (2.16), (2.19), and dy > d4. Indeed,
( 16)
5/ % Z IC(HD ()| > 64" x 8, dididin® > 86.didSn?,

and

(2.19)
> KM () N Ka(HW(2))| < 2r°didy*n* < 86,djdSn’.

1<i<j<r

Then, we combine inequality (2.22) and (2.23) and get:

>dy (1- /") Ulc (MO ( ))‘

We apply (2.16) and get:

‘H(4) N U /C4(7’l(4)
j=1

)| 2 (1- 534)2 wrx (1—w2)did®aPns. (2.24)
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We remove vertices x1, ...,z from W and iterate the whole process again. Due

to (2.15), we can repeat this process as long as

W\ > 6, %n. (2.25)
This way we produce a sequence of at least (1 — 1005? g 51/ 2
than n/r r-tuples XM = {z,,... 2} = {:cgl), . ,xfnl)}, X = {56'52), . ,xq(?)},

etc.

) n/r but not more

Analoguously to (2.24), each iteration produces at least

5 5

(1 - 5§/4>2 < x (1—w/2)did D dnt > (1 - 3p/0)@dD dlPns

copies of K 554) (each of which uses exactly one vertex from X = { xgi), . ,x@}) )
Note that v > ¢4 and, therefore, the following lower bound on the number of K, 5(4)’8
in H® holds:

5 5
(D) > (1~ s/l alnt < (1 - 1005}/ —612)
r
(2.2) 5 5
> (1- y)d3d§3>d§2>n5.
The upper bound causes some extra difficulties - we must count not only

(i) the contribution of r-tuples of vertices taken from W, but also
(ii) contribution of vertices left in W, and
(iii) vertices not satisfying (2.11).
We will handle each of these categories of vertices separately:

) . (4) :

(i) An upper bound on number of copies of K’ produced by taking r-tuples from
W can be obtained similar to the lower bound above: every r-tuple is in at
most (dy + d4) x (1 + 1//2)djd§3)d§2)n4 copies of Ké4). There are at most n/r

such r-tuples, together producing at most

5

(di + 501+ v/2)dd D dPn® < (1 + 30/ Bd P d) o



(i)

(i)
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copies of K, 5(,4).

The number of vertices left in W is at most 5i/ ’n (¢.£.(2.25)). Each such vertex
5 5
satisfies (2.7) and, consequently, is involved in not more than 2did§3)d§2)n4
copies of K, é4). Therefore, this group of vertices contributes at most 5i/ ’n x
5

5 5 5
2d3d§3>d§2)n4 <68y 4did§3)d§2) n® copies of K. We used again the assumption

54 < d4.

Now we must estimate the contribution of vertices not satisfying (2.11). Recall
that we have at most 1006i/ *n such vertices. We distinguish three categories

of these vertices:

e Consider vertices satisfying (2.5). Proposition 2.4 implies that all but
465§/ % vertices belong to this category. We estimate contribution of

5 5
every such vertex z by |[K;(H® N K3(H®) (2)))] < ngg)d§2)n4. There-
5 5 5 5
fore, they contribute by at most 1005, *n x 2d§3)d§2)n4 < 5i/8did§3)d§2)n4

copies of K, é4).

e Consider vertices not satisfying (2.5) but satisfying (2.3). Proposition 2.4
implies that all but 85;/ n remaining vertices belongs here. Then, each
such vertex x is in at most |k, (H®P[H® (2)])| < 2d§g)n4 copies of KV,
The total contribution of these vertices is then bounded by 80631,/ Y x
ngg)n4 < 5§/32d§)d§)n5 < 54d§>d§g)n5 < 5i/2did§g)d§g)n5. Here we used

assumptions (2.2).

e The remaining at most 8(5;/ ®n vertices satisfy neither (2.5) nor (2.3). In
this case, we use a rough estimate that every vertex is in at most n* copies
of K, é4) and, thus, the contribution of these vertices is at most 85;/ nxnd <

5 5
2 2

5140 < 6,03 ns < 5120 dD e < 5,0l ns < 512030 s,
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At this point we are ready to derive the upper bound. We add the contributions of

all vertices above and obtain

(D) < (14 /24 6/ 5% 4 261%) gl dlPn® < (14 )i alhn



Chapter 3

More Definitions and Facts about

Cylinders

The main goal of this Chapter is to extend the notation from the Introduction and
to provide some basic facts about cylinders. We will also prove Propositions 2.2

and 2.3.

Definition 3.1. Let G be an (s, 2)-cylinder with s-partition V =V, U...UV,. We
define the neighborhood of a vertex x € V by N(x) = Ng(z) = G(x) and the degree
of x by deg(x) = degg(x) = |G(x)|. If W is a subset of vertices of V, we define
N(W) = Ng(W) = G(W) and deg(W) = degg(W) = |G(W)].

Ifx ¢Vj, j € [s], then we set Nj(x) = N(x)NV; and deg;(z) = |N;(x)|. Similarly,
it WnV; =0, weset Ny(W) = NW)NV; and deg;(W) = |N;(W)|.

Note that almost all of vertices in a regular (2, 2)-cylinder have nearly the same

degree. More precisely, the following fact is true:

Fact 3.2. Let G = (V1UV4, E) be a (9, d)-regular bipartite graph with |Vi| = |Va| = m

22
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and 0 < 6 < d. Then all but at most 20m vertices x € Vi satisfy
(d—0)m < deg(x) < (d+d§)m.
We extend this fact to an arbitrary subset W of vertices.

Fact 3.3. Let k be a positive integer such that (d — 6)** > §, and let G be a (5,d)-
reqular (s, 2)-cylinder with s-partition Vi U ... UVy, |Vi| = ... = |V5| = m. Then,
all but at most 2k(s — 1)6Y2m* k-tuples of vertices {x1,xs,... 2} C Vi satisfy the
following condition:
For every i € [k] and every j € [s|\{1}, if W is any subset of {x1,2a,... 2%},
|W| =1, then
(d—0)'m < deg;(W) < (d + 6)' m. (3.1)

Proof. Note that we can restrict ourselves to the case s = 2 because then we apply
this result simultaneously to s — 1 (2, 2)-cylinders G[V; UV}], j € [s]\{1}.

We proceed by induction on k. For k = 1, the statement follows from Fact 3.2.
Furthermore, assume that the claim is true for £ > 1 and we would like to verify it
for k4 1. There are two possible ways a (k + 1)-tuple Y can violate condition (3.1).

First, there exists an i < k such that there is an i-tuple W C Y, |W| = i, which
violates (3.1). But then, W is a part of a k-tuple violating (3.1). By the induction
assumption, there are at most 2k5'/?2mF* such k-tuples. Therefore, one can find at
most m x 2kd'/?mF = 2k6/2m* 1 “bad” (k + 1)-tuples of this kind.

Second, a (k + 1)-tuple Y satisfies (3.1) for all i, 1 <14 < k, however, either

deg(Y) < (d — §)*'m, (3.2)

or

deg(Y) > (d + 6)*m. (3.3)
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We can estimate the number of such (k + 1)-tuples as follows. Fix a k-tuple W
satisfying (3.1). Let Zy be the set of all vertices = € V; such that the (k + 1)-tuple
Y =W U {z} satisfies (3.2). If |Zw| > §'/%m, then

Ko (Zw UN(W))| = | Zw|IN(W)| = 6Y%m x (d — §)Fm > 6m?.

Since G is (0, d)-regular, we get e(Zw, N(W)) > (d — 6)|Zw||N(W)|. On the other
hand, using (3.2), we obtain

e(Zw, N(W)) < |Zw|(d = 6)'m < |Zw|(d = 8)IN(W)|

which is a contradiction. Thus, we proved | Zy | < 6'/2m.
Inequality (3.3) is handled similarly. Since there are at most m* k-tuples W,
there exist at most 26/2m x m* = 261/2m**1 (k + 1)-tuples of this kind. Both cases

together give the desired result. O

We will also use the following easy fact.

Fact 3.4. Let G be a (0, d)-regular (s,2)-cylinder with s-partition Vi U ... U Vs, and
let V{ C Vi, V3 C Va,...,V{ C Vi, be subsets such that |V]| > 6"*m for all j € [k].
Let G' be the subcylinder induced on V] U...UV!. Then, G' is (6'/2,d)-regular.

Proof. Tt is an easy consequence of the definition of (4, d)-regularity. O

Regular cylinders have the property that one can count the actual number of
copies of small complete graphs. The precise statement is summarized in the follow-

ing fact (see e.g. [NR99)):

Fact 3.5. For any positive integer s and positive real numbers d, § such that 6Y/* <
(d—08)*~1, there exists a function 0,4(8), 05.4(0) — 0 as & — 0, such that whenever G
is a (0,d)-regular (s,2)-cylinder with s-partition Vi U ... UV, |[Vi| = ... =|Vi| =m,
then

(1= 0,a(8)m*dE) < K (G)] < (14 Oua(8))medl2). (3.4)
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We will frequently use the following easy corollary of Fact 3.5.

Corollary 3.6. If § is sufficiently small (i.e. § < 6(s,d)), then

zmsd(é) < |Ks(9)] < 2med(®). (3.5)

We now define the notion of a good vertex.
Definition 3.7 (good vertex). Let G be a (0, d)-regular (s,2)-cylinder with s-par-

tition Vi U ... UV, [Vi| = ... = |V5| = m. A vertex x € V] is called good if it

satisfies

(i) (d—¢6)m < deg;(x) < (d+d)m for j =2,...,s and (s — 1,2)-cylinder G[G(z)]
is (612, d)-regular,

(ii) = extends to at most 0'/*m pairs {x,2'} C Vi not satisfying (d — §)>m <
deg;(z,2') < (d 4 6)*m for j = 2,...,s, or for which (s — 1,2)-cylinder
G[G(x,2")] is not (§'/2, d)-regular,

(iii) x extends to at most §'/*m? triples {z, 2, 2"} C Vi not satisfying (d — 6)>m <
deg;(z,2',2") < (d + 6)*m for j = 2,...,s, or for which (s — 1,2)-cylinder
GG (x, 2, 2")] is not (6%, d)-regular.

We denote by Vgeoa the set of all good vertices in V;.

Suppose that (d — 0)® > §/4. Then for every vertex x (pair {x,z'}, triple
{z, 2’2"}, respectively) that satisfies condition (3.1), Fact 3.4 guarantees the regu-
larity of G[G(z)] (G[G(x, 2")], G|G(x,a', x")], respectively).

It follows from Fact 3.3 that at most 2(s — 1)6'/2m vertices x, at most 4(s —
1)6'/4m? pairs {z, 2'}, and at most 6(s —1)0"/4m? triples {x,2’, 2"} violate condition

(3.1). From this we can conclude that almost all vertices = € V] are good.
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Observation 3.8. Let G be a (6, d)-regular (s, 2)-cylinder with s-partition V1U. . .UV,
Vil =...=|Vi| =m, and (d — 6)® > 6"*. Then

|Veood| > (1 —2(s — 1)51/2 —10(s — 1)51/4) .
Now we are ready to prove Proposition 2.2.

Proof of Proposition 2.2. Choose any x € Vyooq. Then x satisfies
(da — d2)n < deg;(z) < (da + 02)n

for j = 2,3,4,5, and the (4,2)-cylinder H@[H® ()] is (5%/2,d2)—regular. Since
dy < dy by assumption (2.2), Fact 3.6 implies that

4 5
2 2

Ko (HO[HO) (2)])] < ng ) % (dy + 62) 0 < 2d\nt.

We next extend the notion of a good vertex to neighbors and pairs.

Definition 3.9 (good neighbor). Let G be a (0,d)-regular (s,2)-cylinder with
s-partition Vi U ... UV, |[Vi| = ... = |V§| = m, and x € V; be a good vertex.
A vertex y € Ny(z) is called a good neighbor if it is a good vertex with respect to the
(s —1,2)-cylinder G[G(z)]. We also denote by N(x)go0a the set of all nice neighbors.

Observe that for every good neighbor y € N ()44 the link G[G(x, y)] is (6¥/4, d)-
regular and (d — 51/2)2 m < deg;(x,y) < (d+ 51/2)2771 holds for j = 3,...,s.

One can observe the following:

Observation 3.10. Let G be a (§, d)-reqular (s, 2)-cylinder with s-partition Vi U. ..U
Vi, Vil = ... =|V| =m and (d — 51/2)4 > Y4, Then for every good vertex x € V;
all but at most 12(s — 2)5"/8|Ny(x)| vertices y € Ny(x) are good neighbors.
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Proof. Let = be a good vertex. Then we know that G[G ()] is (§'/2, d)-regular and
(d —6)m < deg;(z) < (d+ d)m holds for j = 2,...,s. We apply Observation 3.8
on G[G(x)] and get that for all but at most (2(s — 2)6"/* + 10(s — 2)0/®) [ Na(z)| <
12(5—2)8"/8| Ny ()| vertices y € Ny(z) are good with respect to G[G(x)], that is there

are good neighbors. O

Definition 3.11 (good pair). Let G be a (9, d)-regular (s,2)-cylinder with s-par-
tition Vy U ... UV, |Vi| = ... = |V§| = m. A pair of good vertices {x,z'} C V; is

called good if it satisfies:
(i) (d—0)*m < deg;(x,2') < (d+6)*m forj=2,...,s,
(i) G[G(x,2")] is (6Y/2, d)-regular,

(iii) {x,2'} extends to at most 6'/*m sets {x,2', 2"} C V} not satisfying (d—&)>m <
deg;(z,2',2") < (d + 6)*m for j = 2,...,s, or for which (s — 1,2)-cylinder
GG (x, 2, 2")] is not (6'/%, d)-regular.

Similar to the good vertex case, almost all pairs of good vertices are good.

Observation 3.12. Let 0 < 6 < d be two real numbers such that (d— )% > §'/* and
G be a (9, d)-regular (s, 2)-cylinder with s-partition ViU. . UV;, [Vi| = ... = V5| = m.
Then all but (4(s — 1)6Y2 + 6(s — 1)6Y*)Ym? pairs in [Vgooa)® are good.

The proof of this Observation is similar to the proof of Observation 3.8.

Proof of Proposition 2.3. The proof follows the lines of the proof of Proposition 2.2

where we replace a good vertex x with a good pair of vertices {x,z'}. O



Chapter 4

The [-graphs Lemma

The goal of this section is to develop the [-graphs Lemma which is the main tool
in the proofs of Propositions 2.4, 2.5, and 2.6. We start with some definitions and

technical observations.

4.1 Definitions and technical observations

It is convenient to introduce the following notation: for a sequence of positive real

numbers {d;}, we set

Observe that Dy 1 = dy1q X D;.

The next definition is crucial for this part of the paper.

Definition 4.1. Let Hy, Hy be two (k, k)-cylinders with k-partition V3 U ... U Vg,
and Hy C Hy. We say that Hs is (e, d, r)-regular with respect to ‘H; if the following
is true: whenever Gy, ..., G, are (k,k — 1)-cylinders with k-partition V3 U ... U Vj

28
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such that
‘H1 N U Kr(G;)| = elHal,
j=1
then
(d—e) Han [ JKu(G)| < [Ha N | Kil(G))| < (d+2) [Hin [ Ki(Gy)| . (41)
j=1 j=1 J=1

IfH, = K,gk)(Vl, ..., V), then we simply say that Hs is (e, d,r)-regular or, if r =1,
(¢, d)-regular.

Observe that for H; = K ,ik)(Vl, ..., Vi), this definition is equivalent to Defini-
tion 1.10 for G = K,fﬁ*”(vl, ..., Vi), that is Hy is (g, d, r)-regular with respect to the
complete (k,k — 1)-cylinder on V3 U ... U Vj.

Note that if Hj is (e, d, r)-regular with respect to Hy, &’ > ¢, and ' < r, then H,
is also (¢/, d, r’)-regular with respect to H;. We will use this observation many times
without mentioning it explicitly.

One can observe that if Hj is (g, d, r)-regular with respect to H;, then
(d = e)|[Ha| < [Ha| < (d —e)[Hal,
and, more generally, that:

Observation 4.2. Let H1 D Hs D ... D H; be (k,k)-cylinders such that H; is
(i, d;, r)-regular with respect to H;—y for all i € [I]\ {1}. Then

! I
(dj —&5) x [Ha| < [Hil < [](d) +25) x [Hal- (4.2)
=2 =2
Moreover, if Hy is (e1,dy)-reqular and |Vi| = ... = |Vi| = m, then
I l
[T — <) xm* < |[H| < T](d; +¢;) x m". (4.3)
=1 =1

We extend the above definition to the case of (s, k)-cylinders.



30

Definition 4.3. Let r € N and Hy D Hs two (s, k)-cylinders. We say that H, is
(0,d, r)-regular with respect to Hy if Ha [Ujel V}] is (9, d, r)-regular with respect to
Hy [Uje, Vi for all I €[5

Armed with Definitions 4.1 and 4.3, we can present the statement of the [-graphs

lemma. First, we describe the scenario we are going to work with.

Setup A. Let Gy, ..., G be (s,2)-cylinders with s-partition V.=V, U...UVj, where

\Vi| = ... = |Vs| = m, and such that the following conditions are satisfied:
(1) Gi C Giy forallie[l]\ {1},
(1)) 0 < e; < d; <1 forallie€lll],
(111) €i—1 < e forallie [\ {1},
(iv) Gy is (e1,dy)-reqgular and G; is (g;,d;,r)-reqgular with respect to G;_1 for all
e [\ {1},

(v) > 2511/2 1., d72%= 2511/2Dl_2.

J=1"j

We want to prove the following statement.

Lemma 4.4 (I-graphs lemma). Suppose that s = 3 and the above setup holds.
Then

l l
(1 . 4zg}/64> D} < |Ks(G)] < (1 +4zg}/64> D3,

In the proof of the [-graphs Lemma, we will need the following technical obser-

vation.

Observation 4.5. Let X be a set and Ay, ..., A; t of its arbitrary finite subsets.

Then
t

U

=1

t
>3 A= Y AN A (4.4)
=1

1<i<j<t
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Furthermore, if a x (3i_, |4]) — Y icici<t [Ai N Aj| >0 for some a € (0,1), then

t

U

i=1

t

> (1—a) Y JAl. (45)

=1

We split the proof of the [-graphs Lemma into two parts. In the first part, we
prove certain auxiliary statements which are then used in an actual proof given in

the second part.

4.2 Some facts about underlying 2-cylinders

To prove the above lemma, we will need three statements: the first two facts will
show that almost all vertices and almost all pairs of vertices in V; have neighborhoods
of “approximately the same size” in every G;. This can be viewed as an extension of
Fact 3.3 to the case of a series of (s,2)-cylinders Gy D ... D G,.

The third claim will enable us to select a number of vertices from any sufficiently
large subset of V| with the property that these vertices are involved in many triangles
of G;. This claim will be then used to prove the [-graphs lemma. The proof of the

claim is based on the first two facts.

Definition 4.6. A vertex x € V) is called l-good if
(1 - 51-1/2>Z Dym < degg, ;(7) < (1 + 51-1/2>Z D;m
for all i € [I] and all j € [s] \ {1}. We also denote by Vi_go0a the set of all l-good
vertices in Vy. It is convinient to set Vy_good = Vi.
Observe that if z is l-good that it is also i-good for every i € [I].
Fact 4.7. For everyi € [l], all but most 4(s—1) <51/2 +...+ 55”) m vertices v € V;

satisfy
(1 - 53/2)2 Dim < degg, (x) < (1 + 51/2)2 Dim (4.6)

i



32

for all j € [s]\ {1}.
Remark. Fact 4.7 can be rephrased as:
e all but at most 4(s — 1) (5}/2 +...+ 5;/2> m vertices are [-good, or
o the size of V(;_1)_good \ Vi—good is bounded by 4(s — 1)53/2771 for every i € [I].

Proof. As in Fact 3.3, we may assume that s = 2. We proceed by induction on (.
For | = 1, Fact 4.7 follows from Fact 3.3. Now we prove the induction step.
Let Gi,...,G1 be (2,2)-cylinders satisfying (i)-(iv). By the induction assump-
tion we know that inequality (4.6) holds for every ¢ € [I] and for all but at most
1/2 1/2

4 (gi/Q +...¢ )m vertices x € V;. Our goal is to show that at most 4¢;\7m of

these vertices do not satisfy
141 I+1
1/2 1/2
(1 — 5l41) Diyim < deggm(x) < <1 + 8ZJ/rl> Dy am.

We recall that Dy = H?:l d;.
Denote by W the set of all vertices z € Vj_g00q such that
12\
(1 + em) Dijim < degg,, (x) = | Ng,., (@), (4.7)
1/2

+1

!
<1 — 5;/2> Dym, the number of edges eg, (W, V) between W and V, in G, can be

Suppose that [W| > 2¢,.7m. Since for every vertex » € W we have degg (v) >

bounded from below by:

l l
eq(W,V2) = W x (1= &%) Dym > 2¢1im x (1- /%) Dym

(i1) )
> 211 Dym”.

It follows from (4.3) and assumption (i) that g;41|Gi| < 51 X 2D;m? < eg, (W, V3).
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Since Gy11 is (41, di41, 7)-regular with respect to G;, we obtain

egl+1 (VVa ‘/2) S (dl+1 + €l+1)€gl (VVJ ‘/2)

(i) !
< dia (1+€/f3) x (W] x (1+67) Dym

(#dd) 12\ 1+
< |W| x (1 +€z+1> Dyym.
On the other hand, from (4.7) we obtain that

12\
€611 (V[/v va) > |W| X (1 +5[+1> Dl+1m7

which is a contradiction. Hence, we have |W| < 25llﬁm. Similarly, if we replace (4.7)

with
12\
degg,,,(2) = [No,,, (@) < (1=5f3) " Diam.
1/

we get |[W] < 2¢, +21m again. Consequently, the number of “bad” vertices is bounded

by 4€llﬁm. O
We will also classify the pairs of vertices {z, 2’} according to their join neighbor-
hood.

Definition 4.8. A pair of vertices {x,2'} C V; is called [-good if the following to

conditions are satisfied:

(i) x and 2’ belong to Vi_gooa, and

(ii)
(1 - 5;/8>z Dim < degg, ;(z,2") < (1 + 53/8>2 D?m (4.8)
for alli € [l] and all j € [s]\ {1}. We denote by I'|_gp0a the set of all [-good pairs in

Vi. It is also convenient to set T'o_gooa = [V1]*

Observe that I'—g00d C F(l—l)—good C ... C Tl go0d C I'o—good-

Fact 4.9. For every i € [l],

Ti-1)—s00d \ Tigood| < (5 — 1) (4@/2 + 851/8> 2.

i
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Remark. Fact 4.9 can be rephrased as all but at most (s —1) 320_, (4&}/2 + 851/8) m?

7

pairs are [-good.

Proof. We may assume that s = 2 again. We proceed by induction on [. For [ =1
our assertion follows from Fact 3.3.
Before we prove the induction step, remind that Gy, ..., G,y are (2,2)-cylinders

satisfying the conditions of Setup A.

Since ell/le < 5;/2 < gllﬁ, we have r > 5114{21Df1 > 5;/2Df_11. Thus, by the induc-

tion assumption, we know that condition |F(z‘_1)_g00d \ Fi_good| < (453/2 4 85;/8> m2
holds for every i € [].

Our goal now is to show that ’Fl,good \ F(l+1)7good’ < <4511J/r21 + 85%3) m2. In

1/8
I+1

1/2

other words, for not more than 4e;, +1m2+8€ m? of pairs of vertices {z, '} € I'1_go0d,

either one of z, 2/ is not (I + 1)-good, or {x,z'} does not satisfy

I+1 1+1
(1 - 5%3) Df.ym < degg,, , (7,2") < (1 + 5,14/3) D}, im. (4.9)

It follows from Fact 4.7 that Vi_good \ Vii1)—good < 45%21

at most 4{-:llﬁm2 pairs of [-good vertices that are not pairs of (I + 1)-good vertices.

m, therefore, there are

For an (I +1)-good vertex « € V{;11)—go0oda denote by W, the set of all ({4 1)-good
vertices &' € V{j41)—gooa such that the pair {x, 2’} satisfies (4.8) for every i € [I] (i.e.

belongs to I'j_g04) and
I+1
degg, ., (7,2") < (1 - 5%3) D}, im. (4.10)

Denote by X the set of all (I + 1)-good vertices & € V{;11)good, Such that for each

reX, W, > 35;4?771. We will show that

1X| < }m. (4.11)

Then, for all but at most sll/ 2 vertices z € Vii41)=good, the size of W, is

not bigger than 3611J/jm. So, there exist at most 611/32m X m + m X 35llﬁm <
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4£l1ﬁm2 pairs satisfying (4.10). Similarly, if we replace (4.10) with degg,  (z,2') >

I+1
<1 + sllﬁ) D7 ym, we obtain not more than 45l+1m2 other “bad” pairs.

Altogether, we showed that
|Fl—good \ 1—‘(lJrl)fgood| < (4511421 + 85;4?)

We prove (4.11) by contradiction. Suppose that (4.11) is not true, that is | X| >
1/32
g m.
For every i € [l], define a graph P; with vertex set V; and edge set E(P;) =
I'(i—1)—good \ I'i_gooa. Observe that the size of P; is bounded by 45- ’m? + 851/8
12¢ 1/ m?2. We apply the Picking Lemma on X with parameters o; = 1253/8, t =

5114{21Dz c= ell/32 and obtain ¢ vertices z1,...,x; € X such that:

e all pairs {z,,z,}, 1 <u < v <t belongs to I'1_gooq, and

o all but 2le)/%12e; /10 < £1/16

t* pairs {x,, T, }, 1 <u < v <t, belongs to I';_good-
Notice that condition (2.8) reduces to
2 x 12e1/% x (E}ﬁDl >

)

This inequality follows from the fact that ¢; < g; < d; for all 7 € [I], more formally,

<

~| =

2451/85l+1Df (”’) /16 p-2 (“2) l 1/161 ,— l 1/321 ”) 1

— e < a0 < [ H
Z.:l 7=1 7j=1

For j € [t], let B; = W, U Ng,,,(x;) be a (2,1)-cylinder. Notice that we have

degg,, (;,2") < (1 &?llﬁ) D¢, m for every 2/ € W, from assumption (4.10).
Therefore,

t

I+1
<3 G 1 K Bl < (1-=f)  mDE, D IW | (412)

j=1 j=1

Gy N U Ko (B

j=1
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We will show that

t
Gy N U Ka(B;)
j=1

! I+1 ¢
<G NGB = (1-ef})  mDEL YWl (413)
j=1 J=1

which will be clearly a contradiction to (4.12).

In order to show (4.13), we will prove the following statements:
S1 Y"1 |G NKa(Bu)| > (dy —e1) x X5y [Way|INg,,, ()] > erlydidim?®.
S2 Y cucvat 191 N (B, N B,)| < 2e141dym?.
$3 |G N ULy Ka(Ba)| = (1- /1) S0y 16: N KB

S4 ‘gl_;,_l N U;:l K2(BJ)

> [Héfz(dj - Ej)] ‘gl NUj= Ka(8B))

Then the proof of (4.13) is straightforward: we combine S4, S3, and S1 in this order:

t S4 I+1 t
G N | JKa(B;)| = [H(dj - Ej)] G nJKa(8))
j=1 =2 j=1
53 1/a I+1 t
2 <1 - fz+1> [H(dj — ;)| 161N Ka(B)] (4.14)
=2 u=1
s1 I+1 ¢
> (1=ll) Du D2 W[ No ()]

Jj=1

I+1
Since every vertex x; is (I + 1)-good, we have |Ng,,, (x;)] > (1 - e}ﬁ) Dy 1m and

(4.13) follows because ;41 < 1.

Proof of S1: We use assumptions ¢; < d; and (I + 1)-goodness of z; to conclude
I+1

that [ICo(B;))| = [We,||Ng,,, ()| > 3€;ﬁm X (1 - ellﬁ> Dyyym > eym?. Since Gy

is (e1,d;)-regular, we get

|G N o (By)| > (dy — €1)| W,

Ngl+1 (ZEU>|
1/2 1/8 12\ 2
> d; (1 —£ ) X 2g4 X (1 + 5l+1> Diyiom

@) g

2
Z €l+1d1Dl+1m .
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Thus, 30, 1G1 N K2(B))| > t x 26y dy Dipym? > &) dydpsim?.

Proof of S2: For every j € [I| denote by Z; the set of all pairs {u,v} € [t]* for
which {x,,x,} € T'j_good- Then we know that Z; = [¢]* (all pairs belong here) and
1Z;-1\ Z;| < 5;./16152 for every j > 1.

Note that [t]* = Z; U U§:2 (Z;-1\ Z;), and therefore

Y 1GiNKy(B,NB,)

1<u<v<t

< S G NKB.NB)+>. Y 1GNK(B.NB,)|. (4.15)

{u,v}e; J=2 {u,w}€l; 1\TI;
Now we estimate the size of G; N Ky(B, N B,) for a pair {z,,z,} € Z;. Note
J
that this means: |Ng,(7y,z,)| < <1 + 5;/8) D?m (c.f. (4.10)). Since there is no

information about the size of W,, N W, , we must distinguish two cases:

Case 1 Suppose |Ky(B, N B,)| = [W,, N Wy, || Ng,,, (2, xv)| > eym?. Then, using
the (g1, dy)-regularity of G;, we obtain
G N o (B, N B,)| < (di +e1)[Wa, N W$v||Ngj(xU7xU)|

J
< (d1 + 51) (1 + €;/S> D?m xm < 2d1D]2.m2_

Case 2 Suppose |W,, "W, [|Ng,,, (zu, x,)| < eym?. Then

G N Ka(Bu N B,)| < [Wa, N W, |[NG,,, (T, )| < erm® < 2d1D]2m2.

In any case, |G N Ky (B, N By)| < 2dyDim? holds for all pairs {u,v} € Z;.
Now we use (4.15), Z; = [t]*, |Z,-1 \ Z;| < 5;/16t2, and the above observation to

conclude that

l
t
> G N KB, 0 By)| < <2> x 2, D}m? + e/’ x 2D2  dim?.

1<u<v<t 1=2
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We further simplify the second term on the right-hand side:

! l l l !
S 2002 =3 0D [[d? < DFY 2 e/ Va2 < DR (4.16)
i=2 i=2 =i i=2 =i

The last inequality in (4.16) follows from assumption ; < d;. Hence

Z |Ql N ’CQ(BU N Bv)| S t2 X dlDZQm2 + t2 X dlDZQm2 S 26l+1d1m2.

1<u<v<t
Proof of S3: To show this statement, we employ the second part of Observation 4.5.
Indeed, it follows from S1 and S2 that:

t
S X D 1GiNKB) = Y 16N Ky (BN B,)|
u=1

1<u<v<t

1/4 5

8 2 2
> g4 X glildldlﬂm — 2g11dym~ >0

1/

since we may assume that d;;; > 2¢ +81. Consequently, S3 follows from the second

1/4

part of Observation 4.5 applied with a = ¢;4.

Proof of S4: We will show that for every i € [I] the size of G; N U;Zl KCo(B;) is large
enough to apply the (g;41, di1,7)-regularity of G; .

Observe first that the size of G N U;:1 IC2(Bj) can be bounded using Observa-
tion 4.5 as follows:

t
ZZ|(}1HIC2(B]~)|— Z |glmK2(Buva)|'

j=1 1<u<v<t

t
G n|JKa(B))
j=1

Then we use S1 and S2 to insist that

5/8 2 2
> g didiam” — 2epdym

gl N U ’C2<Bu)

u=1

(4.17)

> 2e11dym® > 9|Gy|.

The last inequality follows from the fact that |Gi| < (dy + e1)m? < 2dym? and

€9 < €141. Applying the (g9, ds, r)-regularity of G, with respect to G; (recall that
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r> 5l1J/rlel’1 =t) and g9 < dy < 1 yields

(4.1

17)
>

2€l+1d1d2m2.

g2 N U ]CZ(Bu)

u=1

> (dy —€2) [G1 N U Ko (By)

u=1

We estimate the size of G, using Observation 4.2: |Go| < (do + €2)|G1| < 2didym?.
Thus, 3|Gs| < €3 \gg N Uizl ICg(Bu)’ (because €3 < €41).

Then the (e3, ds, r)-regularity of G with respect to G, implies that

> (ds — e3) )

g2 N U ICZ(BU)

u=1

g3 N U ’C2<Bu)

u=1

Repeating this argument [ times (using (e;, d;, r)-regularity of G; with respect to G;_1)

yields
t t
Grr N Ka(Bu)| = (dia — ) |G | Ka(Bu)
u=1 u=1
I+1 t
EH(dj_Ej) X QlﬂU/Cg(Bu) .
j=2 u=1

O

For the remaining part of this section, we restrict ourself to the case of 3-partite

graphs, i.e. s = 3.

Claim 4.10. Let s = 3. Then for any subset X C Vi_go0d, | X| > 5;/32771, there exist
t= Ell/z/Dl2 vertices T, ...,x; € X such that

! l
(1 - sll/g> tm*D;} < < (1 + 511/8> tm*D}.  (4.18)

¢
U{xuyz: Yz € K3(Gi)}
u=1

Proof. For every i € [l], define a graph P; with vertex set V; and edge set
E(Pz) = 1—‘(i—l)—good \ 1—‘ifgood'

7 7

Fact 4.9 assures that ‘F(i_l)_good \ Fi,g00d| <2 (451/2 + 881/8> m? for every i € ).
Then, the size of P; is bounded by (851/2 + 1651/8> m? < 2452/87712. We apply the

% %
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Picking Lemma on X C V|_g,0q With parameters o; = 245;/8, t= 511/2Dl’2, c= 5;/32,

and obtain ¢ vertices z1, ..., x; such that:
e cvery vertex x,, u € [t] is l-good,
e all pairs {z,,z,}, 1 <u < v <t belong to I'1_g0d, and

e all but 21 x 24e}/%12e, /1% < 16¢)/"%2 pairs {x4, 7.}, 1 < u < v < t, belong to
1—Wifgood-

2 2
Moreover, note that condition (2.8) reduces to 2><24€}/8 X (511/2Df2) / (611/32) <

1/1. This condition is satisfied since

2 x 24e1/® x (a}/ 2Dl2)2 l 1
= 48,* D)0 < a8 [ e)/Md;* < <.

2
(511/32) ey l

The last inequality follows from assumption €; < d;.

For every x,, we will define a (2,1) cylinder B, = Ng, 2(x,) U Ng, 3(x,). We will
show that for every i € [l — 1], |QZ- nU._, ICQ(Bu)l is “big enough” to apply the
(€i41, dig1, 7)-regularity of G;; with respect to G;. Using this argument and some

estimates abot the size of G; N Uizl Ko(B,), we will conclude that G, N Uizl Ko(B.)

!
contains (1 =+ 511/ 8) tm? D} edges. This will conclude the proof since

g N U Ko(B,) U{xuyz T Yz € /Cg(gl)}' ) (4.19)

u=1

We will prove the following statements which, in combination with (4.19), will

produce (4.18):

20+1 20+1
S1 ¢ x (1 +g}/2) dD?m? > 3G N Ka(By)| >t x (1 . g;”) d D?m?.

S2 Zl§u<v§t ]Ql N ’CQ(Bu N Bv)’ S 2t2d1Df‘m2.
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88 |G Ui Ka(B)| > (1-"") iy 16: N K (B

S4 [H;:Q(dj"‘@ } ‘glmUu 1 KCo(B ’ !gzﬂUu 1 Ka(Buy )| and
19N Uiy Ka(B)| = [Tjea(ds — )] 1610 Uiy Ka(Ba)]

Then we get (4.18) almost right-away: to get the upper bound in (4.18), we combine
(4.19) with S1 and S4. Indeed,

t
g N U K2(Bu)
u=1

t
{zay=: ey € Ks(G)}| 2"

u=1
!
H(dj +€5) X

INE

t
@mU&w

<
[\

l

IN

(dj + ;) x }]@m@

[N}

l
de (1 + 51/2> Xt X (1 + 811/2)2k+1d1Dl2m2

.

INB

Q

=2
Setup A (1),(#41)
< (1 + 1/8) Ddtm?.

The lower bound is done similarly: we combine (4.19) with S1, S3, and S4:

t t
U{zwz: 2y € K3(G)} “226,n KB

u=1

u=1

V&

<
Il
V)

%—%W<%ﬂoﬁﬂﬂ

l

(1 — 51/4> H(dj —¢gj) X zt: |G1 N Ka(By)

=2

V&

!
S1 2041
>Hd (1—51/4>><t><(1—51/2) Dim?

Setup A (i1),(414)
>

(1 — 511/8> Ditm?.

Now we have to prove statements S1-S4. This will be very similar to Fact 4.9.
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Proof of S1: Observe first that since z; is l-good, it satisfies
! 1
(1=2!%) Dim < degg, o(;), degg,o(w;) < (1+2/*) Dym.

21
Therefore, we have |KCa(B;)| = |Ngya(2;)||Ngs(z;)| > (1 —g}”) Dm? > eym?

because of the assumption ¢; < ¢; < d;. Since G is (e1, dy )-regular, we obtain

2l
G K (B))] > (di — 20)| Ng, ()| Nay ()| > (dh — 1) (1= ¢/%) " Dpm?

21+1
> (1-)" diDim?

Thus, >, [G1 N Ka(Bj)| > t x (1 — 611/2>2l+1 d1D?m?. The upper bound follows
from |Gy N KCa(B;)| < (di + €1)|Ng, 2(x;)||Ng, 3(z;)| in the same way.
Proof of S2: We borrow a large part from Fact 4.9. For every j € [I] denote by
7, the set of all pairs {u,v} € [t]* for which {2, 2,} € 'j_go0a. Then we know that
7, = [t]* (all pairs belong here) and |Z;_1 \ Z;| < 165;/16152 for every j > 1.

Note that [t]* = Z; U Ué‘:z (Z;-1\ Z;), and therefore

D> G NKa(B, N By)|

1<u<v<t

< DG NKBNB)+Y . Y G NK(BuNB,)|. (4.20)

{’U,,’U}GI[ Jj=2 {uzv}Eijl\Ij

Now we estimate the size of Gy N KCy(B, N B,) for a pair {z,,x,} € Z;. Note that

this means that the pair {z,, z,} is j-good, that is,

J J
(1) D2m < Ng, w20, ING, sl 2] < (141) Dim

J J
(c.f. Definition 4.8). Then we have

25
NG, (@0, 20) INg, (0, 2)| = (1= 2)%) " Dim? > eym?,
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because of € < g; < d;. Consequently,

|g1 N K?(Bu N Bv>| S (dl + 51)|Ngj,2($u,Iv)||Ngj,3($u7$v)|

2
S (dl + 51) <1 + 5;/8> D;lm2 S 2d1D;1m2
This is true for every {x,,z,} € Z; and for all 5 € [I].

Then, we use (4.20), the above estimate, Z; = [t]2, and |Z;_1 \ ;| < 16¢)/'%2,

1 > 1, to conclude that

l
t
> 1GinKa(B.NB,)| < (2) x 2d, Dim? + > 16,1 x 2d, D} ym?. (4.21)

1<u<v<r =2

We bound first the second term on the right-hand side in a similar way as in

Fact 4.9:
! ! ! ! ! 4
> 32e/1°D | = 826D [[d;* < DY 2]Vt < D (4.22)
=2 i=2 j=i =2 j=i
Here we used again ¢; < d;. We combine (4.21) with (4.22) and obtain

> 161N Ka(Bu N By)| < 2 x dyDim® + > x dyDi'm” = 2t*d, D}m”.

1<u<v<r

Proof of S3:
We use the second part of Observation 4.5, definition of t = 5;/2Dl_2, S1, and S2.
Indeed, from S1 and S2 we have

t
e/ <D IG N KB = Y 16N KB, N B,
u=1

1<u<v<t

2[+1
> eV %t x (1 - 53/2) d, D¥m? — 2t3d, Dim?

20+1
> 511/4 X 511/2 (1 — 511/2) dym? — de;dym?® > 0

20+1
since we may assume that (1 — 6;/ 2) > 2511/ . Using the second part of Obser-

vation 4.5 yields S3.
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Proof of S4: We combine Observation 4.5 with statements S1 and S2:

t 2%k+1
Gin|JKa(Bu)| >t x (1 - a}”) dy D*m? — 2t3d, Dim?.
u=1

It is easy to observe that |G| < (dy +e1)m? < 2dym?. We recall that ¢t = sll/QDl_Q to

get the following:

20+1
> 2511/2 <1 — 511/2> dym? — 8=,;dym?

t
gl N U ’C2<Bu)
u=1

(4.23)

> 2e1dim? > £9|Gyl.

Since G, is (&9, do, r)-regular with respect to G; and r > ¢, we obtain that

gl N U ICQ(Bu)

u=1

> (dy — €2)

t
GaN U Ka(B.)
u=1

> (dg — 62)2€ld1m2 > 83|gg|.

The last inequality follows from the observation that 2¢; <1 — »3;/ 2) dydam? > 3]s

(c.f. Fact 4.9). Moreover, since Gs is (3, ds, r)-regular with respect to G, we have

g2 N U IC2(BU)

u=1

> (d3 — €3)

t
g3 N U IC2<Bu)
u=1

We repeat this process [ times and after the last step, where we use the (g;,d;, r)-

regularity of G, with respect to G;_1, we get:

t l t
G KB = [](d— ) x |Gin | Ka(Bu)] - (4.24)
u=1 Jj=2 u=1
The upper bound in S4 is proved in the same way.
O

4.3 The proof of the [-graphs Lemma

In this proof, our main tool will be Claim 4.10.



45

Proof. Foreachi=1,1—1,...,1,0, we will define recursively sets Xif and X! by the

following algorithm:

Step 0 Set X; = le = Vi—gooa and 7 = L.

Step 1 As long as |X;| > 52.1/32

m, apply Claim 4.10 on X; (with (3,2)-cylinders
Gi,...,G;) and obtain t = ¢; (we put index ¢ here to stress the dependence of

t on the number of 2-cylinders) vertices 1, ..., x;, with the property that

t; i
U{:Uuyz]xuyz € K3(Gi)}H < (1 + 5§/8> D’t;m?.

u=1

(1 " 8)1 D3tim? <

(4.25)
We remove these vertices from X; and repeat Step 1 again. This can bee done

as long as | X;| > 53/32m (c.f. Claim 4.10).

Step 2 When |X;| < &//**m (that is when we cannot apply Claim 4.10 on X; any-

more), we set

X = X

Xif—l = le U (‘/(i—l)—good \ ‘/z'fgood) . (426)

If i > 1, we decrease 7 by 1 and go to Step 1, otherwise we set Yy = () and stop

the algorithm.

Note that during Step 1 we changed the set X; from Xif to X!. We will prove the

following statements:
S1 For every i € [I], both sets X/ and X! are subsets of V;_,00q and V; = Ué:o x/.
S2 For every i € [I], |X}| < 53/32m.

S3 For every i € [l], ]Xif_1| < (53/32 + 853/2) m.
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S4 (1 - 8l€l1/2> m < |X/| <m.

S5 For every i € [l — 1], vertices selected from X; in Step 1 form at most |X/| x
<1 1l 8) D3m? copies of K3 in G; D G, and vertices from X form at most

i

| X]| x m? copies of K3 in G.

S6 The number of copies of K3 in G; produced by vertices selected from X is between

! !
<|le| - 511/32m> X <1 — 511/8) D}m? and | X]| x (1 + 511/8> D}m?.

The statement of the [-graphs Lemma then follows easily. Notice that by S1, the
algorithm can always execute Step 1 (we need Xif to be a subset of V;_4404 to be able
to apply Claim 4.10).

First we show the lower bound. The total number of K3 in G; is not bigger then
the number of K3 in G; produced by vertices selected from X;. By S6, this means
that |KC5(G))| > (|le| — 511/32m) X <1 — 511/8>lDl3m2. Moreover, we have from S4
that (1 - 8l5l1/2> m < |X{|, and, therefore:

! !
1K5(G)] > (1 —8lel? - e}/?’?) m x (1 - e}/8> Dim? > (1 - 45511/64> Dim?,

In order to get the upper bound, we must estimate the number of K3 produced
by vertices in X for s = 0,...,[. Combining S4 and S6 we have that vertices selected
from X; are in at most | X/ | x (1 + 511/8)l D}m? < (1 + 6;/8>l D}m? copies of K.

Similarly, for ¢ = 0,1,...,] — 1, we estimate the contribution of vertices se-
lected from X; using S3 and S5. Vertices selected from X/ are in at most | X/| x

<1 + €3/8) D¥m? < (5%‘? + 85%3) m X (1 + 53/8> D3m?2 < 2e/° D3m? copies of

K3 in G; D G;. Here we set Dy = 1 and Gy = K(V;, V3, V3) (the complete 3-partite
graph). Since V; = J'_, X/ (c.f. S1), we obtain

I -1
Ks(G)] < (1+”) Dim® + 3" 26} Dim?.
i=0
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We estimate the second term on the right-hand side in the following way:
! !
Z 232 Dt = D x 322 T[

i=1 j=i

l l
1/32(1—i+1) ;—
_ D < 3 2]
i=1  j=i

SetupA (4i7)

I !
< DimPx Y o[/ Va
i=1 =i
(i7)

< Dim?® x 251/64 < l51/64Dl3m3

1/32(1— z+1)d 1/64

since €; can be made less than €,/ by assumption ¢; < d;. Then,

Ks(Gn)| < (1 +el/8> Dim® + e/ Dim? < (1 +4l51/64> Dim?

Thus, it remains to prove statements S1-S6.

Proof of S1: We proceed by induction. From construction we have that X! is

a subset of X/ f hence we must show X/ I c Vi—good- For ¢ = [ it is obvious (see

Step 0). Assume that X! C Xif C Vi—good for some i € [I]. Since V;_go0a C Vii—1)—good

and X/ | = X'U (Vii—1)—good \ Vi—good ), we immediately have that X/, c Vii—1)—good-
Vi = U._, X/ follows from the definition of X/. Inclusion V; D |J'_, X/ is trivial.

On the other hand, X/ = Vi_so0a and X D Vi_so0a \ Viit1)_good fori = 0,1,...,1—1.

Hence, Vi = Vi_g50a U <Ui;(1) Vicgood \ ‘/(iJrl)fgood) C Uio X/

Proof of S2: This trivially follows from Step 2.

Proof of S3: By Fact 4.7, we have |V;_1)—good \ Vi—good| < 85;/2 and by S2

XY < 63/32771 holds. Since Xf1 = X!'u (V(Z-_l)_good\%_good), statement S3 fol-

lows immediately.

Proof of S4: Clearly |X]| < |Vi| < m. On the other hand, it follows from Fact 4.7
that

SetupA (i)
X1 = Vigood 2 (1=8 (17 + . +))m 2 (1=81) m
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Proof of S5: We can repeat Step 1 for X; at most |X/| x ;! times. For i > 0,
every t;-touple selected from X; forms at most <1 + 511/ 8) D3t;m? copies of K3 in G;,
therefore, Step 1 for X; gives at most

X7 % 1 (1 +s,1/8> Dtam? = | X/ (1 +e§/8> D3m?

triangles in G;.
For ¢ = 0, each vertex in X(J; is in at most m? triangles, therefore, these vertices
contribute with at most | X/ | x m? triangles.

Proof of S6: From the assumptions of Claim 4.10 we know we can repeat Step 1

/32 1/32

for X; as long as | X;| > 511 m, i.e. at least <|le| — g m) x t; ! times and at most

l
|X/| x t7! times. Each time we obtain at least <1 — 511/8> D}tym? triangles in G;.

Thus, in Step 1, vertices selected from X; produce at least
! !
<|le| — 5,1/32m> x 1 x (1 — 511/8> Ditym? = (1 - 511/8> Dim?

copies of K3.

!
On the other hand, every t;-touple forms at most (1 + all/ 8) D}tym? copies of

K3, therefore, Step 1 for X; gives at most
! !
X7 x 1 x (1+2%) Ditam? = |X/| (1+ ) Djm?
triangles in G;. O

We will often use two special cases of [-graphs Lemma - for [ = 2 and [ = 3,

therefore, we state them as two separate lemmas.

Lemma 4.11 (2-graphs lemma). Suppose that e < &3, dy, doy are positive real
numbers such that £1 < dy, €9 <L dy. If

(1) V=ViUVaUVs is a partition with |Vi| = |Va| = |V3| = m,



49

(i) Gy = (V, E(Gy)) is a (3,2)-cylinder that is (1, dy)-regular,

(111) Go = (V, E(G2)) is a (3,2)-cylinder that is (9, da, r)-reqular with respect to Gy,

and
(iv) r > ey/%d7?,

then
2 2
(1 - 855/64> Bd3m?® < [K5(Go)| < (1 + 855/64) Bd3m?,

Lemma 4.12 (3-graphs lemma). Suppose that ¢; < g9 < €3, dy, da, and ds are
positive real numbers such that e1 <K dy, €9 K do, €3 K d3. If

(1) V=V UVoUVs is a partition with |Vi| = |Va| = |V3| = m,
(1) G1 = (V,E(G1)) is a (3,2)-cylinder that is (€1, dy)-regular,
(11i) Gy = (V, E(G2)) is a (3,2)-cylinder that is (g3, da, 7)-regular with respect to Gy,

(v) Gs = (V, E(G1)) is (3,2)-cylinder that is (e3,ds, r)-reqular with respect to Gs,

and
(v) 7> ey*(dids) 2,

then
3 3
(1 - 125§/64) BBdEm? < |Ks(Gs)| < (1 n 125;/64) Bd3dm?®.



Chapter 5

Properties of 3-cylinders

In this section, we investigate link properties of a regular (s, 3)-cylinder H. We also

prove Propositions 2.4 and 2.5.

5.1 Properties of links in the neighborhood of a
single vertex

In a regular (s,2)-cylinder G, all good vertices have the property that their neigh-
borhoods have almost the same size. Fact 3.4 shows that the restriction of G to such
a neighborhood is regular as well. Moreover, we know that almost all vertices in V}
are good.

In this sub-section, we show that if G underlies a regular (s, 3)-cylinder H, then
for almost all good vertices = € Vj, the link H(x) and the restriction of H to the

neighborhood of = “inherits” regularity. We consider the following scenario:

Setup B. Let 0 < ey < dy <1 and0 < e3 < d3 < 1 be real numbers so that 5 < €3.
Let V =V, U...UV; be a partition, where |Vi| = ... =|Vs| =m, G = (V,E(G)) be
an (s,2)-cylinder that is (€2, d2)-reqular, and let H = (V, E(H)) be an (s, 3)-cylinder

50
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which is (€3, ds, T)-reqular with respect to G.

The next claim shows that the link H(z) is (2€§/ ? ds, r)-regular for almost all

good vertices x.

Claim 5.1. The link H(z) is (25§/2, ds, r)-regular with respect to G[G(x)] for all but

at most 4(‘9;1)5?2771 vertices & € Vigood-

Proof. We may assume s = 3 since the validity of this special statement applied
simultaneously to subcylinders of G and H induced on ViUV, UV, 1 <i<j <s
yields the general result. Thus, G can be written as G = G; U G5 U Gs.

m vertices Z1,...,% € Vgooa such that for

Suppose that one can find t = 25%
every u € [t] the link H(x,) is irregular. Moreover, assume that for every z, the first
part of inequality (4.1) does not hold, i.e. there exist (2, 1)-cylinders Bj, = Y;, UWjy,,

where Y, C G(x,) N Vo, Wj, C G(z,) NV3, j € [r], such that

|g[g(xu)] NJKa(Bs)| = 22566 (@), (5.1)

J=1

(5.2)

|mmmU@wm

< <d3 — 25§/2> ‘g[g(g;u)] N [JICQ(Bju) .

Observe that since z, is a good vertex, by the (5;/2, dy)-regularity of G[G(z,)], we
have
1/2 12\% o
G16()]| = (& — 27 INa(@) [Ny ()| = (do =) 2 (5.3)
For every j € [r] define a (3,2)-cylinder Q; = Q;1UQ;UQ 3 by
jS = giv

t
Q5 = U{:L’uy: y € Wj,}, and

u=1

t
u=1
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Then we can estimate the size of [ J;_, K3(Q;) as follows:

5

u=1

3
> deg (1 - 55/4> d3m® > e3K5(G)).

(5.1) 3
>t x 25?2 X <d2 —5;/2) m?

U’C3(Qj)

GlG(z.,) N U Ka(Bju)

The last inequality follows from Corollary 3.6:
53 3 1/2\% 3 3
&4 [Ko(9)] < e x Jdim® < dey (1 el ) d3m3.

Thus, the (e3, ds, r)-regularity of H with respect to G implies that

‘H N O IC3(Q;)| > (ds — e3) LTJ K3(Q;)
= = ) (5.4)
= (ds—25) > |61G(x)] N [ Ka(Bju)|

On the other hand, every z, is contained in ‘H(xu) NUj-, Ka(Bju)

triples (this
follows from the definition of Q). We use (5.2) to conclude that

‘H UKQ)| = 3 [ (B
j=1 u=1 j=1 T (5.5)
= (ds —22%) 3" |16l N | Ka(B1)|

Comparing (5.4) with (5.5) we get a contradiction. Thus, there are at most 25§/2m
vertices satisfying (5.1) and (5.2).
The case when the second part of inequality (4.1) is not true, i.e. (5.2) is replaced

by [H(zw) N U, Ko(Bju)| > <d3 + 26:1))/2> ‘U;Zl K2(Bju)| , is handled similarly. O

Claim 5.2. Lett = 5§/2d53 and " =r/t. Then (s—1,3)-cylinder H is (25;,/4, ds,r')-

reqular with respect to G|G(x)] for all but at most Z(Sgl)sé/lfjm vertices T € Viood-
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Proof. We may assume s = 4 for a similar reason as in Claim 5.1. Denote by W
the set of all vertices x € Vyooq for which H is not (25;,/ 4, ds,r’")-regular with respect
to G[G(z)] and the first part of inequality (1.1) in Definition 1.10 is not satisfied.
Moreover, suppose that |W| > e)/'%m.

We define an auxiliary graph I' = (V| F) where a pair of vertices {z, 2’} C V form
an edge if the pair {z,2'} is not good. It follows from Observations 3.8 and 3.12
applied with s = 4 that |E| < 665/ *m?.

1/16
62/ , and

Using the Picking Lemma with parameters k = 1, 0, = 665;/ 4, c =
t = 5§/2d2’3, one can choose t vertices xy,...,z; € W, such that all pairs {z,,z,},

1 <u<wv<t, are good, as long as

2
2 x 665" x (5§/2d2‘3>

2
e

< 1.

This condition is satisfied since

2
2 X 665;/4 X <5§/2d2_3>

2
e

The last inequality follows from 0 < €5 < ds and 3 < 1.

= 132e)/%e5d; % < 132e)/%d;,0 < 1.

The set W contains precisely those vertices x for which the link H(z) does not
satisfy the first part of inequality (1.1). Thus, for every x, there exist r’ (3,2)-
cylinders B;, C G[G(x,)], j € ['], so that

/

U Ks(B))

j=1

> 2¢3/1KC5(G[G ()] (5.6)

but

‘H N O/cg(zs’ju) < <d3 - 2g§/4) (5.7)

Jj=1

L Ks(Bu)|-
j=1
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We find a lower bound on the size of | J'_, U;lzl IC5(B;,) using Observation 4.5:

UUKsB)| = [ UKsB)| - > Uic3 " mU/Cs )

u=1j=1 u=1 |j=1 1<u<v<t |i=1

Now we estimate both terms on the right size. To do this, notice that G[G(x,,)] is
(52 ? dy)-regular (because , is a good vertex) for all vertices z,, and so, by Corol-

lary 3.6, we have

S x (s — <) < [K(GI0()]] < S x (dy +22)Pm®

This can be further simplified as
1
5dam” < [Ks(GlG (xu)])] < 2dym”, (5.8)

Hence, we can estimate Y ' _, ‘U;/:l KCs(B;y)| as follows:

)
t X 28;/4 X dﬁm > 83/4d3

(5.8
S Zzgl/ﬂ/cg G(z.)])| >

U ’CS( ju

J=1

>

u=1

Ui, Ks(Bi) U, Ks(Bjo)|, we

In order to estimate the second term .,

observe two facts:

e we have U:/zl Ks(Bi) N U;lzl Ks(Bj,) C K3(G[G(xu, z,)]) because By, N Bj, C
GlG(xy,x,)], and

e GG(xy,x,)]is (5;/2, dy)-regular for all pairs {z,, z, } (because {x,, z,} is a good
pair).

Thus, using Fact 3.6, we have [K3(G[G(xy, z,)])| < 2d9m? (c.f. (5.8)) and, therefore,

the second term can be bounded in the following way:

Z UICS i mUIC?) j’U

1<u<w<t |i=1

< (2) x 2dym® < t? x dym?® = egdom?.
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Consequently,

> 83/4d3m — e3dym® > 2e3dom? (5.9)

U U K:3(Bju

u=1j=1

It follows from Fact 3.6 that the size of K3(G;) is bounded by 2d3m?® provided that

€5 is sufficiently small. Hence, we get

U U Ks(Bw)

u=1j=1

> 2e3dam® > &3|K5(G7)|-

We apply the regularity of ‘H with respect to G (note that r > ¢ x r’) to obtain

‘H AU KB UUK(B)

u=1j=1 u=1j=1

> (d3 — e3)

Moreover, one can see (c.f. (5.9)) that

1/42

u=1

U ]C?) ]u

7j=1

D

1<u<v<t

U’C3 U ﬂU’C?) _]’U

=1

> 5§/ X 53/4d3m3 — e3dym® = 0.

Therefore, the second part of Observation 4.5 yields

‘HHUU/@, ju)| > (d3 — €3) (1—51/4)2t:

u=1j=1 u=1

U IC3(BJU)

Jj=1

. (5.10)

On the other hand, it follows from the assumption (5.7) that:

IH N U U Ks3(Bju) (d3 - 251/4) i

u=1j=1 u=1

U Ks(B;)

Jj=1

HﬂUIC3 )

This is a contradiction to (5.10) since (d3—e3) <1 — 51/4> > d3—5é/4—51/2 > d3—26§/4.

Hence, |W| < e m.
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Similarly, if we consider the set W of all vertices for which the second part of
inequality (4.1) does not hold, i.e. we replace (5.7) with
> (d3 +oel 4)

Y

'H N U K3(B;.)

U Ka(Bju)
j=1

/16

we obtain |[W| < 3/ "°m again. O

Definition 5.3 (nice vertex). A vertex © € Vo4 Is called nice if it satisfies the

following conditions:
(i) H(zx) is (25:1,/2, ds, r)-regular with respect to G[G(z)]
(ii)) 'H is (25§/4, ds,r/ (gé/Zd;:s))—regular with respect to G[G(z)].

We denote by Vyice the set of all nice vertices in V.

The two previous claims imply the following observation:
: s—1\ _1/2 s—1y _1/16 . o
Observation 5.4. All but 4(°3")es’"m + 2(°;")ey’ "m good vertices are nice, i.e.

—1 —1
|‘/nice| Z |vaood| - 4(8 3 >€é/2m - 2(5 ) )5;/16m

Remark. Based on the above claims we can conclude that for all nice vertices x €

Vhice:
e (4,2)-cylinder H®)(z) is regular with respect to H®[H®(z)], and
e (4,3)-cylinder H® is regular with respect to H® [H®) (x)].
Furthermore, the goodness of x implies:

e (4,2)-cylinder H®[H® ()] is regular.
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This situation resembles the set-up of Theorem 1.13 and therefore it is tempting to try
to prove Proposition 2.4 (i.e. bounds on Ku(H® N KC3(H®) (2)))) using this theorem.
However, Theorem 1.13 can only count copies of K ig) in the restriction H®[H® (z)]
because it considers only a (4, 3)-cylinder underlied by one sparse (4, 2)-cylinder. In
our case, we have two underlying (4, 2)-cylinders instead. To overcome this difficulty,
we reach into the original proof [FR00] and together with the 2-graphs lemma we

prove the lower and upper bounds (2.5). This is done in the next section.

5.2 Counting

This section provides some technical facts necessary in sections 5.3 and 5.4. We

consider the following scenario:

SetupC.LetO<€2<<d2§1,0<53<<d3§1,and0<83<<c?3§1
be real numbers so that e K e3. Let V. = Vi U ... UV, be a partition, where
Vil = ... = Vsl = m, Go = (V,E(Gs)) be an (s,2)-cylinder that is (&3, ds)-reqular,
Gs = (V, E(Gs)) be an (s,2)-cylinder that is (s, ds, r)-regular with respect to Gy, and
let H= (V, E(H)) be an (s,3)-cylinder which is (3, ds, r)-regular with respect to Gs.

We start with an easy consequence of Claim 5.2:

Corollary 5.5. Lett = 5§/2d2_3 and " =r/t. Then H is (26;)/4, ds, 1) -reqular with

respect to Go|Ga(x)] for all but at most 2(8T1)€§/16m vertices € Viood-

3

Remark. Observe that in the proof we do not need edges of ‘H which contain a vertex
from V. Therefore, the Claim 5.5 remains true if H is a (s — 1, 3)-cylinder defined
on Vo U...UVj that is (e3,ds, r)-regular with respect to Gy;.

Now we prove that Gs is regular in the neighborhood G,(z) for almost all ver-

tices .
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Claim 5.6. Let t = 6;)/2(1;2 and r' = r/t. Then, (s — 1,2)-cylinder Gs|Ga(x)] is
(25§/4,J3,T’)—regular with respect to Ga|Ga(x)] for all but at most 2(551)55/8771 good

vertices T € Vgood-

Proof. Consider the case s = 3. Suppose there exists a set of good vertices W C
Vgoods |W| > 55/8m, such that for every o € W, G3[Go(x)] is not (25;,/4, ds, r")-regular
with respect to Go[Ga(x)]. Moreover, assume that the first part of inequality (4.1)
is not satisfied, i.e. there exist (2,1)-cylinders B; = Y; U Z;, Y; C Ga(x) N Va,
Z; C Go(x) N V3, g € [1'], such that

> 2¢,/"1Gs[Gs ()], (5.11)

Ga|Ga(x ﬂUICQ

but

G5]Ga(x ﬂU’Q

(dg — 9l )

We define an auxiliary graph I' = (V}, E) where a pair of vertices {x, 2’} is an edge

G2[Ga ()] N U K2 (B (5.12)

if either (dy — €2)*m > deg;(x,2’) or (da + €2)*m < deg;(z,2’) for j =2 or j = 3.
Since Gy is (g9, dy)-regular, by Fact 3.3 applied with k = 2, s = 3, and § = g,

the size of F is bounded by 852 ’m? . Using the Picking Lemma with oy = 852/ 2,
c= 62 ,and t = 83/ dy?, we choose t vertices z1,...,x, € W satisfying
(dy — £2)*m < deg;(wy, z,) < (do + £2)°m (5.13)

for all 1 <wu < v <t. Condition (2.8) is satisfied since

2 x 8eb/? x 2

2
(=)

where we used the fact that ey < dy and €3 < 1.

= 16y *dye; < 1,

For every x,, denote by B;, the (2, 1)-cylinders satisfying (5.11) and (5.12). We

will show that the following two statements hold:
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S1
t l
Z Ga[Ga () ﬂU’CQ ) >53/4d2m2, (5.14)
u=1 7j=1
and
D |GalGs(wa, 7)) mU/@ o mU/cz w)| Sesdym®. (5.15)
1<u<v<t j=1
S2

/

g2 g2 xu ﬂU’C2 ]u

7j=1

t
€3d2m2 > <25§/4 — 53) Z

u=1

Then, however, we use (5.14) to infer that

t

(251/4 — 53> Z

u=1

(5.14)
> 61/4 X 52/4d2m2 = 53d2m2.

GlG(x,)] N U IC?(Bju)

This is a contradiction to statement S2, thus |W| < 61/8

The situation when we assume that there is a set of good vertices W' C Vjo0q for
which the second part of inequality (4.1) does not hold is handled similarly.

If s > 3, then we apply the result for s = 3 simultaneously to (5 1) restrictions
of Goand Gzon VUV, UV, 2 <i<j<s.

Hence, it only remains to prove S1 and S2.

S1: Since x, is a good vertex, Go[Ga(x,,)] is (eé/Q, dy)-regular and, therefore,
1) 3y 1/2 9
dy —e5'") m* <|G[G(z,)]] < (da + &5 m

for all u € [t]. Furthermore, observe that the (2,2)-cylinder G[G(z,, z,)] is (52 2 dy)-
regular due to (5.13), (dQ — 51/2) > 51/4 and Fact 3.4. Thus, Corollary 3.6 yields

5 4
G2[Ga (w4, )] < ng X (dg +6§/2> m? < 2d5m?

foralll <u<ov<t.
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Notice that then the above inequalities imply

t

v’ (5.11) 3
Z gg[g2($u>] N U K:Q(Bju) > 261/4 Xt X (dg — 8;/2) m2 Z 63/4d2m2,
u=1 7=1
and
Z gQ[QQ(xua xv)] N U ,CQ(BJU) N U ]CQ(BW)
1<u<v<t j=1 i=1
< Z 1G2|Ga(wy, 1,)]| < (;) x 2dym® < ezdom?.
1<u<v<t

However, this is precisely what statement S1 claims.
S2: We show that the size of Go N J,_, U;J:I KCa(Bjy,) is at least e3]G,il, so we can
apply the (e3, ds, r)-regularity of G with respect to Go. Then we deduce S2 from this
and assumption (5.12).

To estimate the size of Gy N J!_, U;/:l KCo(Bj.,), we use Observation 4.2:

QQQUUICQ ) >Z

u=1j=1

QQQUICQ ]u

p>

1<u<v<t

QZQU’CQ Ju mLJIC2 w
7j=1

Since Bj, C Ga(x,), we have Gy N U;;l Ka(Bju) = G2[Ga(z,)] N U;lzl K2(Bjy,), and we
may use bounds (5.14) and (5.15) to obtain

gszUKQ ]u

u=1j=1

3/4

> &5 d2m2 — 53d2m2 > 253d2m2 > 53’gzi|'

Since t x r’ < r, the (e3, ds, r)-regularity of G with respect to Gy implies

gsﬂUUIQ ) d3—€3 g2ﬂUU’C2 )
u=1j=1 u=1j=1
t r’
> (ng - 63) Z g2 N U ICQ(BJU) — 53d2m2.
u=1 j=1
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Here we used Observation 4.5 and estimate (5.15) again. We have already observed

that we have Gy N U§;1 K2(Bju) = Ga[Ga(xy)] N US/:1 K2(B;,) therefore,

r/

Ga[Ga ()] N U Ks(Bju)

t

d3—€3)2

u=1

g3mUUIC2 ju

u=1j=1

— e3dym?®. (5.16)

On the other hand, we use assumption (5.12) and fact that Gz N U§;1 Ko (Bj,) =
Gs[Ga(2)] VU, Ka(Bju) to get

g3mUUIC2 ju <Z g3mUK2 ]u
u=1j=1
<d3 - 251/4) Z Go[Go(4)] N U Ko(Biu)|. (5.17)
u=1
Finally, comparing (5.16) and (5.17) yields statement S2. O

Remark. Similarly to the previous claim, observe that in the proof we do not need
edges of Gz which contain a vertex from V;. Therefore, Claim 5.6 holds also if G5 is
a (s — 1,2)-cylinder defined on V4, U ... U V; that is (e3, ds, r)-regular with respect
to Goi.

The next claim shows that the 2-cylinder G3 NH(x) is regular with respect to Gs

for almost all good vertices x.

Claim 5.7. Let 1’ :7’/< 2y ) Then,

2 ~ ~
(1 - 5§/2) dydzm < degg, ;(7) < (1 + 51/2) dadzm

for j € [s\{1}, Ga[Gs(x)] is (e5/?, do)-reqular, and (s—1,2)-cylinder Gs[Gs(x)] N H(z)
is (5:15/8, dsds, ")-reqular with respect to Go|Gs(x)] for all but at most 2(551)(45;/2 +

4e 1/2 + & 178 4 o /8)m good vertices & € Vigooa.
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Proof. We will restrict ourselves to the case s = 3 (the case s > 3 is handled in the
same way as in Claim 5.6).

Observe first that the (g5, dy)-regularity of G, the (g3, ds, r)-regularity of G5 with
respect to Gy, and Claim 4.7 implies that for all but at most 8 (65/ HEE 8:1»)/ 2) m vertices

x € Vi we have
12\? ; 5 1/2\? ; 5
<1 — &3 ) dadzm < degg, ;(v) < (1 + &5 > dodsm (5.18)

2
for 5 = 2,3. Moreover, <1 — 5;)/2) dods > eém holds due to our assumptions dy > e

and ds > e3> e,. Thus, by Fact 3.4, Go[Gs()] is (8§/2, dy)-regular and

5 - 5 ~
(1—g§/2) BdBm? < |GalGa(2)]] < (1+g;/2) BBm?. (5.19)

/

Furthermore, it follows from Claim 5.6 that there are at most 2e5'*m good vertices

T € Vgooa for which the (2, 2)-cylinder G3[Ga(x)] is not (25;,/4, ds,r/ <5§/2d2_2> )-regular
with respect to Go[Ga(x)].
Suppose there are ¢ > E:l))/

which

*m good vertices 1, ...,%; € Vgooa satistying (5.18) for

o G3[Go(xy)] is (2&?;/4, Jg, r/ (5§/2d2’2>)—regular with respect to Go[Ga(x,,)], u € [t],

and
o G3[Gs(zy)] NH(x,) is not (5:1,,/87 dsds, r')-regular with respect to G,[Gs(z,)]-

Assume also that the first part of inequality (4.1) is not satisfied, i.e. for every z,
there exist (2,1)-cylinders B;, = Yj, U Z;,,, where Y}, is a subset of G3(z,) NV and
Zju C Gs(xy) NV3, j € [r'], such that

Go[Gs(w)] N | Ka(Biu) | = &°1Go[Gs ()] (5.20)
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but

!

Gs[Ga ()] N H () N Ka(Bju)

j=1

/

g2[g3(95u)] N U ,CQ(BJ'U) :

j=1

< <dgcz3 — 5;)/8)

(5.21)
Notice that the size of Go[Gs(z,)] is bounded by 2d3m? (because of Corollary 3.6

and goodness of x,) and, therefore,
1/4 1/4 ;3 2 1/8 1/2 5 3 72 2(5'19) 1/8
22}/ 1GalGa ()| < At/ “dim? < &% (1 - &3/?) didim® < 2" |GalG ()]

Here we used assumption €3 < Jg.
Moreover, Go[Ga(z,)] N U;lzl K2(Bju) = G2[Gs(x,)] N U;lzl KC2(Bj,) holds because
Bju, C G3(x,). Then it follows from (5.20) and the above inequality that

Go[Gs ()] N | Ka(Bju) | = 2251G2(Gs ()],

J=1

Since Gs[Ga(x.)] is (2e5' !, ds, v/ <5§/2d2_2>)—regular with respect to Gs[Ga(x,)] and
r=r/ (8;,/2d52>, we conclude that

/

Gs[Ga(zu)] N U Ka(Bju)| - (5.22)

=1

(Jg — 25;)/4) <

Now we define (3, 2)-cylinders Qy, ..., Q,» on ViUV,UV; by Q; = Q;1UQ;5UQ 3,

G2[Ga ()] N U K2 (Bju)

where, for j € [r'],
jS = Gsi,

t
Q5 = U{xuy: Yy € Zj,}, and
u=1

t

Qj?) = U{xuy3 y €Y}

u=1

We will show that the size of U;"/:l K5(Q;) is bounded from below by e3]/C5(G2)|, so
we can apply the (es, d3,r)-regularity of H. This will give a lower bound on the
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size of H N U;l:l K35(Q;). Then, we will use assumption (5.21) and get an upper
bound on the size of H N U;;l KCs5(Q;). The comparison of both bounds will yield a

contradiction. Indeed,

U’Cs o)-%

u=1

,r,l

Gs[Go(wa)] N | Ka(Byu)

j=1
EDCEED

We recall that Gs[Go(z,)] N UJ 1 Kao(Bju) = Ga[Gs(x,)] N U] 1 K2(Bj,) holds. Then
we use (5.19), (5.20), and e5 < d3 to get

t
23 (4 —2)
(5.20)

5 .-
> t><<d3—253/4>><5/ x(1—5§/2> dadam?

> 2e3dym® > £5|K3(Ga)| -

(5.23)

Ga[Ga(xy)] N U K2 (Bjw)

(9Q))

G2[Gs(z,)] N U K2 (Bju)

Applying the (g3, ds, r)-regularity of H with respect to Go we get

‘H N LT_J Ks(Q;)| > (ds — e3) LT_J Ks(Q;)
Z (dg — 83) (d3 — 251/4> Z g2[g3(l‘u>] N LTJ lC?(BJu) (524)

On the other hand, we use (5.23) and assumption (5.21) to obtain the following
upper bound on ‘H N U;lzl IC3(Q))|:

‘H AUKs(@)] = 3 loslbs(ea) 0 ) 0 atB)
j=1 u=1 t = y (5.25)
(5. 21) <d3d3 B 61/8) Z Go[Gs ()] N U Ko (Bju)| -
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Comparing equations (5.24) and (5.25) yields 8;,/8 < 28%/4 +e3 < 3&?;)/4, which is

/

a contradiction to €3 < 1. The case when there exist ¢ > 5% ®*m vertices for which

the second part of inequality (4.1) is not satisfied is handled in the same way. O

Now we concentrate on the situation when s = 4. We will show that the number
of copies of K* in HNK5(Gs) is between (9/16)dSdSdim? and (15/8)dSdSdim*. From

this we later deduce Propositions 2.4 and 2.5.

Claim 5.8. Let s =4. Then

s 15 . -
D Bildim® < KA (H Ky (Gy)) < s’

Proof. Set ' =1/ (5;,/ 2dy 3> and denote by W the set of all good vertices & € Vgo0a
for which

(i) H[Ga(z)] is (28;)/4, dsz,r’")-regular with respect to Go[Go ()],
(i)
12\? ;5 12\? , 5
(1 el ) dydsm < degg, () < (1 yel ) dodym
for y = 2,3,4 and
(iii) G3[G2(z)] N H(z) is (5;,/8, dsds, r")-regular with respect to Go[Gs(z)].
Furthermore, the goodness of every vertex x € W implies

(iv) Ga|Ga(z)] is (&é/z, dy)-regular and (dy — €2)m < degg, ;(x) < (da + £2)m for all
j=234.
It follows from Corollary 5.5 and Claim 5.7 that
e all but at most 255/ 10

with s = 4),

m vertices & € Vyooq satisty (i) (c.f. Corollary 5.5 applied
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e all but at most 6(4ey’? + 4e2/? + &3/% 4 &3/

and (iii) (c.f. Claim 5.7 applied with s =4 and " < r/ <5§/2d2_2>).

Jm vertices x € Viyooa satisfy (ii)

We use assumptions €5 < €9 < 1 and obtain
(W[ > |Viooa| — 1025 m.

Moreover, the size of Vgooq is bounded from below by Observation 3.8 applied with
s =4 and § = e3:
Viood| > (1 - 365;/4) m.

We will do the following: for every vertex x € W we apply the 2-graphs Lemma
on (3,2)-cylinders Go[Gs(x)] and H(z) N G5[Gs(x)]. We will show that the number
of copies of K3 in H(x) N G3[Gs(x)] is sufficiently large to apply the regularity of
H[Gs(z)] with respect to Go[Ga(z)]. This way we will be able to count the number of
edges in H which are also copies of K3 in H(x) N G3[Gs(z)]. Notice that every such
an edge together with = form a copy of Kf) in H N K3(Gs) that uses x as a vertex.
Then we add these numbers through all x € W. Finally, we estimate the number of
copies of K f) in H N K3(Gs) that use vertices not belonging to W.

Consider arbitrary x € W. We apply the 2-graphs lemma with

e (3,2)-cylinder Gy played by Go[Gs(x)] which is (e4/%, do)-regular (c.f. (iv)):

e (3,2)-cylinder Gy played by Gs[Gs(x)] N H(z) which is (5é/8,d3d3,7"')—regular
with respect to Go[Gs(x)] (c.f. (iii));

e V; replaced by Gs(z) NV;;

and obtain

3

(1 — 85§/512>2 (dydsds)® ((1 - 5;,/2)2 dzdgm) < |Ks(H(x) N G5[G5(x)))]

2 - 2 3
< (1484 (d2d3d3)3((1+s§/2) dgdgm) .
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This can be further simplified using assumptions g5 < g5 < 1:

3 65 3 65
ngdgdgm?’ < [Ks(H(2) N Gs[Gs(x)])] < §d§d§d§m3. (5.26)

Then observe the following: Go[Ga(x)] is (65/ ? dy)-regular, therefore, by Corol-
lary 36, |IC3(QQ[Q2($)])| S (5/4)d§ X (d2 + 62)37713 S (3/2)dgm3 Since dg,Jg > €3,

we obtain
3 3 6
2/ K ulGa(a))] < 23 x Sabon® < St < |l () 0 GolGi (o).

Thus, we can use the (25§/4, ds, r')-regularity of H|[Gs ()] with respect to Ga[Ga(z)]
(c.f. (i)) and obtain

(s =225/ 1ea(H() N GalGa(@))| < [N K (H(x) 0 GolGa))
< (da+255") IKo(H(@) N GalGal@)))] . (5.27)
Combining (5.26) and (5.27) yields
2 BdSim® < M0 Ky(M(r) 0 Go[Gs ()| < TS

As it was mentioned before, every edge in H which is also a copy of Kj in
H(z) N Gs[Gs ()] forms together with = a copy of K\° in HNK5(Gs) that uses z as a
vertex. Therefore, there is at least |W| x (5/8)dSdSd4m?® copies of K\¥ in HNK3(Gs).

Since the size of W is at least |Viood| — 108§/8m > (1 — 366%/4 - 105:1.)/8) m >
(1 - 115:13/ 8) m, the following lower bound holds:

5 &= 9 =
Ca(H N K3(Gs))| > (1 - 11g§/8) m x Sdidsdim® > —didsdim?.
For the upper bound we must count not only

(a) the contribution of vertices taken from W, but also

(b) contribution of vertices in V; \ W.
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We will handle each of these cases separately.

(a) The upper bound on the number of copies of Kf) in HNK3(Gs) that use as a
vertex members of W can be found similarly to the lower bound: every vertex
x € W is in at most TdSdSdim?® copies of K @

(W x TdSdSdim® < TdSdSdim* copies of K () altogether.

, therefore, we have at most

(b) There are two kind of vertices in V; \ W: good and not good.

(i) The number of vertices which are not good is at most 36€§/ “m (c.f. Obser-
vation 3.8). Each such vertex can be in at most m?3 copies of K. f’), thus,
these vertices are involved in at most 365§/ ‘mt < 5§/ 8dgm4 < 6:1,)/ 8dgm4 <
e/ d8d8dim? copies of KV

(ii) For every good vertex = € V; \ W, we use Corollary 3.6 to insist that
3

Ks(GalGa(@)])] < (5/4)} x (e +2) m® < 2a5m?. Simce Vi \ W] <

/

lleé/sm, the good vertices in V; \ W can produce at most 116;) *m x

2d8m3 < e}/ "0dSdSdim? copies of K\¥. Note that we used g3 < ds, ds

again.
We add the contributions from (a) and (b) to get

7 ~ 15 ¢~
K4(H 0 Ks(Gs)] < (z ey gg/w) i’ < - diidim*.

5.3 Proof of Proposition 2.4

In this part, we use the properties of nice vertices and Claim 5.8 to show Proposi-

tion 2.4.
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Proof. Consider a (0, dy)-regular (5, 2)-cylinder H® and a (5, 3)-cylinder H which
is (83, ds, 7)-regular with respect to H®.
Let € V; be a nice vertex (c.f. Definition 5.3), i.e. a good vertex for which we

have:
(i) the link H®)(z) is (25§/2, ds, r)-regular with respect to H® [H® (z)].
(i) HO[H® (2)] is (265, ds, 7/ <(5§/2d2_3>)—regular with respect to H@[H® (2)],
Also remind that the goodness of x implies
(iii) (do — d2)n < deg;(w) < (da + d2)n for j =2,...,5,
(iv) the (4,2)-cylinder HO[H® ()] is (83, dy)-regular.
We apply Claim 5.8 with G, = HO[H®(z)], Gz = HO(x), H = HO[HP(2)],

(d3 — d9)n < m < (d3 + d2)n, g9 = 5;/2, g3 = 255/4, ds = ds, and r replaced by
r/ <5§/ *dy 3). Observe that (i)-(iv) verify conditions of the Setup C. More precisely,

e (iv) verifies that Gy is (2, dy)-regular,
e (i) verifies that Gs is (g3, ds, r)-regular with respect to G, and
o (ii) verifies that H is (e3, ds, )-regular with respect to G.

Hence, we obtain

9 15
Edgdgdg(dg — &)t <Ky (HNK3(Gs)) < §dgdgdg(dg + 65)*nt.

Estimate (2.5) follows from this inequality since ds >> 0. This is true for every nice
vertex. By Observation 5.4 applied with s = 4, at most 10(5;/ ’n good vertices are not
nice, and from Observation 3.8 we have that at most 365;/ *n, vertices are not good.
From this we conclude that (2.5) holds for all but at most 46(5§/ *n vertices z € V4.
]
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Remark. 1t is possible to replace constants 1/2 and 2 in the lower and upper bound
by 1 —(d3) and 1 + (d3), where ¥ (d3) — 0 as 3 — 0. This can be done by more

precise estimation in Claim 5.8.

5.4 Properties of links in the neighborhood of a
pair of vertices

In this section, we prove that the restriction of H to the neighborhood G(x,z’) and
the link H(z, ') are regular for almost all pairs of vertices {z,2'} C Vj. These
two claims play the same role for the pair {z,2'} C V; as Claims 5.2 and 5.1 do
for a single vertex. Thus, for every such pair {z,2'} we can mimick the proof of
Proposition 2.4, that is apply Claim 5.8 on H[G(x,z’)] and the link H(z,2'), and
prove Proposition 2.5.

We consider the scenario given by the Setup B from Section 5.1.

Setup B. Let0 < e9 < dy <1 and0 < e3 < d3 < 1 be real numbers so that e9 K €3.
Let V. =V U...UV; be a partition, where |Vi| = ... = |Vi| =m, G = (V, E(G)) be
an (s,2)-cylinder that is (€2, ds)-reqular, and let H = (V, E(H)) be an (s, 3)-cylinder

which is (g3, ds, r)-reqular with respect to G.

Claim 5.9. Letr' =r/ <5§/2d2’3> (2€§/8d2’3>. Then, for every nice verter x € Vyice,

the restriction of H to G(x,z’) is (46;)/16, ds, r')-regqular with respect to G[G(x,z")] for

all but at most 3(sg1)5§/32m good vertices ' € Viood.

Proof. Let x be a nice vertex (c.f. Definition 5.3), i.e. a good vertex satisfying
(i) H(z) is (2¢5/?, ds, r)-regular with respect to G|G(z)], and

(ii) H is (25§/4, ds,r/ <€§/2d;3))—regular with respect to G[G(x)].
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Moreover, since x is also a good vertex, we have

(iii) G[G(x)] is (55/2,d2)—regular, and

/

(iv) for all but at most ey *m vertices 2/

(dy — €2)*m < deg;(w,2') < (dz + £2)°m (5.28)
holds for every j € [s] \ {1}.

Denote by W’ the set of all 2/ € V; satisfying (5.28) for which H is (4e5/'®, ds, ')-
irregular with respect to G[G(x, 2')].

Let W be a set, W' C W C Vi, such that (dy — eo)m < |W| < (dy + €2)m. We
can achieve this by throwing out some vertices from W’ or by adding some vertices
from V; to W’.

Set V/ =W, V] =G(z)nV; for j € [s]\ {1}, and V' = V] U...UV]. Notice that
due to dy — &9 > 5;/4 and Fact 3.4,

(iii’) the restriction G[V'] is an (£)/?, dy)-regular (s, 2)-cylinder.

Set G5 = G[V'], G} = H(x), and H' = H[G(z)]. Note that G is an (s, 2)-cylinder,
G is an (s — 1,2)-cylinder, and H' is an (s — 1, 3)-cylinder. Moreover, in view of the
remark following Corrolary 5.5, Gj, G5, ‘H' satisfy the assumptions of Corollary 5.5
with €5 replaced by 55/2, €3 by 25:1,,/4, ds = ds, and r replaced by r/ <€;’/2d53) (c.f. (i),
(i), (iii")).

We apply Corrolary 5.5 and obtain that the restriction H'[G)(z)] is (45§/ 0 dy, )-
regular with respect to G4[G4(2')] for all but at most 2(551)55/32]1/1/\ vertices 2’ € W.
Note that G[G4(2")] = GG (x,2")] and H'[G)(2")] = H[G(z, 2')].

However, all such vertices are contained in W/, therefore

-1 —1
W' < 2(5 . )5§/32|W| < 2(8 . )85/327”
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Since (5.28) is satisfied for all but at most 8;/ *m good vertices 2/ and W' contains
all good vertices 2’ satisfying (5.28) for which H[G(x, )] is irregular, we infer that
the total number of vertices x’ for which the restriction of H to G(z,2’) fails to be

(4€§/16, ds, r’")-regular does not exceed 2(551)5;/32m + 85/4771 < 3(851)8;/32771. O

The proof of the next claim is based the same idea except that it uses Claim 5.6

instead of Corrolary 5.5.

Claim 5.10. Let © € Viiee be a nice vertex and set r' = r/ <5é/2d2_3> <26é/8d2_2>.

Then the link H(x) is (45§/16, ds, r")-reqular with respect to G|G(x,x")] for all but at

most 3(551)5;/16m good vertices x'.

Proof. Let x be a nice vertex. Then we know (c.f. Definition 5.3):
(i) H(z) is (2¢5/?, ds, r)-regular with respect to G|G(z)], and
(i) His (2e5/*, ds, 7/ (5§/2d;3>)—regular with respect to G[G(z)].

Since every nice vertex is also good, we have (c.f. Definition 3.7):

(iii) G[G(z)] is (5;/2,d2)—regular, and

/

(iv) for all but at most ey ‘m vertices 2’

(dy — £2)*m < deg;(x,2") < (dz + £2)°m (5.29)
holds for every j € [s] \ {1}.

Denote by W’ the set of all 2/ € V; satisfying (5.29) for which H(z) is not
(4sé/16, ds, r")-regular with respect to G[G(x, z')].

Let W be a set, W' C W C Vi, such that (dy — e9)m < |W| < (dy + £2)m. This
can be achieved by throwing out some vertices from W’ or by adding some vertices
from Vi to W'. Set V' = W, V/ = G(z) NV for j € [s]\ {1}, and V' = V] U...UV].
Notice that
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(iii’) G[V'] is an (5;/2, ds)-regular (s, 2)-cylinder

due to dy — g9 > 5;/4 and Fact 3.4.

As in the previous claim, set G5 = G[V'], G = H(x), and H' = H[G(z)] and
notice that G}, G}, H’ satisfy the assumptions of Claim 5.6 (which are the same as
the assumptions of Corollary 5.5 and these assumptions were checked in the previous
claim).

We apply Claim 5.6 on G} and Gj. By this claim, the restriction of G} to G5[G)(2')]
is (45§/16, dz,r")-regular with respect to G4[G5(z’)] for all but at most 2<S;1>8;/16‘W|
vertices ' € W. Recall that G = H(x) and G}[G)(2")] = G[G(x,2')], therefore, all

such vertices are contained in W'.

Thus,
1 1
Wl < 2(3 ) )55/16|W| < 2<S , )gi/wm

Since (5.29) is satisfied for all but at most £5/*m good vertices 2’ and W’ contains
all good vertices z’ satisfying (5.29) for which H(z) is irregular, we infer that the
total number of vertices z’ for which the restriction of H(x) to G(x,z’) fails to
be (45;)/16, ds,r")-regular with respect to G[G(z,2')] does not exceed Q(Sgl)eé/mm +

55/4771 < 3(551)65/16771. O

We use the previous claim to prove an analogy of Claim 5.1 for pairs of vertices.

Note that the same proof in a slightly different setting is given in [DHNRO0O].

Claim 5.11. Let v’ =r/ <5;/2d2_3> (25:13/8d2_2>. Then for all but 2(551)5§/16m nice
vertices © € Vyice the following statement is true: the link H(x,z’) is (s§/32,d§,r’)-

1/16
€3

reqular with respect to G[G(x,2’)] for at most 5(°,") m good pairs {x,z'}, where

/
MRS V;lice'

Proof. We will restrict ourselves to the case s = 3 (the case s > 3 is handled in the

same way as in Claim 5.6).
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For a nice vertex x € Ve, denote by W, the set of nice vertices w for which
(i) pair {z,w} is good,
(il) H(z) is (45:13/16, ds, r’")-regular with respect to G[G(z,w)], and

(ili) H(z,w) is not (5;,/32, d3,r")-regular with respect to G[G(x,w)] and the second
part of inequality (4.1) is not satisfied, i.e. there exist (2,1)-cylinders Bf* =
YU Z5®, where Y™ is a subset of G(x,w) NV and Z7* C G(x,w) N V3, such
that

‘g[g(:v,w)] NJK(8:")| 2 &/ ™(G1G(x, w)]]. (5.30)

Jj=1

but

!

GlG(zx,w)n | JKa(B)].  (5.31)

j=1

iH(:p,w) N U/CQ(B;W) > <d§ +g§/32>

j=1

: . . 1/16 1/16
From the previous claim, for every nice vertex x we have at most 352/ m < 53/ m

good pairs {x,2'}, 2’ € Viice, for which the link H(x) is (45;)/16, ds,r")-irregular with
respect to G[G(x,z')].

Moreover, denote by X, the set of those nice vertices = for which |W,| > 25:1),/ m
and suppose |X| > e5/'%n. We also make an assumption |W,| = 25§/16m for all

x € X. This can be achieved by possible deletion of some vertices from W.,.
Since by (ii) the link H(z) is (45§/16, ds, r")-regular with respect to G[G(z, w)] for
every x € X and w € W, and (5.30) holds (c.f. (iii)), we conclude that

(d3 - 45;/16) GG (z,w)] N U 1Cs(B2)| < [H(x) U 1o (B2) (5.32)
and
‘H(x) N U Ka(B2)| < (d3 + 4e§“6) ‘G[G(m, w)] N U Ko (B5)] - (5.33)
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For every vertex x € X, we define (3,2)-cylinders Qf,...,Q by QF = ng'i U
Q;”Q U Q;.”g, where

Qj';i = H(l‘),
Q, = U {wz: z € Z7"}, and (5.34)
weWy
Qj:g = U {wy:y € Y;xw}
’LUEW$
We show that we can choose t = 6:1,)/8d2_2 vertices xy,...,x; € X so that the union

Uizl U;;l K5(Qj*) is sufficiently large to apply the (e3, d3, 7)-regularity of H with re-
spect to G. This will be, however, in a contradiction with with the assumption (5.31).

First, we give a lower bound on the size of U;;l K3(Q7) for an arbitrary vertex
x € X. Indeed, from the construction (5.34), we have

-y

weWy,

/

H(z) N Ka(BF)

j=1

| Ks(Q))
j=1

(5.35)

(5§2) Z <d3 _ 48;)/16) ‘g[g@,w)] N U KQ(B;W)
j=1

wEWz

We recall that G[G(z, x,)] is (8;/2, dy)-regular (from the goodness of the pair {z, w}

5
(c.f. Definition 3.11)) and, thus, its size is bounded from below by (dg — 5§/2> m?
(c.f. Fact 3.6). Then we use inequality (5.30) and get

o 3 (i ael)

weWy,

GG (z, w)] N | Ka(BF™)

i=1

L Ks(2Q)
j=1

(5.36)

(5.30) 5
> |Wy| <d3 — 45;)/16) X 5;;/32 <d2 — 5§/2> m? > sé/sdgm?’.

Second, we also need an upper bound on the size of U;J:l K3(Q7) N U:lzl KCs(QF)
for a good pair of nice vertices {z,2'}. Notice, that any triangle 212023, 2; € V},

belonging to this intersection must satisfy

21 € Wx ﬂWx/
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and

222 € (919 (w,w)] N IG(B;™)) 1 (G192, w)] N (B

for some 14, j € [r'].
The above intersection can be clearly overestimated by G[G(x,w)|NG[G (', w')] =
GlG(x,w,z’',w")]. Moreover, regardless which w’ € W, we take, vertex z; is always

in W, and edge 2523 is in G[G(z, w, x’)]. Hence

< 3 (61, w, ).

ks nJKs(e)
j=1 i=1

" vertices ¢ € V1 for which

Since {z,2'} is a good pair, there are at most &,
either G[G(z, 2, 2")] is not (5;/2, dy)-regular or (dy — €2)*m < deg;(z,2',2") < (dy +

£2)3m does not hold for j =2 or j = 3.

IN

Thus, for triples {z,z’, w} satisfying both conditions we have |G[G(x,w,z')]|
/4

IN

2dim? (c.f. Fact 3.6), and for the remaining &3/ *m triples we have |G[G(x, w, 2')]|

1G[G(x,2")]| < 2d5m? (again using Fact 3.6). Then,

Z GG (2, w,2")]| < |W,| x 2dym?* + 6§/4m x 2dsm? < 46§/16d§m3.

weW,
The last inequality follows from e3/* < eb/%d2 < 2¢}/"%d2 and |[W,| = £}/"%m. Conse-
quently, / /
U Ks(Q%) N U K3(Q9)| < ey dim? (5.37)
j=1 i=1

for every pair of good vertices {z,z'} C X.
Now we define an auxiliary graph I' = (V| E'), where a pair of vertices {2, 2"} is

an edge whenever it is not a good pair. It follows from Observation 3.12 that the size

of E is bounded by 2055/4m2. Using the Picking Lemma with o, = 205;/4, c= 5;/16,
and t = 5é/8d2_2, we choose t vertices x1,...,z; € X so that all pairs {z,,z,} are

good.
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Then, we can estimate ‘UZ:I U K3 (Q5)

using Observation 4.5 in the follow-

ing way:
t t r! ' »
UK 2 > UK - 32 UKs(@) U Ka()
u=1j=1 u=1 |j=1 1<u<v<t |i=1 j=1

This can be further simplified with the use of (5.36) and (5.37).

U UK

u=1j=1

t
>t x e/ *dim® — (2)4e§/16d;m3 > 2esdim® > e3]C3(G)

The last part of this inequality follows from Fact 3.6. Applying the (e3,ds,7)-
regularity of H with respect to G, we get

%ﬂUU@@%

u=1j=1

J UK

u=1j=1

S (dg + 83)

Using the first part (equality) of (5.35) and inequality (5.33), we conclude that

d3+€3ZU’C3 qu (d3+€3)z Z

,’,,l

H(z,) N U Ko (BI)

u—1 |j=1 u=1 weWy,,
t v’
< (ds + €3) (ds + 481/16> Z Z G(zu,w)] N U K2<B§uw>
u=1 weWy,, J=1

Combining the previous two inequalities yields:

'H n O O/cg(gju < (& +5e") Z 3 g

u=1j=1 u=1 weWy,,

,r/

Gz, w)] N | Ka(B7™)

Jj=1

On the other hand, we use assumption (5.31) and obtain the following lower bound

on ‘H N Utu=1 U§;1 ]C?’(Q?u) :

\Hmuufcs@:w Yy

u=1j=1 u=1 weEWy,,

: (8e47)3 T |

u=1 weWy,

,',,/

H(zo, w) N | Ka(BF)

J=1

,r/

G(zu, w)] N | Ka(B7)] .

Jj=1
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Comparing the last two inequalities yields d3 + 561/ 10 d3 + 81/ 32, which is a con-

1/16 1/16

tradiction with our assumption that | X| > e’ "m. Therefore | X| < &)/ "m.
The case when W, is the set of vertices w for which the second part of inequality

(4.1) is not satisfied, i.e. for which

<d2 1/32)

can be handled in the very same way.
1/16

H(z,w) N | Ka(B3™)
j=1

Gl9(x.w)] N | Ka(B")

Hence, there are at most 2 x 5’ m X m nice vertices « (more precisely, all x € X)
for which the link H(z, ) is (g4 1/82 ,d3,r')-irregular for at least 25%/ m good pairs
{z,2'}, 2" € Vice.

Moreover, for every other nice vertex (that is z € Vice \ X, there at most 451/ 0
good pairs {x,2'}, 2’ € Vyjice for which the link H(z, z) is (g5 3/32 ,d3,r")-irregular (c.f.
definition of W,) and at most 362/ m < 53/ m good pairs {z,2'}, ¥’ € Vjjce, for
which the link H(x) is (453 O ds,r")-irregular with respect to G[G(z, 2/)].

Thus, for all but at most 25;/ " m?2 nice vertices z, the link H(x, 2') is (6;)/ 2 &2 r)-

1/16

regular for all but at most 5e5' " m good pairs {x,2'}, 2’ € Viice. O

Now we define a nice pair of vertices {z, 2'}.

Definition 5.12 (nice pair). Set r’ = r/ ( Y2y ) (251/8(12 ) A pair of vertices

{z,2'} is called nice if it satisfies the following conditions:
(i) both x and x' are nice vertices,
(ii) the pair {z,x'} is good,
(iii) the link H(x,z') is (5:1,,/32 d3,r")-regular with respect to G[G(z,x')], and
(iv) H is (45§/16, dy, r")-regular with respect to G[G(z,z')].

Observations 3.8, 3.12, and 5.4, and Claims 5.9 and 5.11 imply the following:
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e all but at most (2(5 — 1)y +10(s — 1)8;/4> m? pairs {z, 2’} are pairs of good
vertices (c.f. Observation 3.8);

e all but at most <4(S - 1)5;/2

+6(s — 1)5;/4> m? pairs {x,z'} are good pairs in
[Vaooa]? (c.f. Observation 3.12);

e all but at most <4(Sgl)6é/2 + 2(551)5;)/4) m? good pairs {z, 2’} are good pairs
of nice vertices (c.f. Observation 5.4);

e for all but at most 3(551)5§/32m2 of the above pairs, the restriction H[G(x,z')]
is not (45;)/16, ds, r’")-regular with respect to G(z,z’) (c.f. Claim 5.9);

e for all but at most 6(551)5;)/167112 of the above pairs, the link H(x,z’) is not

(8;)/32, d%,r")-regular with respect to G(z,2') (c.f. Claim 5.11).

We can summarize these facts into the following observation (we use g5 < £3 to

simplify this result).

Observation 5.13. All but 10(851)6;,/167712 pairs in [V1)? are nice.

5.5 Proof of Proposition 2.5

In this section, we use the properties of nice pairs and Claim 5.8 to show Proposi-

tion 2.5.

Proof. Set ' = r/ <5§/2d;3) <25§/8d2’3> and let {x,2'} € Vi be a nice pair, i.e.
a good pair for which we have (c.f. Definition 5.12):

(i) the link H® (z,2) is (857, d2,r")-regular with respect to H®[H® (z,2")],
(i) HO[H® (z,2")] is (463", ds, r')-regular with respect to [H®(z, z')].

Since {x,z'} is also a good pair, we have (c.f. Definition 3.11)
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(i) (da — d2)°n < deg;(x, ") < (da + d2)°n for j =2,...,5, and
(iv) the (4,2)-cylinder HO[H® (z, 2")] is (05/%, dy)-regular.

We apply Claim 5.8 with cylinders G, = HO[HP(z,2")], G3 = H®(z,2'), H =
H(S)[H(Q)(l',l‘l)], and E9 = 5;/2, €3 = (5;/32, Cig = d%, (dg — 52)271 S m S (dg —f- 52)271,

and 7 replaced by 7’. Observe that (i)-(iv) verify conditions of the Setup C. More

precisely,
e (iv) verifies that G, is (3, dy)-regular,
o (i) verifies that Gs is (g3, ds, 7)-regular with respect to G, and
e (ii) verifies that H is (e3, ds, r)-regular with respect to G.

Hence, we obtain

9 15
6% (d2)° di(dy — 65)*n* < KC4y(H N Ks(Gs)) < el (d2)° di(dy + 65)*n’.

Estimate (2.6) follows from this inequality since da > do. This is true for every nice
pair {z, x}. By Observation 5.13 applied with s = 5, all but at most 605§/16n2 pairs
{z, 2"} are nice. Therefore, (2.6) holds for all but at most 605§/16n2 pairs {z,2'} C V).

0

5.6 Counting II

In this section, we will expand statements for a single vertex from Section 5.2 to

pairs. We consider the scenario given by Setup C:

SetupC.LetO<€2<<d2§1,0<53<<d3§1,and0<63<<d~3§1
be real numbers so that e K e3. Let V. = Vi U ... UV, be a partition, where
Vil = ... = |Vi| =m, Go = (V, E(G2)) be an (s,2)-cylinder that is (2, ds)-reqular,
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Gs = (V, E(Gs)) be an (s,2)-cylinder that is (3, ds, r)-reqular with respect to G, and
let H=(V,E(H)) be an (s,3)-cylinder which is (3, ds, r)-reqular with respect to Gs.

Our objective is to prove the following technical claim.

Claim 5.14. Let s = 4 and G, G3, and 'H are as in Setup C. Then, for all but at

/64

most 105;, m? pairs {x,x'} C Vi, the following is true:

/ ! 3 7
(H N Ks(H(z, 2")[Gs(z, 2)])| < §d§’d§d§m3-

This claim will be used in the next section to prove a claim necessary for proving
Proposition 2.6.

We start with some technical observation. The first one is a consequence of
Fact 4.9 and shows that almost all pairs have approximately the same joint degree

in Gs.
Fact 5.15. For all but at most 10(s — 1)5é/8m2 pairs {z,z'} C Vi we have:

(1 - 5;)/8)2 ddPm < degg, ;(z,2") < (1 + 5;,/8)2 d2d>m (5.38)
for every j € [s] \ {1}. Consequently, Go[Gs(x,z")] is (5;/2, dy)-regular.

Proof. Since Gy is (g9, dy)-regular and Gs is (g3, czg,r)—regular with respect to Gy, Go
and Gs satisfy Setup A. Consequently, we can apply the remark following Fact 4.9
with [ = 2 to infer that all but at most

(s —1) (45;/2 + 85;/8 + 4»3;/2 + 85§/8> m? < 10(s — 1)5§/8m2
pairs {z, z'} satisfy (5.38).
8 2
Using assumptions g, < €3 < d3 and gy < dy yields (1 — €§/8> B2 > )

Thus, by Fact 3.4, Go[Gs(x, 2)] is (5;/2, ds)-regular. O
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The second fact proves that the restriction of H to the joint neighborhood inherits

regularity for almost all pairs.
Fact 5.16. Setr' =r/ (5§/2d2_3> (2€§/8d2_3). Then,

(i) the pair {z,x'} is good, and

(i1) the restriction H|Ga(x,x")] is (25§/16, ds, r')-reqular with respect to Go[Ga(z, z')]
for all but at most 5(551)5;,/27712 pairs {z,z'} C V.

Proof. Observe first that due to Observations 3.8 and 3.12:

e all but at most (2(5 — 1)er? +10(s — 1)5;/4> m? pairs {z, '} are pairs of good

vertices (c.f. Observation 3.8), and

e all but at most (4(5 - 1)55/2 +6(s — 1)53;/4) m? pairs {x, 2’} are good pairs in

[Vaood)? (c.f. Observation 3.12).
Also notice that by Observation 5.4

e all but at most (4(551)5;,/2 + 2(8;1)&?;/16) m? good pairs {z,z'} are good pairs

of nice vertices.

Furthermore, it follows from Claim 5.9 that for every nice vertex x € V.. there are at
most 3(5’;1)5;/32771 good vertices ' € Vyo0q for which H is not (46;)/16, dz,r’)-regular
with respect to Go[Ga(z, 2')].

We use the assumption €5 < €3 and conclude that all but at most 5(5;1)5:1/ ’m?

pairs satisfy conditions (i) and (ii). O

The next two facts will show that the (s — 1,2)-cylinder G3[Gs(x,2')] N H(x, 2')
is regular with respect to Gy|Gs(x,2’)] for almost all pairs {x,2’}. Fact 5.17 is of
a technical nature and it will be later used in Fact 5.18 which actually proves the

regularity of G3[Gs(z, ') N H(x,z').
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Fact 5.17. Let " =1r/ (sé/zdf) <5§/16d2’2). Then, for all but at most 4(5;1)€é/8m

good vertices & € Vigooa the following statement holds: all but at most 3(‘3;1)5§/16m

good vertices x' have the following properties

3 - 3 -
(i) (1 - €§/Q> d3dsm < |Ng, ;(x) N Ng, ;(z')| < (1 + €§/2) d3dsm,
(”) g2 [g:»,(l’) N g2(l‘/>] is (61/2) d2)—7“6gular,

(7ii) the (s —1,2)-cylinder G3|Gs(x) N Go(z") | NH(x) is (25515/32, dsds, ") -reqular with
respect to Go|Gs(z) N Ga(2)].

Proof. Observe first that (i) follows from (i). Since g, < g5 < ds and &5 < ds,

we have <1 - 5;)/2)3 d2ds > 63/*. Then, the (£)/*, dy)-regularity of Go[Gs(z) N Ga(2')]

follows from Fact 3.4. Hence, we will concentrate on properties (i) and (iii).

Note that this is claim is being proved under Setup C. Then, Claim 5.7 implies
that for all but at most 2(851)(48;/2 + 4€é/2 +eal® 4 Sé/s)m < 4(351)5§/8m good

vertices o € Vgo0q the following conditions are satisfied:
12\? ; 7 12\? ,; 5 .
(a) <1 — &5 ) dadzm < degg, ;(v) < <1 + &5 ) dodsm for j € [s]\{1}, and
(b) (s—1,2)-cylinder G3[G3(x)] NH(z) is (Eé/S, dsds, T/ <5§/2d2_2> )-regular with re-
spect to Go[Gs(x)].
Fix a good vertex x € Vyooq for which (a) and (b) are satisfied and let W’ be the set
of vertices 2’ which violate

1= Y 2o < |Now - (2) 0 No (2] < (14 22) a2d 5.39
€3 5dsm < |Ng, ;(x) G2 (2)] < (145 2d3Mm (5.39)

for some j € [s] \ {1} such that [IW'| < (1 + 6;,/2)2 dydsm.

Furthermore, let W |W"| < (1 - €§/2>2 dydsm, be the set of vertices 2/ satisfy-
ing (5.39) for which the (s—1, 2)-cylinder Gs[Gs(2)NGa(2)|NH () is (265 *, dsds, 1")-
irregular with respect to Go[Gs(x) N Ga(')].

We will show the following two statements.
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S1 [W/| <2(s— 1)y *m.
S2 |W”| < Q(Sgl)aé/wm.

Note that every vertex that does not belong to W’ U W” satisfies (i), (ii), and
(iii). Finally, using S1 and S2 yields |[W’' U W"| < 2(s — 1)es*m + 2(851)5;/16771 <
3(551)55/16771.

Remark. Observe that S1 and S2 indeed show that W' and W contains all vertices
which violate (i) or (iii).

2
Proof of S1: Let W, W' C W C Vi, be a set for which <1 —5;,/2) dodsm <

W < (1 +ey 2>2 dydsm. This can be achieved by adding some vertices to W’. Set
Vi=W,V/=V;NGs(x) for j € [s]\ {1}, V' =V]/U...UV], and Gy = Go[V"].

Since €9 K €3, €9 K do, and g3 K czg, we have (1 - €é/2>3 d%dg > 5;/4. Thus, by
Observation 3.4, G is (5§/2, dy)-regular. Applying Fact 3.3 with § = eé/Q and k =1
on G} yields that all but at most 2(s — 1)5;/4|V1’| < 2(s — 1)5§/4m vertices x € V/
satisfy

(42 =) V]I < INgys(@')| < (do+55%) V)

for every j € [s] \ {1}. Since (1 - 5§/2)2d2623m < |Vj| < (1 + €§/2>2d2c23m due to
(a) and the definition of V/ and Ng, ;(2') = Ng, ;j(x) N Ng, ;j(2'), one easily gets that
all but at most 2(s — 1)55/4m vertices ' € V; satisfy (5.39). Since W’ contains all
vertices that does not satisfy (5.39), we have |W'| < 2(s — 1)5;/4771.

2

Proof of S2: Let W, W” c W C Vi, be a set for which (1 —5§/2) dodsm <
2

W < <1 + é?é/ 2) dadsm. Such a choice can be made by adding (if necessary) some

vertices to W". Set V" = W, V' =V; N Gs(x) for j € [s]\ {1}, V" =V]"uU...uV/,

and Gy = Go[V"]. Using the same argument as for G above, we get that G is

(5§/2, dy)-regular.
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We also set G = G3[Gs(x)] N 'H(x). By our choice of z (c.f. condition (b)), G¥ is
(e3/®, dsds, r/ (6;)/ dy 2))—regular with respect to Gj. Hence, in a view of the remark
after Claim 5.6, GJ and G satisfy the assumptions of Claim 5.6 with e, replaced by
5§/2, g3 replaced by 651))/8, ds by dsds, r by r/ <5§/2d2_2>, and V; by V}’.

Using this claim, G [G5 (2)] is (25?1)/32, dsds, 7" )-irregular with respect to GJ[GY (2')]
for at most 2(551)5;/16“/1’\ < Q(Sgl)éé/wm good vertices ¥’ € Vyood.

Observe that all such vertices are contained in W” since G5 [GY (2")] = G2[G3(x) N

Go(')], and G[GY(2")] = GolGa(x) NG ()] VH(x). Hence, W] < 2(5))el *m. O

Fact 5.18. Letr’ =1/ <5§/2d2_2) (€§/16d2_2>. Then for all but at most 3(5;1)5;)/647712

pairs of good vertices {x,x'} C Vyooa the following statements hold.

(a)
1/8)? 2 7 ’ 1/8)% 12 %
(1 — &3 > dydzm < degg, ;(v,7") < (1 + &5 ) dsdzm, (5.40)

for every j € [s]\ {1}, and G3[Gs(x, 2)] is (8;/2, dy)-regular, and
(b) G3|Gs(x, ")) NH(x,2') is (€§/64, dsd?,1")-reqular with respect to Go[Gs(x,2')] .

Proof. Suppose s = 3 and for a pair of good vertices {z,w} consider the following
properties:
(i) {x,w} is a good pair,
3. 3
(i) (1-2}%) dBdym < [Ngy5(@) N Nayi(w)| < (1+e5/*) didym for j = 2,3,
and Go[Gs(z) N Ga(w)] is (65/2, dy)-regular,
(iii) the (s —1,2)-cylinder G3|Gs(z) N Ga(w)| NH(x) is (25é/32, dsds, r")-regular with

respect to Go[Gs(x) N Ga(w)],

Observe that
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e there are at most (8&?;/2 + 128;/4> m? < 145§/4m2 pairs of good vertices {z,w}

which are not good pairs, that is they violate (i) (c.f. Observation 3.12),

/ 1/16

e there are at most 4e3’°m good vertices x for which there are more than 3y '°m

good vertices w violating (ii) or (iii) (c.f. Fact 5.17), and

. . 1/16 . . .
e for every remaining vertex x there are at most 382/ m good vertices w violating

(ii) or (iii) (c.f. Fact 5.17).

Thus, all but at most

145§/4m2 + 45§/8m X m -+ m X 355/16771 < 55§/8m2

pairs of good vertices satisfy conditions (i)-(iii).

/

Furthermore, Fact 5.15 implies that there are at most 206; *m? pairs {z,w} that

violate (a), that is

2 2
(iv) (1 — 5;)/8) d3dzm < degg, ;(x,w) < (1 + 6:1,,/8> d3d3m for j = 2,3, and cylin-
der Go[Gs(x,w)] is (5;/2,d2)—regular.

For every good vertex o € V04 denote by W, the set of all good vertices w € Vigooa

which satisfy conditions (i)-(iv) and violate (b), that is

(v) Gi(z,w) = G5[Gs(x,w)] NH(z,w) is not (5;)/64, dsd?,7")-regular with respect to
g2 [gg(l’, UJ)] .
Denote by X the set of all good vertices & € Vioq for which |W,| > 28;/ . We
1/16
m

will show that | X| < 2e,

Then we can easily finish the proof:

e all but at most 5€§/ *m? + 208;’/ ®m? pairs of good vertices satisfies (i)-(iv),

/64

o for every vertex z € X there are more than 25:15 m good vertices w satisfying

(i)-(iv) and violating (v) (c.f. definition of X and W), and
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/64

e for every vertex x ¢ X there are at most 25},) m good vertices w satisfying

(i)-(iv) and violating (v) (c.f. definition of X and W,).

Thus, all but at most

5€§/8m2 + 205§/8m2 + 265/16771 X m —+m X 25§/64m < 38§/64m2

pairs {x,w} of good vertices satisfy conditions (a) and (b).

If s > 3, we apply the result for s = 3 simultaneously to (Sgl) restrictions of Go,
Gz, and Hto ViUV,UV;, 1 <i<j<s.

Now we show that |X| < 2c3/"®m. Suppose in contrary that |X| > 25§/16m. We
write W, = W,FUW_~, where W (W, respectively) is the set of all vertices w € W,
for which the first (respectively second) part of inequality (4.1) is not satisfied. We
also define X* (respectively X~) to be the set of all vertices x € X for which

(Wit > e/'m (respectively [W; | > &/*'m). Clearly X = X+ U X~ and, thus,

either | X ™| or | X | is at least 55/16771. Assume that | X | > 5§/16m (we can repeat
the same for X 7).

Let # € X™. Then, for every w € W, there exist (2, 1)-cylinders B = Y;* U Z¥,
where Y} is a subset of Gz(x,w) NV, and Z C Gz(x,w) NV, j € [r], such that

/

G[Gs (e, w)] N | Ka(BY)

j=1

> 3/ *1Ga[Ga(, w)]], (5.41)

but

/

Ga|Gs(z, w)] N U ICQ(B;.“)‘ . (5.42)

/

Gi(a,w) N | Ka(BY)
j=1

> (jgdg + 5;)/64)

Recall that G4(z,w) = G3[Gs(x,w)] N H(x,w). Notice that due to assumptions (ii)-
(iv), 60 K dy, 3 K ds and &, < 3, we have

w ~ 2 ~
GolGa(, w)]| > (@ —2"?) ((1 - 5;/8)2 dgdgm) > (1/2)d3dim®  (5.43)
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and
~ 2 ~,
1GalGs () N Galw)]| < (d2+51/2> ((1+ ;/2) dgdgm) < 2d3dm?.
Subsequently;,

e3/ % 1Ga[Gs (, w)]| > e3/**(1/2)d3dim?
> 21/ 2d5d2m? > 2¢/%(Ga[Ga(x) N Go(w)]].

We combine the above inequality with (5.41) and obtain

%muwﬂU&BW>%“%wmm%wm

7j=1

Since BY C Gz(x,w) C G3(x) NGa(w) for every w € W, and j € [s]\ {1}, we have
Ga[Gs (2, w)] N K2(BY) = Ga[Gs(x) N Ga(w)] N U KCo(B (5.44)
j=1
In a view of (5.44), (gg[g3<x) N Gao(w)] MU, Ka(BY)| > 265/ %1GolGs(x) N Go(w)]],
therefore, we can apply the (2652, dsyds, r')-regularity of Gs[G3(2)] N H(z) (c.f. (ii))
and (5.44) to conclude that

7J

<d3d3 _ 251/32> Ga[Gs(z, w)] N U ICQ(B}”)|
< |G3[Gs(x) N Ga(w ﬂU’C2 |

<d3d3 + 261/32)

GolGs(z, w)] N U /Cz(B?)‘ (5.45)

For every vertex x € X, we define (3,2)-cylinders Qf,...,Qy by Qf = Q;?i U
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Q;’.”Q U Q;’%, where

Q" = Gylda(a)] N H(a),

QG = U {wz: z € Z}'}, and (5.46)
wEW,

Qs = U {wy: y € Y}"}.
weWy

Observe that the union | J!_, U;;l K3(Q5*) can be written in the following way

U ks = U (Qs[gs(wu)] NH(z,) N | ICQ(B;.”)> . (5.47)

wEWy,, j=1

Moreover, since By C Gz(wy,w) C Gz(xy) N Ga(w) C Gs(wy) for every w € W,, and

J € [s]\ {1}, we also have

U /C3(Q;:u) = U (g3[g3(xu) N Go(w)] NH(zy) N U ICQ(B;«,U)>

et o (5.48)
= U (g3[g3(xu,w)] NH(z,) N | /@(B;U)) .
weWy,, j=1
We show that we can choose t = 5§/8d2_2 vertices x1,...,x; € X so that the

union Ui:l U;lzl K3(Qj*) is sufficiently large to apply the (g3, ds, r)-regularity of H
with respect to Go. This will be, however, in a contradiction with with the assump-
tion (5.42).

First, we need a lower bound on the size of U;l:l K3(Q7) for an arbitrary vertex

x € X. In a view of (5.48), we have

-3

L Ks(Q))
j=1

Gs[Gs(x) N Ga(w)] NH(z) N U ’Cz(B}")|

(5.49)
(5.45

5 (ddy - 2:4)

wEWw

Ga|Gs(z, w)| N U /CZ(B;‘U)‘ .

j=1
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We recall that |Gs[Ga(z,w)]| > (1/2)d3dim? (c.f. 5.43). Then we use assumption
(5.41) and get
(Q3) w%xme&

>3 (dgdg—zgg )

’wEWz

(5.41 (5.50)

o (dgcig - 25;/32) x e/ (1/2)d3dim?

> (1/4)es ¥ dsd3d3m?

Second, we also need an upper bound on the size of U;/:l Ks(Q7) N U:;l IC3(QF)
for a good pair {z,2’}. We can repeat the argument from Claim 5.11 with |[W,| =

1/16

8§/64m (rather than e

m, c.f. (5.37)) and conclude that for every pair of good

vertices {z,z'} C X we have
U K3(Q%) N U/c3 (QF)| < dey/*dim? (5.51)

Now we define an auxiliary graph I' = (V| E'), where a pair of vertices {2, 2"} is

an edge whenever it is not a good pair. It follows from Observations 3.8 and 3.12 that

the size of E is bounded by 3452 “m? . Using the Picking Lemma with o; = 3451/ 4,
c = 5;/16, and t = 51/8d 2 we choose t vertices zq,...,2; € X so that all pairs

{y, z,} are good.

Note that condition (2.8) is satisfied, because

2 x 34el/t x 2 1
°2 < 68ey%dy% < =
< 1/16> 2

€9

Then, we can estimate ’UZZI U;;l ng(Q]%)

using Observation 4.5 in the following

way:

(Q7")

2

1<u<v<t

U&Q%OU&Q“

=1

JUKs(Q)

u=1j=1

t
S
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This can be further simplified with the use of (5.50), (5.51), t = 51/8d ?, and g3 < d3,

g3 K Jg.
,r/

UUK(e)

u=1j=1

- t
>t x (1/4)e P dsd3dim® — (2) x dey/*dim?

> 2e3dam® > &3|K3(Gs)|.

The last part of this inequality follows from Corollary 3.6. Applying the (e3,ds,7)-
regularity of H with respect to Go (note that t x ' < r) yields

t
|Hm U UK < @+ 20| Urser)

u=1j=1 u=1j=1

d3—|—€3

Using the first part (equality) of (5.49) and inequality (5.45), we conclude that

t r!
U UIC3 (Q0)| < (ds+23) Y || Ks(Q2)

u=1j=1 u=1 [j=1

-49) (d3+83)z Z

u=1 weWy,,

d3+€3

Gs[Gs () N Go(w)] NH () N | Ka(BY)

=1

(5.45)

t
< (ds+e3) <d3d3 + 261/32) Z Z

u=1 weWy,,

QMMWMHU&@)

Combining the previous two inequalities, we obtain:

o (ki< (@047 5 5

u=1j=1 u=1 weWy,,

g2[g3(xuyw)] N U IC2(Bj )

On the other hand, we use assumption (5.42) and obtain the following lower bound

on ‘H nU.L_, Ug/:l K3(Q7")| (recall that Gs(z., w) = G3[G3(w, w)] N H(wy, w)):

|H“UUK3<Q§“> Yy

u=1 j=1 u=1 weWs,,

t
5.42 ~
022 <d3d2+g§/64) >

u=1 wEqu

Gy(uw) N | J Ka(BY)
j=1

GolGs(au,w)] 1 | Ka(8)
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Comparing the last two inequalities yields cigdg + 36%/ 2 J3d§ + 6;1»)/ o

/32

, which is
m is incorrect. Since this

was a consequence of | X| > 25;/32777,, we must have | X| < 25;/32m. a

a contradiction. Thus, our assumption that [ X*| > &}

Now we are ready to prove Claim 5.14.

Proof of Claim 5.14. Set r' = r/ (5§/2d2_3> <5§/16d2_3) and let {z,2'} be a pair of

vertices such that
(i) {x,2'} is a good pair,

(ii) the restriction of H to Ga[Ga(z,2’)] is (25é/16,d3,r’)-regular with respect to
Go|Ga(, 2')],

2 2
(iii) <1 — 8;1))/8) dzdzm < degg, ;(x,1') < (1 + €§/8> d3d2m for every j € [s] \ {1},
Go[Gs(x, 2] is (g%, dy)-regular, and

(iv) Gs[Gs(z,2")] N H(x,2') is (8;,/64, dsd?,1")-regular with respect to Gy[Gs(z, ).

It follows from Fact 5.16 that all but at most 58;‘/ *m?2 pairs {x, 2’} satisfy (i) and (ii)
(note that " < r/ (5§/2d2_3> (25:15/8d2_3)).

/%m2 good pairs {z,2'}

Furthermore, Fact 5.18 impies that all but at most 95;)
satisfy (iii) and (iv) (note that in this case " < r/ <8§/2d52) (5§/16d2’2)).

We define two (3, 2)-cylinders G}, G} by G| = Go[Gs(x, 2')] and G = G3[Gs(x, 2')|N
H(z, ).

Then, G and G}, satisfy the assumptions of the 2-graphs Lemma. More precisely,
setting ) = e3/%, &), = ex/® d| = dy, d) = dsd2, and <1 — 5§/8>2d%cgm <m <
<1 —i—eé/S)Qd%cng, we have that G| is (¢}, d})-regular and G} is (e}, d}, r’)-regular
with respect to G; (c.f. (iii) and (iv)).

We apply the 2-graphs Lemma and obtain the following

[KCs(Ga[Gs (. 2)] N H ()] = [Ka(G8)] > (1= 8(e5)%)" (dyy)* (m0))?
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Then we use the definitions of £}, €}, and m’ and assumption e; < €3 < d3 < 1 to

obtain
3

2 2
Ka(GalGate ] o) = (1= ) bt ( (1 i) aim
R
> S
In a similar fashion we get
/ / 5 9 79 46,3
|Cs5(Gs]Gs(x, 2")| N H(z,2"))| < Zd2d3d3m : (5.52)
Since the pair {z,2'} is good (c.f. (i)), the (3,2)-cylinder Gy[Ga(x,2’)] is (5§/2,d2)—
regular. It follows from Corollary 3.6 that
/ 3 1/2\% 3 9,.,3
Ko(GalGalr, )] < (5/4)d3 (o + ey m® < 2d3m”
Since 2e5/'% x 2dm3 < (3/4)d3d3dS because of £3 < ds and £5 < d, we obtain
[KCs(Ga[Gs (v, 2)) N M, ")) | > 225K (GalGal, )]

We apply the (25:1,)/16, ds, r")-regularity of H[Gs(z, 2')] with respect to Go[Ga(x, 2')] and
obtain

[0 Ka(GalGa(r, )] N M, a'))| < (ds + 25" ) 1Kl Gala(a )] N H (. 2")]

(5.52) 5 . 3 .
< (d3 + 26l 16) —dydidim® < Sdjdsdim’.

This is, however, what we wanted to prove. O

5.7 Additional claims

The motivation for this subsection is twofold. First, we need to define the notion of
a nice neighbor and prove that almost all neighbors of a nice vertex are nice. Second,

in the proof of Proposition 2.6, we will need an upper bound on the number of copies
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of K3 in the joint neigborhood of two nice neighbors. We will provide this estimate
at the end of this section. We start with the definition of a nice neighbor.

Suppose that G and H are as in Setup B, i.e. G = (V, E(G)) is an (&9, dy)-regular
(s,2)-cylinder and ‘H = (V, E(H)) an (s, 3)-cylinder which is (e3, ds, r)-regular with
respect to G.

Definition 5.19 (nice neighbor). Let x € Vi be a nice vertex and set r' =

r/ < V2 > <2€§/8d2 ) A good neighbor y € Ny(%)g00a is called nice if
(i) <1 - 251/8> dzdzm < degyy ;(y) < (1 + 251/8> didsm for every j = 3,...,s;

(i) G[H(z)(y)] is ()%, dy)-regular, and the (s — 2,2)-cylinder H(z,y)[H(z)(y)] is
(2E§/32, d3,r'")-regular with respect to G[H(z)(y)]; and

(iii) the restriction H[G(x,y)] is (45;)/16, ds, r'")-regular with respect to G|G(z,y)].

We denote by No(2)nice the set of all nice neighbors in Ny(z) = G(z).

Remark. Recall that H(x,y) = H(z) N H(y) stands for the joint link of z and y,
whereas H(x)(y) is the neighborhood of y in the graph H(z).

The following observation shows that almost all good neighbors are nice.

Observation 5.20. All but 4(552) 1/32 dom good neighbors in Na(x)gooa are mice

netghbors, i.e.

5—2
’NQ(x)nice’ > |N2($)g00d’ — 4( 5 ) 1/32d m.

Proof. Let © € Vi be a nice vertex (c.f. Definition 5.3), that is a good vertex

satisfying:
(i) H(z) is (2¢}/*, ds, r)-regular with respect to G[G(z)], and

(il) H is (253 ds,r/ ( 3))—regular with respect to G[G(x)].
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Since every nice vertex is also good, we have (c.f. Definition 3.7):
(iii) G[G(x)] is (55/2,d2)—regular, and
(iv) (da —e2)m < deg;(z) < (d2 + £2)m holds for every j € [s] \ {1}.

Set Gy = G[G ()], G5 = H(x), H' = H[G(2)], &) = &, dy = da, & = 225/", d =
dy=ds, 8 =s—1,7" =71/ (g§/2d2—3> (25;/%;2), and (dy —£2)m < m' < (do+22)m.

Then, G} is an (s, 2)-cylinder, G} is an (s, 2)-cylinder, and H' is an (', 3)-cylinder.
Moreover, G, G5, and ‘H' satisfy the Setup C. More precisely,

o Gl is (e}, dy)-regular (c.f. (iii)),
o Ghis (e, dy, 7/ <5§/2d2_3))—regular with respect to G} (c.f. (1)), and
o H'is (g}, ds, 1/ <5§/2d2_3>)—regular with respect to G} (c.f. (ii)).
We apply Claim 5.7 and obtain that for all but at most
2(5 1) (e ) )+ ) )
vertices y € Na(&)gooa the following is true:
(a) (1— (5@))1/2)2 dydym’ < degg, ;(y) < (1 + (5&)1/2)2 dydym/ for j =3,...,s:

(b) GhIGL(y)] is ((€5)'/?, d})-regular and the (s — 2,2)-cylinder G4[G5(y)] NH' (y) is
((5)"/8, diydy, ")-regular with respect to G4[G4(y)], where .

We use the assumption €5 < €3 and the definitions of &), 5, m/, G}, G}, and 'H’

to conclude that
e G]G3(y)] = G[H(z)(y)],

* G3(G5(y)] N H(y) = H(z, y)[H(z)(y)],
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2(5’2_1) <4( VM2 4 4(e)Y2 + ()18 + (€g>1/8) m' < 3(552) 1/32d2m

<1 — 2 1/8> dzdsm < degy, ;(y) < <1+2 1/8> dsdsm for j € [s] \ {1,2}
(c.f. (a)),

o G[H(x)(y)] is (e, dp)-regular (cf. (b)),
o H(z,y)[H(z)(y)] is (2e5/*%, d2, ')-regular with respect to G[H(z)(y)] (c.f. (b)).

Therefore, all but 4(*,7)es 32 dym vertices y € Ny(x)gooa satisty (i) and (ii) in Defini-
tion 5.19.

It remains to show that almost all neighbors y satisfy (iii). We apply Corollary 5.5
and obtain that for all but at most 2(*;%)(5)/1m’ vertices y € No(2)gooa, the
(5—2,3)-cylinder H'[Gh(y)] is (2(5)'/4, dj, r')-regular with respect to G5[G5(y)]. Since

* G3[G5(y)] = GlG(z,y)],

o 2y < 4",

o H'[G5(y)] = H[G(x,y)], and

o 2(7)(e5) /o < 3(2)< P,

we conclude that all but at most 3( ) 1/32

in Definition 5.19.

dom vertices y € Ny(2)g00a satisfy (iii)

Hence, all but at most 3( ) 1/32d2m+3( ) 1/32dgm < 4(5 2) 1/32d2m vertices

Y € No()gooa are nice. O

We will prove now that for every nice vertex x we have control over the number
of copies of K3 in the joint neighborhood H(x)(y,y’) for almost all pairs of vertices
{y,v'} C Na(x). Recall that H(x)(y,y’) stands for the joint neighborhood of {y,y'}
in H(x).
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Claim 5.21. Suppose that s = 5. Then for every nice vertex x € Viyice, the following

is true: all but at most 20ey/** @2

m? pairs {y,y'} C Nao(x) satisfy
[H O Ks(H(x,y, v ) [H () (y, y)])] < 2d3ds"m?.

Proof. Let x € Vi be a nice vertex (c.f. Definition 5.3), that is a good vertex for

which we have
(i) the link H(z) is (25;,/2, ds, r)-regular with respect to Gy[Ga(x)].
(il) H[Ga(z)] is (2€é/4, ds,r/ (eé/zdf))—regular with respect to Go[Ga(x)],
Also remind that the goodness of x implies
(iii) (d2 —e2)m < deg;(x) < (dg +e9)m for j =2,...,5,
(iv) the (4,2)-cylinder Go[Ga(z)] is (5§/2,d2)—regular.

We apply Claim 5.14 with G} = G[Ga(x)], G5 = H(x), and H' = H[Ga(x)].

Observe that if we set ), = 5§/2, gh = 2{-:;/4, (dy — eg)m < m' < (dy + e9)m,

dy = dy = ds, and 7' = r/ (5§/2d2_3>, then (i)-(iv) verify conditions of the Setup C.

More precisely,
e (iv) verifies that G} is (e}, d})-regular,
e (i) verifies that Gj is (£}, dy, r')-regular with respect to G}, and
e (ii) verifies that H' is (e}, ds, 7')-regular with respect to Gj.
By Claim 5.14, all but 10(¢5)'/64(m")? pairs {y,y'} C No(z) satisfy

MOV (H (4, 9)1G5 (v, v < 5 (o) (dy)° ()" (),

NN GV]

This concludes the proof because



o H'NIK3(H' (y, ¥)[G:(y, y)]) = HNKs(H(z,y,y)[H(z)(y, ),
o 10(c})/%*(m’)? < 2025/ 2m?, and
o (3/2)(dy)*(ds)°(ds)"(m/)? < 2d5*dim?.

Here we used the definitions of &), £}, m/, and e < ds.
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Chapter 6

Properties of 4-cylinders

This section has two parts. In the first part, we derive the two basics properties
of the links of an (s,4)-cylinder F: the regularity of the link F(x) and the regu-
larity of F(x,y), where y is a neighbor of x. The second part provides a proof of
Proposition 2.6.

6.1 Regularity of the links of 4-cylinders

In this section, we investigate link properties of a regular (s,4)-cylinder F. First,

we describe our situation.

Setup D. Let 0 < 69 € dy < 1,0 < 3 < d3 <1, and 0 < g4 < dg <1 be
real numbers so that e9 K €3 K e4. Let V = Vi U ... UV, be a partition, where
Vil = ... = |Vs| =m, G = (V,E(G)) be an (s,2)-cylinder that is (9, ds)-reqular,
H = (V,E(H)) be an (s, 3)-cylinder which is (g3, ds, r)-regular with respect to G, and

let F be a (s,4)-cylinder which is (4, dy, r)-reqular with respect to H.

The following claim shows that the link F(z) “inherits” regularity from F. It

can be viewed as an analogy to Claim 5.1.

99
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Claim 6.1. The (s — 1, 3)-cylinder F(x) is (2€i/2, dy, r)-regular with respect to H N
Ks(H(z)) for all but at most 4(5;)6}1/2771 vertices © € Viice.

Proof. We may assume s = 4 because we can apply this result simultaneously to
subcylinders of G, H, and F induced on VUV, UV; UV, 1 <i<j <k <s.

Let = be a nice vertex. By Definition 5.3 we know that x satisfies:
(i) the link H(x) is (25:1,)/2, ds, r)-regular with respect to G[G(x)],
(il) H[G(x)] is (26;,/4, ds,r/ (5§/2d2’3))—regular with respect to G[G(x)].
Moreover, since  must be also a good vertex, we have (c.f. Definition 3.7):
(iii) (d2 —e2)m < deg;(x) < (d2 + g2)m for j = 2,3,4,
(iv) the (3,2)-cylinder G[G(x)] is (55/2, dy)-regular.
We apply the 2-graphs Lemma (Lemma 4.11) with
e (3,2)-cylinder G; played by G[G(x)] which is (e4/?, do)-regular (c.f. (iv));

e (3,2)-cylinder G, played by H(x) which is (2e5'%, ds, r)-regular with respect to
glg(x)] (et (1);

e V; replaced by G(z) NV, for i = 2,3, 4;
and obtain
12\ 1/64 2 5 3 5
(1 -8 (21?) > B3 x ((dy — ) m)* < |Ks(H(2))|
1/2) /64 ? 3
< <1+8 (253 ) ) dsdd x ((dy + £2) m)”.
This can be further simplified using €5 < dy and €3 < d3 to

3 5
S < Ky (H(w))| < S d3dim (6.1)
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It follows from Fact 3.6 applied with s = 3 and €3 < d3 that 25§/4|IC3(Q[Q($)])| <
268t % (5/4)d3(dy + £5)°m3 < (3/4)dSd3m3. Hence we have

[Ks(H(x))] > 2¢5"|K3(G1G ()]
Applying the (25%/ d, r/ (5;)/ 2d2_ 3))—regularity of H with respect to G[G(z)] yields
(ds - 25:13/4> IKs(H(z))| < [THNK3(H(z))| < (d3 + 2€é/4> [KCs(H(2))]-

We combine this inequality with (6.1) to conclude that for every nice vertex x we
have

1

§dgd§m3 < [HNK3(H(x))| < 2d3dsm?®. (6.2)

2 : .
/?m nice vertices 1, ...,T € Viice such that for

Suppose that one can find t = 25111
every u € [t] the link F(z,) is (25, dy, r)-irregular with respect to H N Ks(H(zy)).
Moreover, assume that for every x,, the second part of inequality (4.1) does not hold,

that is there exist (3,2)-cylinders B, C H(z,), j € [r], such that

‘H N IC3(H(2,)) N U Ks(Bju)| > 2¢y*H N Ks(H ()], (6.3)
but
']—"(xu) N U Ks(Bj.)| > <d4 + 25/2) H O Ka(H () N U K(B)|. (6.4)

For every j € [r] define a (4,3)-cylinder Q; = Q;; UQ;5 U Q;3U Q3 by

Qi = Hi,
t
Qjé = U{xuyZ: Yz € Bju N K(V’i,‘/;o}’
u=1
t
Qs = U{xuyz: yz € Bj, N K(Va, Vi) },
u=1

t
Qi = U{xuyzz yz € B, N K(Va, Vs)}.

u=1
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We will show using (44, dy, 7)-regularity of F that |F N _, Ka(Qu)| < (ds +
€4) Zj-:l |H N U,_, K5(Bj,)| and then we use assumption (6.4) to show a contradic-
tion.

Observe that since Bj, C H(x,) for every j € [r], we have

t

2.

u=1

t

-3

u=1

N U Ks(Ba)| . (6.5)

j=1

H N Ks(H(z,)) N U KC3(Bju)

We estimate the size of (J;_, K4(Q;) as follows:

5

t

(6:5) Z

HN U KC3(Bju)

U K4(Qy)

HNKs(H(z,)) N O Ks(Bju)

u=1 7j=1 u=1
(6.3) (6.2) 1
> > 2e IH N Ks(H(z,))| > ¢ x 2/ x Sdsdm’
u=1

> 2eqdsdsm® > 4| KCa(H)|.

The last inequality follows from the Theorem 1.13: G is a (09, dy)-regular (4,2)-
cylinder, H is a (4,2)-cylinder that is (03, ds, r)-regular with respect to G, and we
can choose g9 and e3 so that the assumptions of Theorem 1.13 are satisfied. Thus,
g1 |Ka(H)| < es(1 £ v)dSdim?* < 2e4dSdim?.

Subsequently, the (g4, dy, r)-regularity of F with respect to H implies that

< (dg -+ 84)

'fﬂ U K4(Qy)

U Ki(Q;)

t

= (dg +€4) Z

j=1

) (6.6)
H | Ks(B)| -

u=1

On the other hand, every z, is contained in ‘.7: (za) NUj—; K3(Bju) | triples (this
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follows from the definition of @);). We use (6.4) to conclude that

‘J—"ﬂ U Ks(Qu)| =D [Fa) N[ Ks(@Qju)
u=1 u=1 j=1
(6)((14—0—281/2)2 HNICs(H UKS ju)| - (6.7)
u=1

Comparing (6.7) with (6.6) we get a contradiction. Thus, there are at most 25i/2m

vertices satisfying (6.3) and (6.4).
The case when the second part of inequality (4.1) is not true, i.e. (6.4) is replaced
by | F(x;) Uy Ks(@)| < <d4 9l 2) ’U§:1 K3(Q,.)] , is handled similarly. O

The next claims shows that majority of nice vertices in V.. have the property

that the link F(z,y) is regular for almost all nice neighbors y of x.

Claim 6.2. For all but at most 2(552) 5i/4m nice vertices x € Vi the following state-
ment s true.

There are at most 2(852)531/4d2m nice neighbors y € Ny(x) for which the link
Flx,y) is not (e3/*, dy, r)-reqular with respect to H(z, y)[H(z)(y)).

It is sufficient to consider the case s = 4 only because we can treat the case s > 4
by applying the result for s = 4 to (552) sets of cylinders induced on V; UVo UV, UV,

2<i1<j3<s.

Proof. Set ' =r/ < V2 ) <2€§/8d2’3> and let x be arbitrary nice vertex and y be

its nice neighbor (c.f. Definition 5.19). Then y satisfies the following conditions:

: 1/8\° 5 1/8\% 5 .
(i) (1—283 ) dydzm < degyy ;(y) < (1—1—253 ) didsm for j = 3,4, and
GIH(x)(y)] is (e3/%, do)-regular,

(i) the link H(z,y)[H(z)(y)] is (2e3/*?, d2,')-regular with respect to G[H(z)(y)].



104

Observe that the (25:1,,/32,dg,r’)—regularity of the link H(z,y)[H(z)(y)] with re-
spect to G[H(z)(y)] is a sufficient condition to apply Observation 4.2. It a view of

(i), this observation implies

1
5adzm® < [H(x,y)[H(x)(y)]| < 2d5dzm”. (6.8)

4 . .
" nice vertices Z1,..., % € Viice S0 that for every

Suppose there exist t; = 5}1
Ty, U € [t1], there are at least ty = 5}1/4d2m nice neighbors Y1y, . -+, Ytou € Na(Zy)nice
for which the link F(zy,ypu), v € [ta], is not (8}1/4,d4,r)—regular with respect to
H(@as Yo PP (o))

We further assume that the second part of inequality (4.1) is not satisfied, that
is for every x, and y,, there exist (2,1)-cylinders By, = Yjou U Wiy, j € [r], where

Yiou C H(2u)(You) N Vs and Wiy, C H(zy)(You) N Vi, such that

‘H(%, Yo [H () (o)) 0 Ko (Bon)| = &3 [H (s o) M) ()], (6.9)

J=1

but

‘f(l’u, yvu> N U ]CQ(iju)
j=1

> (di+ei?) ‘H(xu,vam(xu)(yw)] nUJKa(Bju)|. (6.10)

j=1

For every j € [r] define a (4,3)-cylinder Q; = Q;; UQ;5 U Q;3UQj; by

jS = H;

Qjé = H;
t1  to

Qs = UUwwz: 2 e Wi,
u=1v=1
t1  to

Qj‘l = U U{xuyvuZ: S Yyyu}

u=1v=1
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It follows from the above construction that

Ui = 35|

u=1 v=1
We use this equation together with the assumption (6.9) and estimate (6.8) to con-

U1 Ka(Qj)| > sl Ka(H)|. Indeed,

{L"u, yvu xu)(yvu)] N U ’C2(iju) : (6'11)

j=1

clude that

SCu, yvu xu)(?Jvu)] N U K2<iju>

33|

u=1 v=1 7j=1
t1 to 4
1
ZZE (@, You) [H(@0) Yo
u=1 v=1
(6.8) 1 1
>ty Xty x eyt x S dadsm® = eV dSdim® > 2e,dSdim?.

2

Since G is a (e, ds)-regular (4,2)-cylinder, H is a (4, 3)-cylinder that is (e3,ds, )-
regular with respect to G, and we can choose €5 and e3 so that the assumptions of
Theorem 1.13 are satisfied, we conclude that |IC4(H)| < 2dSdim?

Hence, 4 |IC4(H)| < e42dSdsm* < ‘ngl Ka(Qj)],
regularity of F with respect to H. Then,

and we can apply the (g4, dg, 7)-

‘fﬁ UKu@)| < (da+ea) (| J Ka(@))
=1 =
d4 + €4 Z Z xua yvu xu)(yvu)] N U ICQ(BJ'UU) : (612)
u=1 v=1 j=1
On the other hand, assumption (6.10) yields
r t1 to T
‘.,F N U ]C4(Q] Z Z sz yvu) n U ’CQ(BJUU)
7j=1 u=1 v=1 7j=1
(6 t1 t2 T
S (- 4Y) 323 [ H s o) M) )] 0 | KB (613)
u=1 v=1 7j=1
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Comparing inequalities (6.12) and (6.13) we get a contradiction. Hence ¢; < 5}1/ “m.
If we assume, that the first part of inequality (4.1) is not satisfied, we obtain contra-

/4 . .
m nice vertices

diction in exactly the same way. Thus, there for all but at most 25111
T € Viice there are at most 251 *dym nice neighbors y € No(Z)nice such that the link
Flz,y) is not (5, dy, r)-regular with respect to H(z,y)[H(z)(y)].

O

Definition 6.3 (fine vertex). A nice vertex x € V; is called fine if it satisfies the

following conditions:
(i) Flz) is (2}, dy, r)-regular with respect to H N K3([H(z)]), and

(ii) F(x,y) is not (5i/4, dy, r)-regular with respect to H(x,y)[H(x)(y)]) for at most

2(552)€i/4d2m nice neighbors y € No(Z)pice-

We denote by Vine the set of all nice vertices in V.

Definition 6.4 (fine neighbor). Let x € V] be a fine vertex. A nice neighbor
y € Ny(x) is called fine if the link F(x,y) is (5i/4,d4,r)—regu1ar with respect to
H(z,y)[H(z)(y)]. We denote by No(z)ane the set of all fine neighbors in Ny(x).

Observe that Vine C Viice C Vaood C Vi and Na(2)gine C Na(2)nice C No()gooda C
Ny(z) for every (fine) vertex x € Vi. Moreover, the following two observations are
an easy consequence of Claims 6.2 and 6.1.

Observation 6.5. All but at most 4(551)6}1/2771 +2(°37) 6}1/4m nice vertices are fine,

that is
-1 -2
|Viine| = [Vaice| — 4(8 3 >€411/2m - 2(8 5 )5}1/4171.

Observation 6.6. Let x be a fine vertex. Then all but at most 2(852)€i/4d2m nice

neighbors in Na(x)nice are fine, that is

5—2
|N2(‘T)ﬁne| > |N2(x)nice| - 2( 9 )6411/4d2m.
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6.2 Proof of Proposition 2.6

We structure the proof into five parts.
Part A In this part we show that

(a) [ICs(HW(z,y))| = (1 £v/6)dydidin® for every x € Vine and i € No(2)gine,
and

(b) (1/2)dydin® < |Ks(H®)(z,y))| < 2dydin® for every x € Vipe and y €
N2(x)nice'

Part B Here we prove that

(a) [HO) N ICs(HW(z,y))| = (1 £ v/5)dydi’din® for every x € Viye and y €
N5 () gine, and

(B) |H® N K3(H® (2,9))] < 3d3dion? for every & € Vine and y € No()pice-

Part C We show that if W is a subset of Ny(z)gpne such that |W] > 25i/4d2m. Then,
there exist t = 5i/4/(d§d§) fine neighbors yi, ...,y € No(2)sne such that

n t
HO(@) 0 | Ks(H (x’yu))‘ = <d4 ~ 25{2) ‘H(S) N Ks(HD (2, p.))] -
u=1 u=1

5 5
Part D The lower bound [ICu(H™ (z))] > (1 — V/2)djd?(,3)d§2)n4 is proved here for

every fine vertex r € Vjpe.

Part E We show the upper bound |K4(H® (2))] < (1 + 1//2)did§§)d§§)n4 for every

fine vertex x € Vipne.

Since the lower and upper bounds are valid for fine vertices, it remains to show how

vertices are not fine.
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It follows from Observation 6.5 that all but at most 8(5i/ *m nice vertices are fine.
Moreover, Observation 5.4 gives that all but at most 2055/ ’m good vertices are nice.
Finally, from Observation 3.8 we have that all but at most 48(5;/ “m vertices are good.
Altogether we obtain that all but at most 10§i/ “m vertices x € V; are fine.

Now we show Parts A-E.

Part A(a). Fix a fine vertex x € Vi, and its arbitrary fine neighbor y € No()gine
and set ' = r/ ((531,/ dy 3) (2(5;/ *dy 3). Then y satisfies the following condition
(c.f. Definition 6.4)

(i) the link H®(z,y) is (6;/*, dy, r)-regular with respect to H® (z, y)[H® (z)(y)].
Since y is also a nice neigbor of z, it satisfies (c.f. Definition 5.19)

. 5178\ o ' 1/8\% - .

(i) (1 —2d5 dydzn < degye) () ;(y) < (14 205 dsdsn for every j = 3,4, 5;

() HO[HO(2)(y)] is (51", do)-rogular, HO (e, ) [HO (2)(y)] is (265, i, ") -rex
ular with respect to H®[H®) (z)(y)], and

(iv) HO[H® (z,y)] is (4651, ds, 1')-regular with respect to HA[H® (z,y)].
Moreover, y is also a good neigbor of z, thus we have
(v) the link HO[H® (z,y)] is (65, dy)-regular, and
. 1/2\? 1/2\? .
(vi) <d2 — 0, ) m < deg;(v,y) < (dg + 0, ) m holds for 7 = 3,4, 5.
Then we set
o Gi = HOMHO@)(y)], & = 8", d; = do,
o Gy =HO(x,y)HO(@)(y)], & = 26/, dy = &3,

o Gy =HW(z,y), ey = 8,/", dy = dy, and
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o V/ =Vi NHO(2)(y), i =1,2,3.
Observe that G|, G}, and G} are (3, 2)-cylinders which satisfy Setup A. Indeed,

e G is (&), d))-regular (c.f. (v)),

e G is (&), dy, r')-regular with respect to Gy (c.f. (iii)),

o G is (&, dy, r')-regular with respect to G} (c.f. (i)),

. (1 - 25;/8)2 dEdsn < m' < (1 + 255“)2 Edsn (c.f. (i),

o & K d, e, < dy, e < dj, and €] K el
Thus, we can apply the 3-graphs Lemma and obtain that

(1= 12(5) V%) (s dhely)P (') < [Ka(Gh)] < (1 +12(e5)V%)° (dydyely)? ('),
We use the definition of d}, dj, d}, €5, m’, and G} to conclude that

(1 —126°)" dgaa (1 - 203 dStin® < JCs(HO ()

< (1 + 126 256>3 S (1 + 255/8)6 dSd3n®  (6.14)

Since by (2.2) 03 < d4 < v, we can conclude that

(1 - v/6)dyd3din’® < [Ks(H™(2,y))| < (1 + v/6)dyd5din®.

Part A (b). Fix a fine vertex « € Vi, and its arbitrary nice neighbor y € No(2)nice-
Then y satisfies conditions (ii)-(vi) (c.f. Part A(a)). We set

o G, = HOH® () (y)), &) = 6", d; = do,

o Gy =MD (@, y) O @)(y)], & =265, dy = &3
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In the same was as in Part A(a) we can observe that G| and G} are (3, 2)-cylinders

which satisfy Setup A. We apply the 2-graphs Lemma and obtain that
3 3
(1= 8(ep)*) " (dyde)>(m')*. < [KCs(Gs)| < (1+8(ep)/*)” (dydy)* ().
We use the definition of d}, d,, €,, m/, and G/ to conclude that
1/2048\ % 13 16 1/8\% 6 3 3 (3) (3)
(11005 i (1 - 20" ) " ddin® < |a(H () [HO) (@) ()|
3 6
< (1 + 105;/2048) Bl (1 + 25;,/8) dSdn’
Since 03 < 4 < v, we can conclude that
1
S’ < Ks(HO (o, ) [HO () (0)])| < 28300’

Part B(a). For the proof of this part, we use the estimate from Part A(a) and the
(465" ds, 7")-regularity of H®[H® (z,y)] with respect to H@[H® (z,)].

Set ' =1/ <531,/2d2’3) (5§/8d;3) and fix a fine vertex z € Vh,e and its arbitrary
fine neighbor y € No(z)ane. Recall that y satisfies conditions (i)-(vi) (c.f. Part A(a)).
It follows from part A(a) that

(1 —v/6)dydydin® < |Ks(HW (x,y))| < (1 + v/6)dyd3don. (6.15)

Since y satisfies (v) and (vi), we know that H®[H® (z,y)] is (632, dy)-regular
and (d2 — 5%/2)271 < deg;(z,y) < (dg +5;/2>2n holds for j = 3,4,5. We apply
Corollary 3.6 and obtain [Ks(H@ [H® (2, y)])| < (5/4)d3 (d2 + 6V 2)6 n® < (3/2)d3n’
(we used 0y < d).

Furthermore, since 0y < 03 < d3 < v, we have

3 .
403 (MO H (2, y)))| < 465" x Sdin® < (1 v/G)d3didin® < |Ks(HY (2.y))].
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Then we apply the (462", ds,r')-regularity of H®[H® (z,y)] with respect to
HO[HP (z,y)], and obtain
(ds = 483" ) 1Ks (M (@, )| < [P 0 Ks(HD ()]
< (do +465") [Ka(H O (2, 9)]. - (6.16)
We combine (6.15), (6.16), and assumption 03 < d3 < v to get
(1 —v/5)dydid3n® < |H® N Ks(HW (2, )| < (14 v/5)d3d din?. (6.17)

Part B(b). Now y is a nice neighbor of a fine vertex x, that is, a vertex satisfying

(ii)-(vi). Then, from Part A(b), we have
LB < G (HO () ) ()] < 23n’. (6.15)
Similarly to Part B(a), since s < d3 < d3 < v, we have
03 Y (O 0, )| < 403 x S
< S < (1O (2,9) KO (2) ().
Then we apply the (463/'®, ds, r')-regularity of H®[H® (z,y)] with respect to

HO[HP (z,y)], and obtain

[H® N Ks(H (2, ) [HP () ()]

(

< (ds + 46115 (H® (3) 628) d2d10,,3
< (ds + 405" ) K5 (H™ (2, y) [ () ()] < 3dydg™n”.

Part C. Let z € Vi, be a fine vertex and W is a subset of No(x)gne such that
\W| > 26, dym.
We define two graphs P; and Ps, both with vertex set No(x) and edge sets defined
by:
E(P) = {yy': IKs(HPH (y,)])] > 2dy°n°}
EP2) = {yy': [HO N IC(HD (2, y,4) [HD (2)(y, )] > 2d:°d5"n" }
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Now we estimate the sizes of E(P;) and E(P;). Since z is also a good vertex
(recall Vine C Viice C Viooa C Vi), the (4,2)-cylinder H@[H®) (z)] is (8%, dy)-
regular. We apply Observations 3.8 and 3.12 on H®[H®(z)] and obtain that all
but 6665 | No(z)[? pairs {y, '} are good with respect to H®[H®(z)].

Thus (c.f. Definition 3.11), HO[H® (z,y,y)] is (63'*, d3)-regular and

3 3
(dg - 5;/4> n < deg;(z,y,y) < (dg + 5%/4) n

holds for j = 3,4,5. We apply Corollary 3.6 and obtain |Ks(H®[H® (z,)])| <
9
(5/4)d3 <d2 + 5%/4> n3 < 2d*n? (we used dy < dy). Consequently,

|E(P1)| < 665, %| Na(z) 2.

It follows from Claim 5.21 that for all but 2083/ *°d2n? pairs {y,y'} C Na(z) we
have

(H® NI (HS (2, y, ) [HO (2)(y, y)])| < 2d37d35n®.
2 Y3

Therefore,
|E(Py)| < 2085 *d2n? < 2165 %°| Ny (z) .

We apply the Picking Lemma on W with parameters oy = 6655/8, 0y = 216§/256,

t =0 )(d3dS), ¢ = 6;’*, and obtain ¢ nice neighbors yi, ...,y € W such that all
pairs {y;, y;} satisty
s (HP [H®) (2, i, yy)))| < 2d3°n°, (6.19)

and all but (2 X 2 X 215§/256/5i/2> 12 < 612 pairs {vi,y;} satisfy

H® A Ka(HO @,y )HD (@) (o, y)))| < 2400207, (6.20)

This is possible as long as [W| > 264/*dym > ¢ x |Ny(z)| and condition (2.8) is
satisfied, in other words, if
2 % 6603/% x t2

eD}

< (6.21)

1
2
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holds. This is true because

2 X 665;/8 X 12 1326;/8 55/16 5;/16 132 _ (1732 1
= <132 x X <132 x o X 0 < —.
(534)2 d§di? dj " odi ST 2
Here we used assumption (2.2): §y < dy <1, 63 < d3 < 1, and 6y < 0.
Now we estimate the size of H®) N U;Zl Ks(HW (x,y,)). We first apply Observa-
tion 4.5:

t
UHD N Ks(HW (2, y5))

J=1

t
> [HY N Cs(HD (x,y))))|

Jj=1

= > [ HO AR (HD (2, 5:)) N Ks(H (2,5))] -

1<i<j<t

The next step is to estimate both terms on the right-hand side. The first term is
easier to handle. We use (6.17) to conclude that:

t
STIH® A K5 (HD (w,y5))| > ¢ x (1 - v/5)d5di’d3n’. (6.22)
j=1

To get an estimate for the second term, we must observe several facts:
o KCs(HW (2, ;) NIC3(HW (2, 5)) = Ks(H® (2,9, y;)) for every 1 <i < j <t

e Every copy of K3 in H® (z,y;, ;) is a copy of K3 in H® NIC3(H® (2, y;,y;)) as

well. This follows from the fact that H*¥ () C Ky(H® (x)) and HW () € H®.

e Every copy of K3 in H® (x,y;,y,) is also a copy of K3 in HO[H® (z,y;,y;)]).
This follows from the fact that H® c K4(H®) and H®) c KCs(HP).

Since we know that all but at most (531)/512152 pairs {y;, y; } satisfy (6.20), for these pairs

we use the estimate

(6.20)
IHE N s (H D (2, yi,95))| < THE N Ks(HS (2, w5, y))| < 2d3°d3*n®. (6.23)
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Remaining (531,/ *242 pairs {y;,,} satisfy (6.19). For these pairs we use the estimate

(6.19)
[H® A K (HY (@90, 97)| < (PP (@, y))] < 2d°0% (6.24)

Now we combine (6.23) and (6.24) to obtain

t
Z |H(3) N ’Cg(H(4) (J,’, yz) N ICg(H(4) (1’7 y]>>‘ S (2> X 2d§6d%2n3+5§/512t2 % 2d§2n3.
1<i<j<t
We use the assumption 63 < ds and ¢t = 6,"*/(d3d8) to conclude that d3/*"*#2 x

2d3*n? < t* x di%di?n3. Then,

> HO N Ks(HW (2, 0) N Ks(HW (2, y))] < 26%d30dn®. (6.25)
1<i<j<t
Using (6.22), (6.25), and the definition of ¢ (recall t = d;/*/(d3dS)), we obtain that

t
U H® N Ks(HD (@, y))| > t x (1= v/5)d3ds°din® — 22d32dy*n?
j=1
1

> S0y dsdidin® — 251 d3dzn’ (6.26)
(2.2)
> 264 x 2dSdin®.
Since & € Ve is a fine vertex (c.f. Definition 6.3), the link H® (z) is (25i/2, dy, T)-

regular with respect to H® N Ks(H®) (). Moreover, we know from (6.2)

1

§d§d§n3 < | H® N Cs(H®) (2))| < 2dSdan®. (6.27)
We combine (6.26) and (6.27) and obtain

t
UH® N Ea(HO (2, y,))| = 2612 H® 0 KCa(HD (2))].

j=1
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The (25i/2, dy, r)-regularity of H* (z) with respect to H® NC3(H®) ()) yields (note
that we can choose r > t upfront (c.f. (2.2))

(i = 201) @ 1 U Ks(HO ()| <

U xy])

< <d4 n 25i/2> ‘H(?’) N U Ks(H® (2,,))|,

J=1

which is what we wanted to show.

Part D. In Part C, we proved that whenever W is a subset of Ny(x)gne such that
[W| > 251/ dam, we can choose t = 51/4/(d§’d§) nice neighbors y1,...,y; € W such
that

HD (z) N U/C3(H(4)(x,yj))‘ - (d4i25i/2> )N U’C3 (z,5;))], (6.28)

Moreover, yi, ...,y also satisfy (6.22) and (6.25). Using these two equations and
t=6,/*/(d3dS), we obtain

5i/8 Z ‘H(?’) N ICg(H(4)(x,yj))} — Z ‘H(S) N Ks(HW (@, ;) N KCy(HW (x, y;))!

j=1 1<i<j<t

> 618 x t x (1= v/5)d3dd3n® — 202dL8d*n® > 0.

We apply the second part of Observation 4.5:

t t

UHO N (D (@,))| 2 (1= 6°) S HD 0[O ()| (6:29)
j=1 j=1
We combine (6.28), (6.29), and (6.22) and get

‘ )N U/c3 (,1,))] > (d4 —zdi/z) ( 51/8) tx (1 — v/5)dddn?,

(6.30)
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We set W = Ny(x)ane and find vertices yi, ..., y; as described above. Then we
remove i, ...,y from W and iterate the whole process again. We can repeat this

process as long as (c.f. Part C)
W[ > 264 *n. (6.31)

This way we produce a sequence of at least (|N2(x)ﬁne| - 25i/ 4n> /t t-tuples
VO = gy = Lo} v = LY e

Analoguously to (6.30), each iteration produces at least
(d4 - 25i/2> (1 - 5;/8> tx (1 —v/5)d2d0d3n® > (1 — v/4)dddn?

copies of K f’) in H®(z). Each such a copy uses exactly one vertex from Y =

{y?), . ,yt(z)}-

Notice that since x is a fine vertex,

o |No(Z)fine| = | Na(Z)nice| — 66i/4d2n (c.f. Observation 6.6),

o [ No(2)nice| = | No(2)gooa| — 1205 *don (c.f. Observation 5.20),
o | No(2)good| > |No(z)| — 366;/2d2n (c.f. Observation 3.10), and
e |No(z)| > (dy — d9)n (c.f. Definition 3.7).

Consequently, <|N2(:E)ﬁne| - 25i/4n> Jt > (1 - 75i/4> dyon/t. Therefore, the sequence
of t-touples Y produces at least (1 - 75i/4> don/t X (1 — v/4)d5did}tn® copies of
Kf)) in H®(z). Hence
Ca(HD ()] > (1 - 751/4) dont x (1 — v/4)d3d0d tn?
2.2) 5

a2 u2dDdD g

Part E. The upper bound causes some extra difficulties - we must count not only
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the contribution of ¢-tuples of neighbors taken from W,

but also

(i)
(i)

contribution of neighbors left in W, and

neighbors which are not fine.

We will handle each of these categories of vertices separately:

(i)

(iii)

An upper bound on number of copies of K f') produced by taking t-tuples from
W can be obtained in a way similar to the lower bound in Part D: every ¢-tuple
is in at most (d4 + 25i/4) X t(1+v/5)d5di0d3n® copies of Kf’) in H* (x). There
are at most |No(z)gne|/t < |Na(x)|/t < (do2 + d2)n/t such t-tuples, together

producing at most

5

5
(s -+ 261%) x 10+ v/ A) 0 x (dy + 8ot < (1+ v/5)ds) al?) qint
copies of K. ig).
The number of vertices left in W is at most 26i/4d2n (c.f. (6.31)). Each such

vertex satisfies (6.17) and, consequently, is involved in not more than |H® N

KCs(HW (z,9)))| < (14 v/5)dydidin® copies of Kf’).
Therefore, this group of vertices contributes at most
5 5
26, dyn x (1 + v/5)dydi0dn® < 6,/ 8d§2) d§3)d3n4
copies of K f’). We used again the assumption 64 < dy.

Now we must estimate the contribution of neighbors y which are not fine, that

is y € No(z) \ No()gine- Since

NZ(x) \ N2<x)ﬁne = (NQ(x)nice \ N2($)ﬁne) U (N2(x)g00d \ NQ(z)nice)
U (Na(2) \ N2(2)g00d)

we distinguish three categories of these vertices:
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(a) Consider vertices ¥y € No(Z)nice \ No(Z)fine- We know from Observation 6.6
that [ Na(2)nice \ Na(2)gne| < 663" don.

Due to Part B(b), we estimate contribution of every such vertex y by
IH®) N I (HS) ()| < 3dydin?.

Therefore, vertices from No(z)pice \ No(Z)fne can contribute by at most
65i/4d2n x 3d3%dgn® < 5i/8dﬁd§)d§g)n4 copies of Ké4).

(b) Consider vertices y € No(Z)go0d \ NV2(Z)nice. Observation 5.20 implies that
[N () gooa \ Na(@)aicel < 12852 dyn.
Then, each such neighbor y is in at most |[Kz(H® [H® (x,y))]| copies
of K. Since y € No(2)good, HATHP (z,y))] is (652, dy)-regular (c.f.
Definition 5.19). Consequently, [C3(H@[H® (z,y))]| < 2d5n® (c.f. Corol-
lary 3.6).

5% dyn x

The total contribution of these vertices is then bounded by 12
5 5 5 5 5 5

2dyn?® < 5§/64d§3)d§2>n4 < 54d§3)d§2)n4 < 5i/2did§3)dg2)n4. Here we used

assumptions (2.2).

(¢) The remaining neighbors y belongs to Na(x) \ Na(x)go0d. It follows from
Observation 3.10 that Na(x) \ No(2)g00d < 3663 % don.

In this case, we use a rough estimate that every vertex is in at most n?
copies of K f’) and, thus, the contribution of these vertices is at most
3601/ %dyn x n* < 36610 d)nt < 6,0 nt < 6124 dlPnt < 6,08l
< 5i/2did§)dgg)n4.

At this point we are ready to derive the upper bound. We add the contributions of
all vertices considered in (i), (ii) and (a), (b), (c) of (iii) to infer that

(O @) < (L v/a ol + 202) atal) alPnt < (14 w2l ot
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