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Chapter 1

Introduction

While proving his famous Density Theorem [Sze75], E. Szemerédi invented an auxil-

iary lemma which later proved to be a powerful tool in extremal graph theory. This

lemma and its improved version named the Regularity lemma [Sze78], states that all

sufficiently large graphs can be approximated by “random-like” graphs. This feature

is especially useful in situations when the problem in question is easier to prove for

random graphs.

In particular, one such situation arises when the counting copies of a given small

graph in another graph. Although this problem is very hard in general, there is a

simple counting argument which counts these copies in the approximation produced

by the Regularity Lemma. Since this counting argument applied together with the

Regularity Lemma have had numerous applications (see [KS96] for survey), a natural

question arises whether it can be generalized to hypergraphs.

There were generalizations of the Regularity Lemma [FR92, Chu91]. Yet, they

have failed to produce “random-like” approximations in which one could count copies

of given small hypergraphs and, therefore, the odds for many applications have re-

mainded low.
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A breakthrough came when P. Frankl and V. Rödl developed a regularity lemma

for 3-uniform hypergraphs [FR00], which yields a copy of the complete 3-uniform

hypergraph on 4 vertices K
(3)
4 in the approximations. This was was later generalized

to the counting of arbitrary small 3-uniform hypergraphs by B. Nagle and V. Rödl

[NR99], and they were also able to find a number of applications [KNR99, NR00,

RR98].

It also turned out that developing a counting argument is a bigger problem than

the generalization of the Regularity Lemma (although these two issues cannot be

separated completely). The purpose of this work is to develop a counting argument

for 4-uniform “random-like” hypergraphs and show that the level of technical compli-

cation is significantly higher than in the case of 3-uniform hypergraphs (c.f. [FR00]

and Theorem 1.13 below).

However, there is good hope that our approach can be extended to the general

case of k-uniform hypergraphs.

1.1 Notation and basic definitions

We start with some definitions. For a set V and an integer k ≥ 2, let [V ]k denote the

system of all k-element subsets of V . An ordered pair G = (V (G), E(G)) = (V,E),

where E = E(G) is a subset of [V ]k, is called a k-uniform hypergraph. If k = 2, we

have a graph. We call the cardinality of V (G) the order of G whereas the cardinality

of the set E(G) is called the size of G.

Let V = V1∪· · ·∪Vs be a partition, we say that a set e ⊂ V is crossing if |e∩Vj| ≤ 1

for all j = 1, 2, . . . , s. Furthermore, a hypergraph G = (V1 ∪ · · · ∪ Vs, E) is said to

be s-partite if its all edges are crossing. We shall also denote by K
(k)
s (V1, . . . , Vs) the

complete k-uniform s-partite hypergraph with partition V1 ∪ · · · ∪ Vs.

Since this paper will deal mainly with partite hypergraphs, it is convenient to
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introduce the term cylinder.

Definition 1.1. Let s ≥ k ≥ 1 be two integers. We define an (s, k)-cylinder G as

follows.

For k = 1, G is a partition V (G) = V1 ∪ . . . ∪ Vs. For k > 1, G is any s-partite

k-uniform hypergraph.

If there is no danger of confusion, we shall identify the hypergraphs (cylinders)

with their edge sets.

Definition 1.2. Let k = 1 and let G, G ′ be two (s, k)-cylinders, V (G) = V1∪ . . .∪Vs
and V (G ′) = V ′1 ∪ . . . ∪ V ′s . We say that G ′ is a subcylinder of G if V ′i ⊂ Vi for

all i = 1, 2, . . . , s. While for k > 1 and two (s, k)-cylinders G, G ′, we say that G ′

is a subcylinder of G if E(G ′) ⊂ E(G). Moreover, we say that G ′ is an induced

subcylinder of G if E(G ′) = E(G) ∩ [V (G ′)]k.

If s = k + 1, we will often write an (s, k)-cylinder G as G =
⋃s
i=1 Gî, where Gî is

the subcylinder of H induced on
⋃
j 6=i Vj.

A subcylinder G ′ = (V ′, E ′) of G is a clique in G if E ′ = [V ′]k.

Definition 1.3. For an (s, 1)-cylinder G = V1 ∪ · · · ∪ Vs and 1 ≤ j ≤ s, we define

Kj(G) = K
(j)
s (V1, . . . , Vs). For an (s, k)-cylinder G, where k > 1, we shall denote

by Kj(G), k ≤ j ≤ s, the j-uniform hypergraph whose edges are precisely those

j-element subsets of V (G) that span cliques of order j in G.

Clearly, for k > 1, the quantity |Kj(G)| counts the total number of cliques of order

j in G. We will often face a situation when we need to describe that one cylinder

‘lies on’ another cylinder. To this end, we define the term underlying cylinder.

Definition 1.4. Let G be an (s, k−1)-cylinder and H be an (s, k)-cylinder with the

same s-partition. We say that G underlies H if H ⊂ Kk(G).

Through this paper, we will work with a series of underlying cylinders. To ac-
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commodate this situation, we introduce the notion of a complex.

Definition 1.5. Let s and k, s ≥ k ≥ 2, be two integers. An (s, k)-complex H is a

system of cylinders
{
H(i)

}k
i=1

such that

(a) H(1) is an (s, 1)-cylinder V1 ∪ · · · ∪ Vs,

(b) for every i ∈ [k − 1], H(i) underlies H(i+1), i.e. H(i+1) ⊂ Ki+1(H(i)).

1.2 Regularity for graphs

Before we state the Regularity Lemma, we must introduce the concept of regular

pairs.

Definition 1.6 (Szemerédi, 1978). Let G = (V,E) be a graph and δ be a positive

real number, 0 < δ ≤ 1. We say that a pair (A,B) of two disjoint subsets of V is

δ-regular if

|d(A′, B′)− d(A,B)| < δ

for any two subsets A′ ⊂ A, B′ ⊂ B, with |A′| ≥ δ|A|, |B′| ≥ δ|B|. Here, d(A,B) =

|E(A,B)|/(|A||B|) stands for the density of the pair (A,B).

This definition states that a regular pair has uniformly distributed edges. The

Regularity Lemma of Szemerédi [Sze78] enables us to partition the vertex set V (G)

of a graph G into t sets V1 ∪ . . . ∪ Vt in such a way that most of the pairs (Vi, Vj)

satisfy Definition 1.6. The precise statement follows.

Theorem 1.7 (Regularity Lemma). For every ε > 0 and t0 ∈ N there exist two

integers N0 = N0(ε, t0) and T0 = T0(ε, t0) with the following property: for every

graph G with n ≥ N0 vertices there is a partition of the vertex set into t+ 1 classes

V = V0 ∪ V1 ∪ . . . ∪ Vt
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such that

(i) t0 ≤ t ≤ T0,

(ii) |V0| ≤ εn,

(iii) |V1| = . . . = |Vt|, and

(iv) all but at most ε
(
t
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ t, are ε-regular.

Moreover, this lemma is sufficiently strong to ensure the existence of various small

subgraphs in G. The easiest case, when we count copies of K3, is summarized in the

next fact.

Fact 1.8. If all (Vi, Vj), (Vi, Vk), and (Vj, Vk) are ε-regular pairs with density d and

2ε < d, then

(1− 2ε)(d− ε)3|Vi||Vj||Vk| ≤ |K3(G ∩K(Vi, Vj, Vk))|

≤
[
2ε+ (d+ ε)3

]
|Vi||Vj||Vk|.

This fact and its extensions (c.f. Fact 3.5) are a key to many applications of the

Regularity Lemma (c.f. [CRST83, KSS97, KS96]) .

1.3 Regularity for hypergraphs

Now we define the notion of regularity for cylinders:

Definition 1.9. Let G be a (k, k − 1)-cylinder underlying a (k, k)-cylinder H. We

say that H is (δ, d)-regular with respect to G if the following condition is satisfied:

whenever G ′ ⊂ G is a (k, k − 1)-cylinder such that∣∣∣Kk(G ′)∣∣∣ ≥ δ |Kk(G)|
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then

(d− δ)
∣∣∣Kk(G ′)∣∣∣ ≤ ∣∣∣H ∩Kk(G ′)∣∣∣ ≤ (d+ δ)

∣∣∣Kk(G ′)∣∣∣ .
Note that for k = 2, Definition 1.9 varies from Szemerédi’s definition of a δ-regular

pair (V1, V2) (cf. [Sze78]). It is easy to observe that

• (δ, d)-regularity implies δ1/2-regularity in the sense of Definition 1.6, and

• δ-regularity in the above sense gives also (δ, d)-regularity.

For k > 2, the situation becomes more complicated and due to the quantification

of constants in the hypergraph regularity lemma (Remark 4.6, [FR00]), Definition

1.9 is not strong enough to have the effect of Definition 1.6 in the case k = 2. To

overcome this problem, P. Frankl and V. Rödl introduced in [FR00] the concept of

(δ, r)-regularity. Here we present this concept in a more general form.

Definition 1.10. Let r ∈ N and G be a (k, k − 1)-cylinder underlying a (k, k)-

cylinder H. We say that H is (δ, d, r)-regular with respect to G if the following

condition is satisfied: whenever G1, . . . ,Gr ⊂ G are (k, k − 1)-cylinders such that∣∣∣∣∣
r⋃
j=1

Kk(Gj)

∣∣∣∣∣ ≥ δ |Kk(G)| ,

then

(d− δ)

∣∣∣∣∣
r⋃
j=1

Kk(Gj)

∣∣∣∣∣ ≤
∣∣∣∣∣H ∩

r⋃
j=1

Kk(Gj)

∣∣∣∣∣ ≤ (d+ δ)

∣∣∣∣∣
r⋃
j=1

Kk(Gj)

∣∣∣∣∣ . (1.1)

We extend the above definition to the case of an (s, k)-cylinder H.

Definition 1.11. Let r ∈ N and G be an (s, k − 1)-cylinder underlying an (s, k)-

cylinder H. We say that H is (δ, d, r)-regular with respect to G if H
[⋃

j∈I Vj

]
is

(δ, d, r)-regular with respect to G
[⋃

j∈I Vj

]
for all I ∈ [s]k.

Now we are ready to introduce the concept of regularity for an (s, k)-complexH.
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Definition 1.12. Let r ∈ N and d = (d2, . . . , dk) and δ = (δ2, . . . , δk) be two vectors

of positive real numbers such that 0 < δi < di ≤ 1 for all i = 2, . . . k. We say that

an (s, k)-complex H is (δ,d, r)-regular if

(a) H(2) is (δ2, d2)-regular with respect to H(1), and

(b) H(i+1) is (δi+1, di+1, r)-regular with respect to H(i) for every i ∈ [k − 1]\{1}.

P. Frankl and V. Rödl proved the regularity lemma which allows splitting of the

edge set of an arbitrary 3-uniform hypergraph into (3, 3)-complexes in a way similar

to the manner in which the Szemerédi Lemma paritions the edge set of the graphs into

biparitite graphs most of which are ε-regular. (Here ε-regularity has been replaced

by (δ, d, r)-regularity of corresponding 3-complexes.) They also proved the following

theorem extending Fact 1.8 from graphs to 3-uniform hypergraphs.

Theorem 1.13 (P. Frankl, V. Rödl [FR00]). For any ν > 0 and any d3 ∈ (0, 1]

there is a real number δ3 such that for any positive real number d2 ∈ (0, 1] there exists

δ2 and r ∈ N such that if H is a (δ,d, r)-regular (4, 3)-complex, where d = (d2, d3)

and δ = (δ2, δ3), then H(3) contains (1± ν)d
(4

3)
3 d

(4
2)

2 n4 copies of K
(3)
4 .

Here 1 ± ν stands for a number in the interval (1 − ν, 1 + ν). This theorem

plays the role of Fact 1.8. Indeed, it enables us to find copies of the complete 3-

uniform hypergraph on 4 vertices K
(3)
4 in 3-cylinders underlied by a regular sparse

2-cylinder. However, this theorem would be useless without an appropriate version

of a regularity lemma for 3-uniform hypergraphs. Such a lemma was also introduced

in [FR00]. Moreover, this result was extended by B. Nagle and V. Rödl in [NR99]

who developed an argument for counting copies of complete 3-uniform hypergraphs

on k vertices K
(3)
k .
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1.4 The main result

The aim of this thesis is to extend Theorem 1.13 to 4-uniform hypergraphs.

Theorem 1.14 (Main Theorem). For any ν > 0 the following statement holds.

For every d4 ∈ (0, 1], there is a real number δ4 such that for any d3 ∈ (0, 1],

there exists a real number δ3 such that for any d2 ∈ (0, 1], there is δ2 and r ∈ N

with the property that whenever H = {H(1),H(2),H(3),H(4)} is a (δ,d, r)-regular

(5, 4)-complex, where d = (d2, d3, d4) and δ = (δ2, δ3, δ4), then H(4) contains

(1± ν)d
(5

4)
4 d

(5
3)

3 d
(5

2)
2 n5

copies of K
(4)
5 .

An appropriate version of the regularity lemma for 4-uniform hypergraphs has

been developed in [RS00]. Extending the regularity lemma of Frankl and Rödl, this

lemma allows us to partition the edge set of an arbitrary 4-uniform hypergraph into

(4, 4)-complexes, most of which are regular in the sense of Theorem 1.14.

Perhaps surprisingly, it appears that it is not an extension of the the Regularity

Lemma but rather generalizations of Fact 1.8 which cause the difficulties in the

hypergraphs case. Unlike the proof of Fact 1.8, which is straightforward, the proof of

Theorem 1.13 is already quite complex. Theorem 1.14, as an extension of Theorem

1.13 to 4-uniform hypergraphs, is yet much more difficult prove.

We believe that Theorem 1.14 is the last step towards a proof of the following

general counting statement:

Conjecture 1.15. For any ν > 0 and any k ∈ N, the following is true: ∀dk ∈ (0, 1]

∃δk ∀dk−1 ∈ (0, 1] ∃δk−1 . . . ∀d2 ∈ (0, 1] ∃r ∈ N ∃δ2 such that if H is a (δ,d, r)-

regular (k + 1, k)-complex, where d = (d2, . . . , dk) and δ = (δ2, . . . , δk), then H(k)

contains

(1± ν)
k∏
s=2

d
(k+1
s )

s × nk+1
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copies of K
(k)
k+1.

This together with a general regularity lemma for k-uniform hypergraph intro-

duced in [RS00] (which is proved under the assumption of validity of this conjecture)

is the last step towards a fully applicable regularity lemma for k-uniform hypergraphs.

1.5 Structure of the thesis

The structure of this work is the following: in the next chapter, we first introduce

Propositions 2.2-2.6 and later use these propositions to prove the Main Theorem. In

Chapter 3 we describe various properties of 2-cylinders and prove Propositions 2.2

and 2.3. Then, in Chapter 4, we prove the so-called l-graphs Lemma which counts

copies of K3 in the series of nested regular 2-cylinders. This lemma plays an impor-

tant role in the investigation of properties of 3- and 4-cylinders. In Chapter 5, we

discuss and prove various properties of regular 3-cylinders. The proofs of Proposi-

tions 2.4 and 2.5 are also presented in this chapter. The last chapter, Chapter 6,

provides some theory of regular 4-uniform hypergraphs and proves Proposition 2.6.



Chapter 2

Proof of the Main Theorem

The goal of this section is to prove the Main Theorem. We first state all necessary

concepts and propositions and later use them in the actual proof. One of the central

concepts in the proof of Theorem 1.14 is the notion of the link of a vertex.

Definition 2.1. Let G be a k-uniform hypergraph and x ∈ V (G). We will call the

set

G(x) = {e \ {x} : e ∈ G, x ∈ e}

the link of the vertex x in G. Note that G(x) is a (k − 1)-uniform hypergraph.

Moreover, if G is an (s, k)-cylinder, then G(x) is an (s − 1, k − 1)-cylinder. For a

subset W ⊂ V (G), we define G(W ) by

G(W ) =
⋂
x∈W

G(x). (2.1)

For simplicity, if W = {x1, . . . , xk}, we write G(x1, . . . , xk).

Through the remainder of the paper we fix a (δ,d, r)-regular (5, 4)-complexH ={
H(1),H(2),H(3),H(4)

}
and ν > 0, and we will assume that H(1) = V1 ∪ . . . ∪ V5 and

|V1| = . . . = |V5| = n. The purpose of this condition is to simplify the proof and all

statements remain valid for partite sets with different sizes.

10
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Let us recall the quantification of the constants in Theorem 1.14:

∀d4∃δ4∀d3∃δ3∀d2∃δ2∃r.

Due to this quantification we may assume

ν � δ4 > 0

1 > d4 � δ4 > 0

1 > d3 � δ3 > 0

1 > d2 � δ2 > 0 (2.2)

δ4 � δ3 � δ2,

r > d−100
3 d−100

2 .

The main role of the fourth condition is to simplify the error terms. Without it we

would have to carry on long strings of error terms depending on δ2, δ3, and δ4.

Our proof will be based on the following propositions.

Proposition 2.2. For all but at most 8δ
1/2
2 n vertices x ∈ V1

|K4(H(2)[H(2)(x)])| ≤ 2d
(5

2)
2 n4. (2.3)

Proposition 2.3. For all but but at most 16δ
1/2
2 n pairs of vertices x, x′ ∈ V5

|K4(H(2)[H(2)(x, x′)])| ≤ 2d14
2 n

4. (2.4)

Proposition 2.4. For all but but at most 46δ
1/2
3 n vertices x ∈ V1

1

2
d
(5

3)
3 d

(5
2)

2 n4 ≤ |K4(H(3) ∩ K3(H(3)(x)))| ≤ 2d
(5

3)
3 d

(5
2)

2 n4. (2.5)

Proposition 2.5. For all but but at most 60δ
1/16
3 n2 pairs of vertices x, x′ ∈ V1

|K4(H(3) ∩ K3(H(3)(x, x′)))| ≤ 2d16
3 d

14
2 n

4. (2.6)
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Proposition 2.6. For all but but at most 10δ
1/4
4 n vertices x ∈ V1

|K4(H(4)(x))| = (1± ν/2)d4
4d

(5
3)

3 d
(5

2)
2 n4. (2.7)

Since the proofs of these propositions are rather complex, we defer them until

later. Propositions 2.2 and 2.3 are proved in Chapter 3. In order to prove Proposi-

tions 2.4, 2.5, and 2.6, we need the so called k-graphs Lemma (see Chapter 4) and

a number of additional claims. Therefore, the proofs of Propositions 2.4 and 2.5 are

in Chapter 5, and the proof of Proposition 2.6 is given in Chapter 6.

We will also need the following lemma:

Lemma 2.7 (Picking Lemma). Let V be a set of size m, k be a nonnegative

integer, and P1, . . .Pk be arbitrary graphs on V . Furthermore, suppose that |P1| ≤

σ1m
2, |P2| ≤ σ2m

2, . . . |Pk| ≤ σkm
2. Then for every subset W ⊂ V with at least cm

elements and a positive integer t such that

2σ1t
2

c2
<

1

k
, (2.8)

there exists a choice of t vertices x1, x2, . . . , xt ∈ W such that

i) {xu, xv} 6∈ P1 for all 1 ≤ u < v ≤ t,

ii) for all i ∈ [k]\{1}, {xu, xv} 6∈ Pi for all but at most 2kσi
c2
t2 pairs 1 ≤ u < v ≤ t.

Proof. Choose randomly a t-element subset R ⊂ W . We will show that

P(|P1 ∩ [R]2| ≥ 1) <
1

k
, (2.9)

and

P(|Pi ∩ [R]2| ≥ 2kσi
c2

t2) <
1

k
(2.10)

for all i ∈ [k]\{1}, which implies the existence of an t-element subset satisfying

conditions i) and ii).
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Both (2.9) and (2.10) follow from Markov’s inequality. Indeed, the probability

that a randomly chosen pair {x, y} is an edge of Pi can be bounded as follows

P(xy ∈ E(Pi)) ≤
σim

2(|W |
2

) ≤ σim
2

|W |2
4

≤ 4σi
c2
.

Using (2.8), the expected number of edges in a random selection of t vertices from

W is

E(|P1 ∩ [R]2|) ≤
(
t

2

)
4σ1

c2
≤ t2

2

4σ1

c2
<

1

k
.

Similarly,

E(|Pi ∩ [R]2|) ≤
(
t

2

)
4σi
c2

<
t2

2

4σi
c2

=
2t2σi
c2

.

At this point we apply Markov’s inequality and we obtain (2.9) and (2.10):

P(|P1 ∩ [R]2| ≥ 1) ≤ E(|P1 ∩ [R]2|) < 1

k

and

P

(
|Pi ∩ [R]2| ≥ 2kσi

c2
t2
)
<

2t2σi
c2

k 2t2σi
c2

=
1

k
.

Now we are ready to prove the Main Theorem.

Proof of Theorem 1.14. Let W be the set of all vertices x ∈ V1 satisfying inequality

(2.7). Thus, for every vertex x ∈ W we have:

|K4(H(4)(x))| = (1± ν/2)d4
4d

(5
3)

3 d
(5

2)
2 n4. (2.11)

By Proposition 2.6 we know that

|W | ≥
(

1− 100δ
1/4
4

)
n.

Since the proof is rather complex and long, we outline its idea first. For every vertex

x ∈ W there are (1 ± ν/2)d4
4d

(5
3)

3 d
(5

2)
2 n4 copies of K

(3)
4 in H(4)(x). Notice that every
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such K
(3)
4 together with x form a copy of

(
K

(4)
5 \ edge

)
in H(4). Therefore, we would

like to apply the (δ4, d4, r)-regularity of H(4) on these copies to obtain the uncounted

for edge.

The number of copies of K
(3)
4 in H(4)(x) is, however, insufficient to apply the

(δ4, d4, r)-regularity of H(4). Indeed, from Theorem 1.13 we have: |K4(H(3))| ≥

(1/2)d6
2d

4
3n

4. To apply the (δ4, d4, r)-regularity of H(4) we need to satisfy

|K4(H(4)(x))| ≥ δ4|K4(H(3))|.

Since |K4(H(4)(x))| ≤ (1 + ν/2)d4
4d

(5
3)

3 d
(5

2)
2 n4, we obtain

(1 + ν/2)d4
4d

(5
3)

3 d
(5

2)
2 n4 ≥ δ4 × (1/2)d6

2d
4
3n

4

or (1 + ν/2)d4
4d

6
3d

4
2 ≥ δ4. This is impossible to satisfy due to the order of constants

and quantification of this theorem.

Thus, we must use the full power of r-regularity. We select r = 2δ
1/2
4 /(d4

2d
6
3) ver-

tices x1, . . . , xr from W in such a way that the size of
⋃r
j=1K4(H(4)(xj)) is sufficiently

large to apply the regularity of H(4), i.e.∣∣∣∣∣
r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ ≥ |K4(H(3)

1̂
)|. (2.12)

In order to choose this r-tuple of vertices with a large union, we will use the Picking

Lemma and the fact that∣∣∣∣∣
r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ ≥
r∑
j=1

∣∣K4(H(4)(xj))
∣∣− ∑

1≤i<j≤r

∣∣K4(H(4)(xi, xj))
∣∣ .

The Picking Lemma and Proposition 2.6 will guarantee the choice of the r-tuple

x1, . . . , xr for which
∑r

j=1

∣∣K4(H(4)(xj))
∣∣ is “large”, whereas the same lemma and

Propositions 2.3 and 2.5 will make the second term
∑

1≤i<j≤r

∣∣K4(H(4)(xi, xj))
∣∣ “small”.
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Since (2.12) holds, we wil be able to apply the (δ4, d4, r)-regularity of H(4) to

obtain ∣∣∣∣∣H(4) ∩
r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ = (d4 ± δ4)

∣∣∣∣∣
r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ .
Observe that the left-hand side of the above equation counts the number of copies

of K
(4)
5 that use one of x1, . . . , xr as a vertex. Also note that this number is O(n4)

which is far less than what Theorem 1.14 promises.

To get a full amount of copies of k
(4)
5 as claimed by the Theorem, we will iterate

this process as long as we are able to use the Picking Lemma. At the end we take

care of any remaining vertices, i.e. we estimate the number of K
(4)
5 that use vertices

left in W and vertices not satisfying (2.11). Our main tools will be Propositions 2.2

and 2.4.

After describing the idea, we start with a detailed proof. We define two graphs

P1 and P2, both with vertex set V1 and edge sets defined by:

E(P1) =
{
xx′ : |K4(H(2)[H(2)(x, x′)])| > 2d14

2 n
4
}
,

E(P2) =
{
xx′ : |K4(H(3) ∩ K3(H(3)(x, x′)))| > 2d16

3 d
14
2 n

4
}
.

It follows from Propositions 2.3 and 2.5 that the sizes of P1 and P2 are bounded,

more precisely, |P1| ≤ 16δ
1/2
2 n2 and |P2| ≤ 60δ

1/16
3 n2.

We apply the Picking Lemma on W with parameters σ1 = 16δ
1/2
2 , σ2 = 60δ

1/16
3 ,

t = r = 2δ
1/2
4 /(d4

2d
6
3), c = δ

1/2
4 , and obtain r vertices x1, . . . , xr ∈ W such that all

pairs {xi, xj} satisfy

|K4(H(2)[H(2)(xi, xj)])| ≤ 2d14
2 n

4, (2.13)

and all but
(

2× 2× 60δ
1/16
3 /δ4

)
r2 ≤ δ

1/32
3 r2 pairs {xi, xj} satisfy

|K4(H(3) ∩ K3(H(3)(xi, xj)))| ≤ 2d16
3 d

14
2 n

4. (2.14)



16

This is possible as long as |W | ≥ c ×m = δ
1/2
4 m and condition (2.8) is satisfied, in

other words, if

2× 16δ
1/2
2 × t2(

δ
1/2
4

)2 <
1

2
(2.15)

holds. This is true because

2× 16δ
1/2
2 × t2(

δ
1/2
4

)2 =
128δ

1/2
2

d8
2d

12
3

≤ 128× δ
1/4
2

d8
2

× δ
1/4
3

d12
3

≤ 128× δ1/8
2 × δ1/8

3 <
1

2
.

Here we used assumption (2.2): δ2 � d2 < 1, δ3 � d3 < 1, and δ2 � δ3.

Now we estimate the size of
⋃r
j=1K4(H(4)(xj)). We first apply Observation 4.5:∣∣∣∣∣

r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ ≥
r∑
j=1

∣∣K4(H(4)(xj))
∣∣− ∑

1≤i<j≤r

∣∣K4(H(4)(xi)) ∩ K4(H(4)(xj))
∣∣ .

The next step is to estimate both terms on the right-hand side. The first term is

easier to handle, we use inequality (2.11):

r∑
j=1

∣∣K4(H(4)(xj))
∣∣ ≥ r × (1− ν/2)d4

4d
(5

3)
3 d

(5
2)

2 n4. (2.16)

To get an estimate for the second term, we must observe several facts:

• K4(H(4)(xi) ∩ K4(H(4)(xj)) = K4(H(4)(xi, xj)) for every 1 ≤ i < j ≤ r.

• It follows from the fact that H(4) ⊂ K4(H(3)) that every copy of K
(3)
4 in

H(4)(xi, xj) is also a copy of K
(3)
4 in H(3) ∩ K3(H(3)(xi, xj)).

• Every copy of K
(3)
4 in H(4)(xi, xj) is also a copy of K4 in H(2)[H(2)(xi, xj)]).

This again follows from the fact that H(4) ⊂ K4(H(3)) and H(3) ⊂ K3(H(2)).

Since we know that all but at most δ
1/32
3 r2 pairs {xi, xj} satisfy (2.14), for these pairs

we use the estimate∣∣K4(H(4)(xi, xj))
∣∣ ≤ |K4(H(3) ∩ K3(H(3)(xi, xj)))| ≤ 2d16

3 d
14
2 n

4. (2.17)
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The remaining δ
1/32
3 r2 pairs {xi, xj} satisfy (2.13), thus we estimate |K4(H(4)(xi, xj))|

as

|K4(H(4)(xi, xj))| ≤ |K4(H(2)[H(2)(xi, xj)])| ≤ 2d14
2 n

4. (2.18)

Now we combine (2.17) and (2.18) to obtain∑
1≤i<j≤r

∣∣K4(H(4)(xi)) ∩ K4(H(4)(xj))
∣∣ ≤ (r

2

)
× 2d16

3 d
14
2 n

4 + δ
1/32
3 r2 × 2d14

2 n
4.

We use the assumption δ3 � d3 and conclude that δ
1/32
3 r2 × 2d14

2 n
4 ≤ d16

3 r
2d14

2 n
4.

Then, ∑
1≤i<j≤r

∣∣K4(H(4)(xi)) ∩ K4(H(4)(xj))
∣∣ ≤ 2r2d16

3 d
14
2 n

4. (2.19)

Using (2.16), (2.19), and the definition of r (recall r = 2δ
1/2
4 /(d4

2d
6
3)), we obtain that∣∣∣∣∣

r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ ≥ r × (1− ν/2)d4
4d

(5
3)

3 d
(5

2)
2 n4 − 2r2d16

3 d
14
2 n

4

≥ δ
1/2
4 d4

4d
4
3d

6
2n

4 − 8δ4d
4
3d

6
2n

4
(2.2)

≥ 2δ4d
4
3d

6
2n

4.

(2.20)

Note that 3-cylinder H(3)

1̂
is (δ3, d3, r)-regular with respect to H(2)

1̂
and H(2)

1̂
is

(δ2, d2)-regular. Furthermore, the quantification of this theorem allows us to choose

δ3 and δ2 so that the assumptions of Theorem 1.13 are satisfied. Thus, we infer that∣∣∣K4(H(3)

1̂
)
∣∣∣ ≤ 2d4

3d
6
2n

4. Therefore,∣∣∣∣∣
r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ ≥ δ4

∣∣∣K4(H(3)

1̂
)
∣∣∣ ,

so, by the (δ4, d4, r)-regularity of H(4) with respect to H(3), we obtain

d4 − δ4 ≤

∣∣∣H(4) ∩
⋃r
j=1K4(H(4)(xj))

∣∣∣∣∣∣⋃r
j=1K4(H(4)(xj))

∣∣∣ ≤ d4 + δ4. (2.21)
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From the above inequality and (2.11), one can easily conclude:∣∣∣∣∣H(4) ∩
r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ ≤ (d4 + δ4)

∣∣∣∣∣
r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣
≤ (d4 + δ4)

r∑
j=1

∣∣K4(H(4)(xj))
∣∣ ≤ (d4 + δ4)r(1 + ν/2)d4

4d
(5

3)
3 d

(5
2)

2 n4.

In order to get a lower bound on
∣∣∣H(4) ∩

⋃r
j=1K4(H(4)(xj))

∣∣∣, we first use (2.21):∣∣∣∣∣H(4) ∩
r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ ≥ (d4 − δ4)

∣∣∣∣∣
r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ . (2.22)

Second, we want to apply Observation 4.5 with a = δ
1/4
4 and obtain:∣∣∣∣∣

r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ ≥ (1− δ1/4
4

) r∑
j=1

∣∣K4(H(4)(xj))
∣∣ . (2.23)

In order to do this, we must show that

δ
1/4
4 ×

r∑
j=1

∣∣K4(H(4)(xj))
∣∣− ∑

1≤i<j≤r

∣∣K4(H(4)(xi)) ∩ K4(H(4)(xj))
∣∣ ≥ 0.

This is easy to verify using (2.16), (2.19), and d4 � δ4. Indeed,

δ
1/4
4 ×

r∑
j=1

∣∣K4(H(4)(xj))
∣∣ (2.16)

≥ δ
1/4
4 × δ1/2

4 d4
4d

4
3d

6
2n

4 ≥ 8δ4d
4
3d

6
2n

4,

and ∑
1≤i<j≤r

∣∣K4(H(4)(xi)) ∩ K4(H(4)(xj))
∣∣ (2.19)

≤ 2r2d16
3 d

14
2 n

4 ≤ 8δ4d
4
3d

6
2n

4.

Then, we combine inequality (2.22) and (2.23) and get:∣∣∣∣∣H(4) ∩
r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ ≥ d4

(
1− δ1/4

4

)2

∣∣∣∣∣
r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣
We apply (2.16) and get:∣∣∣∣∣H(4) ∩

r⋃
j=1

K4(H(4)(xj))

∣∣∣∣∣ (2.16)

≥
(

1− δ1/4
4

)2

× r × (1− ν/2)d5
4d

(5
3)

3 d
(5

2)
2 n4. (2.24)
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We remove vertices x1, . . . , xr from W and iterate the whole process again. Due

to (2.15), we can repeat this process as long as

|W | > δ
1/2
4 n. (2.25)

This way we produce a sequence of at least
(

1− 100δ
1/4
4 − δ1/2

4

)
n/r but not more

than n/r r-tuples X(1) = {x1, . . . , xr} =
{
x

(1)
1 , . . . , x

(1)
r

}
, X(2) =

{
x

(2)
1 , . . . , x

(2)
r

}
,

etc.

Analoguously to (2.24), each iteration produces at least(
1− δ1/4

4

)2

× r × (1− ν/2)d5
4d

(5
3)

3 d
(5

2)
2 n4 ≥ (1− 3ν/4)d5

4d
(5

3)
3 d

(5
2)

2 n4

copies of K
(4)
5

(
each of which uses exactly one vertex from X(i) =

{
x

(i)
1 , . . . , x

(i)
r

})
.

Note that ν � δ4 and, therefore, the following lower bound on the number of K
(4)
5 ’s

in H(4) holds:

|K5(H(4))| ≥ (1− 3ν/4)d5
4d

(5
3)

3 d
(5

2)
2 n4 ×

(
1− 100δ

1/4
4 − δ1/2

4

) n
r

(2.2)

≥ (1− ν)d5
4d

(5
3)

3 d
(5

2)
2 n5.

The upper bound causes some extra difficulties - we must count not only

(i) the contribution of r-tuples of vertices taken from W , but also

(ii) contribution of vertices left in W , and

(iii) vertices not satisfying (2.11).

We will handle each of these categories of vertices separately:

(i) An upper bound on number of copies of K
(4)
5 produced by taking r-tuples from

W can be obtained similar to the lower bound above: every r-tuple is in at

most (d4 + δ4)× r(1 + ν/2)d4
4d

(5
3)

3 d
(5

2)
2 n4 copies of K

(4)
5 . There are at most n/r

such r-tuples, together producing at most

(d4 + δ4)(1 + ν/2)d4
4d

(5
3)

3 d
(5

2)
2 n5 ≤ (1 + 3ν/4)d5

4d
(5

3)
3 d

(5
2)

2 n5



20

copies of K
(4)
5 .

(ii) The number of vertices left in W is at most δ
1/2
4 n (c.f.(2.25)). Each such vertex

satisfies (2.7) and, consequently, is involved in not more than 2d4
4d

(5
3)

3 d
(5

2)
2 n4

copies of K
(4)
5 . Therefore, this group of vertices contributes at most δ

1/2
4 n ×

2d4
4d

(5
3)

3 d
(5

2)
2 n4 < δ

1/4
4 d5

4d
(5

3)
3 d

(5
2)

2 n5 copies of K
(4)
5 . We used again the assumption

δ4 � d4.

(iii) Now we must estimate the contribution of vertices not satisfying (2.11). Recall

that we have at most 100δ
1/4
4 n such vertices. We distinguish three categories

of these vertices:

• Consider vertices satisfying (2.5). Proposition 2.4 implies that all but

46δ
1/16
3 n vertices belong to this category. We estimate contribution of

every such vertex x by |K4(H(3) ∩ K3(H(3)(x)))| ≤ 2d
(5

3)
3 d

(5
2)

2 n4. There-

fore, they contribute by at most 100δ
1/4
4 n×2d

(5
3)

3 d
(5

2)
2 n4 ≤ δ

1/8
4 d5

4d
(5

3)
3 d

(5
2)

2 n4

copies of K
(4)
5 .

• Consider vertices not satisfying (2.5) but satisfying (2.3). Proposition 2.4

implies that all but 8δ
1/2
2 n remaining vertices belongs here. Then, each

such vertex x is in at most |K4(H(2)[H(2)(x)])| ≤ 2d
(5

2)
2 n4 copies of K

(4)
5 .

The total contribution of these vertices is then bounded by 80δ
1/16
3 n ×

2d
(5

2)
2 n4 ≤ δ

1/32
3 d

(5
3)

3 d
(5

2)
2 n5 ≤ δ4d

(5
3)

3 d
(5

2)
2 n5 ≤ δ

1/2
4 d5

4d
(5

3)
3 d

(5
2)

2 n5. Here we used

assumptions (2.2).

• The remaining at most 8δ
1/2
2 n vertices satisfy neither (2.5) nor (2.3). In

this case, we use a rough estimate that every vertex is in at most n4 copies

ofK
(4)
5 and, thus, the contribution of these vertices is at most 8δ

1/2
2 n×n4 ≤

δ
1/4
2 d

(5
2)

2 n5 ≤ δ3d
(5

2)
2 n5 ≤ δ

1/2
3 d

(5
3)

3 d
(5

2)
2 n5 ≤ δ4d

(5
3)

3 d
(5

2)
2 n5 ≤ δ

1/2
4 d5

4d
(5

3)
3 d

(5
2)

2 n5.
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At this point we are ready to derive the upper bound. We add the contributions of

all vertices above and obtain

|K5(H(4))| ≤
(

1 + ν/2 + δ
1/4
4 + δ

1/8
4 + 2δ

1/2
4

)
d5

4d
(5

3)
3 d

(5
2)

2 n5 ≤ (1 + ν)d5
4d

(5
3)

3 d
(5

2)
2 n5.



Chapter 3

More Definitions and Facts about

Cylinders

The main goal of this Chapter is to extend the notation from the Introduction and

to provide some basic facts about cylinders. We will also prove Propositions 2.2

and 2.3.

Definition 3.1. Let G be an (s, 2)-cylinder with s-partition V = V1 ∪ . . . ∪ Vs. We

define the neighborhood of a vertex x ∈ V by N(x) = NG(x) = G(x) and the degree

of x by deg(x) = degG(x) = |G(x)|. If W is a subset of vertices of V , we define

N(W ) = NG(W ) = G(W ) and deg(W ) = degG(W ) = |G(W )|.

If x 6∈ Vj, j ∈ [s], then we set Nj(x) = N(x)∩Vj and degj(x) = |Nj(x)|. Similarly,

if W ∩ Vj = ∅, we set Nj(W ) = N(W ) ∩ Vj and degj(W ) = |Nj(W )|.

Note that almost all of vertices in a regular (2, 2)-cylinder have nearly the same

degree. More precisely, the following fact is true:

Fact 3.2. Let G = (V1∪V2, E) be a (δ, d)-regular bipartite graph with |V1| = |V2| = m

22
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and 0 < δ ≤ d. Then all but at most 2δm vertices x ∈ V1 satisfy

(d− δ)m ≤ deg(x) ≤ (d+ δ)m.

We extend this fact to an arbitrary subset W of vertices.

Fact 3.3. Let k be a positive integer such that (d − δ)2k ≥ δ, and let G be a (δ, d)-

regular (s, 2)-cylinder with s-partition V1 ∪ . . . ∪ Vs, |V1| = . . . = |Vs| = m. Then,

all but at most 2k(s − 1)δ1/2mk k-tuples of vertices {x1, x2, . . . xk} ⊆ V1 satisfy the

following condition:

For every i ∈ [k] and every j ∈ [s]\{1}, if W is any subset of {x1, x2, . . . xk},

|W | = i, then

(d− δ)im ≤ degj(W ) ≤ (d+ δ)im. (3.1)

Proof. Note that we can restrict ourselves to the case s = 2 because then we apply

this result simultaneously to s− 1 (2, 2)-cylinders G[V1 ∪ Vj], j ∈ [s]\{1}.

We proceed by induction on k. For k = 1, the statement follows from Fact 3.2.

Furthermore, assume that the claim is true for k ≥ 1 and we would like to verify it

for k + 1. There are two possible ways a (k + 1)-tuple Y can violate condition (3.1).

First, there exists an i ≤ k such that there is an i-tuple W ⊂ Y , |W | = i, which

violates (3.1). But then, W is a part of a k-tuple violating (3.1). By the induction

assumption, there are at most 2kδ1/2mk such k-tuples. Therefore, one can find at

most m× 2kδ1/2mk = 2kδ1/2mk+1 “bad” (k + 1)-tuples of this kind.

Second, a (k + 1)-tuple Y satisfies (3.1) for all i, 1 ≤ i ≤ k, however, either

deg(Y ) < (d− δ)k+1m, (3.2)

or

deg(Y ) > (d+ δ)k+1m. (3.3)
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We can estimate the number of such (k + 1)-tuples as follows. Fix a k-tuple W

satisfying (3.1). Let ZW be the set of all vertices x ∈ V1 such that the (k + 1)-tuple

Y = W ∪ {x} satisfies (3.2). If |ZW | ≥ δ1/2m, then

|K2(ZW ∪N(W ))| = |ZW ||N(W )| ≥ δ1/2m× (d− δ)km ≥ δm2.

Since G is (δ, d)-regular, we get e(ZW , N(W )) ≥ (d − δ)|ZW ||N(W )|. On the other

hand, using (3.2), we obtain

e(ZW , N(W )) < |ZW |(d− δ)k+1m ≤ |ZW |(d− δ)|N(W )|

which is a contradiction. Thus, we proved |ZW | < δ1/2m.

Inequality (3.3) is handled similarly. Since there are at most mk k-tuples W ,

there exist at most 2δ1/2m×mk = 2δ1/2mk+1 (k+ 1)-tuples of this kind. Both cases

together give the desired result.

We will also use the following easy fact.

Fact 3.4. Let G be a (δ, d)-regular (s, 2)-cylinder with s-partition V1 ∪ . . . ∪ Vs, and

let V ′1 ⊆ V1, V ′2 ⊆ V2, . . . , V
′
k ⊆ Vk, be subsets such that |V ′j | ≥ δ1/4m for all j ∈ [k].

Let G ′ be the subcylinder induced on V ′1 ∪ . . . ∪ V ′s . Then, G ′ is (δ1/2, d)-regular.

Proof. It is an easy consequence of the definition of (δ, d)-regularity.

Regular cylinders have the property that one can count the actual number of

copies of small complete graphs. The precise statement is summarized in the follow-

ing fact (see e.g. [NR99]):

Fact 3.5. For any positive integer s and positive real numbers d, δ such that δ1/4 ≤

(d−δ)s−1, there exists a function θs,d(δ), θs,d(δ)→ 0 as δ → 0, such that whenever G

is a (δ, d)-regular (s, 2)-cylinder with s-partition V1 ∪ . . .∪ Vs, |V1| = . . . = |Vs| = m,

then

(1− θs,d(δ))msd(s2) ≤ |Ks(G)| ≤ (1 + θs,d(δ))m
sd(s2). (3.4)
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We will frequently use the following easy corollary of Fact 3.5.

Corollary 3.6. If δ is sufficiently small (i.e. δ ≤ δ(s, d)), then

3

4
msd(s2) ≤ |Ks(G)| ≤ 5

4
msd(s2). (3.5)

We now define the notion of a good vertex.

Definition 3.7 (good vertex). Let G be a (δ, d)-regular (s, 2)-cylinder with s-par-

tition V1 ∪ . . . ∪ Vs, |V1| = . . . = |Vs| = m. A vertex x ∈ V1 is called good if it

satisfies

(i) (d− δ)m ≤ degj(x) ≤ (d+ δ)m for j = 2, . . . , s and (s− 1, 2)-cylinder G[G(x)]

is (δ1/2, d)-regular,

(ii) x extends to at most δ1/4m pairs {x, x′} ⊂ V1 not satisfying (d − δ)2m ≤

degj(x, x
′) ≤ (d + δ)2m for j = 2, . . . , s, or for which (s − 1, 2)-cylinder

G[G(x, x′)] is not (δ1/2, d)-regular,

(iii) x extends to at most δ1/4m2 triples {x, x′, x′′} ⊂ V1 not satisfying (d− δ)3m ≤

degj(x, x
′, x′′) ≤ (d + δ)3m for j = 2, . . . , s, or for which (s − 1, 2)-cylinder

G[G(x, x′, x′′)] is not (δ1/2, d)-regular.

We denote by Vgood the set of all good vertices in V1.

Suppose that (d − δ)3 ≥ δ1/4. Then for every vertex x (pair {x, x′}, triple

{x, x′, x′′}, respectively) that satisfies condition (3.1), Fact 3.4 guarantees the regu-

larity of G[G(x)] (G[G(x, x′)], G[G(x, x′, x′′)], respectively).

It follows from Fact 3.3 that at most 2(s − 1)δ1/2m vertices x, at most 4(s −

1)δ1/4m2 pairs {x, x′}, and at most 6(s−1)δ1/4m3 triples {x, x′, x′′} violate condition

(3.1). From this we can conclude that almost all vertices x ∈ V1 are good.
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Observation 3.8. Let G be a (δ, d)-regular (s, 2)-cylinder with s-partition V1∪. . .∪Vs,

|V1| = . . . = |Vs| = m, and (d− δ)3 ≥ δ1/4. Then

|Vgood| ≥
(
1− 2(s− 1)δ1/2 − 10(s− 1)δ1/4

)
m.

Now we are ready to prove Proposition 2.2.

Proof of Proposition 2.2. Choose any x ∈ Vgood. Then x satisfies

(d2 − δ2)n ≤ degj(x) ≤ (d2 + δ2)n

for j = 2, 3, 4, 5, and the (4, 2)-cylinder H(2)[H(2)(x)] is (δ
1/2
2 , d2)-regular. Since

δ2 � d2 by assumption (2.2), Fact 3.6 implies that

|K4(H(2)[H(2)(x)])| ≤ 5

4
d
(4

2)
2 × (d2 + δ2)4n4 ≤ 2d

(5
2)

2 n4.

We next extend the notion of a good vertex to neighbors and pairs.

Definition 3.9 (good neighbor). Let G be a (δ, d)-regular (s, 2)-cylinder with

s-partition V1 ∪ . . . ∪ Vs, |V1| = . . . = |Vs| = m, and x ∈ V1 be a good vertex.

A vertex y ∈ N2(x) is called a good neighbor if it is a good vertex with respect to the

(s− 1, 2)-cylinder G[G(x)]. We also denote by N(x)good the set of all nice neighbors.

Observe that for every good neighbor y ∈ N(x)good the link G[G(x, y)] is (δ1/4, d)-

regular and
(
d− δ1/2

)2
m ≤ degj(x, y) ≤

(
d+ δ1/2

)2
m holds for j = 3, . . . , s.

One can observe the following:

Observation 3.10. Let G be a (δ, d)-regular (s, 2)-cylinder with s-partition V1∪ . . .∪

Vs, |V1| = . . . = |Vs| = m and
(
d− δ1/2

)4 ≥ δ1/4. Then for every good vertex x ∈ V1

all but at most 12(s− 2)δ1/8|N2(x)| vertices y ∈ N2(x) are good neighbors.
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Proof. Let x be a good vertex. Then we know that G[G(x)] is (δ1/2, d)-regular and

(d − δ)m ≤ degj(x) ≤ (d + δ)m holds for j = 2, . . . , s. We apply Observation 3.8

on G[G(x)] and get that for all but at most
(
2(s− 2)δ1/4 + 10(s− 2)δ1/8

)
|N2(x)| ≤

12(s−2)δ1/8|N2(x)| vertices y ∈ N2(x) are good with respect to G[G(x)], that is there

are good neighbors.

Definition 3.11 (good pair). Let G be a (δ, d)-regular (s, 2)-cylinder with s-par-

tition V1 ∪ . . . ∪ Vs, |V1| = . . . = |Vs| = m. A pair of good vertices {x, x′} ⊂ V1 is

called good if it satisfies:

(i) (d− δ)2m ≤ degj(x, x
′) ≤ (d+ δ)2m for j = 2, . . . , s,

(ii) G[G(x, x′)] is (δ1/2, d)-regular,

(iii) {x, x′} extends to at most δ1/4m sets {x, x′, x′′} ⊂ V1 not satisfying (d−δ)3m ≤

degj(x, x
′, x′′) ≤ (d + δ)3m for j = 2, . . . , s, or for which (s − 1, 2)-cylinder

G[G(x, x′, x′′)] is not (δ1/2, d)-regular.

Similar to the good vertex case, almost all pairs of good vertices are good.

Observation 3.12. Let 0 < δ < d be two real numbers such that (d− δ)3 ≥ δ1/4 and

G be a (δ, d)-regular (s, 2)-cylinder with s-partition V1∪. . .∪Vs, |V1| = . . . = |Vs| = m.

Then all but (4(s− 1)δ1/2 + 6(s− 1)δ1/4)m2 pairs in [Vgood]2 are good.

The proof of this Observation is similar to the proof of Observation 3.8.

Proof of Proposition 2.3. The proof follows the lines of the proof of Proposition 2.2

where we replace a good vertex x with a good pair of vertices {x, x′}.



Chapter 4

The l-graphs Lemma

The goal of this section is to develop the l-graphs Lemma which is the main tool

in the proofs of Propositions 2.4, 2.5, and 2.6. We start with some definitions and

technical observations.

4.1 Definitions and technical observations

It is convenient to introduce the following notation: for a sequence of positive real

numbers {di}, we set

Dt =
t∏
i=1

di.

Observe that Dt+1 = dt+1 ×Dt.

The next definition is crucial for this part of the paper.

Definition 4.1. Let H1, H2 be two (k, k)-cylinders with k-partition V1 ∪ . . . ∪ Vk,

and H2 ⊂ H1. We say that H2 is (ε, d, r)-regular with respect to H1 if the following

is true: whenever G1, . . . ,Gr are (k, k − 1)-cylinders with k-partition V1 ∪ . . . ∪ Vk

28
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such that ∣∣∣∣∣H1 ∩
r⋃
j=1

Kk(Gj)

∣∣∣∣∣ ≥ ε|H1|,

then

(d− ε)

∣∣∣∣∣H1 ∩
r⋃
j=1

Kk(Gj)

∣∣∣∣∣ ≤
∣∣∣∣∣H2 ∩

r⋃
j=1

Kk(Gj)

∣∣∣∣∣ ≤ (d+ ε)

∣∣∣∣∣H1 ∩
r⋃
j=1

Kk(Gj)

∣∣∣∣∣ . (4.1)

If H1 = K
(k)
k (V1, . . . , Vk), then we simply say that H2 is (ε, d, r)-regular or, if r = 1,

(ε, d)-regular.

Observe that for H1 = K
(k)
k (V1, . . . , Vk), this definition is equivalent to Defini-

tion 1.10 for G = K
(k−1)
k (V1, . . . , Vk), that is H2 is (ε, d, r)-regular with respect to the

complete (k, k − 1)-cylinder on V1 ∪ . . . ∪ Vk.

Note that if H2 is (ε, d, r)-regular with respect to H1, ε′ ≥ ε, and r′ ≤ r, then H2

is also (ε′, d, r′)-regular with respect to H1. We will use this observation many times

without mentioning it explicitly.

One can observe that if H2 is (ε, d, r)-regular with respect to H1, then

(d− ε)|H1| ≤ |H2| ≤ (d− ε)|H1|,

and, more generally, that:

Observation 4.2. Let H1 ⊃ H2 ⊃ . . . ⊃ Hl be (k, k)-cylinders such that Hi is

(εi, di, r)-regular with respect to Hi−1 for all i ∈ [l] \ {1}. Then

l∏
j=2

(dj − εj)× |H1| ≤ |Hk| ≤
l∏

j=2

(dj + εj)× |H1|. (4.2)

Moreover, if H1 is (ε1, d1)-regular and |V1| = . . . = |Vk| = m, then

l∏
j=1

(dj − εj)×mk ≤ |Hl| ≤
l∏

j=1

(dj + εj)×mk. (4.3)

We extend the above definition to the case of (s, k)-cylinders.
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Definition 4.3. Let r ∈ N and H1 ⊃ H2 two (s, k)-cylinders. We say that H2 is

(δ, d, r)-regular with respect to H1 if H2

[⋃
j∈I Vj

]
is (δ, d, r)-regular with respect to

H1

[⋃
j∈I Vj

]
for all I ∈ [s]k.

Armed with Definitions 4.1 and 4.3, we can present the statement of the l-graphs

lemma. First, we describe the scenario we are going to work with.

Setup A. Let G1, . . . ,Gl be (s, 2)-cylinders with s-partition V = V1 ∪ . . .∪ Vs, where

|V1| = . . . = |Vs| = m, and such that the following conditions are satisfied:

(i) Gi ⊂ Gi−1 for all i ∈ [l] \ {1},

(ii) 0 < εi � di < 1 for all i ∈ [l],

(iii) εi−1 < εi for all i ∈ [l] \ {1},

(iv) G1 is (ε1, d1)-regular and Gi is (εi, di, r)-regular with respect to Gi−1 for all

i ∈ [l] \ {1},

(v) r ≥ 2ε
1/2
l

∏l
j=1 d

−2
j = 2ε

1/2
l D−2

l .

We want to prove the following statement.

Lemma 4.4 (l-graphs lemma). Suppose that s = 3 and the above setup holds.

Then (
1− 4lε

1/64
l

)l
D3
l ≤ |K3(Gl)| ≤

(
1 + 4lε

1/64
l

)l
D3
l .

In the proof of the l-graphs Lemma, we will need the following technical obser-

vation.

Observation 4.5. Let X be a set and A1, . . . , At t of its arbitrary finite subsets.

Then ∣∣∣∣∣
t⋃
i=1

Ai

∣∣∣∣∣ ≥
t∑
i=1

|Ai| −
∑

1≤i<j≤t

|Ai ∩ Aj|. (4.4)
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Furthermore, if a×
(∑t

i=1 |Ai|
)
−
∑

1≤i<j≤t |Ai ∩ Aj| ≥ 0 for some a ∈ (0, 1), then∣∣∣∣∣
t⋃
i=1

Ai

∣∣∣∣∣ ≥ (1− a)
t∑
i=1

|Ai|. (4.5)

We split the proof of the l-graphs Lemma into two parts. In the first part, we

prove certain auxiliary statements which are then used in an actual proof given in

the second part.

4.2 Some facts about underlying 2-cylinders

To prove the above lemma, we will need three statements: the first two facts will

show that almost all vertices and almost all pairs of vertices in V1 have neighborhoods

of “approximately the same size” in every Gi. This can be viewed as an extension of

Fact 3.3 to the case of a series of (s, 2)-cylinders G1 ⊃ . . . ⊃ Gl.

The third claim will enable us to select a number of vertices from any sufficiently

large subset of V1 with the property that these vertices are involved in many triangles

of Gl. This claim will be then used to prove the l-graphs lemma. The proof of the

claim is based on the first two facts.

Definition 4.6. A vertex x ∈ V1 is called l-good if(
1− ε1/2

i

)i
Dim ≤ degGi,j(x) ≤

(
1 + ε

1/2
i

)i
Dim

for all i ∈ [l] and all j ∈ [s] \ {1}. We also denote by Vl−good the set of all l-good

vertices in V1. It is convinient to set V0−good = V1.

Observe that if x is l-good that it is also i-good for every i ∈ [l].

Fact 4.7. For every i ∈ [l], all but most 4(s−1)
(
ε

1/2
1 + . . .+ ε

1/2
i

)
m vertices x ∈ V1

satisfy (
1− ε1/2

i

)i
Dim ≤ degGi,j(x) ≤

(
1 + ε

1/2
i

)i
Dim (4.6)
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for all j ∈ [s] \ {1}.

Remark. Fact 4.7 can be rephrased as:

• all but at most 4(s− 1)
(
ε

1/2
1 + . . .+ ε

1/2
l

)
m vertices are l-good, or

• the size of V(i−1)−good \ Vi−good is bounded by 4(s− 1)ε
1/2
i m for every i ∈ [l].

Proof. As in Fact 3.3, we may assume that s = 2. We proceed by induction on l.

For l = 1, Fact 4.7 follows from Fact 3.3. Now we prove the induction step.

Let G1, . . . ,Gl+1 be (2, 2)-cylinders satisfying (i)-(iv). By the induction assump-

tion we know that inequality (4.6) holds for every i ∈ [l] and for all but at most

4
(
ε

1/2
1 + . . . ε

1/2
i

)
m vertices x ∈ V1. Our goal is to show that at most 4ε

1/2
l+1m of

these vertices do not satisfy(
1− ε1/2

l+1

)l+1

Dl+1m ≤ degGl+1
(x) ≤

(
1 + ε

1/2
l+1

)l+1

Dl+1m.

We recall that Dl+1 =
∏l+1

j=1 dj.

Denote by W the set of all vertices x ∈ Vl−good such that(
1 + ε

1/2
l+1

)l+1

Dl+1m < degGl+1
(x) = |NGl+1

(x)|. (4.7)

Suppose that |W | ≥ 2ε
1/2
l+1m. Since for every vertex x ∈ W we have degGl(x) ≥(

1− ε1/2
l

)l
Dlm, the number of edges eGl(W,V2) between W and V2 in Gl can be

bounded from below by:

eGl(W,V2) ≥ |W | ×
(

1− ε1/2
l

)l
Dlm ≥ 2ε

1/2
l+1m×

(
1− ε1/2

l

)l
Dlm

(ii)

≥ 2εl+1Dlm
2.

It follows from (4.3) and assumption (ii) that εl+1|Gl| ≤ εl+1 × 2Dlm
2 ≤ eGl(W,V2).
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Since Gl+1 is (εl+1, dl+1, r)-regular with respect to Gl, we obtain

eGl+1
(W,V2) ≤ (dl+1 + εl+1)eGl(W,V2)

(ii)

≤ dl+1

(
1 + ε

1/2
l+1

)
× |W | ×

(
1 + ε

1/2
l

)l
Dlm

(iii)

≤ |W | ×
(

1 + ε
1/2
l+1

)l+1

Dl+1m.

On the other hand, from (4.7) we obtain that

eGl+1
(W,V2) > |W | ×

(
1 + ε

1/2
l+1

)l+1

Dl+1m,

which is a contradiction. Hence, we have |W | < 2ε
1/2
l+1m. Similarly, if we replace (4.7)

with

degGl+1
(x) = |NGl+1

(x)| <
(

1− ε1/2
l+1

)l+1

Dl+1m,

we get |W | < 2ε
1/2
l+1m again. Consequently, the number of “bad” vertices is bounded

by 4ε
1/2
l+1m.

We will also classify the pairs of vertices {x, x′} according to their join neighbor-

hood.

Definition 4.8. A pair of vertices {x, x′} ⊂ V1 is called l-good if the following to

conditions are satisfied:

(i) x and x′ belong to Vl−good, and

(ii) (
1− ε1/8

i

)i
D2
im ≤ degGi,j(x, x

′) ≤
(

1 + ε
1/8
i

)i
D2
im (4.8)

for all i ∈ [l] and all j ∈ [s] \ {1}. We denote by Γl−good the set of all l-good pairs in

V1. It is also convenient to set Γ0−good = [V1]2.

Observe that Γl−good ⊂ Γ(l−1)−good ⊂ . . . ⊂ Γ1−good ⊂ Γ0−good.

Fact 4.9. For every i ∈ [l],
∣∣Γ(i−1)−good \ Γi−good

∣∣ ≤ (s− 1)
(

4ε
1/2
i + 8ε

1/8
i

)
m2.
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Remark. Fact 4.9 can be rephrased as all but at most (s−1)
∑l

i=1

(
4ε

1/2
i + 8ε

1/8
i

)
m2

pairs are l-good.

Proof. We may assume that s = 2 again. We proceed by induction on l. For l = 1

our assertion follows from Fact 3.3.

Before we prove the induction step, remind that G1, . . . ,Gl+1 are (2, 2)-cylinders

satisfying the conditions of Setup A.

Since ε
1/2
l dl ≤ ε

1/2
l ≤ ε

1/2
l+1, we have r ≥ ε

1/2
l+1D

−1
l ≥ ε

1/2
l D−1

l−1. Thus, by the induc-

tion assumption, we know that condition
∣∣Γ(i−1)−good \ Γi−good

∣∣ ≤ (4ε
1/2
i + 8ε

1/8
i

)
m2

holds for every i ∈ [l].

Our goal now is to show that
∣∣Γl−good \ Γ(l+1)−good

∣∣ ≤ (
4ε

1/2
l+1 + 8ε

1/8
l+1

)
m2. In

other words, for not more than 4ε
1/2
l+1m

2+8ε
1/8
l+1m

2 of pairs of vertices {x, x′} ∈ Γl−good,

either one of x, x′ is not (l + 1)-good, or {x, x′} does not satisfy(
1− ε1/8

l+1

)l+1

D2
l+1m ≤ degGl+1

(x, x′) ≤
(

1 + ε
1/8
l+1

)l+1

D2
l+1m. (4.9)

It follows from Fact 4.7 that Vl−good \ V(l+1)−good ≤ 4ε
1/2
l+1m, therefore, there are

at most 4ε
1/2
l+1m

2 pairs of l-good vertices that are not pairs of (l + 1)-good vertices.

For an (l+ 1)-good vertex x ∈ V(l+1)−good denote by Wx the set of all (l+ 1)-good

vertices x′ ∈ V(l+1)−good such that the pair {x, x′} satisfies (4.8) for every i ∈ [l] (i.e.

belongs to Γl−good) and

degGl+1
(x, x′) <

(
1− ε1/8

l+1

)l+1

D2
l+1m. (4.10)

Denote by X the set of all (l+ 1)-good vertices x ∈ V(l+1)good, such that for each

x ∈ X, |Wx| ≥ 3ε
1/8
l+1m. We will show that

|X| ≤ ε
1/32
l m. (4.11)

Then, for all but at most ε
1/32
l m vertices x ∈ V(l+1)−good, the size of Wx is

not bigger than 3ε
1/8
l+1m. So, there exist at most ε

1/32
l m × m + m × 3ε

1/8
l+1m ≤
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4ε
1/8
l+1m

2 pairs satisfying (4.10). Similarly, if we replace (4.10) with degGl+1
(x, x′) >(

1 + ε
1/8
l+1

)l+1

D2
l+1m, we obtain not more than 4ε

1/8
l+1m

2 other “bad” pairs.

Altogether, we showed that

∣∣Γl−good \ Γ(l+1)−good

∣∣ ≤ (4ε
1/2
l+1 + 8ε

1/8
l+1

)
m2.

We prove (4.11) by contradiction. Suppose that (4.11) is not true, that is |X| >

ε
1/32
l m.

For every i ∈ [l], define a graph Pi with vertex set V1 and edge set E(Pi) =

Γ(i−1)−good \ Γi−good. Observe that the size of Pi is bounded by 4ε
1/2
i m2 + 8ε

1/8
i m2 ≤

12ε
1/8
i m2. We apply the Picking Lemma on X with parameters σi = 12ε

1/8
i , t =

ε
1/2
l+1D

−1
l , c = ε

1/32
l , and obtain t vertices x1, . . . , xt ∈ X such that:

• all pairs {xu, xv}, 1 ≤ u < v ≤ t, belongs to Γ1−good, and

• all but 2lε
1/8
i t2ε

−1/16
l ≤ ε

1/16
i t2 pairs {xu, xv}, 1 ≤ u < v ≤ t, belongs to Γi−good.

Notice that condition (2.8) reduces to

2× 12ε
1/8
1 ×

(
ε

1/2
l+1D

−1
l

)
(
ε

1/16
l

)2 <
1

l
.

This inequality follows from the fact that ε1 � εi � di for all i ∈ [l], more formally,

24ε
1/8
1 εl+1D

−2
l

ε
1/16
l

(iii)
< ε

1/16
1 D−2

l

(iii)
<

l∏
j=1

ε
1/16l
j d−2

j

(ii)
<

l∏
j=1

ε
1/32l
j

(ii)
<

1

l
.

For j ∈ [t], let Bj = Wxj ∪ NGl+1
(xj) be a (2, 1)-cylinder. Notice that we have

degGl+1
(xj, x

′) <
(

1− ε1/8
l+1

)l+1

D2
l+1m for every x′ ∈ Wxj from assumption (4.10).

Therefore,∣∣∣∣∣Gl+1 ∩
t⋃

j=1

K2(Bj)

∣∣∣∣∣ ≤
t∑

j=1

|Gl+1 ∩ K2(Bj)| <
(

1− ε1/8
l+1

)l+1

mD2
l+1

t∑
j=1

|Wxj |. (4.12)
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We will show that∣∣∣∣∣Gl+1 ∩
t⋃

j=1

K2(Bj)

∣∣∣∣∣ ≤
t∑

j=1

|Gl+1 ∩ K2(Bj)| ≥
(

1− ε1/8
l+1

)l+1

mD2
l+1

t∑
j=1

|Wxj |, (4.13)

which will be clearly a contradiction to (4.12).

In order to show (4.13), we will prove the following statements:

S1
∑t

j=1 |G1 ∩ K2(Bu)| ≥ (d1 − ε1)×
∑t

j=1 |Wxj ||NGl+1
(xj)| ≥ ε

5/8
l+1d1dl+1m

2.

S2
∑

1≤u<v≤t |G1 ∩ K2(Bu ∩ Bv)| ≤ 2εl+1d1m
2.

S3
∣∣G1 ∩

⋃t
u=1K2(Bu)

∣∣ ≥ (1− ε1/4
l+1

)∑t
u=1 |G1 ∩ K2(Bu)|.

S4
∣∣∣Gl+1 ∩

⋃t
j=1K2(Bj)

∣∣∣ ≥ [∏l+1
j=2(dj − εj)

] ∣∣∣G1 ∩
⋃t
j=1K2(Bj)

∣∣∣.
Then the proof of (4.13) is straightforward: we combine S4, S3, and S1 in this order:∣∣∣∣∣Gl+1 ∩

t⋃
j=1

K2(Bj)

∣∣∣∣∣ S4

≥

[
l+1∏
j=2

(dj − εj)

] ∣∣∣∣∣G1 ∩
t⋃

j=1

K2(Bj)

∣∣∣∣∣
S3

≥
(

1− ε1/4
l+1

)[ l+1∏
j=2

(dj − εj)

]
t∑

u=1

|G1 ∩ K2(Bu)|

S1

≥
(

1− ε1/4
l+1

)l+1

Dl+1

t∑
j=1

|Wxj ||NGl+1
(xj)|.

(4.14)

Since every vertex xj is (l+ 1)-good, we have |NGl+1
(xj)| ≥

(
1− ε1/2

l+1

)l+1

Dl+1m and

(4.13) follows because εl+1 � 1.

Proof of S1: We use assumptions εi � di and (l + 1)-goodness of xj to conclude

that |K2(Bj)| = |Wxj ||NGl+1
(xj)| ≥ 3ε

1/8
l+1m ×

(
1− ε1/2

l+1

)l+1

Dl+1m ≥ ε1m
2. Since G1

is (ε1, d1)-regular, we get

|G1 ∩ K2(Bu)| ≥ (d1 − ε1)|Wxu ||NGl+1
(xu)|

≥ d1

(
1− ε1/2

1

)
× 2ε

1/8
l+1 ×

(
1 + ε

1/2
l+1

)l+1

Dl+1m
2

(ii)

≥ ε
1/8
l+1d1Dl+1m

2.
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Thus,
∑t

j=1 |G1 ∩ K2(Bj)| ≥ t× 2ε
1/8
l+1d1Dl+1m

2 ≥ ε
5/8
l+1d1dl+1m

2.

Proof of S2: For every j ∈ [l] denote by Ij the set of all pairs {u, v} ∈ [t]2 for

which {xu, xv} ∈ Γj−good. Then we know that I1 = [t]2 (all pairs belong here) and

|Ij−1 \ Ij| ≤ ε
1/16
j t2 for every j > 1.

Note that [t]2 = Il ∪
⋃l
j=2 (Ij−1 \ Ij), and therefore

∑
1≤u<v≤t

|G1 ∩ K2(Bu ∩ Bv)|

≤
∑
{u,v}∈Il

|G1 ∩ K2(Bu ∩ Bv)|+
l∑

j=2

∑
{u,v}∈Ij−1\Ij

|G1 ∩ K2(Bu ∩ Bv)|. (4.15)

Now we estimate the size of G1 ∩ K2(Bu ∩ Bv) for a pair {xu, xv} ∈ Ij. Note

that this means: |NGj(xu, xv)| ≤
(

1 + ε
1/8
j

)j
D2
jm (c.f. (4.10)). Since there is no

information about the size of Wxu ∩Wxv , we must distinguish two cases:

Case 1 Suppose |K2(Bu ∩ Bv)| = |Wxu ∩Wxv ||NGl+1
(xu, xv)| ≥ ε1m

2. Then, using

the (ε1, d1)-regularity of G1, we obtain

|G1 ∩ K2(Bu ∩ Bv)| ≤ (d1 + ε1)|Wxu ∩Wxv ||NGj(xu, xv)|

≤ (d1 + ε1)
(

1 + ε
1/8
j

)j
D2
jm×m ≤ 2d1D

2
jm

2.

Case 2 Suppose |Wxu ∩Wxv ||NGl+1
(xu, xv)| < ε1m

2. Then

|G1 ∩ K2(Bu ∩ Bv)| ≤ |Wxu ∩Wxv ||NGl+1
(xu, xv)| ≤ ε1m

2 ≤ 2d1D
2
jm

2.

In any case, |G1 ∩ K2(Bu ∩ Bv)| ≤ 2d1D
2
jm

2 holds for all pairs {u, v} ∈ Ij.

Now we use (4.15), I1 = [t]2, |Ij−1 \ Ij| ≤ ε
1/16
j t2, and the above observation to

conclude that

∑
1≤u<v≤t

|G1 ∩ K2(Bu ∩ Bv)| ≤
(
t

2

)
× 2d1D

2
lm

2 +
l∑

i=2

ε
1/16
i t2 × 2D2

i−1d1m
2.
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We further simplify the second term on the right-hand side:

l∑
i=2

2ε
1/16
i D2

i−1 =
l∑

i=2

2ε
1/16
i D2

l

l∏
j=i

d−2
j ≤ D2

l

l∑
i=2

2
l∏
j=i

ε
1/16(l−i+1)
j d−2

j ≤ D2
l . (4.16)

The last inequality in (4.16) follows from assumption εj � dj. Hence

∑
1≤u<v≤t

|G1 ∩ K2(Bu ∩ Bv)| ≤ t2 × d1D
2
lm

2 + t2 × d1D
2
lm

2 ≤ 2εl+1d1m
2.

Proof of S3: To show this statement, we employ the second part of Observation 4.5.

Indeed, it follows from S1 and S2 that:

ε
1/4
l+1 ×

t∑
u=1

|G1 ∩ K2(Bu)| −
∑

1≤u<v≤t

|G1 ∩ K2(Bu ∩ Bv)|

≥ ε
1/4
l+1 × ε

5/8
l+1d1dl+1m

2 − 2εl+1d1m
2 ≥ 0

since we may assume that dl+1 ≥ 2ε
1/8
l+1. Consequently, S3 follows from the second

part of Observation 4.5 applied with a = ε
1/4
l+1.

Proof of S4: We will show that for every i ∈ [l] the size of Gi∩
⋃t
j=1K2(Bj) is large

enough to apply the (εi+1, di+1, r)-regularity of Gi+1.

Observe first that the size of G1 ∩
⋃t
j=1K2(Bj) can be bounded using Observa-

tion 4.5 as follows:∣∣∣∣∣G1 ∩
t⋃

j=1

K2(Bj)

∣∣∣∣∣ ≥
t∑

j=1

|G1 ∩ K2(Bj)| −
∑

1≤u<v≤t

|G1 ∩ K2(Bu ∩ Bv)| .

Then we use S1 and S2 to insist that∣∣∣∣∣G1 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ ≥ ε
5/8
l+1d1dl+1m

2 − 2εl+1d1m
2

≥ 2εl+1d1m
2 > ε2|G1|.

(4.17)

The last inequality follows from the fact that |G1| ≤ (d1 + ε1)m2 ≤ 2d1m
2 and

ε2 � εl+1. Applying the (ε2, d2, r)-regularity of G2 with respect to G1 (recall that
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r ≥ ε
1/2
l+1D

−1
l = t) and ε2 � d2 < 1 yields∣∣∣∣∣G2 ∩

t⋃
u=1

K2(Bu)

∣∣∣∣∣ ≥ (d2 − ε2)

∣∣∣∣∣G1 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ (4.17)
> 2εl+1d1d2m

2.

We estimate the size of G2 using Observation 4.2: |G2| ≤ (d2 + ε2)|G1| ≤ 2d1d2m
2.

Thus, ε3|G2| ≤ ε3

∣∣G2 ∩
⋃t
u=1K2(Bu)

∣∣ (because ε3 ≤ εl+1).

Then the (ε3, d3, r)-regularity of G3 with respect to G2 implies that∣∣∣∣∣G3 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ ≥ (d3 − ε3)

∣∣∣∣∣G2 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ .
Repeating this argument l times (using (εi, di, r)-regularity of Gi with respect to Gi−1)

yields ∣∣∣∣∣Gl+1 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ ≥ (dl+1 − εl+1)

∣∣∣∣∣Gl ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣
≥

l+1∏
j=2

(dj − εj)×

∣∣∣∣∣G1 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ .

For the remaining part of this section, we restrict ourself to the case of 3-partite

graphs, i.e. s = 3.

Claim 4.10. Let s = 3. Then for any subset X ⊂ Vl−good, |X| > ε
1/32
l m, there exist

t = ε
1/2
l /D2

l vertices x1, . . . , xt ∈ X such that(
1− ε1/8

l

)l
tm2D3

l ≤

∣∣∣∣∣
t⋃

u=1

{xuyz : xuyz ∈ K3(Gl)}

∣∣∣∣∣ ≤ (1 + ε
1/8
l

)l
tm2D3

l . (4.18)

Proof. For every i ∈ [l], define a graph Pi with vertex set V1 and edge set

E(Pi) = Γ(i−1)−good \ Γi−good.

Fact 4.9 assures that
∣∣Γ(i−1)−good \ Γi−good

∣∣ ≤ 2
(

4ε
1/2
i + 8ε

1/8
i

)
m2 for every i ∈ [l].

Then, the size of Pi is bounded by
(

8ε
1/2
i + 16ε

1/8
i

)
m2 ≤ 24ε

1/8
i m2. We apply the
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Picking Lemma on X ⊂ Vl−good with parameters σi = 24ε
1/8
i , t = ε

1/2
l D−2

l , c = ε
1/32
l ,

and obtain t vertices x1, . . . , xt such that:

• every vertex xu, u ∈ [t] is l-good,

• all pairs {xu, xv}, 1 ≤ u < v ≤ t, belong to Γ1−good, and

• all but 2l × 24ε
1/8
i t2ε

−1/16
l ≤ 16ε

1/16
i t2 pairs {xu, xv}, 1 ≤ u < v ≤ t, belong to

Γi−good.

Moreover, note that condition (2.8) reduces to 2×24ε
1/8
1 ×

(
ε

1/2
l D−2

l

)2

/
(
ε

1/32
l

)2

<

1/l. This condition is satisfied since

2× 24ε
1/8
1 ×

(
ε

1/2
l D−2

l

)2

(
ε

1/32
l

)2 = 48ε
1/8
1 D−4

l ε
15/16
l < 48

l∏
j=1

ε
1/8l
j d−4

j <
1

l
.

The last inequality follows from assumption εj � dj.

For every xu, we will define a (2, 1) cylinder Bu = NGl,2(xu) ∪NGl,3(xu). We will

show that for every i ∈ [l − 1],
∣∣Gi ∩⋃t

u=1K2(Bu)
∣∣ is “big enough” to apply the

(εi+1, di+1, r)-regularity of Gi+1 with respect to Gi. Using this argument and some

estimates abot the size of G1 ∩
⋃t
u=1K2(Bu), we will conclude that Gl ∩

⋃t
u=1K2(Bu)

contains
(

1± ε1/8
l

)l
tm2D3

l edges. This will conclude the proof since∣∣∣∣∣Gl ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ =

∣∣∣∣∣
t⋃

u=1

{xuyz : xuyz ∈ K3(Gl)}

∣∣∣∣∣ . (4.19)

We will prove the following statements which, in combination with (4.19), will

produce (4.18):

S1 t×
(

1 + ε
1/2
l

)2l+1

d1D
2
lm

2 ≥
∑t

u=1 |G1 ∩ K2(Bu)| ≥ t×
(

1− ε1/2
l

)2l+1

d1D
2
lm

2.

S2
∑

1≤u<v≤t |G1 ∩ K2(Bu ∩ Bv)| ≤ 2t2d1D
4
lm

2.
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S3
∣∣G1 ∩

⋃t
u=1K2(Bu)

∣∣ ≥ (1− ε1/4
l

)∑t
u=1 |G1 ∩ K2(Bu)|.

S4
[∏l

j=2(dj + εj)
] ∣∣G1 ∩

⋃t
u=1K2(Bu)

∣∣ ≥ ∣∣Gl ∩⋃t
u=1K2(Bu)

∣∣, and∣∣Gl ∩⋃t
u=1K2(Bu)

∣∣ ≥ [∏l
j=2(dj − εj)

] ∣∣G1 ∩
⋃t
u=1K2(Bu)

∣∣ .
Then we get (4.18) almost right-away: to get the upper bound in (4.18), we combine

(4.19) with S1 and S4. Indeed,∣∣∣∣∣
t⋃

u=1

{xuyz : xuy ∈ K3(Gl)}

∣∣∣∣∣ (4.19)
=

∣∣∣∣∣Gl ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣
S4

≤
l∏

j=2

(dj + εj)×

∣∣∣∣∣G1 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣
≤

l∏
j=2

(dj + εj)×
t∑

u=1

|G1 ∩ K2(Bu)|

S1

≤
l∏

j=2

dj

(
1 + ε

1/2
j

)
× t× (1 + ε

1/2
l )2k+1d1D

2
lm

2

Setup A (ii),(iii)

≤
(

1 + ε
1/8
l

)l
D3
l tm

2.

The lower bound is done similarly: we combine (4.19) with S1, S3, and S4:∣∣∣∣∣
t⋃

u=1

{xuyz : xuy ∈ K3(Gl)}

∣∣∣∣∣ (4.19)
=

∣∣∣∣∣Gl ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣
S4

≥
l∏

j=2

(dj − εj)×

∣∣∣∣∣G1 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣
S3

≥
(

1− ε1/4
l

) l∏
j=2

(dj − εj)×
t∑

u=1

|G1 ∩ K2(Bu)|

S1

≥
l∏

j=1

dj

(
1− ε1/4

j

)
× t×

(
1− ε1/2

l

)2l+1

D2
lm

2

Setup A (ii),(iii)

≥
(

1− ε1/8
l

)l
D3
l tm

2.

Now we have to prove statements S1-S4. This will be very similar to Fact 4.9.
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Proof of S1: Observe first that since xj is l-good, it satisfies(
1− ε1/2

l

)l
Dlm ≤ degGl,2(xj), degGl,3(xj) ≤

(
1 + ε

1/2
l

)l
Dlm.

Therefore, we have |K2(Bj)| = |NGl,2(xj)||NGl,3(xj)| >
(

1− ε1/2
l

)2l

D2
lm

2 > ε1m
2

because of the assumption ε1 � εj � dj. Since G1 is (ε1, d1)-regular, we obtain

|G1 ∩ K2(Bj)| ≥ (d1 − ε1)|NGl,2(xj)||NGl,3(xj)| ≥ (d1 − ε1)
(

1− ε1/2
l

)2l

D2
lm

2

≥
(

1− ε1/2
l

)2l+1

d1D
2
lm

2.

Thus,
∑

j=1 |G1 ∩ K2(Bj)| ≥ t ×
(

1− ε1/2
l

)2l+1

d1D
2
lm

2. The upper bound follows

from |G1 ∩ K2(Bj)| ≤ (d1 + ε1)|NGl,2(xj)||NGl,3(xj)| in the same way.

Proof of S2: We borrow a large part from Fact 4.9. For every j ∈ [l] denote by

Ij the set of all pairs {u, v} ∈ [t]2 for which {xu, xv} ∈ Γj−good. Then we know that

I1 = [t]2 (all pairs belong here) and |Ij−1 \ Ij| ≤ 16ε
1/16
j t2 for every j > 1.

Note that [t]2 = Il ∪
⋃l
j=2 (Ij−1 \ Ij), and therefore

∑
1≤u<v≤t

|G1 ∩ K2(Bu ∩ Bv)|

≤
∑
{u,v}∈Il

|G1 ∩ K2(Bu ∩ Bv)|+
l∑

j=2

∑
{u,v}∈Ij−1\Ij

|G1 ∩ K2(Bu ∩ Bv)|. (4.20)

Now we estimate the size of G1 ∩K2(Bu ∩Bv) for a pair {xu, xv} ∈ Ij. Note that

this means that the pair {xu, xv} is j-good, that is,(
1− ε1/8

j

)j
D2
jm ≤ |NGj ,2(xu, xv)|, |NGj ,3(xu, xv)| ≤

(
1 + ε

1/8
j

)j
D2
jm

(c.f. Definition 4.8). Then we have

|NGj ,2(xu, xv)||NGj ,3(xu, xv)| ≥
(

1− ε1/8
j

)2j

D4
jm

2 ≥ ε1m
2,
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because of ε1 � εi � di. Consequently,

|G1 ∩ K2(Bu ∩ Bv)| ≤ (d1 + ε1)|NGj ,2(xu, xv)||NGj ,3(xu, xv)|

≤ (d1 + ε1)
(

1 + ε
1/8
j

)2

D4
jm

2 ≤ 2d1D
4
jm

2.

This is true for every {xu, xv} ∈ Ij and for all j ∈ [l].

Then, we use (4.20), the above estimate, I1 = [t]2, and |Ii−1 \ Ii| ≤ 16ε
1/16
i t2,

i > 1, to conclude that

∑
1≤u<v≤r

|G1 ∩ K2(Bu ∩ Bv)| ≤
(
t

2

)
× 2d1D

4
lm

2 +
l∑

i=2

16ε
1/16
i t2 × 2d1D

4
i−1m

2. (4.21)

We bound first the second term on the right-hand side in a similar way as in

Fact 4.9:

l∑
i=2

32ε
1/16
i D4

i−1 =
l∑

i=2

32ε
1/16
i D4

l

l∏
j=i

d−4
j ≤ D4

l

l∑
i=2

32
l∏
j=i

ε
1/16(l−i+1)
j d−4

j ≤ D4
l . (4.22)

Here we used again εj � dj. We combine (4.21) with (4.22) and obtain∑
1≤u<v≤r

|G1 ∩ K2(Bu ∩ Bv)| ≤ t2 × d1D
4
lm

2 + t2 × d1D
4
lm

2 = 2t2d1D
4
lm

2.

Proof of S3:

We use the second part of Observation 4.5, definition of t = ε
1/2
l D−2

l , S1, and S2.

Indeed, from S1 and S2 we have

ε
1/4
l ×

t∑
u=1

|G1 ∩ K2(Bu)| −
∑

1≤u<v≤t

|G1 ∩ K2(Bu ∩ Bv)|

≥ ε
1/4
l × t×

(
1− ε1/2

l

)2l+1

d1D
2
lm

2 − 2t2d1D
4
lm

2

≥ ε
1/4
l × ε

1/2
l

(
1− ε1/2

l

)2l+1

d1m
2 − 4εld1m

2 ≥ 0

since we may assume that
(

1− ε1/2
l

)2l+1

≥ 2ε
1/4
l . Using the second part of Obser-

vation 4.5 yields S3.
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Proof of S4: We combine Observation 4.5 with statements S1 and S2:∣∣∣∣∣G1 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ ≥ t×
(

1− ε1/2
l

)2k+1

d1D
2
lm

2 − 2t2d1D
4
lm

2.

It is easy to observe that |G1| ≤ (d1 + ε1)m2 ≤ 2d1m
2. We recall that t = ε

1/2
l D−2

l to

get the following:∣∣∣∣∣G1 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ ≥ 2ε
1/2
l

(
1− ε1/2

l

)2l+1

d1m
2 − 8εld1m

2

> 2εld1m
2 ≥ ε2|G1|.

(4.23)

Since G2 is (ε2, d2, r)-regular with respect to G1 and r ≥ t, we obtain that∣∣∣∣∣G2 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ ≥ (d2 − ε2)

∣∣∣∣∣G1 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣
> (d2 − ε2)2εld1m

2 > ε3|G2|.

The last inequality follows from the observation that 2εl

(
1− ε1/2

2

)
d1d2m

2 > ε3|G2|

(c.f. Fact 4.9). Moreover, since G3 is (ε3, d3, r)-regular with respect to G2, we have∣∣∣∣∣G3 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ ≥ (d3 − ε3)

∣∣∣∣∣G2 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ .
We repeat this process l times and after the last step, where we use the (εl, dl, r)-

regularity of Gl with respect to Gl−1, we get:∣∣∣∣∣Gl ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ ≥
l∏

j=2

(dj − εj)×

∣∣∣∣∣G1 ∩
t⋃

u=1

K2(Bu)

∣∣∣∣∣ . (4.24)

The upper bound in S4 is proved in the same way.

4.3 The proof of the l-graphs Lemma

In this proof, our main tool will be Claim 4.10.
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Proof. For each i = l, l− 1, . . . , 1, 0, we will define recursively sets Xf
i and X l

i by the

following algorithm:

Step 0 Set Xl = Xf
l = Vl−good and i = l.

Step 1 As long as |Xi| > ε
1/32
i m, apply Claim 4.10 on Xi (with (3, 2)-cylinders

G1, . . . ,Gi) and obtain t = ti (we put index i here to stress the dependence of

t on the number of 2-cylinders) vertices x1, . . . , xti with the property that

(
1− ε1/8

i

)i
D3
i tim

2 ≤

∣∣∣∣∣
ti⋃
u=1

{xuyz|xuyz ∈ K3(Gi)}

∣∣∣∣∣ ≤ (1 + ε
1/8
i

)i
D3
i tim

2.

(4.25)

We remove these vertices from Xi and repeat Step 1 again. This can bee done

as long as |Xi| > ε
1/32
i m (c.f. Claim 4.10).

Step 2 When |Xi| ≤ ε
1/32
i m (that is when we cannot apply Claim 4.10 on Xi any-

more), we set

X l
i = Xi,

Xf
i−1 = X l

i ∪
(
V(i−1)−good \ Vi−good

)
. (4.26)

If i > 1, we decrease i by 1 and go to Step 1, otherwise we set Y0 = ∅ and stop

the algorithm.

Note that during Step 1 we changed the set Xi from Xf
i to X l

i . We will prove the

following statements:

S1 For every i ∈ [l], both sets Xf
i and X l

i are subsets of Vi−good and V1 =
⋃l
i=0 X

f
i .

S2 For every i ∈ [l], |X l
i | ≤ ε

1/32
i m.

S3 For every i ∈ [l], |Xf
i−1| ≤

(
ε

1/32
i + 8ε

1/2
i

)
m.
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S4
(

1− 8lε
1/2
l

)
m ≤ |Xf

l | ≤ m.

S5 For every i ∈ [l − 1], vertices selected from Xi in Step 1 form at most |Xf
i | ×(

1 + ε
1/8
i

)i
D3
im

2 copies of K3 in Gi ⊃ Gl and vertices from Xf
0 form at most

|Xf
0 | ×m2 copies of K3 in Gl.

S6 The number of copies of K3 in Gl produced by vertices selected from Xl is between(
|Xf

l | − ε
1/32
l m

)
×
(

1− ε1/8
l

)l
D3
lm

2 and |Xf
l | ×

(
1 + ε

1/8
l

)l
D3
lm

2.

The statement of the l-graphs Lemma then follows easily. Notice that by S1, the

algorithm can always execute Step 1 (we need Xf
i to be a subset of Vi−good to be able

to apply Claim 4.10).

First we show the lower bound. The total number of K3 in Gl is not bigger then

the number of K3 in Gl produced by vertices selected from Xl. By S6, this means

that |K3(Gl)| ≥
(
|Xf

l | − ε
1/32
l m

)
×
(

1− ε1/8
l

)l
D3
lm

2. Moreover, we have from S4

that
(

1− 8lε
1/2
l

)
m ≤ |Xf

l |, and, therefore:

|K3(Gl)| ≥
(

1− 8lε
1/2
l − ε

1/32
l

)
m×

(
1− ε1/8

l

)l
D3
lm

2 ≥
(

1− 4lε
1/64
l

)l
D3
lm

3.

In order to get the upper bound, we must estimate the number of K3 produced

by vertices in Xi for i = 0, . . . , l. Combining S4 and S6 we have that vertices selected

from Xl are in at most |Xf
l | ×

(
1 + ε

1/8
l

)l
D3
lm

2 ≤
(

1 + ε
1/8
l

)l
D3
lm

3 copies of K3.

Similarly, for i = 0, 1, . . . , l − 1, we estimate the contribution of vertices se-

lected from Xi using S3 and S5. Vertices selected from Xf
i are in at most |Xf

i | ×(
1 + ε

1/8
i

)i
D3
im

2 ≤
(
ε

1/32
i+1 + 8ε

1/2
i+1

)
m ×

(
1 + ε

1/8
i

)i
D3
im

2 ≤ 2ε
1/32
i+1 D

3
im

3 copies of

K3 in Gi ⊃ Gl. Here we set D0 = 1 and G0 = K(V1, V2, V3) (the complete 3-partite

graph). Since V1 =
⋃l
i=0 X

f
i (c.f. S1), we obtain

|K3(Gl)| ≤
(

1 + ε
1/8
l

)l
D3
lm

3 +
l−1∑
i=0

2ε
1/32
i+1 D

3
im

3.
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We estimate the second term on the right-hand side in the following way:

l−1∑
i=0

2ε
1/32
i+1 D

3
im

3 = D3
lm

3 ×
l∑

i=1

2ε
1/32
i

l∏
j=i

d−3
j

= D3
lm

3 ×
l∑

i=1

2
l∏
j=i

ε
1/32(l−i+1)
i d−3

j

SetupA (iii)

≤ D3
lm

3 ×
l∑

i=1

2
l∏
j=i

ε
1/32(l−i+1)
j d−3

j

(ii)

≤ D3
lm

3 ×
l∑

i=1

ε
1/64
l ≤ lε

1/64
l D3

lm
3

since ε
1/32(l−i+1)
j d−3

j can be made less than ε
1/64
j by assumption εj � dj. Then,

|K3(Gl)| ≤
(

1 + ε
1/8
l

)l
D3
lm

3 + lε
1/64
l D3

lm
3 ≤

(
1 + 4lε

1/64
l

)l
D3
lm

3.

Thus, it remains to prove statements S1-S6.

Proof of S1: We proceed by induction. From construction we have that X l
i is

a subset of Xf
i , hence we must show Xf

i ⊂ Vi−good. For i = l it is obvious (see

Step 0). Assume that X l
i ⊂ Xf

i ⊂ Vi−good for some i ∈ [l]. Since Vi−good ⊂ V(i−1)−good

and Xf
i−1 = X l

i∪
(
V(i−1)−good \ Vi−good

)
, we immediately have that Xf

i−1 ⊂ V(i−1)−good.

V1 =
⋃l
i=0 X

f
i follows from the definition of Xf

i . Inclusion V1 ⊃
⋃l
i=0 X

f
i is trivial.

On the other hand, Xf
l = Vl−good and Xf

i ⊃ Vi−good \V(i+1)−good for i = 0, 1, . . . , l−1.

Hence, V1 = Vl−good ∪
(⋃l−1

i=0 Vi−good \ V(i+1)−good

)
⊂
⋃l
i=0 X

f
i .

Proof of S2: This trivially follows from Step 2.

Proof of S3: By Fact 4.7, we have |V(i−1)−good \ Vi−good| ≤ 8ε
1/2
i and by S2

|X l
i | ≤ ε

1/32
i m holds. Since Xf

i−1 = X l
i ∪
(
V(i−1)−good \ Vi−good

)
, statement S3 fol-

lows immediately.

Proof of S4: Clearly |Xf
l | ≤ |V1| ≤ m. On the other hand, it follows from Fact 4.7

that

|Xf
l | = |Vl−good| ≥

(
1− 8

(
ε

1/2
1 + . . .+ ε

1/2
l

))
m

SetupA (iii)

≥
(

1− 8lε
1/2
l

)
m
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Proof of S5: We can repeat Step 1 for Xi at most |Xf
i | × t−1

i times. For i > 0,

every ti-touple selected from Xi forms at most
(

1 + ε
1/8
l

)i
D3
i tim

2 copies of K3 in Gi,

therefore, Step 1 for Xi gives at most

|Xf
i | × t−1

i ×
(

1 + ε
1/8
l

)i
D3
i tim

2 = |Xf
i |
(

1 + ε
1/8
i

)i
D3
im

2

triangles in Gi.

For i = 0, each vertex in Xf
0 is in at most m2 triangles, therefore, these vertices

contribute with at most |Xf
0 | ×m2 triangles.

Proof of S6: From the assumptions of Claim 4.10 we know we can repeat Step 1

for Xl as long as |Xl| > ε
1/32
l m, i.e. at least

(
|Xf

l | − ε
1/32
l m

)
× t−1

l times and at most

|Xf
l | × t

−1
l times. Each time we obtain at least

(
1− ε1/8

l

)l
D3
l tlm

2 triangles in Gl.

Thus, in Step 1, vertices selected from Xl produce at least(
|Xf

l | − ε
1/32
l m

)
× t−1

l ×
(

1− ε1/8
l

)l
D3
l tlm

2 =
(

1− ε1/8
l

)l
D3
lm

3

copies of K3.

On the other hand, every tl-touple forms at most
(

1 + ε
1/8
l

)l
D3
l tlm

2 copies of

K3, therefore, Step 1 for Xl gives at most

|Xf
l | × t

−1
l ×

(
1 + ε

1/8
l

)l
D3
l tlm

2 = |Xf
l |
(

1 + ε
1/8
l

)l
D3
lm

2

triangles in Gl.

We will often use two special cases of l-graphs Lemma - for l = 2 and l = 3,

therefore, we state them as two separate lemmas.

Lemma 4.11 (2-graphs lemma). Suppose that ε1 � ε2, d1, d2 are positive real

numbers such that ε1 � d1, ε2 � d2. If

(i) V = V1 ∪ V2 ∪ V3 is a partition with |V1| = |V2| = |V3| = m,



49

(ii) G1 = (V,E(G1)) is a (3, 2)-cylinder that is (ε1, d1)-regular,

(iii) G2 = (V,E(G2)) is a (3, 2)-cylinder that is (ε2, d2, r)-regular with respect to G1,

and

(iv) r ≥ ε
1/2
2 d−2

1 ,

then (
1− 8ε

1/64
2

)2

d3
1d

3
2m

3 ≤ |K3(G2)| ≤
(

1 + 8ε
1/64
2

)2

d3
1d

3
2m

3.

Lemma 4.12 (3-graphs lemma). Suppose that ε1 � ε2 � ε3, d1, d2, and d3 are

positive real numbers such that ε1 � d1, ε2 � d2, ε3 � d3. If

(i) V = V1 ∪ V2 ∪ V3 is a partition with |V1| = |V2| = |V3| = m,

(ii) G1 = (V,E(G1)) is a (3, 2)-cylinder that is (ε1, d1)-regular,

(iii) G2 = (V,E(G2)) is a (3, 2)-cylinder that is (ε2, d2, r)-regular with respect to G1,

(iv) G3 = (V,E(G1)) is (3, 2)-cylinder that is (ε3, d3, r)-regular with respect to G2,

and

(v) r ≥ ε
1/2
3 (d1d2)−2,

then (
1− 12ε

1/64
3

)3

d3
1d

3
2d

3
3m

3 ≤ |K3(G3)| ≤
(

1 + 12ε
1/64
3

)3

d3
1d

3
2d

3
3m

3.



Chapter 5

Properties of 3-cylinders

In this section, we investigate link properties of a regular (s, 3)-cylinder H. We also

prove Propositions 2.4 and 2.5.

5.1 Properties of links in the neighborhood of a

single vertex

In a regular (s, 2)-cylinder G, all good vertices have the property that their neigh-

borhoods have almost the same size. Fact 3.4 shows that the restriction of G to such

a neighborhood is regular as well. Moreover, we know that almost all vertices in V1

are good.

In this sub-section, we show that if G underlies a regular (s, 3)-cylinder H, then

for almost all good vertices x ∈ V1, the link H(x) and the restriction of H to the

neighborhood of x “inherits” regularity. We consider the following scenario:

Setup B. Let 0 < ε2 � d2 ≤ 1 and 0 < ε3 � d3 ≤ 1 be real numbers so that ε2 � ε3.

Let V = V1 ∪ . . . ∪ Vs be a partition, where |V1| = . . . = |Vs| = m, G = (V,E(G)) be

an (s, 2)-cylinder that is (ε2, d2)-regular, and let H = (V,E(H)) be an (s, 3)-cylinder

50
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which is (ε3, d3, r)-regular with respect to G.

The next claim shows that the link H(x) is (2ε
1/2
3 , d3, r)-regular for almost all

good vertices x.

Claim 5.1. The link H(x) is (2ε
1/2
3 , d3, r)-regular with respect to G[G(x)] for all but

at most 4
(
s−1

2

)
ε

1/2
3 m vertices x ∈ Vgood.

Proof. We may assume s = 3 since the validity of this special statement applied

simultaneously to subcylinders of G and H induced on V1 ∪ Vi ∪ Vj, 1 < i < j ≤ s

yields the general result. Thus, G can be written as G = G1̂ ∪ G2̂ ∪ G3̂.

Suppose that one can find t = 2ε
1/2
3 m vertices x1, . . . , xt ∈ Vgood such that for

every u ∈ [t] the link H(xu) is irregular. Moreover, assume that for every xu the first

part of inequality (4.1) does not hold, i.e. there exist (2, 1)-cylinders Bju = Yju∪Wju,

where Yju ⊂ G(xu) ∩ V2, Wju ⊂ G(xu) ∩ V3, j ∈ [r], such that∣∣∣∣∣G[G(xu)] ∩
r⋃
j=1

K2(Bju)

∣∣∣∣∣ ≥ 2ε
1/2
3 |G[G(xu)]|, (5.1)

but ∣∣∣∣∣H(xu) ∩
r⋃
j=1

K2(Bju)

∣∣∣∣∣ < (d3 − 2ε
1/2
3

) ∣∣∣∣∣G[G(xu)] ∩
r⋃
j=1

K2(Bju)

∣∣∣∣∣ . (5.2)

Observe that since xu is a good vertex, by the (ε
1/2
2 , d2)-regularity of G[G(xu)], we

have

|G[G(xu)]| ≥
(
d2 − ε1/2

2

)
|N2(xu)||N3(xu)| ≥

(
d2 − ε1/2

2

)3

m2. (5.3)

For every j ∈ [r] define a (3, 2)-cylinder Qj = Qj1̂ ∪Qj2̂ ∪Qj3̂ by

Qj1̂ = G1̂,

Qj2̂ =
t⋃

u=1

{xuy : y ∈ Wju}, and

Qj3̂ =
t⋃

u=1

{xuy : y ∈ Yju}.
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Then we can estimate the size of
⋃r
j=1K3(Qj) as follows:∣∣∣∣∣

r⋃
j=1

K3(Qj)

∣∣∣∣∣ =
t∑

u=1

∣∣∣∣∣G[G(xu)] ∩
r⋃
j=1

K2(Bju)

∣∣∣∣∣ (5.1)

≥ t× 2ε
1/2
3 ×

(
d2 − ε1/2

2

)3

m2

≥ 4ε3

(
1− ε1/4

2

)3

d3
2m

3 ≥ ε3|K3(G)|.

The last inequality follows from Corollary 3.6:

ε3 |K3(G)| ≤ ε3 ×
5

4
d3

2m
3 ≤ 4ε3

(
1− ε1/2

2

)3

d3
2m

3.

Thus, the (ε3, d3, r)-regularity of H with respect to G implies that∣∣∣∣∣H ∩
r⋃
j=1

K3(Qj)

∣∣∣∣∣ ≥ (d3 − ε3)

∣∣∣∣∣
r⋃
j=1

K3(Qj)

∣∣∣∣∣
= (d3 − ε3)

t∑
u=1

∣∣∣∣∣G[G(xu)] ∩
r⋃
j=1

K2(Bju)

∣∣∣∣∣ .
(5.4)

On the other hand, every xu is contained in
∣∣∣H(xu) ∩

⋃r
j=1K2(Bju)

∣∣∣ triples (this

follows from the definition of Qj). We use (5.2) to conclude that∣∣∣∣∣H ∩
r⋃
j=1

K3(Qj)

∣∣∣∣∣ =
t∑

u=1

∣∣∣∣∣H(xu) ∩
r⋃
j=1

K2(Bju)

∣∣∣∣∣
(5.2)
<
(
d3 − 2ε

1/2
3

) t∑
u=1

∣∣∣∣∣G[G(xu)] ∩
r⋃
j=1

K2(Bju)

∣∣∣∣∣ .
(5.5)

Comparing (5.4) with (5.5) we get a contradiction. Thus, there are at most 2ε
1/2
3 m

vertices satisfying (5.1) and (5.2).

The case when the second part of inequality (4.1) is not true, i.e. (5.2) is replaced

by
∣∣∣H(xu) ∩

⋃r
j=1K2(Bju)

∣∣∣ > (d3 + 2ε
1/2
3

) ∣∣∣⋃r
j=1K2(Bju)

∣∣∣ , is handled similarly.

Claim 5.2. Let t = ε
1/2
3 d−3

2 and r′ = r/t. Then (s−1, 3)-cylinder H is (2ε
1/4
3 , d3, r

′)-

regular with respect to G[G(x)] for all but at most 2
(
s−1

3

)
ε

1/16
2 m vertices x ∈ Vgood.
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Proof. We may assume s = 4 for a similar reason as in Claim 5.1. Denote by W

the set of all vertices x ∈ Vgood for which H is not (2ε
1/4
3 , d3, r

′)-regular with respect

to G[G(x)] and the first part of inequality (1.1) in Definition 1.10 is not satisfied.

Moreover, suppose that |W | ≥ ε
1/16
2 m.

We define an auxiliary graph Γ = (V,E) where a pair of vertices {x, x′} ⊂ V form

an edge if the pair {x, x′} is not good. It follows from Observations 3.8 and 3.12

applied with s = 4 that |E| ≤ 66ε
1/4
2 m2.

Using the Picking Lemma with parameters k = 1, σ1 = 66ε
1/4
2 , c = ε

1/16
2 , and

t = ε
1/2
3 d−3

2 , one can choose t vertices x1, . . . , xt ∈ W , such that all pairs {xu, xv},

1 ≤ u < v ≤ t, are good, as long as

2× 66ε
1/4
2 ×

(
ε

1/2
3 d−3

2

)2

(
ε

1/16
2

)2 < 1.

This condition is satisfied since

2× 66ε
1/4
2 ×

(
ε

1/2
3 d−3

2

)2

(
ε

1/16
2

)2 = 132ε
1/8
2 ε3d

−6
2 < 132ε

1/8
2 d−6

2 < 1.

The last inequality follows from 0 < ε2 � d2 and ε3 < 1.

The set W contains precisely those vertices x for which the link H(x) does not

satisfy the first part of inequality (1.1). Thus, for every xu there exist r′ (3, 2)-

cylinders Bju ⊂ G[G(xu)], j ∈ [r′], so that∣∣∣∣∣
r′⋃
j=1

K3(Bju)

∣∣∣∣∣ ≥ 2ε
1/4
3 |K3(G[G(xu)])|, (5.6)

but ∣∣∣∣∣H ∩
r′⋃
j=1

K3(Bju)

∣∣∣∣∣ ≤ (d3 − 2ε
1/4
3

) ∣∣∣∣∣
r′⋃
j=1

K3(Bju)

∣∣∣∣∣ . (5.7)
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We find a lower bound on the size of
⋃t
u=1

⋃r′

j=1K3(Bju) using Observation 4.5:∣∣∣∣∣
t⋃

u=1

r′⋃
j=1

K3(Bju)

∣∣∣∣∣ ≥
t∑

u=1

∣∣∣∣∣
r′⋃
j=1

K3(Bju)

∣∣∣∣∣− ∑
1≤u<v≤t

∣∣∣∣∣
r′⋃
i=1

K3(Biu) ∩
r′⋃
j=1

K3(Bjv)

∣∣∣∣∣ .
Now we estimate both terms on the right size. To do this, notice that G[G(xu)] is

(ε
1/2
2 , d2)-regular (because xu is a good vertex) for all vertices xu and so, by Corol-

lary 3.6, we have

3

4
d3

2 × (d2 − ε2)3m3 ≤ |K3(G[G(xu)])| ≤
5

4
d3

2 × (d2 + ε2)3m3.

This can be further simplified as

1

2
d6

2m
3 ≤ |K3(G[G(xu)])| ≤ 2d6

2m
3. (5.8)

Hence, we can estimate
∑t

u=1

∣∣∣⋃r′

j=1K3(Bju)
∣∣∣ as follows:

t∑
u=1

∣∣∣∣∣
r′⋃
j=1

K3(Bju)

∣∣∣∣∣ (5.6)

≥
t∑

u=1

2ε
1/4
3 |K3(G[G(xu)])|

(5.8)

≥ t× 2ε
1/4
3 × 1

2
d6

2m
3 ≥ ε

3/4
3 d3

2m
3.

In order to estimate the second term
∑

1≤u<v≤t

∣∣∣⋃r′

i=1K3(Biu) ∩
⋃r′

j=1K3(Bjv)
∣∣∣, we

observe two facts:

• we have
⋃r′

i=1K3(Biu) ∩
⋃r′

j=1K3(Bjv) ⊂ K3(G[G(xu, xv)]) because Biu ∩ Bjv ⊂

G[G(xu, xv)], and

• G[G(xu, xv)] is (ε
1/2
2 , d2)-regular for all pairs {xu, xv} (because {xu, xv} is a good

pair).

Thus, using Fact 3.6, we have |K3(G[G(xu, xv)])| ≤ 2d9
2m

3 (c.f. (5.8)) and, therefore,

the second term can be bounded in the following way:

∑
1≤u<v≤t

∣∣∣∣∣
r′⋃
i=1

K3(Biu) ∩
r′⋃
j=1

K3(Bjv)

∣∣∣∣∣ ≤
(
t

2

)
× 2d9

2m
3 ≤ t2 × d9

2m
3 = ε3d

3
2m

3.
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Consequently, ∣∣∣∣∣
t⋃

u=1

r′⋃
j=1

K3(Bju)

∣∣∣∣∣ ≥ ε
3/4
3 d3

2m
3 − ε3d

3
2m

3 ≥ 2ε3d
3
2m

3. (5.9)

It follows from Fact 3.6 that the size of K3(G1̂) is bounded by 2d3
2m

3 provided that

ε2 is sufficiently small. Hence, we get∣∣∣∣∣
t⋃

u=1

r′⋃
j=1

K3(Bju)

∣∣∣∣∣ ≥ 2ε3d
3
2m

3 ≥ ε3|K3(G1̂)|.

We apply the regularity of H with respect to G (note that r ≥ t× r′) to obtain∣∣∣∣∣H ∩
t⋃

u=1

r′⋃
j=1

K3(Bju)

∣∣∣∣∣ ≥ (d3 − ε3)

∣∣∣∣∣
t⋃

u=1

r′⋃
j=1

K3(Bju)

∣∣∣∣∣ .
Moreover, one can see (c.f. (5.9)) that

ε
1/4
3

t∑
u=1

∣∣∣∣∣
r′⋃
j=1

K3(Bju)

∣∣∣∣∣− ∑
1≤u<v≤t

∣∣∣∣∣
r′⋃
i=1

K3(Biu) ∩
r′⋃
j=1

K3(Bjv)

∣∣∣∣∣
≥ ε

1/4
3 × ε3/4

3 d3
2m

3 − ε3d
3
2m

3 = 0.

Therefore, the second part of Observation 4.5 yields∣∣∣∣∣H ∩
t⋃

u=1

r′⋃
j=1

K3(Bju)

∣∣∣∣∣ ≥ (d3 − ε3)
(

1− ε1/4
3

) t∑
u=1

∣∣∣∣∣
r′⋃
j=1

K3(Bju)

∣∣∣∣∣ . (5.10)

On the other hand, it follows from the assumption (5.7) that:∣∣∣∣∣H ∩
t⋃

u=1

r′⋃
j=1

K3(Bju)

∣∣∣∣∣ ≤
t∑

u=1

∣∣∣∣∣H ∩
r′⋃
j=1

K3(Bju)

∣∣∣∣∣ ≤ (d3 − 2ε
1/4
3

) t∑
u=1

∣∣∣∣∣
r′⋃
j=1

K3(Bju)

∣∣∣∣∣ .
This is a contradiction to (5.10) since (d3−ε3)

(
1− ε1/4

3

)
> d3−ε1/4

3 −ε1/2 > d3−2ε
1/4
3 .

Hence, |W | < ε
1/16
2 m.
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Similarly, if we consider the set W of all vertices for which the second part of

inequality (4.1) does not hold, i.e. we replace (5.7) with∣∣∣∣∣H ∩
r′⋃
j=1

K3(Bju)

∣∣∣∣∣ ≥ (d3 + 2ε
1/4
3

) ∣∣∣∣∣
r′⋃
j=1

K3(Bju)

∣∣∣∣∣ ,
we obtain |W | < ε

1/16
2 m again.

Definition 5.3 (nice vertex). A vertex x ∈ Vgood is called nice if it satisfies the

following conditions:

(i) H(x) is (2ε
1/2
3 , d3, r)-regular with respect to G[G(x)]

(ii) H is (2ε
1/4
3 , d3, r/

(
ε

1/2
3 d−3

2

)
)-regular with respect to G[G(x)].

We denote by Vnice the set of all nice vertices in V1.

The two previous claims imply the following observation:

Observation 5.4. All but 4
(
s−1

3

)
ε

1/2
3 m+ 2

(
s−1

2

)
ε

1/16
2 m good vertices are nice, i.e.

|Vnice| ≥ |Vgood| − 4

(
s− 1

3

)
ε

1/2
3 m− 2

(
s− 1

2

)
ε

1/16
2 m.

Remark. Based on the above claims we can conclude that for all nice vertices x ∈

Vnice:

• (4, 2)-cylinder H(3)(x) is regular with respect to H(2)[H(2)(x)], and

• (4, 3)-cylinder H(3) is regular with respect to H(2)[H(2)(x)].

Furthermore, the goodness of x implies:

• (4, 2)-cylinder H(2)[H(2)(x)] is regular.
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This situation resembles the set-up of Theorem 1.13 and therefore it is tempting to try

to prove Proposition 2.4 (i.e. bounds on K4(H(3)∩K3(H(3)(x)))) using this theorem.

However, Theorem 1.13 can only count copies of K
(3)
4 in the restriction H(3)[H(2)(x)]

because it considers only a (4, 3)-cylinder underlied by one sparse (4, 2)-cylinder. In

our case, we have two underlying (4, 2)-cylinders instead. To overcome this difficulty,

we reach into the original proof [FR00] and together with the 2-graphs lemma we

prove the lower and upper bounds (2.5). This is done in the next section.

5.2 Counting

This section provides some technical facts necessary in sections 5.3 and 5.4. We

consider the following scenario:

Setup C. Let 0 < ε2 � d2 ≤ 1, 0 < ε3 � d3 ≤ 1, and 0 < ε3 � d̃3 ≤ 1

be real numbers so that ε2 � ε3. Let V = V1 ∪ . . . ∪ Vs be a partition, where

|V1| = . . . = |Vs| = m, G2 = (V,E(G2)) be an (s, 2)-cylinder that is (ε2, d2)-regular,

G3 = (V,E(G3)) be an (s, 2)-cylinder that is (ε3, d̃3, r)-regular with respect to G2, and

let H = (V,E(H)) be an (s, 3)-cylinder which is (ε3, d3, r)-regular with respect to G2.

We start with an easy consequence of Claim 5.2:

Corollary 5.5. Let t = ε
1/2
3 d−3

2 and r′ = r/t. Then H is (2ε
1/4
3 , d3, r

′)-regular with

respect to G2[G2(x)] for all but at most 2
(
s−1

3

)
ε

1/16
2 m vertices x ∈ Vgood.

Remark. Observe that in the proof we do not need edges of H which contain a vertex

from V1. Therefore, the Claim 5.5 remains true if H is a (s − 1, 3)-cylinder defined

on V2 ∪ . . . ∪ Vs that is (ε3, d3, r)-regular with respect to G21̂.

Now we prove that G3 is regular in the neighborhood G2(x) for almost all ver-

tices x.
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Claim 5.6. Let t = ε
1/2
3 d−2

2 and r′ = r/t. Then, (s − 1, 2)-cylinder G3[G2(x)] is

(2ε
1/4
3 , d̃3, r

′)-regular with respect to G2[G2(x)] for all but at most 2
(
s−1

2

)
ε

1/8
2 m good

vertices x ∈ Vgood.

Proof. Consider the case s = 3. Suppose there exists a set of good vertices W ⊂

Vgood, |W | ≥ ε
1/8
2 m, such that for every x ∈ W , G3[G2(x)] is not (2ε

1/4
3 , d̃3, r

′)-regular

with respect to G2[G2(x)]. Moreover, assume that the first part of inequality (4.1)

is not satisfied, i.e. there exist (2, 1)-cylinders Bj = Yj ∪ Zj, Yj ⊂ G2(x) ∩ V2,

Zj ⊂ G2(x) ∩ V3, j ∈ [r′], such that∣∣∣∣∣G2[G2(x)] ∩
r′⋃
j=1

K2(Bj)

∣∣∣∣∣ ≥ 2ε
1/4
3 |G2[G2(x)]|, (5.11)

but ∣∣∣∣∣G3[G2(x)] ∩
r′⋃
j=1

K2(Bj)

∣∣∣∣∣ < (d̃3 − 2ε
1/4
3

) ∣∣∣∣∣G2[G2(x)] ∩
r′⋃
j=1

K2(Bj)

∣∣∣∣∣ . (5.12)

We define an auxiliary graph Γ = (V1, E) where a pair of vertices {x, x′} is an edge

if either (d2 − ε2)2m > degj(x, x
′) or (d2 + ε2)2m < degj(x, x

′) for j = 2 or j = 3.

Since G2 is (ε2, d2)-regular, by Fact 3.3 applied with k = 2, s = 3, and δ = ε2,

the size of E is bounded by 8ε
1/2
2 m2. Using the Picking Lemma with σ1 = 8ε

1/2
2 ,

c = ε
1/8
2 , and t = ε

1/2
3 d−2

2 , we choose t vertices x1, . . . , xt ∈ W satisfying

(d2 − ε2)2m ≤ degj(xu, xv) ≤ (d2 + ε2)2m (5.13)

for all 1 ≤ u < v ≤ t. Condition (2.8) is satisfied since

2× 8ε
1/2
2 × t2(

ε
1/8
2

)2 = 16ε
1/4
2 d−4

2 ε3 < 1,

where we used the fact that ε2 � d2 and ε3 < 1.

For every xu, denote by Bju the (2, 1)-cylinders satisfying (5.11) and (5.12). We

will show that the following two statements hold:
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S1
t∑

u=1

∣∣∣∣∣G2[G2(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ ≥ ε
3/4
3 d2m

2, (5.14)

and

∑
1≤u<v≤t

∣∣∣∣∣G2[G2(xu, xv)] ∩
r′⋃
j=1

K2(Bju) ∩
r′⋃
i=1

K2(Biv)

∣∣∣∣∣ ≤ ε3d2m
2. (5.15)

S2

ε3d2m
2 >

(
2ε

1/4
3 − ε3

) t∑
u=1

∣∣∣∣∣G2[G2(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ .
Then, however, we use (5.14) to infer that

(
2ε

1/4
3 − ε3

) t∑
u=1

∣∣∣∣∣G[G(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ (5.14)

≥ ε
1/4
3 × ε3/4

3 d2m
2 = ε3d2m

2.

This is a contradiction to statement S2, thus |W | < ε
1/8
2 m.

The situation when we assume that there is a set of good vertices W ⊂ Vgood for

which the second part of inequality (4.1) does not hold is handled similarly.

If s > 3, then we apply the result for s = 3 simultaneously to
(
s−1

2

)
restrictions

of G2 and G3 on V1 ∪ Vi ∪ Vj, 2 ≤ i < j ≤ s.

Hence, it only remains to prove S1 and S2.

S1: Since xu is a good vertex, G2[G2(xu)] is (ε
1/2
2 , d2)-regular and, therefore,(

d2 − ε1/2
2

)3

m2 ≤ |G[G(xu)]| ≤
(
d2 + ε

1/2
2

)3

m2

for all u ∈ [t]. Furthermore, observe that the (2, 2)-cylinder G[G(xu, xv)] is (ε
1/2
2 , d2)-

regular due to (5.13),
(
d2 − ε1/2

2

)2

≥ ε
1/4
2 , and Fact 3.4. Thus, Corollary 3.6 yields

|G2[G2(xu, xv)]| ≤
5

4
d2 ×

(
d2 + ε

1/2
2

)4

m2 ≤ 2d5
2m

2

for all 1 ≤ u < v ≤ t.
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Notice that then the above inequalities imply

t∑
u=1

∣∣∣∣∣G2[G2(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ (5.11)

≥ 2ε
1/4
3 × t×

(
d2 − ε1/2

2

)3

m2 ≥ ε
3/4
3 d2m

2,

and

∑
1≤u<v≤t

∣∣∣∣∣G2[G2(xu, xv)] ∩
r′⋃
j=1

K2(Bju) ∩
r′⋃
i=1

K2(Biv)

∣∣∣∣∣
≤

∑
1≤u<v≤t

|G2[G2(xu, xv)]| ≤
(
t

2

)
× 2d5

2m
2 ≤ ε3d2m

2.

However, this is precisely what statement S1 claims.

S2: We show that the size of G2 ∩
⋃t
u=1

⋃r′

j=1K2(Bju) is at least ε3|G21̂|, so we can

apply the (ε3, d̃3, r)-regularity of G3 with respect to G2. Then we deduce S2 from this

and assumption (5.12).

To estimate the size of G2 ∩
⋃t
u=1

⋃r′

j=1K2(Bju), we use Observation 4.2:∣∣∣∣∣G2 ∩
t⋃

u=1

r′⋃
j=1

K2(Bju)

∣∣∣∣∣ ≥
t∑

u=1

∣∣∣∣∣G2 ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣
−

∑
1≤u<v≤t

∣∣∣∣∣G2 ∩
r′⋃
j=1

K2(Bju) ∩
r′⋃
i=1

K2(Biv)

∣∣∣∣∣ .
Since Bju ⊂ G2(xu), we have G2 ∩

⋃r′

j=1K2(Bju) = G2[G2(xu)]∩
⋃r′

j=1K2(Bju), and we

may use bounds (5.14) and (5.15) to obtain∣∣∣∣∣G2 ∩
t⋃

u=1

r′⋃
j=1

K2(Bju)

∣∣∣∣∣ ≥ ε
3/4
3 d2m

2 − ε3d2m
2 ≥ 2ε3d2m

2 ≥ ε3|G21̂|.

Since t× r′ < r, the (ε3, d̃3, r)-regularity of G3 with respect to G2 implies∣∣∣∣∣G3 ∩
t⋃

u=1

r′⋃
j=1

K2(Bju)

∣∣∣∣∣ ≥ (d̃3 − ε3)

∣∣∣∣∣G2 ∩
t⋃

u=1

r′⋃
j=1

K2(Bju)

∣∣∣∣∣
≥ (d̃3 − ε3)

t∑
u=1

∣∣∣∣∣G2 ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣− ε3d2m
2.
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Here we used Observation 4.5 and estimate (5.15) again. We have already observed

that we have G2 ∩
⋃r′

j=1K2(Bju) = G2[G2(xu)] ∩
⋃r′

j=1K2(Bju) therefore,∣∣∣∣∣G3 ∩
t⋃

u=1

r′⋃
j=1

K2(Bju)

∣∣∣∣∣ ≥ (d̃3 − ε3)
t∑

u=1

∣∣∣∣∣G2[G2(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣
− ε3d2m

2. (5.16)

On the other hand, we use assumption (5.12) and fact that G3 ∩
⋃r′

j=1K2(Bju) =

G3[G2(x)] ∩
⋃r′

j=1K2(Bju) to get∣∣∣∣∣G3 ∩
t⋃

u=1

r′⋃
j=1

K2(Bju)

∣∣∣∣∣ ≤
t∑

u=1

∣∣∣∣∣G3 ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣
<
(
d̃3 − 2ε

1/4
3

) t∑
u=1

∣∣∣∣∣G2[G2(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ . (5.17)

Finally, comparing (5.16) and (5.17) yields statement S2.

Remark. Similarly to the previous claim, observe that in the proof we do not need

edges of G3 which contain a vertex from V1. Therefore, Claim 5.6 holds also if G3 is

a (s − 1, 2)-cylinder defined on V2 ∪ . . . ∪ Vs that is (ε3, d̃3, r)-regular with respect

to G21̂.

The next claim shows that the 2-cylinder G3 ∩H(x) is regular with respect to G2

for almost all good vertices x.

Claim 5.7. Let r′ = r/
(
ε

1/2
3 d−2

2

)
. Then,(

1− ε1/2
3

)2

d2d̃3m ≤ degG3,j(x) ≤
(

1 + ε
1/2
3

)2

d2d̃3m

for j ∈ [s]\{1}, G2[G3(x)] is (ε
1/2
2 , d2)-regular, and (s−1, 2)-cylinder G3[G3(x)]∩H(x)

is (ε
1/8
3 , d3d̃3, r

′)-regular with respect to G2[G3(x)] for all but at most 2
(
s−1

2

)
(4ε

1/2
2 +

4ε
1/2
3 + ε

1/8
2 + ε

1/8
3 )m good vertices x ∈ Vgood.



62

Proof. We will restrict ourselves to the case s = 3 (the case s > 3 is handled in the

same way as in Claim 5.6).

Observe first that the (ε2, d2)-regularity of G2, the (ε3, d̃3, r)-regularity of G3 with

respect to G2, and Claim 4.7 implies that for all but at most 8
(
ε

1/2
2 + ε

1/2
3

)
m vertices

x ∈ V1 we have (
1− ε1/2

3

)2

d2d̃3m ≤ degG3,j(x) ≤
(

1 + ε
1/2
3

)2

d2d̃3m (5.18)

for j = 2, 3. Moreover,
(

1− ε1/2
3

)2

d2d̃3 ≥ ε
1/4
2 holds due to our assumptions d2 � ε2

and d̃3 � ε3 � ε2. Thus, by Fact 3.4, G2[G3(x)] is (ε
1/2
2 , d2)-regular and(

1− ε1/2
3

)5

d3
2d̃

2
3m

2 ≤ |G2[G3(x)]| ≤
(

1 + ε
1/2
3

)5

d3
2d̃

2
3m

2. (5.19)

Furthermore, it follows from Claim 5.6 that there are at most 2ε
1/8
2 m good vertices

x ∈ Vgood for which the (2, 2)-cylinder G3[G2(x)] is not (2ε
1/4
3 , d̃3, r/

(
ε

1/2
3 d−2

2

)
)-regular

with respect to G2[G2(x)].

Suppose there are t ≥ ε
1/8
3 m good vertices x1, . . . , xt ∈ Vgood satisfying (5.18) for

which

• G3[G2(xu)] is (2ε
1/4
3 , d̃3, r/

(
ε

1/2
3 d−2

2

)
)-regular with respect to G2[G2(xu)], u ∈ [t],

and

• G3[G3(xu)] ∩H(xu) is not (ε
1/8
3 , d3d̃3, r

′)-regular with respect to G2[G3(xu)].

Assume also that the first part of inequality (4.1) is not satisfied, i.e. for every xu

there exist (2, 1)-cylinders Bju = Yju ∪ Zju, where Yju is a subset of G3(xu) ∩ V2 and

Zju ⊂ G3(xu) ∩ V3, j ∈ [r′], such that∣∣∣∣∣G2[G3(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ ≥ ε
1/8
3 |G2[G3(xu)]|, (5.20)
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but∣∣∣∣∣G3[G3(xu)] ∩H(xu) ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ < (d3d̃3 − ε1/8
3

) ∣∣∣∣∣G2[G3(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ .
(5.21)

Notice that the size of G2[G2(xu)] is bounded by 2d3
2m

2 (because of Corollary 3.6

and goodness of xu) and, therefore,

2ε
1/4
3 |G2[G2(xu)]| ≤ 4ε

1/4
3 d3

2m
2 ≤ ε

1/8
3

(
1− ε1/2

3

)5

d3
2d̃

2
3m

2
(5.19)

≤ ε
1/8
3 |G2[G3(xu)]|.

Here we used assumption ε3 � d̃3.

Moreover, G2[G2(xu)] ∩
⋃r′

j=1K2(Bju) = G2[G3(xu)] ∩
⋃r′

j=1K2(Bju) holds because

Bju ⊂ G3(xu). Then it follows from (5.20) and the above inequality that∣∣∣∣∣G2[G2(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ ≥ 2ε
1/4
3 |G2[G2(xu)]|,

Since G3[G2(xu)] is (2ε
1/4
3 , d̃3, r/

(
ε

1/2
3 d−2

2

)
)-regular with respect to G2[G2(xu)] and

r′ = r/
(
ε

1/2
3 d−2

2

)
, we conclude that

(
d̃3 − 2ε

1/4
3

) ∣∣∣∣∣G2[G2(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ <
∣∣∣∣∣G3[G2(xu)] ∩

r′⋃
j=1

K2(Bju)

∣∣∣∣∣ . (5.22)

Now we define (3, 2)-cylinders Q1, . . . ,Qr′ on V1∪V2∪V3 by Qj = Qj1̂∪Qj2̂∪Qj3̂,

where, for j ∈ [r′],

Qj1̂ = G31̂,

Qj2̂ =
t⋃

u=1

{xuy : y ∈ Zju}, and

Qj3̂ =
t⋃

u=1

{xuy : y ∈ Yju}.

We will show that the size of
⋃r′

j=1K3(Qj) is bounded from below by ε3|K3(G2)|, so

we can apply the (ε3, d3, r)-regularity of H. This will give a lower bound on the
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size of H ∩
⋃r′

j=1K3(Qj). Then, we will use assumption (5.21) and get an upper

bound on the size of H ∩
⋃r′

j=1K3(Qj). The comparison of both bounds will yield a

contradiction. Indeed,∣∣∣∣∣
r′⋃
j=1

K3(Qj)

∣∣∣∣∣ =
t∑

u=1

∣∣∣∣∣G3[G2(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣
(5.22)

≥
t∑

u=1

(
d̃3 − 2ε

1/4
3

) ∣∣∣∣∣G2[G2(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ .
(5.23)

We recall that G2[G2(xu)] ∩
⋃r′

j=1K2(Bju) = G2[G3(xu)] ∩
⋃r′

j=1K2(Bju) holds. Then

we use (5.19), (5.20), and ε3 � d̃3 to get∣∣∣∣∣
r′⋃
j=1

K3(Qj)

∣∣∣∣∣ ≥
t∑

u=1

(
d̃3 − 2ε

1/4
3

) ∣∣∣∣∣G2[G3(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣
(5.20)

≥ t×
(
d̃3 − 2ε

1/4
3

)
× ε1/8

3 ×
(

1− ε1/2
3

)5

d3
2d̃

2
3m

2

≥ 2ε3d
3
2m

3 ≥ ε3 |K3(G2)| .

Applying the (ε3, d3, r)-regularity of H with respect to G2 we get∣∣∣∣∣H ∩
r′⋃
j=1

K3(Qj)

∣∣∣∣∣ ≥ (d3 − ε3)

∣∣∣∣∣
r′⋃
j=1

K3(Qj)

∣∣∣∣∣
≥ (d3 − ε3)

(
d̃3 − 2ε

1/4
3

) t∑
u=1

∣∣∣∣∣G2[G3(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ (5.24)

On the other hand, we use (5.23) and assumption (5.21) to obtain the following

upper bound on
∣∣∣H ∩⋃r′

j=1K3(Qj)
∣∣∣:∣∣∣∣∣H ∩

r′⋃
j=1

K3(Qj)

∣∣∣∣∣ =
t∑

u=1

∣∣∣∣∣G3[G3(xu)] ∩H(xu) ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣
(5.21)
<
(
d3d̃3 − ε1/8

3

) t∑
u=1

∣∣∣∣∣G2[G3(xu)] ∩
r′⋃
j=1

K2(Bju)

∣∣∣∣∣ .
(5.25)
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Comparing equations (5.24) and (5.25) yields ε
1/8
3 < 2ε

1/4
3 + ε3 < 3ε

1/4
3 , which is

a contradiction to ε3 � 1. The case when there exist t ≥ ε
1/8
2 m vertices for which

the second part of inequality (4.1) is not satisfied is handled in the same way.

Now we concentrate on the situation when s = 4. We will show that the number

of copies of K
(3)
4 inH∩K3(G3) is between (9/16)d6

2d̃
6
3d

4
3m

4 and (15/8)d6
2d̃

6
3d

4
3m

4. From

this we later deduce Propositions 2.4 and 2.5.

Claim 5.8. Let s = 4. Then

9

16
d6

2d̃
6
3d

4
3m

4 ≤ K4(H ∩K3(G3)) ≤ 15

8
d6

2d̃
6
3d

4
3m

4

Proof. Set r′ = r/
(
ε

1/2
3 d−3

2

)
and denote by W the set of all good vertices x ∈ Vgood

for which

(i) H[G2(x)] is (2ε
1/4
3 , d3, r

′)-regular with respect to G2[G2(x)],

(ii) (
1− ε1/2

3

)2

d2d̃3m ≤ degG3,j(x) ≤
(

1 + ε
1/2
3

)2

d2d̃3m

for j = 2, 3, 4 and

(iii) G3[G2(x)] ∩H(x) is (ε
1/8
3 , d3d̃3, r

′)-regular with respect to G2[G3(x)].

Furthermore, the goodness of every vertex x ∈ W implies

(iv) G2[G2(x)] is (ε
1/2
2 , d2)-regular and (d2 − ε2)m ≤ degG2,j(x) ≤ (d2 + ε2)m for all

j = 2, 3, 4.

It follows from Corollary 5.5 and Claim 5.7 that

• all but at most 2ε
1/16
2 m vertices x ∈ Vgood satisfy (i) (c.f. Corollary 5.5 applied

with s = 4),
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• all but at most 6(4ε
1/2
2 + 4ε

1/2
3 + ε

1/8
2 + ε

1/8
3 )m vertices x ∈ Vgood satisfy (ii)

and (iii) (c.f. Claim 5.7 applied with s = 4 and r′ < r/
(
ε

1/2
3 d−2

2

)
).

We use assumptions ε2 � ε2 � 1 and obtain

|W | ≥ |Vgood| − 10ε
1/8
3 m.

Moreover, the size of Vgood is bounded from below by Observation 3.8 applied with

s = 4 and δ = ε3:

|Vgood| ≥
(

1− 36ε
1/4
3

)
m.

We will do the following: for every vertex x ∈ W we apply the 2-graphs Lemma

on (3, 2)-cylinders G2[G3(x)] and H(x) ∩ G3[G3(x)]. We will show that the number

of copies of K3 in H(x) ∩ G3[G3(x)] is sufficiently large to apply the regularity of

H[G2(x)] with respect to G2[G2(x)]. This way we will be able to count the number of

edges in H which are also copies of K3 in H(x) ∩ G3[G3(x)]. Notice that every such

an edge together with x form a copy of K
(3)
4 in H ∩ K3(G3) that uses x as a vertex.

Then we add these numbers through all x ∈ W . Finally, we estimate the number of

copies of K
(3)
4 in H ∩K3(G3) that use vertices not belonging to W .

Consider arbitrary x ∈ W . We apply the 2-graphs lemma with

• (3, 2)-cylinder G1 played by G2[G3(x)] which is (ε
1/2
2 , d2)-regular (c.f. (iv));

• (3, 2)-cylinder G2 played by G3[G3(x)] ∩ H(x) which is (ε
1/8
3 , d3d̃3, r

′)-regular

with respect to G2[G3(x)] (c.f. (iii));

• Vi replaced by G3(x) ∩ Vi;

and obtain(
1− 8ε

1/512
3

)2

(d2d3d̃3)3

((
1− ε1/2

3

)2

d2d̃3m

)3

≤ |K3(H(x) ∩ G3[G3(x)])|

≤
(

1 + 8ε
1/512
3

)2

(d2d3d̃3)3

((
1 + ε

1/2
3

)2

d2d̃3m

)3

.



67

This can be further simplified using assumptions ε2 � ε2 � 1:

3

4
d6

2d̃
6
3d

3
3m

3 ≤ |K3(H(x) ∩ G3[G3(x)])| ≤ 3

2
d6

2d̃
6
3d

3
3m

3. (5.26)

Then observe the following: G2[G2(x)] is (ε
1/2
2 , d2)-regular, therefore, by Corol-

lary 3.6, |K3(G2[G2(x)])| ≤ (5/4)d3
2 × (d2 + ε2)3m3 ≤ (3/2)d6

2m
3. Since d3, d̃3 � ε3,

we obtain

2ε
1/4
3 |K3(G2[G2(x)])| ≤ 2ε

1/4
3 × 3

2
d6

2m
3 ≤ 3

4
d6

2d̃
6
3d

3
3m

3 ≤ |K3(H(x) ∩ G3[G3(x)])| .

Thus, we can use the (2ε
1/4
3 , d3, r

′)-regularity ofH[G2(x)] with respect to G2[G2(x)]

(c.f. (i)) and obtain(
d3 − 2ε

1/4
3

)
|K3(H(x) ∩ G3[G3(x)])| ≤ |H ∩ K3(H(x) ∩ G3[G3(x)])|

≤
(
d3 + 2ε

1/4
3

)
|K3(H(x) ∩ G3[G3(x)])| . (5.27)

Combining (5.26) and (5.27) yields

5

8
d6

2d̃
6
3d

4
3m

3 ≤ |H ∩ K3(H(x) ∩ G3[G3(x)])| ≤ 7

4
d6

2d̃
6
3d

4
3m

3.

As it was mentioned before, every edge in H which is also a copy of K3 in

H(x)∩G3[G3(x)] forms together with x a copy of K
(3)
4 in H∩K3(G3) that uses x as a

vertex. Therefore, there is at least |W |×(5/8)d6
2d̃

6
3d

4
3m

3 copies of K
(3)
4 in H∩K3(G3).

Since the size of W is at least |Vgood| − 10ε
1/8
3 m ≥

(
1− 36ε

1/4
3 − 10ε

1/8
3

)
m ≥(

1− 11ε
1/8
3

)
m, the following lower bound holds:

|K4(H ∩K3(G3))| ≥
(

1− 11ε
1/8
3

)
m× 5

8
d6

2d̃
6
3d

4
3m

3 ≥ 9

16
d6

2d̃
6
3d

4
3m

4.

For the upper bound we must count not only

(a) the contribution of vertices taken from W , but also

(b) contribution of vertices in V1 \W .
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We will handle each of these cases separately.

(a) The upper bound on the number of copies of K
(3)
4 in H∩K3(G3) that use as a

vertex members of W can be found similarly to the lower bound: every vertex

x ∈ W is in at most 7
4
d6

2d̃
6
3d

4
3m

3 copies of K
(3)
4 , therefore, we have at most

|W | × 7
4
d6

2d̃
6
3d

4
3m

3 ≤ 7
4
d6

2d̃
6
3d

4
3m

4 copies of K
(3)
4 altogether.

(b) There are two kind of vertices in V1 \W : good and not good.

(i) The number of vertices which are not good is at most 36ε
1/4
2 m (c.f. Obser-

vation 3.8). Each such vertex can be in at most m3 copies of K
(3)
4 , thus,

these vertices are involved in at most 36ε
1/4
2 m4 ≤ ε

1/8
2 d6

2m
4 ≤ ε

1/8
3 d6

2m
4 ≤

ε
1/32
3 d6

2d̃
6
3d

4
3m

4 copies of K
(3)
4 .

(ii) For every good vertex x ∈ V1 \ W , we use Corollary 3.6 to insist that

|K3(G2[G2(x)])| ≤ (5/4)d3
2 ×

(
d2 + ε

1/2
2

)3

m3 ≤ 2d6
2m

3. Since |V1 \W | ≤

11ε
1/8
3 m, the good vertices in V1 \ W can produce at most 11ε

1/8
3 m ×

2d6
2m

3 ≤ ε
1/16
3 d6

2d̃
6
3d

4
3m

4 copies of K
(3)
4 . Note that we used ε3 � d3, d̃3

again.

We add the contributions from (a) and (b) to get

|K4(H ∩K3(G3))| ≤
(

7

4
+ ε

1/32
3 + ε

1/16
3

)
d6

2d̃
6
3d

4
3m

4 ≤ 15

8
d6

2d̃
6
3d

4
3m

4.

5.3 Proof of Proposition 2.4

In this part, we use the properties of nice vertices and Claim 5.8 to show Proposi-

tion 2.4.
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Proof. Consider a (δ2, d2)-regular (5, 2)-cylinder H(2) and a (5, 3)-cylinder H(3) which

is (δ3, d3, r)-regular with respect to H(2).

Let x ∈ V1 be a nice vertex (c.f. Definition 5.3), i.e. a good vertex for which we

have:

(i) the link H(3)(x) is (2δ
1/2
3 , d3, r)-regular with respect to H(2)[H(2)(x)].

(ii) H(3)[H(2)(x)] is (2δ
1/4
3 , d3, r/

(
δ

1/2
3 d−3

2

)
)-regular with respect to H(2)[H(2)(x)],

Also remind that the goodness of x implies

(iii) (d2 − δ2)n ≤ degj(x) ≤ (d2 + δ2)n for j = 2, . . . , 5,

(iv) the (4, 2)-cylinder H(2)[H(2)(x)] is (δ
1/2
2 , d2)-regular.

We apply Claim 5.8 with G2 = H(2)[H(2)(x)], G3 = H(3)(x), H = H(3)[H(2)(x)],

(d3 − δ2)n ≤ m ≤ (d3 + δ2)n, ε2 = δ
1/2
2 , ε3 = 2δ

1/4
3 , d̃3 = d3, and r replaced by

r/
(
δ

1/2
3 d−3

2

)
. Observe that (i)-(iv) verify conditions of the Setup C. More precisely,

• (iv) verifies that G2 is (ε2, d2)-regular,

• (i) verifies that G3 is (ε3, d̃3, r)-regular with respect to G2, and

• (ii) verifies that H is (ε3, d3, r)-regular with respect to G2.

Hence, we obtain

9

16
d6

2d
6
3d

4
3(d2 − δ2)4n4 ≤ K4(H ∩K3(G3)) ≤ 15

8
d6

2d
6
3d

4
3(d2 + δ2)4n4.

Estimate (2.5) follows from this inequality since d2 � δ2. This is true for every nice

vertex. By Observation 5.4 applied with s = 4, at most 10δ
1/2
3 n good vertices are not

nice, and from Observation 3.8 we have that at most 36δ
1/4
2 n vertices are not good.

From this we conclude that (2.5) holds for all but at most 46δ
1/2
3 n vertices x ∈ V1.
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Remark. It is possible to replace constants 1/2 and 2 in the lower and upper bound

by 1− ψ(δ3) and 1 + ψ(δ3), where ψ(δ3)→ 0 as δ3 → 0. This can be done by more

precise estimation in Claim 5.8.

5.4 Properties of links in the neighborhood of a

pair of vertices

In this section, we prove that the restriction of H to the neighborhood G(x, x′) and

the link H(x, x′) are regular for almost all pairs of vertices {x, x′} ⊂ V1. These

two claims play the same role for the pair {x, x′} ⊂ V1 as Claims 5.2 and 5.1 do

for a single vertex. Thus, for every such pair {x, x′} we can mimick the proof of

Proposition 2.4, that is apply Claim 5.8 on H[G(x, x′)] and the link H(x, x′), and

prove Proposition 2.5.

We consider the scenario given by the Setup B from Section 5.1.

Setup B. Let 0 < ε2 � d2 ≤ 1 and 0 < ε3 � d3 ≤ 1 be real numbers so that ε2 � ε3.

Let V = V1 ∪ . . . ∪ Vs be a partition, where |V1| = . . . = |Vs| = m, G = (V,E(G)) be

an (s, 2)-cylinder that is (ε2, d2)-regular, and let H = (V,E(H)) be an (s, 3)-cylinder

which is (ε3, d3, r)-regular with respect to G.

Claim 5.9. Let r′ = r/
(
ε

1/2
3 d−3

2

)(
2ε

1/8
3 d−3

2

)
. Then, for every nice vertex x ∈ Vnice,

the restriction of H to G(x, x′) is (4ε
1/16
3 , d3, r

′)-regular with respect to G[G(x, x′)] for

all but at most 3
(
s−1

3

)
ε

1/32
2 m good vertices x′ ∈ Vgood.

Proof. Let x be a nice vertex (c.f. Definition 5.3), i.e. a good vertex satisfying

(i) H(x) is (2ε
1/2
3 , d3, r)-regular with respect to G[G(x)], and

(ii) H is (2ε
1/4
3 , d3, r/

(
ε

1/2
3 d−3

2

)
)-regular with respect to G[G(x)].
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Moreover, since x is also a good vertex, we have

(iii) G[G(x)] is (ε
1/2
2 , d2)-regular, and

(iv) for all but at most ε
1/4
2 m vertices x′

(d2 − ε2)2m ≤ degj(x, x
′) ≤ (d2 + ε2)2m (5.28)

holds for every j ∈ [s] \ {1}.

Denote by W ′ the set of all x′ ∈ V1 satisfying (5.28) for which H is (4ε
1/16
3 , d3, r

′)-

irregular with respect to G[G(x, x′)].

Let W be a set, W ′ ⊂ W ⊂ V1, such that (d2 − ε2)m ≤ |W | ≤ (d2 + ε2)m. We

can achieve this by throwing out some vertices from W ′ or by adding some vertices

from V1 to W ′.

Set V ′1 = W , V ′j = G(x)∩ Vj for j ∈ [s] \ {1}, and V ′ = V ′1 ∪ . . .∪ V ′s . Notice that

due to d2 − ε2 ≥ ε
1/4
2 and Fact 3.4,

(iii’) the restriction G[V ′] is an (ε
1/2
2 , d2)-regular (s, 2)-cylinder.

Set G ′2 = G[V ′], G ′3 = H(x), and H′ = H[G(x)]. Note that G ′2 is an (s, 2)-cylinder,

G ′3 is an (s− 1, 2)-cylinder, and H′ is an (s− 1, 3)-cylinder. Moreover, in view of the

remark following Corrolary 5.5, G ′2, G ′3, H′ satisfy the assumptions of Corollary 5.5

with ε2 replaced by ε
1/2
2 , ε3 by 2ε

1/4
3 , d̃3 = d3, and r replaced by r/

(
ε

1/2
3 d−3

2

)
(c.f. (i),

(ii), (iii’)).

We apply Corrolary 5.5 and obtain that the restrictionH′[G ′2(x′)] is (4ε
1/16
3 , d3, r

′)-

regular with respect to G ′2[G ′2(x′)] for all but at most 2
(
s−1

2

)
ε

1/32
2 |W | vertices x′ ∈ W .

Note that G ′2[G ′2(x′)] = G[G(x, x′)] and H′[G ′2(x′)] = H[G(x, x′)].

However, all such vertices are contained in W ′, therefore

|W ′| ≤ 2

(
s− 1

3

)
ε

1/32
2 |W | ≤ 2

(
s− 1

3

)
ε

1/32
2 m.
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Since (5.28) is satisfied for all but at most ε
1/4
2 m good vertices x′ and W ′ contains

all good vertices x′ satisfying (5.28) for which H[G(x, x′)] is irregular, we infer that

the total number of vertices x′ for which the restriction of H to G(x, x′) fails to be

(4ε
1/16
3 , d3, r

′)-regular does not exceed 2
(
s−1

3

)
ε

1/32
2 m+ ε

1/4
2 m ≤ 3

(
s−1

3

)
ε

1/32
2 m.

The proof of the next claim is based the same idea except that it uses Claim 5.6

instead of Corrolary 5.5.

Claim 5.10. Let x ∈ Vnice be a nice vertex and set r′ = r/
(
ε

1/2
3 d−3

2

)(
2ε

1/8
3 d−2

2

)
.

Then the link H(x) is (4ε
1/16
3 , d3, r

′)-regular with respect to G[G(x, x′)] for all but at

most 3
(
s−1

2

)
ε

1/16
2 m good vertices x′.

Proof. Let x be a nice vertex. Then we know (c.f. Definition 5.3):

(i) H(x) is (2ε
1/2
3 , d3, r)-regular with respect to G[G(x)], and

(ii) H is (2ε
1/4
3 , d3, r/

(
ε

1/2
3 d−3

2

)
)-regular with respect to G[G(x)].

Since every nice vertex is also good, we have (c.f. Definition 3.7):

(iii) G[G(x)] is (ε
1/2
2 , d2)-regular, and

(iv) for all but at most ε
1/4
2 m vertices x′

(d2 − ε2)2m ≤ degj(x, x
′) ≤ (d2 + ε2)2m (5.29)

holds for every j ∈ [s] \ {1}.

Denote by W ′ the set of all x′ ∈ V1 satisfying (5.29) for which H(x) is not

(4ε
1/16
3 , d3, r

′)-regular with respect to G[G(x, x′)].

Let W be a set, W ′ ⊂ W ⊂ V1, such that (d2 − ε2)m ≤ |W | ≤ (d2 + ε2)m. This

can be achieved by throwing out some vertices from W ′ or by adding some vertices

from V1 to W ′. Set V ′1 = W , V ′j = G(x)∩ Vj for j ∈ [s] \ {1}, and V ′ = V ′1 ∪ . . .∪ V ′s .

Notice that
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(iii’) G[V ′] is an (ε
1/2
2 , d2)-regular (s, 2)-cylinder

due to d2 − ε2 ≥ ε
1/4
2 and Fact 3.4.

As in the previous claim, set G ′2 = G[V ′], G ′3 = H(x), and H′ = H[G(x)] and

notice that G ′2, G ′3, H′ satisfy the assumptions of Claim 5.6 (which are the same as

the assumptions of Corollary 5.5 and these assumptions were checked in the previous

claim).

We apply Claim 5.6 on G ′2 and G ′3. By this claim, the restriction of G ′3 to G ′2[G ′2(x′)]

is (4ε
1/16
3 , d3, r

′)-regular with respect to G ′2[G ′2(x′)] for all but at most 2
(
s−1

2

)
ε

1/16
2 |W |

vertices x′ ∈ W . Recall that G ′3 = H(x) and G ′2[G ′2(x′)] = G[G(x, x′)], therefore, all

such vertices are contained in W ′.

Thus,

|W ′| ≤ 2

(
s− 1

2

)
ε

1/16
2 |W | ≤ 2

(
s− 1

2

)
ε

1/16
2 m.

Since (5.29) is satisfied for all but at most ε
1/4
2 m good vertices x′ and W ′ contains

all good vertices x′ satisfying (5.29) for which H(x) is irregular, we infer that the

total number of vertices x′ for which the restriction of H(x) to G(x, x′) fails to

be (4ε
1/16
3 , d3, r

′)-regular with respect to G[G(x, x′)] does not exceed 2
(
s−1

2

)
ε

1/16
2 m +

ε
1/4
2 m ≤ 3

(
s−1

2

)
ε

1/16
2 m.

We use the previous claim to prove an analogy of Claim 5.1 for pairs of vertices.

Note that the same proof in a slightly different setting is given in [DHNR00].

Claim 5.11. Let r′ = r/
(
ε

1/2
3 d−3

2

)(
2ε

1/8
3 d−2

2

)
. Then for all but 2

(
s−1

2

)
ε

1/16
2 m nice

vertices x ∈ Vnice the following statement is true: the link H(x, x′) is (ε
1/32
3 , d2

3, r
′)-

regular with respect to G[G(x, x′)] for at most 5
(
s−1

2

)
ε

1/16
3 m good pairs {x, x′}, where

x′ ∈ Vnice.

Proof. We will restrict ourselves to the case s = 3 (the case s > 3 is handled in the

same way as in Claim 5.6).
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For a nice vertex x ∈ Vnice, denote by Wx the set of nice vertices w for which

(i) pair {x,w} is good,

(ii) H(x) is (4ε
1/16
3 , d3, r

′)-regular with respect to G[G(x,w)], and

(iii) H(x,w) is not (ε
1/32
3 , d2

3, r
′)-regular with respect to G[G(x,w)] and the second

part of inequality (4.1) is not satisfied, i.e. there exist (2, 1)-cylinders Bxwj =

Y xw
j ∪Zxw

j , where Y xw
j is a subset of G(x,w)∩V2 and Zxw

j ⊂ G(x,w)∩V3, such

that ∣∣∣∣∣G[G(x,w)] ∩
r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣ ≥ ε
1/32
3 |G[G(x,w)]|, (5.30)

but∣∣∣∣∣H(x,w) ∩
r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣ > (d2
3 + ε

1/32
3

) ∣∣∣∣∣G[G(x,w)] ∩
r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣ . (5.31)

From the previous claim, for every nice vertex x we have at most 3ε
1/16
2 m ≤ ε

1/16
3 m

good pairs {x, x′}, x′ ∈ Vnice, for which the link H(x) is (4ε
1/16
3 , d3, r

′)-irregular with

respect to G[G(x, x′)].

Moreover, denote by X, the set of those nice vertices x for which |Wx| ≥ 2ε
1/16
3 m

and suppose |X| ≥ ε
1/16
2 m. We also make an assumption |Wx| = 2ε

1/16
3 m for all

x ∈ X. This can be achieved by possible deletion of some vertices from Wx.

Since by (ii) the link H(x) is (4ε
1/16
3 , d3, r

′)-regular with respect to G[G(x,w)] for

every x ∈ X and w ∈ Wx, and (5.30) holds (c.f. (iii)), we conclude that

(
d3 − 4ε

1/16
3

) ∣∣∣∣∣G[G(x,w)] ∩
r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣ <
∣∣∣∣∣H(x) ∩

r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣ (5.32)

and ∣∣∣∣∣H(x) ∩
r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣ < (d3 + 4ε
1/16
3

) ∣∣∣∣∣G[G(x,w)] ∩
r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣ . (5.33)
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For every vertex x ∈ X, we define (3, 2)-cylinders Qx1 , . . . ,Qxr′ by Qxj = Qx
j1̂
∪

Qx
j2̂
∪Qx

j3̂
, where

Qx
j1̂

= H(x),

Qx
j2̂

=
⋃

w∈Wx

{wz : z ∈ Zxw
j }, and (5.34)

Qx
j3̂

=
⋃

w∈Wx

{wy : y ∈ Y xw
j }.

We show that we can choose t = ε
1/8
3 d−2

2 vertices x1, . . . , xt ∈ X so that the union⋃t
u=1

⋃r′

j=1K3(Qxuj ) is sufficiently large to apply the (ε3, d3, r)-regularity ofH with re-

spect to G. This will be, however, in a contradiction with with the assumption (5.31).

First, we give a lower bound on the size of
⋃r′

j=1K3(Qxj ) for an arbitrary vertex

x ∈ X. Indeed, from the construction (5.34), we have∣∣∣∣∣
r′⋃
j=1

K3(Qxj )

∣∣∣∣∣ =
∑
w∈Wx

∣∣∣∣∣H(x) ∩
r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣
(5.32)

≥
∑
w∈Wx

(
d3 − 4ε

1/16
3

) ∣∣∣∣∣G[G(x,w)] ∩
r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣ .
(5.35)

We recall that G[G(x, xu)] is (ε
1/2
2 , d2)-regular (from the goodness of the pair {x,w}

(c.f. Definition 3.11)) and, thus, its size is bounded from below by
(
d2 − ε1/2

2

)5

m2

(c.f. Fact 3.6). Then we use inequality (5.30) and get∣∣∣∣∣
r′⋃
j=1

K3(Qxj )

∣∣∣∣∣ ≥ ∑
w∈Wx

(
d3 − 4ε

1/16
3

) ∣∣∣∣∣G[G(x,w)] ∩
r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣
(5.30)

≥ |Wx|
(
d3 − 4ε

1/16
3

)
× ε1/32

3

(
d2 − ε1/2

2

)5

m2 ≥ ε
1/8
3 d5

2m
3.

(5.36)

Second, we also need an upper bound on the size of
⋃r′

j=1K3(Qxj )∩
⋃r′

i=1K3(Qx′i )

for a good pair of nice vertices {x, x′}. Notice, that any triangle z1z2z3, zj ∈ Vj,

belonging to this intersection must satisfy

z1 ∈ Wx ∩Wx′
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and

z2z3 ∈
(
G[G(x,w)] ∩ K2(Bxwj )

)
∩
(
G[G(x′, w′)] ∩ K2(Bx′w′i )

)
for some i, j ∈ [r′].

The above intersection can be clearly overestimated by G[G(x,w)]∩G[G(x′, w′)] =

G[G(x,w, x′, w′)]. Moreover, regardless which w′ ∈ Wx′ we take, vertex z1 is always

in Wx and edge z2z3 is in G[G(x,w, x′)]. Hence∣∣∣∣∣
r′⋃
j=1

K3(Qxj ) ∩
r′⋃
i=1

K3(Qx′i )

∣∣∣∣∣ ≤ ∑
w∈Wx

|G[G(x,w, x′)]|.

Since {x, x′} is a good pair, there are at most ε
1/4
2 m vertices x′′ ∈ V1 for which

either G[G(x, x′, x′′)] is not (ε
1/2
2 , d2)-regular or (d2 − ε2)3m ≤ degj(x, x

′, x′′) ≤ (d2 +

ε2)3m does not hold for j = 2 or j = 3.

Thus, for triples {x, x′, w} satisfying both conditions we have |G[G(x,w, x′)]| ≤

2d7
2m

2 (c.f. Fact 3.6), and for the remaining ε
1/4
2 m triples we have |G[G(x,w, x′)]| ≤

|G[G(x, x′)]| ≤ 2d5
2m

2 (again using Fact 3.6). Then,∑
w∈Wx

|G[G(x,w, x′)]| ≤ |Wx| × 2d7
2m

2 + ε
1/4
2 m× 2d5

2m
2 ≤ 4ε

1/16
3 d7

2m
3.

The last inequality follows from ε
1/4
2 ≤ ε

1/8
2 d2

2 ≤ 2ε
1/16
3 d2

2 and |Wx| = ε
1/16
3 m. Conse-

quently, ∣∣∣∣∣
r′⋃
j=1

K3(Qxj ) ∩
r′⋃
i=1

K3(Qx′i )

∣∣∣∣∣ ≤ 4ε
1/16
3 d7

2m
3 (5.37)

for every pair of good vertices {x, x′} ⊂ X.

Now we define an auxiliary graph Γ = (V,E), where a pair of vertices {x′, x′′} is

an edge whenever it is not a good pair. It follows from Observation 3.12 that the size

of E is bounded by 20ε
1/4
2 m2. Using the Picking Lemma with σ1 = 20ε

1/4
2 , c = ε

1/16
2 ,

and t = ε
1/8
3 d−2

2 , we choose t vertices x1, . . . , xt ∈ X so that all pairs {xu, xv} are

good.
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Then, we can estimate
∣∣∣⋃t

u=1

⋃r′

j=1K3(Qxuj )
∣∣∣ using Observation 4.5 in the follow-

ing way:∣∣∣∣∣
t⋃

u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ ≥
t∑

u=1

∣∣∣∣∣
r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣− ∑
1≤u<v≤t

∣∣∣∣∣
r′⋃
i=1

K3(Qxui ) ∩
r′⋃
j=1

K3(Qxvj )

∣∣∣∣∣
This can be further simplified with the use of (5.36) and (5.37).∣∣∣∣∣

t⋃
u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ ≥ t × ε
1/8
3 d5

2m
3 −

(
t

2

)
4ε

1/16
3 d7

2m
3 ≥ 2ε3d

3
2m

3 ≥ ε3|K3(G)|

The last part of this inequality follows from Fact 3.6. Applying the (ε3, d3, r)-

regularity of H with respect to G, we get∣∣∣∣∣H ∩
t⋃

u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ ≤ (d3 + ε3)

∣∣∣∣∣
t⋃

u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣
Using the first part (equality) of (5.35) and inequality (5.33), we conclude that

(d3 + ε3)
t∑

u=1

∣∣∣∣∣
r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ = (d3 + ε3)
t∑

u=1

∑
w∈Wxu

∣∣∣∣∣H(xu) ∩
r′⋃
j=1

K2(Bxuwj )

∣∣∣∣∣
≤ (d3 + ε3)

(
d3 + 4ε

1/16
3

) t∑
u=1

∑
w∈Wxu

∣∣∣∣∣G[G(xu, w)] ∩
r′⋃
j=1

K2(Bxuwj )

∣∣∣∣∣
Combining the previous two inequalities yields:∣∣∣∣∣H ∩

t⋃
u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ ≤ (d2
3 + 5ε

1/16
3

) t∑
u=1

∑
w∈Wxu

∣∣∣∣∣G[G(xu, w)] ∩
r′⋃
j=1

K2(Bxuwj )

∣∣∣∣∣
On the other hand, we use assumption (5.31) and obtain the following lower bound

on
∣∣∣H ∩⋃t

u=1

⋃r′

j=1K3(Qxuj )
∣∣∣:∣∣∣∣∣H ∩

t⋃
u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ =
t∑

u=1

∑
w∈Wxu

∣∣∣∣∣H(xu, w) ∩
r′⋃
j=1

K2(Bxuwj )

∣∣∣∣∣
≥
(
d2

3 + ε
1/32
3

) t∑
u=1

∑
w∈Wxu

∣∣∣∣∣G[G(xu, w)] ∩
r′⋃
j=1

K2(Bxuwj )

∣∣∣∣∣ .
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Comparing the last two inequalities yields d2
3 + 5ε

1/16
3 > d2

3 + ε
1/32
3 , which is a con-

tradiction with our assumption that |X| ≥ ε
1/16
2 m. Therefore |X| < ε

1/16
2 m.

The case when Wx is the set of vertices w for which the second part of inequality

(4.1) is not satisfied, i.e. for which∣∣∣∣∣H(x,w) ∩
r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣ < (d2
3 − ε

1/32
3

) ∣∣∣∣∣G[G(x,w)] ∩
r′⋃
j=1

K2(Bxwj )

∣∣∣∣∣ ,
can be handled in the very same way.

Hence, there are at most 2×ε1/16
2 m×m nice vertices x (more precisely, all x ∈ X)

for which the link H(x, x′) is (ε
1/32
3 , d2

3, r
′)-irregular for at least 2ε

1/16
3 m good pairs

{x, x′}, x′ ∈ Vnice.

Moreover, for every other nice vertex (that is x ∈ Vnice \X, there at most 4ε
1/16
3 m

good pairs {x, x′}, x′ ∈ Vnice for which the link H(x, x′) is (ε
1/32
3 , d2

3, r
′)-irregular (c.f.

definition of Wx) and at most 3ε
1/16
2 m ≤ ε

1/16
3 m good pairs {x, x′}, x′ ∈ Vnice, for

which the link H(x) is (4ε
1/16
3 , d3, r

′)-irregular with respect to G[G(x, x′)].

Thus, for all but at most 2ε
1/16
2 m2 nice vertices x, the linkH(x, x′) is (ε

1/32
3 , d2

3, r
′)-

regular for all but at most 5ε
1/16
3 m good pairs {x, x′}, x′ ∈ Vnice.

Now we define a nice pair of vertices {x, x′}.

Definition 5.12 (nice pair). Set r′ = r/
(
ε

1/2
3 d−3

2

)(
2ε

1/8
3 d−3

2

)
. A pair of vertices

{x, x′} is called nice if it satisfies the following conditions:

(i) both x and x′ are nice vertices,

(ii) the pair {x, x′} is good,

(iii) the link H(x, x′) is (ε
1/32
3 , d2

3, r
′)-regular with respect to G[G(x, x′)], and

(iv) H is (4ε
1/16
3 , d2, r

′)-regular with respect to G[G(x, x′)].

Observations 3.8, 3.12, and 5.4, and Claims 5.9 and 5.11 imply the following:
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• all but at most
(

2(s− 1)ε
1/2
2 + 10(s− 1)ε

1/4
2

)
m2 pairs {x, x′} are pairs of good

vertices (c.f. Observation 3.8);

• all but at most
(

4(s− 1)ε
1/2
2 + 6(s− 1)ε

1/4
2

)
m2 pairs {x, x′} are good pairs in

[Vgood]2 (c.f. Observation 3.12);

• all but at most
(

4
(
s−1

3

)
ε

1/2
3 + 2

(
s−1

2

)
ε

1/4
3

)
m2 good pairs {x, x′} are good pairs

of nice vertices (c.f. Observation 5.4);

• for all but at most 3
(
s−1

3

)
ε

1/32
2 m2 of the above pairs, the restriction H[G(x, x′)]

is not (4ε
1/16
3 , d3, r

′)-regular with respect to G(x, x′) (c.f. Claim 5.9);

• for all but at most 6
(
s−1

2

)
ε

1/16
3 m2 of the above pairs, the link H(x, x′) is not

(ε
1/32
3 , d2

3, r
′)-regular with respect to G(x, x′) (c.f. Claim 5.11).

We can summarize these facts into the following observation (we use ε2 � ε3 to

simplify this result).

Observation 5.13. All but 10
(
s−1

2

)
ε

1/16
3 m2 pairs in [V1]2 are nice.

5.5 Proof of Proposition 2.5

In this section, we use the properties of nice pairs and Claim 5.8 to show Proposi-

tion 2.5.

Proof. Set r′ = r/
(
δ

1/2
3 d−3

2

)(
2δ

1/8
3 d−3

2

)
and let {x, x′} ∈ V1 be a nice pair, i.e.

a good pair for which we have (c.f. Definition 5.12):

(i) the link H(3)(x, x′) is (δ
1/32
3 , d2

3, r
′)-regular with respect to H(2)[H(2)(x, x′)],

(ii) H(3)[H(2)(x, x′)] is (4δ
1/16
3 , d3, r

′)-regular with respect to [H(2)(x, x′)].

Since {x, x′} is also a good pair, we have (c.f. Definition 3.11)
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(iii) (d2 − δ2)2n ≤ degj(x, x
′) ≤ (d2 + δ2)2n for j = 2, . . . , 5, and

(iv) the (4, 2)-cylinder H(2)[H(2)(x, x′)] is (δ
1/2
2 , d2)-regular.

We apply Claim 5.8 with cylinders G2 = H(2)[H(2)(x, x′)], G3 = H(3)(x, x′), H =

H(3)[H(2)(x, x′)], and ε2 = δ
1/2
2 , ε3 = δ

1/32
3 , d̃3 = d2

3, (d2 − δ2)2n ≤ m ≤ (d2 + δ2)2n,

and r replaced by r′. Observe that (i)-(iv) verify conditions of the Setup C. More

precisely,

• (iv) verifies that G2 is (ε2, d2)-regular,

• (i) verifies that G3 is (ε3, d̃3, r)-regular with respect to G2, and

• (ii) verifies that H is (ε3, d3, r)-regular with respect to G2.

Hence, we obtain

9

16
d6

2

(
d2

3

)6
d4

3(d2 − δ2)8n4 ≤ K4(H ∩K3(G3)) ≤ 15

8
d6

2

(
d2

3

)6
d4

3(d2 + δ2)8n4.

Estimate (2.6) follows from this inequality since d2 � δ2. This is true for every nice

pair {x, x}. By Observation 5.13 applied with s = 5, all but at most 60δ
1/16
3 n2 pairs

{x, x′} are nice. Therefore, (2.6) holds for all but at most 60δ
1/16
3 n2 pairs {x, x′} ⊂ V1.

5.6 Counting II

In this section, we will expand statements for a single vertex from Section 5.2 to

pairs. We consider the scenario given by Setup C:

Setup C. Let 0 < ε2 � d2 ≤ 1, 0 < ε3 � d3 ≤ 1, and 0 < ε3 � d̃3 ≤ 1

be real numbers so that ε2 � ε3. Let V = V1 ∪ . . . ∪ Vs be a partition, where

|V1| = . . . = |Vs| = m, G2 = (V,E(G2)) be an (s, 2)-cylinder that is (ε2, d2)-regular,
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G3 = (V,E(G3)) be an (s, 2)-cylinder that is (ε3, d̃3, r)-regular with respect to G2, and

let H = (V,E(H)) be an (s, 3)-cylinder which is (ε3, d3, r)-regular with respect to G2.

Our objective is to prove the following technical claim.

Claim 5.14. Let s = 4 and G2, G3, and H are as in Setup C. Then, for all but at

most 10ε
1/64
3 m2 pairs {x, x′} ⊂ V1, the following is true:

|H ∩ K3(H(x, x′)[G3(x, x′)])| ≤ 3

2
d9

2d̃
9
3d

7
3m

3.

This claim will be used in the next section to prove a claim necessary for proving

Proposition 2.6.

We start with some technical observation. The first one is a consequence of

Fact 4.9 and shows that almost all pairs have approximately the same joint degree

in G3.

Fact 5.15. For all but at most 10(s− 1)ε
1/8
3 m2 pairs {x, x′} ⊂ V1 we have:(

1− ε1/8
3

)2

d2
2d̃

2
3m ≤ degG3,j(x, x

′) ≤
(

1 + ε
1/8
3

)2

d2
2d̃

2
3m (5.38)

for every j ∈ [s] \ {1}. Consequently, G2[G3(x, x′)] is (ε
1/2
2 , d2)-regular.

Proof. Since G2 is (ε2, d2)-regular and G3 is (ε3, d̃3, r)-regular with respect to G2, G2

and G3 satisfy Setup A. Consequently, we can apply the remark following Fact 4.9

with l = 2 to infer that all but at most

(s− 1)
(

4ε
1/2
2 + 8ε

1/8
2 + 4ε

1/2
3 + 8ε

1/8
3

)
m2 ≤ 10(s− 1)ε

1/8
3 m2

pairs {x, x′} satisfy (5.38).

Using assumptions ε2 � ε3 � d̃3 and ε2 � d2 yields
(

1− ε1/8
3

)2

d2
2d̃

2
3 > ε

1/4
2 .

Thus, by Fact 3.4, G2[G3(x, x′)] is (ε
1/2
2 , d2)-regular.
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The second fact proves that the restriction ofH to the joint neighborhood inherits

regularity for almost all pairs.

Fact 5.16. Set r′ = r/
(
ε

1/2
3 d−3

2

)(
2ε

1/8
3 d−3

2

)
. Then,

(i) the pair {x, x′} is good, and

(ii) the restriction H[G2(x, x′)] is (2ε
1/16
3 , d3, r

′)-regular with respect to G2[G2(x, x′)]

for all but at most 5
(
s−1

3

)
ε

1/2
3 m2 pairs {x, x′} ⊂ V1.

Proof. Observe first that due to Observations 3.8 and 3.12:

• all but at most
(

2(s− 1)ε
1/2
2 + 10(s− 1)ε

1/4
2

)
m2 pairs {x, x′} are pairs of good

vertices (c.f. Observation 3.8), and

• all but at most
(

4(s− 1)ε
1/2
2 + 6(s− 1)ε

1/4
2

)
m2 pairs {x, x′} are good pairs in

[Vgood]2 (c.f. Observation 3.12).

Also notice that by Observation 5.4

• all but at most
(

4
(
s−1

3

)
ε

1/2
3 + 2

(
s−1

2

)
ε

1/16
2

)
m2 good pairs {x, x′} are good pairs

of nice vertices.

Furthermore, it follows from Claim 5.9 that for every nice vertex x ∈ Vnice there are at

most 3
(
s−1

3

)
ε

1/32
2 m good vertices x′ ∈ Vgood for which H is not (4ε

1/16
3 , d3, r

′)-regular

with respect to G2[G2(x, x′)].

We use the assumption ε2 � ε3 and conclude that all but at most 5
(
s−1

2

)
ε

1/2
3 m2

pairs satisfy conditions (i) and (ii).

The next two facts will show that the (s − 1, 2)-cylinder G3[G3(x, x′)] ∩ H(x, x′)

is regular with respect to G2[G3(x, x′)] for almost all pairs {x, x′}. Fact 5.17 is of

a technical nature and it will be later used in Fact 5.18 which actually proves the

regularity of G3[G3(x, x′)] ∩H(x, x′).



83

Fact 5.17. Let r′′ = r/
(
ε

1/2
3 d−2

2

)(
ε

1/16
3 d−2

2

)
. Then, for all but at most 4

(
s−1

2

)
ε

1/8
3 m

good vertices x ∈ Vgood the following statement holds: all but at most 3
(
s−1

2

)
ε

1/16
2 m

good vertices x′ have the following properties

(i)
(

1− ε1/2
3

)3

d2
2d̃3m ≤ |NG3,j(x) ∩NG2,j(x

′)| ≤
(

1 + ε
1/2
3

)3

d2
2d̃3m,

(ii) G2[G3(x) ∩ G2(x′)] is (ε1/2, d2)-regular,

(iii) the (s− 1, 2)-cylinder G3[G3(x)∩G2(x′)]∩H(x) is (2ε
1/32
3 , d3d̃3, r

′′)-regular with

respect to G2[G3(x) ∩ G2(x′)].

Proof. Observe first that (ii) follows from (i). Since ε2 � ε3 � d̃3 and ε2 � d2,

we have
(

1− ε1/2
3

)3

d2
2d̃3 > δ

1/4
2 . Then, the (ε

1/2
2 , d2)-regularity of G2[G3(x) ∩ G2(x′)]

follows from Fact 3.4. Hence, we will concentrate on properties (i) and (iii).

Note that this is claim is being proved under Setup C. Then, Claim 5.7 implies

that for all but at most 2
(
s−1

2

)
(4ε

1/2
2 + 4ε

1/2
3 + ε

1/8
2 + ε

1/8
3 )m ≤ 4

(
s−1

2

)
ε

1/8
3 m good

vertices x ∈ Vgood the following conditions are satisfied:

(a)
(

1− ε1/2
3

)2

d2d̃3m ≤ degG3,j(x) ≤
(

1 + ε
1/2
3

)2

d2d̃3m for j ∈ [s]\{1}, and

(b) (s− 1, 2)-cylinder G3[G3(x)]∩H(x) is (ε
1/8
3 , d3d̃3, r/

(
ε

1/2
3 d−2

2

)
)-regular with re-

spect to G2[G3(x)].

Fix a good vertex x ∈ Vgood for which (a) and (b) are satisfied and let W ′ be the set

of vertices x′ which violate(
1− ε1/2

3

)3

d2
2d̃3m ≤ |NG3,j(x) ∩NG2,j(x

′)| ≤
(

1 + ε
1/2
3

)3

d2
2d̃3m (5.39)

for some j ∈ [s] \ {1} such that |W ′| ≤
(

1 + ε
1/2
3

)2

d2d̃3m.

Furthermore, let W ′′, |W ′′| ≤
(

1 + ε
1/2
3

)2

d2d̃3m, be the set of vertices x′ satisfy-

ing (5.39) for which the (s−1, 2)-cylinder G3[G3(x)∩G2(x′)]∩H(x) is (2ε
1/32
3 , d3d̃3, r

′′)-

irregular with respect to G2[G3(x) ∩ G2(x′)].

We will show the following two statements.
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S1 |W ′| ≤ 2(s− 1)ε
1/4
2 m.

S2 |W ′′| ≤ 2
(
s−1

2

)
ε

1/16
2 m.

Note that every vertex that does not belong to W ′ ∪ W ′′ satisfies (i), (ii), and

(iii). Finally, using S1 and S2 yields |W ′ ∪W ′′| ≤ 2(s − 1)ε
1/4
2 m + 2

(
s−1

2

)
ε

1/16
2 m ≤

3
(
s−1

2

)
ε

1/16
2 m.

Remark. Observe that S1 and S2 indeed show that W ′ and W ′′ contains all vertices

which violate (i) or (iii).

Proof of S1: Let W , W ′ ⊂ W ⊂ V1, be a set for which
(

1− ε1/2
3

)2

d2d̃3m ≤

|W | ≤
(

1 + ε
1/2
3

)2

d2d̃3m. This can be achieved by adding some vertices to W ′. Set

V ′1 = W , V ′j = Vj ∩ G3(x) for j ∈ [s] \ {1}, V ′ = V ′1 ∪ . . . ∪ V ′s , and G ′2 = G2[V ′].

Since ε2 � ε3, ε2 � d2, and ε3 � d̃3, we have
(

1− ε1/2
3

)3

d2
2d̃3 > ε

1/4
2 . Thus, by

Observation 3.4, G ′2 is (ε
1/2
2 , d2)-regular. Applying Fact 3.3 with δ = ε

1/2
2 and k = 1

on G ′2 yields that all but at most 2(s − 1)ε
1/4
2 |V ′1 | ≤ 2(s − 1)ε

1/4
2 m vertices x ∈ V ′1

satisfy (
d2 − ε1/2

2

)
|V ′j | ≤ |NG′2,j(x

′)| ≤
(
d2 + ε

1/2
2

)
|V ′j |

for every j ∈ [s] \ {1}. Since
(

1− ε1/2
3

)2

d2d̃3m ≤ |V ′j | ≤
(

1 + ε
1/2
3

)2

d2d̃3m due to

(a) and the definition of V ′i and NG′2,j(x
′) = NG3,j(x) ∩NG2,j(x

′), one easily gets that

all but at most 2(s − 1)ε
1/4
2 m vertices x′ ∈ V1 satisfy (5.39). Since W ′ contains all

vertices that does not satisfy (5.39), we have |W ′| ≤ 2(s− 1)ε
1/4
2 m.

Proof of S2: Let W , W ′′ ⊂ W ⊂ V1, be a set for which
(

1− ε1/2
3

)2

d2d̃3m ≤

|W | ≤
(

1 + ε
1/2
3

)2

d2d̃3m. Such a choice can be made by adding (if necessary) some

vertices to W ′′. Set V ′′1 = W , V ′′j = Vj ∩ G3(x) for j ∈ [s] \ {1}, V ′′ = V ′′1 ∪ . . . ∪ V ′′s ,

and G ′′2 = G2[V ′′]. Using the same argument as for G ′2 above, we get that G ′′2 is

(ε
1/2
2 , d2)-regular.



85

We also set G ′′3 = G3[G3(x)] ∩H(x). By our choice of x (c.f. condition (b)), G ′′3 is

(ε
1/8
3 , d3d̃3, r/

(
ε

1/2
3 d−2

2

)
)-regular with respect to G ′′2 . Hence, in a view of the remark

after Claim 5.6, G ′′2 and G ′′3 satisfy the assumptions of Claim 5.6 with ε2 replaced by

ε
1/2
2 , ε3 replaced by ε

1/8
3 , d̃3 by d3d̃3, r by r/

(
ε

1/2
3 d−2

2

)
, and Vj by V ′j .

Using this claim, G ′′3 [G ′′2 (x′)] is (2ε
1/32
3 , d3d̃3, r

′′)-irregular with respect to G ′′2 [G ′′2 (x′)]

for at most 2
(
s−1

2

)
ε

1/16
2 |V ′1 | ≤ 2

(
s−1

2

)
ε

1/16
2 m good vertices x′ ∈ Vgood.

Observe that all such vertices are contained in W ′′ since G ′′2 [G ′′2 (x′)] = G2[G3(x) ∩

G2(x′)], and G ′′3 [G ′′2 (x′)] = G3[G3(x)∩G2(x′)]∩H(x). Hence, |W ′′| ≤ 2
(
s−1

2

)
ε

1/16
2 m.

Fact 5.18. Let r′ = r/
(
ε

1/2
3 d−2

2

)(
ε

1/16
3 d−2

2

)
. Then for all but at most 3

(
s−1

2

)
ε

1/64
3 m2

pairs of good vertices {x, x′} ⊂ Vgood the following statements hold.

(a) (
1− ε1/8

3

)2

d2
2d̃

2
3m ≤ degG3,j(x, x

′) ≤
(

1 + ε
1/8
3

)2

d2
2d̃

2
3m, (5.40)

for every j ∈ [s] \ {1}, and G2[G3(x, x′)] is (ε
1/2
2 , d2)-regular, and

(b) G3[G3(x, x′)] ∩H(x, x′) is (ε
1/64
3 , d̃3d

2
3, r
′)-regular with respect to G2[G3(x, x′)] .

Proof. Suppose s = 3 and for a pair of good vertices {x,w} consider the following

properties:

(i) {x,w} is a good pair,

(ii)
(

1− ε1/2
3

)3

d2
2d̃3m ≤ |NG3,j(x) ∩ NG2,j(w)| ≤

(
1 + ε

1/2
3

)3

d2
2d̃3m for j = 2, 3,

and G2[G3(x) ∩ G2(w)] is (ε
1/2
2 , d2)-regular,

(iii) the (s− 1, 2)-cylinder G3[G3(x)∩G2(w)]∩H(x) is (2ε
1/32
3 , d3d̃3, r

′)-regular with

respect to G2[G3(x) ∩ G2(w)],

Observe that
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• there are at most
(

8ε
1/2
2 + 12ε

1/4
2

)
m2 ≤ 14ε

1/4
2 m2 pairs of good vertices {x,w}

which are not good pairs, that is they violate (i) (c.f. Observation 3.12),

• there are at most 4ε
1/8
3 m good vertices x for which there are more than 3ε

1/16
2 m

good vertices w violating (ii) or (iii) (c.f. Fact 5.17), and

• for every remaining vertex x there are at most 3ε
1/16
2 m good vertices w violating

(ii) or (iii) (c.f. Fact 5.17).

Thus, all but at most

14ε
1/4
2 m2 + 4ε

1/8
3 m×m+m× 3ε

1/16
2 m ≤ 5ε

1/8
3 m2

pairs of good vertices satisfy conditions (i)-(iii).

Furthermore, Fact 5.15 implies that there are at most 20ε
1/8
3 m2 pairs {x,w} that

violate (a), that is

(iv)
(

1− ε1/8
3

)2

d2
2d̃

2
3m ≤ degG3,j(x,w) ≤

(
1 + ε

1/8
3

)2

d2
2d̃

2
3m for j = 2, 3, and cylin-

der G2[G3(x,w)] is (ε
1/2
2 , d2)-regular.

For every good vertex x ∈ Vgood denote byWx the set of all good vertices w ∈ Vgood

which satisfy conditions (i)-(iv) and violate (b), that is

(v) G ′3(x,w) = G3[G3(x,w)] ∩H(x,w) is not (ε
1/64
3 , d̃3d

2
3, r
′)-regular with respect to

G2[G3(x,w)].

Denote by X the set of all good vertices x ∈ Vgood for which |Wx| ≥ 2ε
1/64
3 m. We

will show that |X| < 2ε
1/16
2 m.

Then we can easily finish the proof:

• all but at most 5ε
1/8
3 m2 + 20ε

1/8
3 m2 pairs of good vertices satisfies (i)-(iv),

• for every vertex x ∈ X there are more than 2ε
1/64
3 m good vertices w satisfying

(i)-(iv) and violating (v) (c.f. definition of X and Wx), and
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• for every vertex x 6∈ X there are at most 2ε
1/64
3 m good vertices w satisfying

(i)-(iv) and violating (v) (c.f. definition of X and Wx).

Thus, all but at most

5ε
1/8
3 m2 + 20ε

1/8
3 m2 + 2ε

1/16
2 m×m+m× 2ε

1/64
3 m ≤ 3ε

1/64
3 m2

pairs {x,w} of good vertices satisfy conditions (a) and (b).

If s > 3, we apply the result for s = 3 simultaneously to
(
s−1

2

)
restrictions of G2,

G3, and H to V1 ∪ Vi ∪ Vj, 1 < i < j ≤ s.

Now we show that |X| < 2ε
1/16
2 m. Suppose in contrary that |X| ≥ 2ε

1/16
2 m. We

write Wx = W+
x ∪W−

x , where W−
x (W+

x respectively) is the set of all vertices w ∈ Wx

for which the first (respectively second) part of inequality (4.1) is not satisfied. We

also define X+ (respectively X−) to be the set of all vertices x ∈ X for which

|W+
x | ≥ ε

1/64
3 m (respectively |W−

x | ≥ ε
1/64
3 m). Clearly X = X+ ∪ X− and, thus,

either |X+| or |X−| is at least ε
1/16
2 m. Assume that |X+| ≥ ε

1/16
2 m (we can repeat

the same for X−).

Let x ∈ X+. Then, for every w ∈ Wx there exist (2, 1)-cylinders Bwj = Y w
j ∪ Zw

j ,

where Y w
j is a subset of G3(x,w) ∩ V2 and Zw

j ⊂ G3(x,w) ∩ V3, j ∈ [r′], such that∣∣∣∣∣G2[G3(x,w)] ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣ ≥ ε
1/64
3 |G2[G3(x,w)]|, (5.41)

but ∣∣∣∣∣G ′3(x,w) ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣ > (d̃3d
2
3 + ε

1/64
3

) ∣∣∣∣∣G2[G3(x,w)] ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣ . (5.42)

Recall that G ′3(x,w) = G3[G3(x,w)] ∩ H(x,w). Notice that due to assumptions (ii)-

(iv), ε2 � d2, ε3 � d̃3 and ε2 � ε3, we have

|G2[G3(x,w)]|
(iv)

≥
(
d2 − ε1/2

2

)((
1− ε1/8

3

)2

d2
2d̃

2
3m

)2

≥ (1/2)d5
2d̃

4
3m

2 (5.43)
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and

|G2[G3(x) ∩ G2(w)]|
(ii)

≤
(
d2 + ε

1/2
2

)((
1 + ε

1/2
3

)3

d2
2d̃3m

)2

≤ 2d5
2d̃

2
3m

2.

Subsequently,

ε
1/64
3 |G2[G3(x,w)]| ≥ ε

1/64
3 (1/2)d5

2d̃
4
3m

2

≥ 2ε
1/32
3 2d5

2d̃
2
3m

2 ≥ 2ε
1/32
3 |G2[G3(x) ∩ G2(w)]|.

We combine the above inequality with (5.41) and obtain∣∣∣∣∣G2[G3(x,w)] ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣ ≥ 2ε
1/32
3 |G2[G3(x) ∩ G2(w)]|.

Since Bwj ⊂ G3(x,w) ⊂ G3(x)∩G2(w) for every w ∈ Wx and j ∈ [s] \ {1}, we have

G2[G3(x,w)] ∩
r′⋃
j=1

K2(Bwj ) = G2[G3(x) ∩ G2(w)] ∩
r′⋃
j=1

K2(Bwj ) (5.44)

In a view of (5.44),
∣∣∣G2[G3(x) ∩ G2(w)] ∩

⋃r′

j=1K2(Bwj )
∣∣∣ ≥ 2ε

1/32
3 |G2[G3(x) ∩ G2(w)]|,

therefore, we can apply the (2ε
1/32
3 , d3d̃3, r

′)-regularity of G3[G3(x)] ∩ H(x) (c.f. (ii))

and (5.44) to conclude that

(
d3d̃3 − 2ε

1/32
3

) ∣∣∣∣∣G2[G3(x,w)] ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣
≤

∣∣∣∣∣G3[G3(x) ∩ G2(w)] ∩H(x) ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣
≤
(
d3d̃3 + 2ε

1/32
3

) ∣∣∣∣∣G2[G3(x,w)] ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣ (5.45)

For every vertex x ∈ X, we define (3, 2)-cylinders Qx1 , . . . ,Qxr′ by Qxj = Qx
j1̂
∪
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Qx
j2̂
∪Qx

j3̂
, where

Qx
j1̂

= G3[G3(x)] ∩H(x),

Qx
j2̂

=
⋃

w∈Wx

{wz : z ∈ Zw
j }, and (5.46)

Qx
j3̂

=
⋃

w∈Wx

{wy : y ∈ Y w
j }.

Observe that the union
⋃t
u=1

⋃r′

j=1K3(Qxuj ) can be written in the following way

r′⋃
j=1

K3(Qxuj ) =
⋃

w∈Wxu

(
G3[G3(xu)] ∩H(xu) ∩

r′⋃
j=1

K2(Bwj )

)
. (5.47)

Moreover, since Bwj ⊂ G3(xu, w) ⊂ G3(xu) ∩ G2(w) ⊂ G3(xu) for every w ∈ Wxu and

j ∈ [s] \ {1}, we also have

r′⋃
j=1

K3(Qxuj ) =
⋃

w∈Wxu

(
G3[G3(xu) ∩ G2(w)] ∩H(xu) ∩

r′⋃
j=1

K2(Bwj )

)

=
⋃

w∈Wxu

(
G3[G3(xu, w)] ∩H(xu) ∩

r′⋃
j=1

K2(Bwj )

)
.

(5.48)

We show that we can choose t = ε
1/8
3 d−2

2 vertices x1, . . . , xt ∈ X so that the

union
⋃t
u=1

⋃r′

j=1K3(Qxuj ) is sufficiently large to apply the (ε3, d3, r)-regularity of H

with respect to G2. This will be, however, in a contradiction with with the assump-

tion (5.42).

First, we need a lower bound on the size of
⋃r′

j=1K3(Qxj ) for an arbitrary vertex

x ∈ X. In a view of (5.48), we have∣∣∣∣∣
r′⋃
j=1

K3(Qxj )

∣∣∣∣∣ =
∑
w∈Wx

∣∣∣∣∣G3[G3(x) ∩ G2(w)] ∩H(x) ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣
(5.45)

≥
∑
w∈Wx

(
d3d̃3 − 2ε

1/32
3

) ∣∣∣∣∣G2[G3(x,w)] ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣ .
(5.49)
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We recall that |G3[G2(x,w)]| ≥ (1/2)d5
2d̃

4
3m

2 (c.f. 5.43). Then we use assumption

(5.41) and get∣∣∣∣∣
r′⋃
j=1

K3(Qxj )

∣∣∣∣∣ ≥ ∑
w∈Wx

(
d3d̃3 − 2ε

1/32
3

) ∣∣∣∣∣G2[G3(x,w)] ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣
(5.41)

≥ |Wx|
(
d3d̃3 − 2ε

1/32
3

)
× ε1/64

3 × (1/2)d5
2d̃

4
3m

2

≥ (1/4)ε
1/32
3 d3d̃

5
3d

5
2m

3.

(5.50)

Second, we also need an upper bound on the size of
⋃r′

j=1K3(Qxj )∩
⋃r′

i=1K3(Qx′i )

for a good pair {x, x′}. We can repeat the argument from Claim 5.11 with |Wx| =

ε
1/64
3 m (rather than ε

1/16
3 m, c.f. (5.37)) and conclude that for every pair of good

vertices {x, x′} ⊂ X we have∣∣∣∣∣
r′⋃
j=1

K3(Qxj ) ∩
r′⋃
i=1

K3(Qx′i )

∣∣∣∣∣ ≤ 4ε
1/64
3 d7

2m
3 (5.51)

Now we define an auxiliary graph Γ = (V,E), where a pair of vertices {x′, x′′} is

an edge whenever it is not a good pair. It follows from Observations 3.8 and 3.12 that

the size of E is bounded by 34ε
1/4
2 m2. Using the Picking Lemma with σ1 = 34ε

1/4
2 ,

c = ε
1/16
2 , and t = ε

1/8
3 d−2

2 , we choose t vertices x1, . . . , xt ∈ X so that all pairs

{xu, xv} are good.

Note that condition (2.8) is satisfied, because

2× 34ε
1/4
2 × t2(

ε
1/16
2

)2 < 68ε
1/8
2 d−2

2 <
1

2
.

Then, we can estimate
∣∣∣⋃t

u=1

⋃r′

j=1K3(Qxuj )
∣∣∣ using Observation 4.5 in the following

way:∣∣∣∣∣
t⋃

u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ ≥
t∑

u=1

∣∣∣∣∣
r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣− ∑
1≤u<v≤t

∣∣∣∣∣
r′⋃
i=1

K3(Qxui ) ∩
r′⋃
j=1

K3(Qxvj )

∣∣∣∣∣
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This can be further simplified with the use of (5.50), (5.51), t = ε
1/8
3 d−2

2 , and ε3 � d3,

ε3 � d̃3. ∣∣∣∣∣
t⋃

u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ ≥ t× (1/4)ε
1/32
3 d3d̃

5
3d

5
2m

3 −
(
t

2

)
× 4ε

1/64
3 d7

2m
3

≥ 2ε3d
3
2m

3 ≥ ε3|K3(G3)|.

The last part of this inequality follows from Corollary 3.6. Applying the (ε3, d3, r)-

regularity of H with respect to G2 (note that t× r′ ≤ r) yields∣∣∣∣∣H ∩
t⋃

u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ ≤ (d3 + ε3)

∣∣∣∣∣
t⋃

u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣
Using the first part (equality) of (5.49) and inequality (5.45), we conclude that

(d3 + ε3)

∣∣∣∣∣
t⋃

u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ ≤ (d3 + ε3)
t∑

u=1

∣∣∣∣∣
r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣
(5.49)
= (d3 + ε3)

t∑
u=1

∑
w∈Wxu

∣∣∣∣∣G3[G3(xu) ∩ G2(w)] ∩H(xu) ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣
(5.45)

≤ (d3 + ε3)
(
d3d̃3 + 2ε

1/32
3

) t∑
u=1

∑
w∈Wxu

∣∣∣∣∣G2[G3(xu, w)] ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣ .
Combining the previous two inequalities, we obtain:∣∣∣∣∣H ∩

t⋃
u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ ≤ (d̃3d
2
3 + 3ε

1/32
3

) t∑
u=1

∑
w∈Wxu

∣∣∣∣∣G2[G3(xu, w)] ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣ .
On the other hand, we use assumption (5.42) and obtain the following lower bound

on
∣∣∣H ∩⋃t

u=1

⋃r′

j=1K3(Qxuj )
∣∣∣ (recall that G ′3(xu, w) = G3[G3(xu, w)] ∩H(xu, w)):∣∣∣∣∣H ∩

t⋃
u=1

r′⋃
j=1

K3(Qxuj )

∣∣∣∣∣ =
t∑

u=1

∑
w∈Wxu

∣∣∣∣∣G ′3(xu, w) ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣
(5.42)
>
(
d̃3d

2
3 + ε

1/64
3

) t∑
u=1

∑
w∈Wxu

∣∣∣∣∣G2[G3(xu, w)] ∩
r′⋃
j=1

K2(Bwj )

∣∣∣∣∣ .
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Comparing the last two inequalities yields d̃3d
2
3 + 3ε

1/32
3 > d̃3d

2
3 + ε

1/64
3 , which is

a contradiction. Thus, our assumption that |X+| ≥ ε
1/32
2 m is incorrect. Since this

was a consequence of |X| ≥ 2ε
1/32
2 m, we must have |X| < 2ε

1/32
2 m.

Now we are ready to prove Claim 5.14.

Proof of Claim 5.14. Set r′ = r/
(
ε

1/2
3 d−3

2

)(
ε

1/16
3 d−3

2

)
and let {x, x′} be a pair of

vertices such that

(i) {x, x′} is a good pair,

(ii) the restriction of H to G2[G2(x, x′)] is (2ε
1/16
3 , d3, r

′)-regular with respect to

G2[G2(x, x′)],

(iii)
(

1− ε1/8
3

)2

d2
2d̃

2
3m ≤ degG3,j(x, x

′) ≤
(

1 + ε
1/8
3

)2

d2
2d̃

2
3m for every j ∈ [s] \ {1},

G2[G3(x, x′)] is (ε
1/2
2 , d2)-regular, and

(iv) G3[G3(x, x′)] ∩H(x, x′) is (ε
1/64
3 , d̃3d

2
3, r
′)-regular with respect to G2[G3(x, x′)].

It follows from Fact 5.16 that all but at most 5ε
1/2
3 m2 pairs {x, x′} satisfy (i) and (ii)

(note that r′ ≤ r/
(
ε

1/2
3 d−3

2

)(
2ε

1/8
3 d−3

2

)
).

Furthermore, Fact 5.18 impies that all but at most 9ε
1/64
3 m2 good pairs {x, x′}

satisfy (iii) and (iv) (note that in this case r′ ≤ r/
(
ε

1/2
3 d−2

2

)(
ε

1/16
3 d−2

2

)
).

We define two (3, 2)-cylinders G ′1, G ′2 by G ′1 = G2[G3(x, x′)] and G ′2 = G3[G3(x, x′)]∩

H(x, x′).

Then, G ′1 and G ′2 satisfy the assumptions of the 2-graphs Lemma. More precisely,

setting ε′1 = ε
1/2
2 , ε′2 = ε

1/64
3 , d′1 = d2, d′2 = d̃3d

2
3, and

(
1− ε1/8

3

)2

d2
2d̃

2
3m ≤ m′ ≤(

1 + ε
1/8
3

)2

d2
2d̃

2
3m, we have that G ′1 is (ε′1, d

′
1)-regular and G ′2 is (ε′2, d

′
2, r
′)-regular

with respect to G ′1 (c.f. (iii) and (iv)).

We apply the 2-graphs Lemma and obtain the following

|K3(G3[G3(x, x′)] ∩H(x, x′))| = |K3(G ′2)| ≥
(
1− 8(ε′2)1/64

)2
(d′1d

′
2)3(m′)3
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Then we use the definitions of ε′1, ε′2 and m′ and assumption ε2 � ε3 � d3 ≤ 1 to

obtain

|K3(G3[G3(x, x′)] ∩H(x, x′))| ≥
(

1− ε1/4096
2

)2

d3
2d̃

3
3d

6
3

((
1− ε1/8

3

)2

d2
2d̃

2
3m

)3

≥ 3

4
d9

2d̃
9
3d

6
3m

3.

In a similar fashion we get

|K3(G3[G3(x, x′)] ∩H(x, x′))| ≤ 5

4
d9

2d̃
9
3d

6
3m

3. (5.52)

Since the pair {x, x′} is good (c.f. (i)), the (3, 2)-cylinder G2[G2(x, x′)] is (ε
1/2
2 , d2)-

regular. It follows from Corollary 3.6 that

|K3(G2[G2(x, x′)])| ≤ (5/4)d3
2

(
d2 + ε

1/2
2

)6

m3 ≤ 2d9
2m

3.

Since 2ε
1/16
3 × 2d9

2m
3 ≤ (3/4)d9

2d̃
9
3d

6
3 because of ε3 � d3 and ε3 � d̃3, we obtain

|K3(G3[G3(x, x′)] ∩H(x, x′))| ≥ 2ε
1/16
3 |K3(G2[G2(x, x′)])|.

We apply the (2ε
1/16
3 , d3, r

′)-regularity ofH[G2(x, x′)] with respect to G2[G2(x, x′)] and

obtain

|H ∩ K3(G3[G3(x, x′)] ∩H(x, x′))| ≤
(
d3 + 2ε

1/16
3

)
|K3(G3[G3(x, x′)] ∩H(x, x′))|

(5.52)

≤
(
d3 + 2ε

1/16
3

) 5

4
d9

2d̃
9
3d

6
3m

3 ≤ 3

2
d9

2d̃
9
3d

7
3m

3.

This is, however, what we wanted to prove.

5.7 Additional claims

The motivation for this subsection is twofold. First, we need to define the notion of

a nice neighbor and prove that almost all neighbors of a nice vertex are nice. Second,

in the proof of Proposition 2.6, we will need an upper bound on the number of copies
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of K3 in the joint neigborhood of two nice neighbors. We will provide this estimate

at the end of this section. We start with the definition of a nice neighbor.

Suppose that G and H are as in Setup B, i.e. G = (V,E(G)) is an (ε2, d2)-regular

(s, 2)-cylinder and H = (V,E(H)) an (s, 3)-cylinder which is (ε3, d3, r)-regular with

respect to G.

Definition 5.19 (nice neighbor). Let x ∈ Vnice be a nice vertex and set r′ =

r/
(
ε

1/2
3 d−3

2

)(
2ε

1/8
3 d−3

2

)
. A good neighbor y ∈ N2(x)good is called nice if

(i)
(

1− 2ε
1/8
3

)2

d2
2d3m ≤ degH(x),j(y) ≤

(
1 + 2ε

1/8
3

)2

d2
2d3m for every j = 3, . . . , s;

(ii) G[H(x)(y)] is (ε
1/2
2 , d2)-regular, and the (s − 2, 2)-cylinder H(x, y)[H(x)(y)] is

(2ε
1/32
3 , d2

3, r
′)-regular with respect to G[H(x)(y)]; and

(iii) the restriction H[G(x, y)] is (4ε
1/16
3 , d3, r

′)-regular with respect to G[G(x, y)].

We denote by N2(x)nice the set of all nice neighbors in N2(x) = G(x).

Remark. Recall that H(x, y) = H(x) ∩ H(y) stands for the joint link of x and y,

whereas H(x)(y) is the neighborhood of y in the graph H(x).

The following observation shows that almost all good neighbors are nice.

Observation 5.20. All but 4
(
s−2

2

)
ε

1/32
3 d2m good neighbors in N2(x)good are nice

neighbors, i.e.

|N2(x)nice| ≥ |N2(x)good| − 4

(
s− 2

2

)
ε

1/32
3 d2m.

Proof. Let x ∈ Vnice be a nice vertex (c.f. Definition 5.3), that is a good vertex

satisfying:

(i) H(x) is (2ε
1/2
3 , d3, r)-regular with respect to G[G(x)], and

(ii) H is (2ε
1/4
3 , d3, r/

(
ε

1/2
3 d−3

2

)
)-regular with respect to G[G(x)].
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Since every nice vertex is also good, we have (c.f. Definition 3.7):

(iii) G[G(x)] is (ε
1/2
2 , d2)-regular, and

(iv) (d2 − ε2)m ≤ degj(x) ≤ (d2 + ε2)m holds for every j ∈ [s] \ {1}.

Set G ′2 = G[G(x)], G ′3 = H(x), H′ = H[G(x)], ε′2 = ε
1/2
2 , d′2 = d2, ε′3 = 2ε

1/4
3 , d′3 =

d̃′3 = d3, s′ = s−1, r′ = r/
(
ε

1/2
3 d−3

2

)(
2ε

1/8
3 d−2

2

)
, and (d2− ε2)m ≤ m′ ≤ (d2 + ε2)m.

Then, G ′2 is an (s′, 2)-cylinder, G ′3 is an (s′, 2)-cylinder, andH′ is an (s′, 3)-cylinder.

Moreover, G ′2, G ′3, and H′ satisfy the Setup C. More precisely,

• G ′2 is (ε′2, d
′
2)-regular (c.f. (iii)),

• G ′3 is (ε′3, d̃
′
3, r/

(
ε

1/2
3 d−3

2

)
)-regular with respect to G ′2 (c.f. (i)), and

• H′ is (ε′3, d
′
3, r/

(
ε

1/2
3 d−3

2

)
)-regular with respect to G ′2 (c.f. (ii)).

We apply Claim 5.7 and obtain that for all but at most

2

(
s′ − 1

2

)(
4(ε′2)1/2 + 4(ε′3)1/2 + (ε′2)1/8 + (ε′3)

1/8
)
m′

vertices y ∈ N2(x)good the following is true:

(a)
(
1− (ε′3)1/2

)2
d′2d̃
′
3m
′ ≤ degG′3,j(y) ≤

(
1 + (ε′3)1/2

)2
d′2d̃
′
3m
′ for j = 3, . . . , s;

(b) G ′2[G ′3(y)] is ((ε′2)1/2, d′2)-regular and the (s− 2, 2)-cylinder G ′3[G ′3(y)] ∩H′(y) is

((ε′3)1/8, d′3d̃
′
3, r
′)-regular with respect to G ′2[G ′3(y)], where .

We use the assumption ε2 � ε3 and the definitions of ε′2, ε′3, m′, G ′2, G ′3, and H′

to conclude that

• G ′2[G ′3(y)] = G[H(x)(y)],

• G ′3[G ′3(y)] ∩H′(y) = H(x, y)[H(x)(y)],



96

• 2
(
s′−1

2

) (
4(ε′2)1/2 + 4(ε′3)1/2 + (ε′2)1/8 + (ε′3)1/8

)
m′ ≤ 3

(
s−2

2

)
ε

1/32
3 d2m,

•
(

1− 2ε
1/8
3

)2

d2
2d3m ≤ degH(x),j(y) ≤

(
1 + 2ε

1/8
3

)2

d2
2d3m for j ∈ [s] \ {1, 2}

(c.f. (a)),

• G[H(x)(y)] is (ε
1/4
2 , d2)-regular (c.f. (b)),

• H(x, y)[H(x)(y)] is (2ε
1/32
3 , d2

3, r
′)-regular with respect to G[H(x)(y)] (c.f. (b)).

Therefore, all but 4
(
s−2

2

)
ε

1/32
3 d2m vertices y ∈ N2(x)good satisfy (i) and (ii) in Defini-

tion 5.19.

It remains to show that almost all neighbors y satisfy (iii). We apply Corollary 5.5

and obtain that for all but at most 2
(
s−2

3

)
(ε′2)1/16m′ vertices y ∈ N2(x)good, the

(s−2, 3)-cylinderH′[G ′2(y)] is (2(ε′3)1/4, d′3, r
′)-regular with respect to G ′2[G ′2(y)]. Since

• G ′2[G ′2(y)] = G[G(x, y)],

• 2(ε′3)1/4 ≤ 4ε
1/16
3 ,

• H′[G ′2(y)] = H[G(x, y)], and

• 2
(
s′−1

3

)
(ε′2)1/16m′ ≤ 3

(
s−2

3

)
ε

1/32
2 d2m,

we conclude that all but at most 3
(
s−2

3

)
ε

1/32
2 d2m vertices y ∈ N2(x)good satisfy (iii)

in Definition 5.19.

Hence, all but at most 3
(
s−2

2

)
ε

1/32
3 d2m+3

(
s−2

3

)
ε

1/32
2 d2m ≤ 4

(
s−2

2

)
ε

1/32
3 d2m vertices

y ∈ N2(x)good are nice.

We will prove now that for every nice vertex x we have control over the number

of copies of K3 in the joint neighborhood H(x)(y, y′) for almost all pairs of vertices

{y, y′} ⊂ N2(x). Recall that H(x)(y, y′) stands for the joint neighborhood of {y, y′}

in H(x).
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Claim 5.21. Suppose that s = 5. Then for every nice vertex x ∈ Vnice, the following

is true: all but at most 20ε
1/256
3 d2

2m
2 pairs {y, y′} ⊂ N2(x) satisfy

|H ∩ K3(H(x, y, y′)[H(x)(y, y′)])| ≤ 2d12
2 d

16
3 m

3.

Proof. Let x ∈ Vnice be a nice vertex (c.f. Definition 5.3), that is a good vertex for

which we have

(i) the link H(x) is (2ε
1/2
3 , d3, r)-regular with respect to G2[G2(x)].

(ii) H[G2(x)] is (2ε
1/4
3 , d3, r/

(
ε

1/2
3 d−3

2

)
)-regular with respect to G2[G2(x)],

Also remind that the goodness of x implies

(iii) (d2 − ε2)m ≤ degj(x) ≤ (d2 + ε2)m for j = 2, . . . , 5,

(iv) the (4, 2)-cylinder G2[G2(x)] is (ε
1/2
2 , d2)-regular.

We apply Claim 5.14 with G ′2 = G2[G2(x)], G ′3 = H(x), and H′ = H[G2(x)].

Observe that if we set ε′2 = ε
1/2
2 , ε′3 = 2ε

1/4
3 , (d2 − ε2)m ≤ m′ ≤ (d2 + ε2)m,

d̃′3 = d′3 = d3, and r′ = r/
(
δ

1/2
3 d−3

2

)
, then (i)-(iv) verify conditions of the Setup C.

More precisely,

• (iv) verifies that G ′2 is (ε′2, d
′
2)-regular,

• (i) verifies that G ′3 is (ε′3, d̃
′
3, r
′)-regular with respect to G ′2, and

• (ii) verifies that H′ is (ε′3, d
′
3, r
′)-regular with respect to G ′2.

By Claim 5.14, all but 10(ε′3)1/64(m′)2 pairs {y, y′} ⊂ N2(x) satisfy

|H′ ∩ K3(H′(y, y′)[G ′3(y, y′)])| ≤ 3

2
(d′2)9(d̃′3)9(d′3)7(m′)3.

This concludes the proof because
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• H′ ∩ K3(H′(y, y′)[G ′3(y, y′)]) = H ∩K3(H(x, y, y′)[H(x)(y, y′)]),

• 10(ε′3)1/64(m′)2 ≤ 20ε
1/256
3 d2

2m
2, and

• (3/2)(d′2)9(d̃′3)9(d′3)7(m′)3 ≤ 2d12
2 d

16
3 m

3.

Here we used the definitions of ε′2, ε′3, m′, and ε2 � d2.



Chapter 6

Properties of 4-cylinders

This section has two parts. In the first part, we derive the two basics properties

of the links of an (s, 4)-cylinder F : the regularity of the link F(x) and the regu-

larity of F(x, y), where y is a neighbor of x. The second part provides a proof of

Proposition 2.6.

6.1 Regularity of the links of 4-cylinders

In this section, we investigate link properties of a regular (s, 4)-cylinder F . First,

we describe our situation.

Setup D. Let 0 < ε2 � d2 ≤ 1, 0 < ε3 � d3 ≤ 1, and 0 < ε4 � d4 ≤ 1 be

real numbers so that ε2 � ε3 � ε4. Let V = V1 ∪ . . . ∪ Vs be a partition, where

|V1| = . . . = |Vs| = m, G = (V,E(G)) be an (s, 2)-cylinder that is (ε2, d2)-regular,

H = (V,E(H)) be an (s, 3)-cylinder which is (ε3, d3, r)-regular with respect to G, and

let F be a (s, 4)-cylinder which is (ε4, d4, r)-regular with respect to H.

The following claim shows that the link F(x) “inherits” regularity from F . It

can be viewed as an analogy to Claim 5.1.

99
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Claim 6.1. The (s− 1, 3)-cylinder F(x) is (2ε
1/2
4 , d4, r)-regular with respect to H ∩

K3(H(x)) for all but at most 4
(
s−1

3

)
ε

1/2
4 m vertices x ∈ Vnice.

Proof. We may assume s = 4 because we can apply this result simultaneously to

subcylinders of G, H, and F induced on V1 ∪ Vi ∪ Vj ∪ Vk, 1 < i < j < k ≤ s.

Let x be a nice vertex. By Definition 5.3 we know that x satisfies:

(i) the link H(x) is (2ε
1/2
3 , d3, r)-regular with respect to G[G(x)],

(ii) H[G(x)] is (2ε
1/4
3 , d3, r/

(
ε

1/2
3 d−3

2

)
)-regular with respect to G[G(x)].

Moreover, since x must be also a good vertex, we have (c.f. Definition 3.7):

(iii) (d2 − ε2)m ≤ degj(x) ≤ (d2 + ε2)m for j = 2, 3, 4,

(iv) the (3, 2)-cylinder G[G(x)] is (ε
1/2
2 , d2)-regular.

We apply the 2-graphs Lemma (Lemma 4.11) with

• (3, 2)-cylinder G1 played by G[G(x)] which is (ε
1/2
2 , d2)-regular (c.f. (iv));

• (3, 2)-cylinder G2 played by H(x) which is (2ε
1/2
3 , d3, r)-regular with respect to

G[G(x)] (c.f. (i));

• Vi replaced by G(x) ∩ Vi for i = 2, 3, 4;

and obtain(
1− 8

(
2ε

1/2
3

)1/64
)2

d3
2d

3
3 × ((d2 − ε2)m)3 ≤ |K3(H(x))|

≤
(

1 + 8
(

2ε
1/2
3

)1/64
)2

d3
2d

3
3 × ((d2 + ε2)m)3 .

This can be further simplified using ε2 � d2 and ε3 � d3 to

3

4
d6

2d
3
3m

3 ≤ |K3(H(x))| ≤ 5

4
d6

2d
3
3m

3. (6.1)
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It follows from Fact 3.6 applied with s = 3 and ε3 � d3 that 2ε
1/4
3 |K3(G[G(x)])| ≤

2ε
1/4
3 × (5/4)d3

2(d2 + ε2)3m3 ≤ (3/4)d6
2d

3
3m

3. Hence we have

|K3(H(x))| ≥ 2ε
1/4
3 |K3(G[G(x)])|.

Applying the (2ε
1/4
3 , d3, r/

(
ε

1/2
3 d−3

2

)
)-regularity of H with respect to G[G(x)] yields(

d3 − 2ε
1/4
3

)
|K3(H(x))| ≤ |H ∩ K3(H(x))| ≤

(
d3 + 2ε

1/4
3

)
|K3(H(x))|.

We combine this inequality with (6.1) to conclude that for every nice vertex x we

have
1

2
d6

2d
4
3m

3 ≤ |H ∩ K3(H(x))| ≤ 2d6
2d

4
3m

3. (6.2)

Suppose that one can find t = 2ε
1/2
4 m nice vertices x1, . . . , xt ∈ Vnice such that for

every u ∈ [t] the link F(xu) is (2ε
1/4
4 , d4, r)-irregular with respect to H∩K3(H(xu)).

Moreover, assume that for every xu the second part of inequality (4.1) does not hold,

that is there exist (3, 2)-cylinders Bju ⊂ H(xu), j ∈ [r], such that∣∣∣∣∣H ∩K3(H(xu)) ∩
r⋃
j=1

K3(Bju)

∣∣∣∣∣ ≥ 2ε
1/2
4 |H ∩ K3(H(xu))|, (6.3)

but ∣∣∣∣∣F(xu) ∩
r⋃
j=1

K2(Bju)

∣∣∣∣∣ > (d4 + 2ε
1/2
4

) ∣∣∣∣∣H ∩K3(H(xu)) ∩
r⋃
j=1

K3(Bju)

∣∣∣∣∣ . (6.4)

For every j ∈ [r] define a (4, 3)-cylinder Qj = Qj1̂ ∪Qj2̂ ∪Qj3̂ ∪Qj4̂ by

Qj1̂ = H1̂,

Qj2̂ =
t⋃

u=1

{xuyz : yz ∈ Bju ∩K(V3, V4)},

Qj3̂ =
t⋃

u=1

{xuyz : yz ∈ Bju ∩K(V2, V4)},

Qj4̂ =
t⋃

u=1

{xuyz : yz ∈ Bju ∩K(V2, V3)}.
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We will show using (δ4, d4, r)-regularity of F that |F ∩
⋃r
u=1K4(Qu)| ≤ (d3 +

ε4)
∑t

j=1 |H ∩
⋃r
u=1K3(Bju)| and then we use assumption (6.4) to show a contradic-

tion.

Observe that since Bju ⊂ H(xu) for every j ∈ [r], we have

t∑
u=1

∣∣∣∣∣H ∩K3(H(xu)) ∩
r⋃
j=1

K3(Bju)

∣∣∣∣∣ =
t∑

u=1

∣∣∣∣∣H ∩
r⋃
j=1

K3(Bju)

∣∣∣∣∣ . (6.5)

We estimate the size of
⋃r
j=1K4(Qj) as follows:∣∣∣∣∣

r⋃
j=1

K4(Qj)

∣∣∣∣∣ =
t∑

u=1

∣∣∣∣∣H ∩
r⋃
j=1

K3(Bju)

∣∣∣∣∣ (6.5)
=

t∑
u=1

∣∣∣∣∣H ∩K3(H(xu)) ∩
r⋃
j=1

K3(Bju)

∣∣∣∣∣
(6.3)

≥
t∑

u=1

2ε
1/2
4 |H ∩ K3(H(xu))|

(6.2)

≥ t× 2ε
1/2
4 × 1

2
d6

2d
4
3m

3

≥ 2ε4d
6
2d

4
3m

4 ≥ ε4|K4(H)|.

The last inequality follows from the Theorem 1.13: G is a (δ2, d2)-regular (4, 2)-

cylinder, H is a (4, 2)-cylinder that is (δ3, d3, r)-regular with respect to G, and we

can choose ε2 and ε3 so that the assumptions of Theorem 1.13 are satisfied. Thus,

ε4 |K4(H)| ≤ ε4(1± ν)d6
2d

4
3m

4 ≤ 2ε4d
6
2d

4
3m

4.

Subsequently, the (ε4, d4, r)-regularity of F with respect to H implies that∣∣∣∣∣F ∩
r⋃
j=1

K4(Qj)

∣∣∣∣∣ ≤ (d3 + ε4)

∣∣∣∣∣
r⋃
j=1

K4(Qj)

∣∣∣∣∣
= (d3 + ε4)

t∑
j=1

∣∣∣∣∣H ∩
r⋃

u=1

K3(Bju)

∣∣∣∣∣ .
(6.6)

On the other hand, every xu is contained in
∣∣∣F(xu) ∩

⋃r
j=1K3(Bju)

∣∣∣ triples (this
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follows from the definition of Qj). We use (6.4) to conclude that∣∣∣∣∣F ∩
r⋃

u=1

K3(Qu)

∣∣∣∣∣ =
t∑

u=1

∣∣∣∣∣F(xu) ∩
r⋃
j=1

K3(Qju)

∣∣∣∣∣
(6.4)
>
(
d4 + 2ε

1/2
4

) t∑
u=1

∣∣∣∣∣H ∩K3(H(xu)) ∩
r⋃
j=1

K3(Bju)

∣∣∣∣∣ . (6.7)

Comparing (6.7) with (6.6) we get a contradiction. Thus, there are at most 2ε
1/2
4 m

vertices satisfying (6.3) and (6.4).

The case when the second part of inequality (4.1) is not true, i.e. (6.4) is replaced

by
∣∣∣F(xj) ∩

⋃r
j=1K3(Qju)

∣∣∣ < (d4 − 2ε
1/2
4

) ∣∣∣⋃r
j=1K3(Qju)

∣∣∣ , is handled similarly.

The next claims shows that majority of nice vertices in Vnice have the property

that the link F(x, y) is regular for almost all nice neighbors y of x.

Claim 6.2. For all but at most 2
(
s−2

2

)
ε

1/4
4 m nice vertices x ∈ V1 the following state-

ment is true.

There are at most 2
(
s−2

2

)
ε

1/4
4 d2m nice neighbors y ∈ N2(x) for which the link

F(x, y) is not (ε
1/4
4 , d4, r)-regular with respect to H(x, y)[H(x)(y)].

It is sufficient to consider the case s = 4 only because we can treat the case s > 4

by applying the result for s = 4 to
(
s−2

2

)
sets of cylinders induced on V1∪V2∪Vi∪Vj,

2 < i < j ≤ s.

Proof. Set r′ = r/
(
ε

1/2
3 d−3

2

)(
2ε

1/8
3 d−3

2

)
and let x be arbitrary nice vertex and y be

its nice neighbor (c.f. Definition 5.19). Then y satisfies the following conditions:

(i)
(

1− 2ε
1/8
3

)3

d2
2d3m ≤ degH(x),j(y) ≤

(
1 + 2ε

1/8
3

)3

d2
2d3m for j = 3, 4, and

G[H(x)(y)] is (ε
1/2
2 , d2)-regular,

(ii) the link H(x, y)[H(x)(y)] is (2ε
1/32
3 , d2

3, r
′)-regular with respect to G[H(x)(y)].
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Observe that the (2ε
1/32
3 , d2

3, r
′)-regularity of the link H(x, y)[H(x)(y)] with re-

spect to G[H(x)(y)] is a sufficient condition to apply Observation 4.2. It a view of

(i), this observation implies

1

2
d5

2d
4
3m

2 ≤ |H(x, y)[H(x)(y)]| ≤ 2d5
2d

4
3m

2. (6.8)

Suppose there exist t1 = ε
1/4
4 m nice vertices x1, . . . , xt1 ∈ Vnice so that for every

xu, u ∈ [t1], there are at least t2 = ε
1/4
4 d2m nice neighbors y1u, . . . , yt2u ∈ N2(xu)nice

for which the link F(xu, yvu), v ∈ [t2], is not (ε
1/4
4 , d4, r)-regular with respect to

H(xu, yvu)[H(xu)(yvu)].

We further assume that the second part of inequality (4.1) is not satisfied, that

is for every xu and yvu there exist (2, 1)-cylinders Bjvu = Yjvu ∪Wjvu, j ∈ [r], where

Yjvu ⊂ H(xu)(yvu) ∩ V3 and Wjvu ⊂ H(xu)(yvu) ∩ V4, such that∣∣∣∣∣H(xu, yvu)[H(xu)(yvu)] ∩
r⋃
j=1

K2(Bjvu)

∣∣∣∣∣ ≥ ε
1/4
4 |H(xu, yvu)[H(xu)(yvu)]|, (6.9)

but∣∣∣∣∣F(xu, yvu) ∩
r⋃
j=1

K2(Bjvu)

∣∣∣∣∣
>
(
d4 + ε

1/4
4

) ∣∣∣∣∣H(xu, yvu)[H(xu)(yvu)] ∩
r⋃
j=1

K2(Bjvu)

∣∣∣∣∣ . (6.10)

For every j ∈ [r] define a (4, 3)-cylinder Qj = Qj1̂ ∪Qj2̂ ∪Qj3̂ ∪Qj4̂ by

Qj1̂ = H1̂

Qj2̂ = H2̂

Qj3̂ =

t1⋃
u=1

t2⋃
v=1

{xuyvuz : z ∈ Wjvu},

Qj4̂ =

t1⋃
u=1

t2⋃
v=1

{xuyvuz : z ∈ Yjvu}.
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It follows from the above construction that∣∣∣∣∣
r⋃
j=1

K4(Qj)

∣∣∣∣∣ =

t1∑
u=1

t2∑
v=1

∣∣∣∣∣H(xu, yvu)[H(xu)(yvu)] ∩
r⋃
j=1

K2(Bjvu)

∣∣∣∣∣ . (6.11)

We use this equation together with the assumption (6.9) and estimate (6.8) to con-

clude that
∣∣∣⋃r

j=1K4(Qj)
∣∣∣ ≥ ε4|K4(H)|. Indeed,

t1∑
u=1

t2∑
v=1

∣∣∣∣∣H(xu, yvu)[H(xu)(yvu)] ∩
r⋃
j=1

K2(Bjvu)

∣∣∣∣∣
(6.9)

≥
t1∑
u=1

t2∑
v=1

ε
1/4
4 |H(xu, yvu)[H(xu)(yvu)]|

(6.8)

≥ t1 × t2 × ε1/4
4 × 1

2
d5

2d
4
3m

2 =
1

2
ε

3/4
4 d6

2d
4
3m

4 > 2ε4d
6
2d

4
3m

4.

Since G is a (ε2, d2)-regular (4, 2)-cylinder, H is a (4, 3)-cylinder that is (ε3, d3, r)-

regular with respect to G, and we can choose ε2 and ε3 so that the assumptions of

Theorem 1.13 are satisfied, we conclude that |K4(H)| ≤ 2d6
2d

4
3m

4.

Hence, ε4 |K4(H)| ≤ ε42d6
2d

4
3m

4 ≤
∣∣∣⋃r

j=1K4(Qj)
∣∣∣, and we can apply the (ε4, d4, r)-

regularity of F with respect to H. Then,∣∣∣∣∣F ∩
r⋃
j=1

K4(Qj)

∣∣∣∣∣ ≤ (d4 + ε4)

∣∣∣∣∣
r⋃
j=1

K4(Qj)

∣∣∣∣∣
(6.11)
= (d4 + ε4)

t1∑
u=1

t2∑
v=1

∣∣∣∣∣H(xu, yvu)[H(xu)(yvu)] ∩
r⋃
j=1

K2(Bjvu)

∣∣∣∣∣ . (6.12)

On the other hand, assumption (6.10) yields∣∣∣∣∣F ∩
r⋃
j=1

K4(Qj)

∣∣∣∣∣ =

t1∑
u=1

t2∑
v=1

∣∣∣∣∣F(xu, yvu) ∩
r⋃
j=1

K2(Bjvu)

∣∣∣∣∣
(6.10)
>
(
d4 + ε

1/4
4

) t1∑
u=1

t2∑
v=1

∣∣∣∣∣H(xu, yvu)[H(xu)(yvu)] ∩
r⋃
j=1

K2(Bjvu)

∣∣∣∣∣ . (6.13)
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Comparing inequalities (6.12) and (6.13) we get a contradiction. Hence t1 < ε
1/4
4 m.

If we assume, that the first part of inequality (4.1) is not satisfied, we obtain contra-

diction in exactly the same way. Thus, there for all but at most 2ε
1/4
4 m nice vertices

x ∈ Vnice there are at most 2ε
1/4
4 d2m nice neighbors y ∈ N2(x)nice such that the link

F(x, y) is not (ε
1/4
4 , d4, r)-regular with respect to H(x, y)[H(x)(y)].

Definition 6.3 (fine vertex). A nice vertex x ∈ V1 is called fine if it satisfies the

following conditions:

(i) F(x) is (2ε
1/2
4 , d4, r)-regular with respect to H ∩K3([H(x)]), and

(ii) F(x, y) is not (ε
1/4
4 , d4, r)-regular with respect to H(x, y)[H(x)(y)]) for at most

2
(
s−2

2

)
ε

1/4
4 d2m nice neighbors y ∈ N2(x)nice.

We denote by Vfine the set of all nice vertices in V1.

Definition 6.4 (fine neighbor). Let x ∈ V1 be a fine vertex. A nice neighbor

y ∈ N2(x) is called fine if the link F(x, y) is (ε
1/4
4 , d4, r)-regular with respect to

H(x, y)[H(x)(y)]. We denote by N2(x)fine the set of all fine neighbors in N2(x).

Observe that Vfine ⊂ Vnice ⊂ Vgood ⊂ V1 and N2(x)fine ⊂ N2(x)nice ⊂ N2(x)good ⊂

N2(x) for every (fine) vertex x ∈ V1. Moreover, the following two observations are

an easy consequence of Claims 6.2 and 6.1.

Observation 6.5. All but at most 4
(
s−1

3

)
ε

1/2
4 m+ 2

(
s−2

2

)
ε

1/4
4 m nice vertices are fine,

that is

|Vfine| ≥ |Vnice| − 4

(
s− 1

3

)
ε

1/2
4 m− 2

(
s− 2

2

)
ε

1/4
4 m.

Observation 6.6. Let x be a fine vertex. Then all but at most 2
(
s−2

2

)
ε

1/4
4 d2m nice

neighbors in N2(x)nice are fine, that is

|N2(x)fine| ≥ |N2(x)nice| − 2

(
s− 2

2

)
ε

1/4
4 d2m.
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6.2 Proof of Proposition 2.6

We structure the proof into five parts.

Part A In this part we show that

(a) |K3(H(4)(x, y))| = (1± ν/6)d9
2d

9
3d

3
4n

3 for every x ∈ Vfine and y ∈ N2(x)fine,

and

(b) (1/2)d9
2d

9
3n

3 ≤ |K3(H(3)(x, y))| ≤ 2d9
2d

9
3n

3 for every x ∈ Vfine and y ∈

N2(x)nice.

Part B Here we prove that

(a) |H(3) ∩ K3(H(4)(x, y))| = (1 ± ν/5)d9
2d

10
3 d

3
4n

3 for every x ∈ Vfine and y ∈

N2(x)fine, and

(b) |H(3) ∩ K3(H(3)(x, y))| ≤ 3d9
2d

10
3 n

3 for every x ∈ Vfine and y ∈ N2(x)nice.

Part C We show that if W is a subset of N2(x)fine such that |W | ≥ 2δ
1/4
4 d2m. Then,

there exist t = δ
1/4
4 /(d3

2d
6
3) fine neighbors y1, . . . , yt ∈ N2(x)fine such that∣∣∣∣∣H(4)(x) ∩

t⋃
u=1

K3(H(4)(x, yu))

∣∣∣∣∣ =
(
d4 ± 2δ

1/2
4

) ∣∣∣∣∣H(3) ∩
t⋃

u=1

K3(H(4)(x, yu))

∣∣∣∣∣ .
Part D The lower bound |K4(H(4)(x))| ≥ (1 − ν/2)d4

4d
(5

3)
3 d

(5
2)

2 n4 is proved here for

every fine vertex x ∈ Vfine.

Part E We show the upper bound |K4(H(4)(x))| ≤ (1 + ν/2)d4
4d

(5
3)

3 d
(5

2)
2 n4 for every

fine vertex x ∈ Vfine.

Since the lower and upper bounds are valid for fine vertices, it remains to show how

vertices are not fine.
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It follows from Observation 6.5 that all but at most 8δ
1/4
4 m nice vertices are fine.

Moreover, Observation 5.4 gives that all but at most 20δ
1/2
3 m good vertices are nice.

Finally, from Observation 3.8 we have that all but at most 48δ
1/4
2 m vertices are good.

Altogether we obtain that all but at most 10δ
1/4
4 m vertices x ∈ V1 are fine.

Now we show Parts A-E.

Part A(a). Fix a fine vertex x ∈ Vfine and its arbitrary fine neighbor y ∈ N2(x)fine

and set r′ = r/
(
δ

1/2
3 d−3

2

)(
2δ

1/8
3 d−3

2

)
. Then y satisfies the following condition

(c.f. Definition 6.4)

(i) the link H(4)(x, y) is (δ
1/4
4 , d4, r)-regular with respect to H(3)(x, y)[H(3)(x)(y)].

Since y is also a nice neigbor of x, it satisfies (c.f. Definition 5.19)

(ii)
(

1− 2δ
1/8
3

)2

d2
2d3n ≤ degH(3)(x),j(y) ≤

(
1 + 2δ

1/8
3

)2

d2
2d3n for every j = 3, 4, 5;

(iii) H(2)[H(3)(x)(y)] is (δ
1/4
2 , d2)-regular, H(3)(x, y)[H(3)(x)(y)] is (2δ

1/32
3 , d2

3, r
′)-reg-

ular with respect to H(2)[H(3)(x)(y)], and

(iv) H(3)[H(2)(x, y)] is (4δ
1/16
3 , d3, r

′)-regular with respect to H(2)[H(2)(x, y)].

Moreover, y is also a good neigbor of x, thus we have

(v) the link H(2)[H(2)(x, y)] is (δ
1/4
2 , d2)-regular, and

(vi)
(
d2 − δ1/2

2

)2

m ≤ degj(x, y) ≤
(
d2 + δ

1/2
2

)2

m holds for j = 3, 4, 5.

Then we set

• G ′1 = H(2)[H(3)(x)(y)], ε′1 = δ
1/4
2 , d′1 = d2,

• G ′2 = H(3)(x, y)[H(3)(x)(y)], ε′2 = 2δ
1/32
3 , d′2 = d2

3,

• G ′3 = H(4)(x, y), ε′3 = δ
1/4
4 , d′3 = d4, and
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• V ′i = Vi+2 ∩H(3)(x)(y), i = 1, 2, 3.

Observe that G ′1, G ′2, and G ′3 are (3, 2)-cylinders which satisfy Setup A. Indeed,

• G ′1 is (ε′1, d
′
1)-regular (c.f. (v)),

• G ′2 is (ε′2, d
′
2, r
′)-regular with respect to G ′1 (c.f. (iii)),

• G ′2 is (ε′3, d
′
3, r
′)-regular with respect to G ′2 (c.f. (i)),

•
(

1− 2δ
1/8
3

)2

d2
2d3n ≤ m′ ≤

(
1 + 2δ

1/8
3

)2

d2
2d3n (c.f. (ii)),

• ε′1 � d′1, ε′2 � d′2, ε′3 � d′3, and ε′1 � ε′2ε
′
3.

Thus, we can apply the 3-graphs Lemma and obtain that

(
1− 12(ε′3)1/64

)3
(d′1d

′
2d
′
3)3(m′)3 ≤ |K3(G ′3)| ≤

(
1 + 12(ε′3)1/64

)3
(d′1d

′
2d
′
3)3(m′)3.

We use the definition of d′1, d′2, d′3, ε′3, m′, and G ′3 to conclude that

(
1− 12δ

1/256
4

)3

d3
2d

6
3d

3
4

(
1− 2δ

1/8
3

)6

d6
2d

3
3n

3 ≤ |K3(H(4)(x, y))|

≤
(

1 + 12δ
1/256
4

)3

d3
2d

6
3d

3
4

(
1 + 2δ

1/8
3

)6

d6
2d

3
3n

3 (6.14)

Since by (2.2) δ3 � δ4 � ν, we can conclude that

(1− ν/6)d9
2d

9
3d

3
4n

3 ≤ |K3(H(4)(x, y))| ≤ (1 + ν/6)d9
2d

9
3d

3
4n

3.

Part A (b). Fix a fine vertex x ∈ Vfine and its arbitrary nice neighbor y ∈ N2(x)nice.

Then y satisfies conditions (ii)-(vi) (c.f. Part A(a)). We set

• G ′1 = H(2)[H(3)(x)(y)], ε′1 = δ
1/4
2 , d′1 = d2,

• G ′2 = H(3)(x, y)[H(3)(x)(y)], ε′2 = 2δ
1/32
3 , d′2 = d2

3.
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In the same was as in Part A(a) we can observe that G ′1 and G ′2 are (3, 2)-cylinders

which satisfy Setup A. We apply the 2-graphs Lemma and obtain that

(
1− 8(ε′2)1/64

)3
(d′1d

′
2)3(m′)3. ≤ |K3(G ′3)| ≤

(
1 + 8(ε′2)1/64

)3
(d′1d

′
2)3(m′)3.

We use the definition of d′1, d′2, ε′2, m′, and G ′2 to conclude that

(
1− 10δ

1/2048
3

)3

d3
2d

6
3

(
1− 2δ

1/8
3

)6

d6
2d

3
3n

3 ≤ |K3(H(3)(x, y)[H(3)(x)(y)])|

≤
(

1 + 10δ
1/2048
3

)3

d3
2d

6
3

(
1 + 2δ

1/8
3

)6

d6
2d

3
3n

3

Since δ3 � δ4 � ν, we can conclude that

1

2
d9

2d
9
3n

3 ≤ |K3(H(3)(x, y)[H(3)(x)(y)])| ≤ 2d9
2d

9
3n

3.

Part B(a). For the proof of this part, we use the estimate from Part A(a) and the

(4δ
1/16
3 , d3, r

′)-regularity of H(3)[H(2)(x, y)] with respect to H(2)[H(2)(x, y)].

Set r′ = r/
(
δ

1/2
3 d−3

2

)(
δ

1/8
3 d−3

2

)
and fix a fine vertex x ∈ Vfine and its arbitrary

fine neighbor y ∈ N2(x)fine. Recall that y satisfies conditions (i)-(vi) (c.f. Part A(a)).

It follows from part A(a) that

(1− ν/6)d9
2d

9
3d

3
4n

3 ≤ |K3(H(4)(x, y))| ≤ (1 + ν/6)d9
2d

9
3d

3
4n

3. (6.15)

Since y satisfies (v) and (vi), we know that H(2)[H(2)(x, y)] is (δ
1/2
2 , d2)-regular

and
(
d2 − δ1/2

2

)2

n ≤ degj(x, y) ≤
(
d2 + δ

1/2
2

)2

n holds for j = 3, 4, 5. We apply

Corollary 3.6 and obtain |K3(H(2)[H(2)(x, y)])| ≤ (5/4)d3
2

(
d2 + δ

1/2
2

)6

n3 ≤ (3/2)d9
2n

3

(we used δ2 � d2).

Furthermore, since δ2 � δ3 � d3 � ν, we have

4δ
1/16
3 |K3(H(2)[H(2)(x, y)])| ≤ 4δ

1/16
3 × 3

2
d9

2n
3 ≤ (1− ν/6)d9

2d
9
3d

3
4n

3 ≤ |K3(H(4)(x, y))|.
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Then we apply the (4δ
1/16
3 , d3, r

′)-regularity of H(3)[H(2)(x, y)] with respect to

H(2)[H(2)(x, y)], and obtain(
d3 − 4δ

1/16
3

)
|K3(H(4)(x, y))| ≤

∣∣H(3) ∩ K3(H(4)(x, y))
∣∣

≤
(
d3 + 4δ

1/16
3

)
|K3(H(4)(x, y))|. (6.16)

We combine (6.15), (6.16), and assumption δ3 � d3 � ν to get

(1− ν/5)d9
2d

10
3 d

3
4n

3 ≤ |H(3) ∩ K3(H(4)(x, y))| ≤ (1 + ν/5)d9
2d

10
3 d

3
4n

3. (6.17)

Part B(b). Now y is a nice neighbor of a fine vertex x, that is, a vertex satisfying

(ii)-(vi). Then, from Part A(b), we have

1

2
d9

2d
9
3n

3 ≤ |K3(H(3)(x, y)[H(3)(x)(y)])| ≤ 2d9
2d

9
3n

3. (6.18)

Similarly to Part B(a), since δ2 � δ3 � d3 � ν, we have

4δ
1/16
3 |K3(H(2)[H(2)(x, y)])| ≤ 4δ

1/16
3 × 3

2
d9

2n
3

≤ 1

2
d9

2d
9
3n

3 ≤ |K3(H(3)(x, y)[H(3)(x)(y)])|.

Then we apply the (4δ
1/16
3 , d3, r

′)-regularity of H(3)[H(2)(x, y)] with respect to

H(2)[H(2)(x, y)], and obtain

|H(3) ∩ K3(H(3)(x, y)[H(3)(x)(y)])|

≤ (d3 + 4δ
1/16
3 )|K3(H(3)(x, y)[H(3)(x)(y)])|

(6.18)

≤ 3d9
2d

10
3 n

3.

Part C. Let x ∈ Vfine be a fine vertex and W is a subset of N2(x)fine such that

|W | ≥ 2δ
1/4
4 d2m.

We define two graphs P1 and P2, both with vertex set N2(x) and edge sets defined

by:

E(P1) =
{
yy′ : |K3(H(2)[H(2)(y, y′)])| > 2d12

2 n
3
}
,

E(P2) =
{
yy′ : |H(3) ∩ K3(H(3)(x, y, y′)[H(3)(x)(y, y′)])| > 2d16

3 d
12
2 n

4
}
.
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Now we estimate the sizes of E(P1) and E(P1). Since x is also a good vertex

(recall Vfine ⊂ Vnice ⊂ Vgood ⊂ V1), the (4, 2)-cylinder H(2)[H(2)(x)] is (δ
1/2
2 , d2)-

regular. We apply Observations 3.8 and 3.12 on H(2)[H(2)(x)] and obtain that all

but 66δ
1/8
2 |N2(x)|2 pairs {y, y′} are good with respect to H(2)[H(2)(x)].

Thus (c.f. Definition 3.11), H(2)[H(2)(x, y, y′)] is (δ
1/4
2 , d2)-regular and(

d2 − δ1/4
2

)3

n ≤ degj(x, y, y
′) ≤

(
d2 + δ

1/4
2

)3

n

holds for j = 3, 4, 5. We apply Corollary 3.6 and obtain |K3(H(2)[H(2)(x, y)])| ≤

(5/4)d3
2

(
d2 + δ

1/4
2

)9

n3 ≤ 2d12
2 n

3 (we used δ2 � d2). Consequently,

|E(P1)| ≤ 66δ
1/8
2 |N2(x)|2.

It follows from Claim 5.21 that for all but 20δ
1/256
3 d2

2n
2 pairs {y, y′} ⊂ N2(x) we

have

|H(3) ∩ K3(H(3)(x, y, y′)[H(3)(x)(y, y′)])| ≤ 2d12
2 d

16
3 n

3.

Therefore,

|E(P2)| ≤ 20δ
1/256
3 d2

2n
2 ≤ 21δ

1/256
3 |N2(x)|2.

We apply the Picking Lemma on W with parameters σ1 = 66δ
1/8
2 , σ2 = 21δ

1/256
3 ,

t = δ
1/4
4 /(d3

2d
6
3), c = δ

1/4
4 , and obtain t nice neighbors y1, . . . , yt ∈ W such that all

pairs {yi, yj} satisfy

|K3(H(2)[H(2)(x, yi, yj)])| ≤ 2d12
2 n

3, (6.19)

and all but
(

2× 2× 21δ
1/256
3 /δ

1/2
4

)
t2 ≤ δ

1/512
3 t2 pairs {yi, yj} satisfy

|H(3) ∩ K3(H(3)(x, y, y′)[H(3)(x)(yi, yj)])| ≤ 2d16
3 d

12
2 n

3. (6.20)

This is possible as long as |W | ≥ 2δ
1/4
4 d2m ≥ c × |N2(x)| and condition (2.8) is

satisfied, in other words, if

2× 66δ
1/8
2 × t2(

δ
1/4
4

)2 <
1

2
(6.21)
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holds. This is true because

2× 66δ
1/8
2 × t2(

δ
1/4
4

)2 =
132δ

1/8
2

d6
2d

12
3

≤ 132× δ
1/16
2

d8
2

× δ
1/16
3

d12
3

≤ 132× δ1/32
2 × δ1/32

3 <
1

2
.

Here we used assumption (2.2): δ2 � d2 ≤ 1, δ3 � d3 ≤ 1, and δ2 � δ3.

Now we estimate the size of H(3) ∩
⋃t
j=1K3(H(4)(x, yj)). We first apply Observa-

tion 4.5:∣∣∣∣∣
t⋃

j=1

H(3) ∩ K3(H(4)(x, yj))

∣∣∣∣∣ ≥
t∑

j=1

∣∣H(3) ∩ K3(H(4)(x, yj))
∣∣

−
∑

1≤i<j≤t

∣∣H(3) ∩ K3(H(4)(x, yi)) ∩ K3(H(4)(x, yj))
∣∣ .

The next step is to estimate both terms on the right-hand side. The first term is

easier to handle. We use (6.17) to conclude that:

t∑
j=1

∣∣H(3) ∩ K3(H(4)(x, yj))
∣∣ ≥ t× (1− ν/5)d9

2d
10
3 d

3
4n

3. (6.22)

To get an estimate for the second term, we must observe several facts:

• K3(H(4)(x, yi)) ∩ K3(H(4)(x, yj)) = K3(H(4)(x, yi, yj)) for every 1 ≤ i < j ≤ t.

• Every copy of K3 in H(4)(x, yi, yj) is a copy of K3 in H(3)∩K3(H(3)(x, yi, yj)) as

well. This follows from the fact thatH(4)(x) ⊂ K4(H(3)(x)) andH(4)(x) ⊂ H(3).

• Every copy of K3 in H(4)(x, yi, yj) is also a copy of K3 in H(2)[H(2)(x, yi, yj)]).

This follows from the fact that H(4) ⊂ K4(H(3)) and H(3) ⊂ K3(H(2)).

Since we know that all but at most δ
1/512
3 t2 pairs {yi, yj} satisfy (6.20), for these pairs

we use the estimate

∣∣H(3) ∩ K3(H(4)(x, yi, yj))
∣∣ ≤ |H(3) ∩ K3(H(3)(x, yi, yj))|

(6.20)

≤ 2d16
3 d

12
2 n

3. (6.23)
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Remaining δ
1/512
3 t2 pairs {yi, yj} satisfy (6.19). For these pairs we use the estimate

∣∣H(3) ∩ K3(H(4)(x, yi, yj))
∣∣ ≤ |K3(H(2)[H(2)(x, yi, yj)])|

(6.19)

≤ 2d12
2 n

3. (6.24)

Now we combine (6.23) and (6.24) to obtain∑
1≤i<j≤t

∣∣H(3) ∩ K3(H(4)(x, yi) ∩ K3(H(4)(x, yj))
∣∣ ≤ (t

2

)
×2d16

3 d
12
2 n

3+δ
1/512
3 t2×2d12

2 n
3.

We use the assumption δ3 � d3 and t = δ
1/4
4 /(d3

2d
6
3) to conclude that δ

1/512
3 t2 ×

2d12
2 n

3 ≤ t2 × d16
3 d

12
2 n

3. Then,∑
1≤i<j≤t

∣∣H(3) ∩ K3(H(4)(x, yi) ∩ K3(H(4)(x, yj))
∣∣ ≤ 2t2d16

3 d
12
2 n

3. (6.25)

Using (6.22), (6.25), and the definition of t (recall t = δ
1/4
4 /(d3

2d
6
3)), we obtain that∣∣∣∣∣

t⋃
j=1

H(3) ∩ K3(H(4)(x, yj))

∣∣∣∣∣ ≥ t× (1− ν/5)d9
2d

10
3 d

3
4n

3 − 2t2d12
2 d

16
3 n

3

≥ 1

2
δ

1/4
4 d6

2d
4
3d

3
4n

3 − 2δ
1/2
4 d6

2d
4
3n

3

(2.2)

≥ 2δ
1/2
4 × 2d6

2d
4
3n

4.

(6.26)

Since x ∈ Vfine is a fine vertex (c.f. Definition 6.3), the linkH(4)(x) is (2δ
1/2
4 , d4, r)-

regular with respect to H(3) ∩ K3(H(3)(x)). Moreover, we know from (6.2)

1

2
d6

2d
4
3n

3 ≤ |H(3) ∩ K3(H(3)(x))| ≤ 2d6
2d

4
3n

3. (6.27)

We combine (6.26) and (6.27) and obtain∣∣∣∣∣
t⋃

j=1

H(3) ∩ K3(H(4)(x, yj))

∣∣∣∣∣ ≥ 2δ
1/2
4 |H(3) ∩ K3(H(3)(x))|.
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The (2δ
1/2
4 , d4, r)-regularity of H(4)(x) with respect to H(3)∩K3(H(3)(x)) yields (note

that we can choose r ≥ t upfront (c.f. (2.2))

(
d4 − 2δ

1/2
4

) ∣∣∣∣∣H(3) ∩
t⋃

j=1

K3(H(4)(x, yj))

∣∣∣∣∣ ≤
∣∣∣∣∣H(4)(x) ∩

t⋃
j=1

K3(H(4)(x, yj))

∣∣∣∣∣
≤
(
d4 + 2δ

1/2
4

) ∣∣∣∣∣H(3) ∩
t⋃

j=1

K3(H(4)(x, yj))

∣∣∣∣∣ ,
which is what we wanted to show.

Part D. In Part C, we proved that whenever W is a subset of N2(x)fine such that

|W | ≥ 2δ
1/4
4 d2m, we can choose t = δ

1/4
4 /(d3

2d
6
3) nice neighbors y1, . . . , yt ∈ W such

that∣∣∣∣∣H(4)(x) ∩
t⋃

j=1

K3(H(4)(x, yj))

∣∣∣∣∣ =
(
d4 ± 2δ

1/2
4

) ∣∣∣∣∣H(3) ∩
t⋃

j=1

K3(H(4)(x, yj))

∣∣∣∣∣ , (6.28)

Moreover, y1, . . . , yt also satisfy (6.22) and (6.25). Using these two equations and

t = δ
1/4
4 /(d3

2d
6
3), we obtain

δ
1/8
4

t∑
j=1

∣∣H(3) ∩ K3(H(4)(x, yj))
∣∣− ∑

1≤i<j≤t

∣∣H(3) ∩ K3(H(4)(x, yi) ∩ K3(H(4)(x, yj))
∣∣

≥ δ
1/8
4 × t× (1− ν/5)d9

2d
10
3 d

3
4n

3 − 2t2d16
3 d

12
2 n

3 ≥ 0.

We apply the second part of Observation 4.5:∣∣∣∣∣
t⋃

j=1

H(3) ∩ K3(H(4)(x, yj))

∣∣∣∣∣ ≥ (1− δ1/8
4

) t∑
j=1

H(3) ∩
∣∣K3(H(4)(x, yj))

∣∣ . (6.29)

We combine (6.28), (6.29), and (6.22) and get∣∣∣∣∣H(4)(x) ∩
t⋃

j=1

K3(H(4)(x, yj))

∣∣∣∣∣ ≥ (d4 − 2δ
1/2
4

)(
1− δ1/8

4

)
t× (1− ν/5)d9

2d
10
3 d

3
4n

3.

(6.30)
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We set W = N2(x)fine and find vertices y1, . . . , yt as described above. Then we

remove y1, . . . , yt from W and iterate the whole process again. We can repeat this

process as long as (c.f. Part C)

|W | > 2δ
1/4
4 n. (6.31)

This way we produce a sequence of at least
(
|N2(x)fine| − 2δ

1/4
4 n

)
/t t-tuples

Y (1) = {y1, . . . , yt} =
{
y

(1)
1 , . . . , y

(1)
t

}
, Y (2) =

{
y

(2)
1 , . . . , y

(2)
t

}
, etc.

Analoguously to (6.30), each iteration produces at least(
d4 − 2δ

1/2
4

)(
1− δ1/8

4

)
t× (1− ν/5)d9

2d
10
3 d

3
4n

3 ≥ (1− ν/4)d9
2d

10
3 d

4
4tn

3

copies of K
(3)
4 in H(4)(x). Each such a copy uses exactly one vertex from Y (i) ={

y
(i)
1 , . . . , y

(i)
t

}
.

Notice that since x is a fine vertex,

• |N2(x)fine| ≥ |N2(x)nice| − 6δ
1/4
4 d2n (c.f. Observation 6.6),

• |N2(x)nice| ≥ |N2(x)good| − 12δ
1/32
3 d2n (c.f. Observation 5.20),

• |N2(x)good| ≥ |N2(x)| − 36δ
1/2
2 d2n (c.f. Observation 3.10), and

• |N2(x)| ≥ (d2 − δ2)n (c.f. Definition 3.7).

Consequently,
(
|N2(x)fine| − 2δ

1/4
4 n

)
/t ≥

(
1− 7δ

1/4
4

)
d2n/t. Therefore, the sequence

of t-touples Y (i) produces at least
(

1− 7δ
1/4
4

)
d2n/t× (1− ν/4)d9

2d
10
3 d

4
4tn

3 copies of

K
(3)
4 in H(4)(x). Hence

|K4(H(4)(x))| ≥
(

1− 7δ
1/4
4

)
d2n/t× (1− ν/4)d9

2d
10
3 d

4
4tn

3

(2.2)

≥ (1− ν/2)d
(5

3)
2 d

(5
2)

3 d4
4n

4.

Part E. The upper bound causes some extra difficulties - we must count not only
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(i) the contribution of t-tuples of neighbors taken from W ,

but also

(ii) contribution of neighbors left in W , and

(iii) neighbors which are not fine.

We will handle each of these categories of vertices separately:

(i) An upper bound on number of copies of K
(3)
4 produced by taking t-tuples from

W can be obtained in a way similar to the lower bound in Part D: every t-tuple

is in at most
(
d4 + 2δ

1/4
4

)
×t(1+ν/5)d3

4d
10
3 d

9
2n

3 copies of K
(3)
4 inH(4)(x). There

are at most |N2(x)fine|/t ≤ |N2(x)|/t ≤ (d2 + δ2)n/t such t-tuples, together

producing at most(
d4 + 2δ

1/4
4

)
× t(1 + ν/4)d3

4d
10
3 d

9
2n

3 × (d2 + δ2)n/t ≤ (1 + ν/5)d
(5

3)
2 d

(5
2)

3 d4
4n

4

copies of K
(3)
4 .

(ii) The number of vertices left in W is at most 2δ
1/4
4 d2n (c.f. (6.31)). Each such

vertex satisfies (6.17) and, consequently, is involved in not more than |H(3) ∩

K3(H(4)(x, y)))| ≤ (1 + ν/5)d9
2d

10
3 d

3
4n

3 copies of K
(3)
4 .

Therefore, this group of vertices contributes at most

2δ
1/4
4 d2n× (1 + ν/5)d9

2d
10
3 d

3
4n

3 < δ
1/8
4 d

(5
2)

2 d
(5

3)
3 d4

4n
4

copies of K
(3)
4 . We used again the assumption δ4 � d4.

(iii) Now we must estimate the contribution of neighbors y which are not fine, that

is y ∈ N2(x) \N2(x)fine. Since

N2(x) \N2(x)fine = (N2(x)nice \N2(x)fine) ∪ (N2(x)good \N2(x)nice)

∪ (N2(x) \N2(x)good) ,

we distinguish three categories of these vertices:
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(a) Consider vertices y ∈ N2(x)nice \N2(x)fine. We know from Observation 6.6

that |N2(x)nice \N2(x)fine| ≤ 6δ
1/4
4 d2n.

Due to Part B(b), we estimate contribution of every such vertex y by

|H(3) ∩ K3(H(3)(x, y))| ≤ 3d9
2d

10
3 n

3.

Therefore, vertices from N2(x)nice \ N2(x)fine can contribute by at most

6δ
1/4
4 d2n× 3d10

3 d
9
2n

3 ≤ δ
1/8
4 d4

4d
(5

3)
3 d

(5
2)

2 n4 copies of K
(4)
5 .

(b) Consider vertices y ∈ N2(x)good \N2(x)nice. Observation 5.20 implies that

|N2(x)good \N2(x)nice| ≤ 12δ
1/32
3 d2n.

Then, each such neighbor y is in at most |K3(H(2)[H(2)(x, y))]| copies

of K
(3)
4 . Since y ∈ N2(x)good, H(2)[H(2)(x, y))] is (δ

1/2
2 , d2)-regular (c.f.

Definition 5.19). Consequently, |K3(H(2)[H(2)(x, y))]| ≤ 2d9
2n

3 (c.f. Corol-

lary 3.6).

The total contribution of these vertices is then bounded by 12δ
1/32
3 d2n ×

2d9
2n

3 ≤ δ
1/64
3 d

(5
3)

3 d
(5

2)
2 n4 ≤ δ4d

(5
3)

3 d
(5

2)
2 n4 ≤ δ

1/2
4 d4

4d
(5

3)
3 d

(5
2)

2 n4. Here we used

assumptions (2.2).

(c) The remaining neighbors y belongs to N2(x) \ N2(x)good. It follows from

Observation 3.10 that N2(x) \N2(x)good ≤ 36δ
1/8
2 d2n.

In this case, we use a rough estimate that every vertex is in at most n3

copies of K
(3)
4 and, thus, the contribution of these vertices is at most

36δ
1/8
2 d2n×n3 ≤ 36δ

1/16
2 d

(5
2)

2 n4 ≤ δ3d
(5

2)
2 n4 ≤ δ

1/2
3 d

(5
3)

3 d
(5

2)
2 n4 ≤ δ4d

(5
3)

3 d
(5

2)
2 n4

≤ δ
1/2
4 d4

4d
(5

3)
3 d

(5
2)

2 n4.

At this point we are ready to derive the upper bound. We add the contributions of

all vertices considered in (i), (ii) and (a), (b), (c) of (iii) to infer that

|K4(H(4)(x))| ≤
(

1 + ν/4 + δ
1/8
4 + 2δ

1/2
4

)
d4

4d
(5

3)
3 d

(5
2)

2 n4 ≤ (1 + ν/2)d4
4d

(5
3)

3 d
(5

2)
2 n4.
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[Sze78] , Regular partitions of graphs, Problèmes Combinatoires et
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