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Abstract

The generalized Turán number ex(G,H) of two graphs G and H is the maximum number of edges in a
subgraph of G not containing H . When G is the complete graph Km on m vertices, the value of ex(Km,H)

is (1 − 1/(χ(H) − 1) + o(1))
(m

2
)
, where o(1) → 0 as m → ∞, by the Erdős–Stone–Simonovits theorem.

In this paper we give an analogous result for triangle-free graphs H and pseudo-random graphs G. Our
concept of pseudo-randomness is inspired by the jumbled graphs introduced by Thomason [A. Thomason,
Pseudorandom graphs, in: Random Graphs ’85, Poznań, 1985, North-Holland, Amsterdam, 1987, pp. 307–
331. MR 89d:05158]. A graph G is (q,β)-bi-jumbled if∣∣eG(X,Y ) − q|X||Y |∣∣ � β

√|X||Y |
for every two sets of vertices X,Y ⊂ V (G). Here eG(X,Y ) is the number of pairs (x, y) such that x ∈ X,
y ∈ Y , and xy ∈ E(G). This condition guarantees that G and the binomial random graph with edge proba-
bility q share a number of properties.
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Our results imply that, for example, for any triangle-free graph H with maximum degree Δ and for
any δ > 0 there exists γ > 0 so that the following holds: any large enough m-vertex, (q, γ qΔ+1/2m)-bi-
jumbled graph G satisfies

ex(G,H) �
(

1 − 1

χ(H) − 1
+ δ

)∣∣E(G)
∣∣.

© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We say that a graph is H -free if it does not contain a copy of a given graph H as a subgraph
(not necessarily induced). A classical area of extremal graph theory investigates numerical and
structural results concerning H -free graphs. A basic problem in this area is to determine, or
estimate, the maximum number of edges ex(m,H) that an H -free graph on m vertices may have.
When H is a complete graph, we know the value of ex(m,H) precisely, by Turán’s theorem [34]
(hence we refer to ex(m,H) as the Turán number of H ). When H is arbitrary, an asymptotic
solution to this problem is given by the celebrated Erdős–Stone–Simonovits theorem, at least
when χ(H) � 3.

Theorem 1. (Erdős, Stone, Simonovits [10,12]) For every graph H with chromatic number
χ(H),

ex(m,H) =
(

1 − 1

χ(H) − 1
+ o(1)

)(
m

2

)
, (1)

where o(1) → 0 as m → ∞.

Here we are interested in a variant of the function ex(m,H). Denote by ex(G,H) the maxi-
mum number of edges that an H -free subgraph of a given graph G may have, i.e.,

ex(G,H) = max
{∣∣E(G′)

∣∣: H �⊂ G′ ⊂ G
}
.

For instance, if G = Km, the complete graph on m vertices, then ex(Km,H) is the usual Turán
number ex(m,H). Furthermore, by considering a random partition of vertices of G into χ(H)−1
parts, one easily observes that

ex(G,H) �
(

1 − 1

χ(H) − 1

)∣∣E(G)
∣∣ (2)

holds for any G and H .
Let us mention a few problems and results concerning the “generalized Turán func-

tion” ex(G,H). The case in which G is the n-dimensional hypercube Qn and H is a short
even cycle was raised by Erdős in [8], and the best results in this direction are due to Chung [4].

Two results for the case in which G is the random graph G(m,q) and H = K3 are due
to Frankl and Rödl [13] and Babai, Simonovits, and Spencer [3]. In [14], Füredi investi-
gates ex(G(m,q),C4) (see also [19]). For detailed discussions on the function ex(G(m,q),H),
the reader is referred to [15], [17, Chapter 8], [21], and [23], and the references therein.
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Roughly speaking, the main problem is to identify the threshold for q = q(m) for the prop-
erty that the lower bound in (2) should be asymptotically tight, giving the almost sure value
of ex(G(m,q),H). The original conjecture about the threshold for H arbitrary, which is still
open, may be found in [20].

For deterministic graphs G the known results in this direction are for the so-called (m,d,λ)-
graphs. Let G be a graph and let λ1 � λ2 � · · · � λm be the eigenvalues of its adjacency matrix.
We say that G is an (m,d,λ)-graph if it has m vertices, it is d-regular and max{λ2,−λm} � λ.
Sudakov, Szabó, and Vu [31] proved that, for t � 3,

ex(G,Kt ) =
(

1 − 1

t − 1
+ o(1)

)∣∣E(G)
∣∣ (3)

for any (m,d,λ)-graph G, as long as

dt−1/mt−2 � λ, (4)

that is, limm→0 mt−2λ/dt−1 = 0. A result of Krivelevich, Sudakov, and Szabó [29, Theorem 1.2],
inspired by a construction of Alon [1], implies that condition (4) is essentially best possible
for t = 3 and basically any d = d(n) = Ω(n2/3). For t > 3 it is not known whether condition (4)
is optimal.

Recently, Chung [5] obtained a result analogous to the one of Sudakov, Szabó, and Vu above,
applicable to non-regular graphs G, by considering the spectrum of normalized Laplacians.

In this paper, we prove a result similar to the ones of Sudakov, Szabó, and Vu and of Chung,
with Kt replaced by arbitrary triangle-free graphs H and certain ‘pseudo-random’ graphs G.
First, we need to define some simple graph parameters. For any graph H , we define the degener-
acy dH of H by

dH = max
{
δ(H ′): H ′ ⊂ H

}
,

where δ(H ′) denotes the minimum degree of the graph H ′. We remark that dH is the smallest
integer d for which there exists an ordering u1, . . . , uh of the vertices of H (h = |V (H)|) in
which ui has at most d neighbors among u1, . . . , ui−1, for every 1 � i � h. Any such ordering
is called a d-degenerate ordering.

Moreover, let

DH = min
{
2dH ,Δ(H)

}
,

where Δ(H) stands for the maximum degree of H . We shall later make use of the following sim-
ple fact: for any dH -element set F of vertices of H , there is a DH -degenerate ordering u1, . . . , uh

of V (H) with F = {u1, . . . , udH
}. Finally, let

νH = 1

2
(dH + DH + 1). (5)

Remark 2. The parameters DH and νH are somewhat artificial. For simplicity, the reader may
prefer to replace DH by Δ(H) in (5) at the first reading, although some statements below are
considerably weaker with this change. For example, if H = K2,t and t is large, then dH = 2,
DH = 4, νH = 7/2, and condition (6) becomes much more restrictive with νH replaced by (dH +
Δ(H) + 1)/2 = (t + 3)/2 � 7/2.

Our main theorem, to be given in a short while, implies the following result for (m,d,λ)-
graphs.
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Theorem 3. Let a triangle-free graph H and δ > 0 be given. Then there exists γ = γ (δ,H) > 0
such that for any function d = d(m) < m there is M0 = M0(δ,H,d) such that any (m,d,λ)-
graph G with m � M0 vertices and satisfying

γ dνH /mνH −1 � λ (6)

has

ex(G,H) �
(

1 − 1

χ(H) − 1
+ δ

)∣∣E(G)
∣∣.

Notice that to satisfy (6) for graphs with λ = O(
√

d) (e.g., for Ramanujan graphs), it suffices
to have d2νH −1 = dDH +dH � mDH +dH −1 = m2νH −2. Theorem 3 is a consequence of a more
general theorem for pseudo-random graphs; see Theorem 5 in the next section.

This paper is organized as follows. In the next section, we state and discuss Theorem 5, as
well as derive Theorem 3 from it. In Section 3, we present additional definitions and notation
and give a fairly detailed outline of the proof of Theorem 5. In Section 3 we also state all the
auxiliary lemmas (including what we call the Embedding Lemma, the Regularity-to-Pair Lemma,
and the Pair-to-Tuple Lemma) needed for the proof of Theorem 5. In Section 4 we give the
proof of Theorem 5 and in Section 5 we prove some technical facts needed in the proofs of the
Embedding Lemma and the Pair-to-Tuple Lemma. Sections 6 and 7 contain the proofs of the
Embedding Lemma and the Pair-to-Tuple Lemma.

2. The result for pseudo-random graphs

A graph is pseudo-random if it resembles (in some well-defined sense) a random graph of
the same density. The systematic study of such graphs was initiated by Thomason [33], who
introduced the notion of jumbled graphs. A graph G is (q,β)-jumbled if for every X ⊂ V (G) we
have ∣∣∣∣eG(X) − q

(|X|
2

)∣∣∣∣ � β|X|,

where eG(X) denotes the number of edges in G with both endpoints in X.
Here we shall use a closely related concept of pseudo-randomness. For any sets X,Y ⊂ V ,

we write

EG(X,Y ) = {
(x, y): x ∈ X, y ∈ Y, {x, y} ∈ E(G)

}
.

We also set eG(X,Y ) = |EG(X,Y )| and dG(X,Y ) = eG(X,Y )/|X||Y |. Note that each edge in
X ∩ Y is counted twice in eG(X,Y ). Thus, if X = Y then eG(X) = eG(X,X)/2 is the number of
edges in G with both endpoints in X. We drop the subscript G whenever there is no danger of
confusion.

Definition 4. We say that a graph G is (q,β)-bi-jumbled if for every X,Y ⊂ V (G) we have∣∣eG(X,Y ) − q|X||Y |∣∣ � β
√|X||Y |. (7)

It is easy to see that every (q,β)-bi-jumbled graph is also (q, (β + q)/2)-jumbled. Since
we consider only 0 � q � 1 < β , we immediately have that every (q,β)-bi-jumbled graph is
(q,β)-jumbled.
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To put (7) into some context, on the one hand, we observe that the random graph G(m,q)

is almost surely (q,β)-bi-jumbled for β = O(
√

qm) if, say, qm � logm.5 On the other hand,
Erdős and Spencer [11] (see also Theorem 5 in [9]) observed that there exists c > 0 such that
every m-vertex graph with density q contains two disjoint sets X and Y for which |e(X,Y ) −
q|X||Y || � c

√
qm

√|X||Y |, as long as q(1 − q) � 1/m.
We may finally state our main theorem, Theorem 5. Our main result shows that if β is suf-

ficiently small, then (2) is asymptotically optimal for any sufficiently large (q,β)-bi-jumbled
graph G and any triangle-free graph H .

Theorem 5. Let a triangle-free graph H and δ > 0 be given. Then there exists γ = γ (δ,H) > 0
with the following property: For any function q = q(m) there is M0 = M0(δ,H,q) such that any
(q, γ qνH m)-bi-jumbled graph G with m � M0 vertices has

ex(G,H) �
(

1 − 1

χ(H) − 1
+ δ

)∣∣E(G)
∣∣. (8)

Remark 6. From c
√

qm � β = γ qνH m we deduce that the inequality q � qγ,H (m) :=
(c−2γ 2m)−1/(2νH −1) must hold for any m-vertex, (q, γ qνH m)-bi-jumbled graph. Hence, we
may assume that the function q in Theorem 5 satisfies q � qγ,H (m) for otherwise there is no
(q, γ qνH m)-bi-jumbled graph G and the statement of Theorem 5 holds trivially.

Theorem 5 gives a sufficient condition on the bi-jumbledness of G for (8) to hold. Assuming
the best possible bi-jumbledness β = O(

√
qm), the bi-jumbledness hypothesis β = γ qνH m in

Theorem 5 gives a condition on the density q for (8) to hold. We illustrate this on the concrete
example H = C5. We have νC5 = 5/2. Theorem 5 implies that, for any (q,O(

√
qm))-bi-jumbled

graph G, we have ex(G,C5) = (1/2 + o(1))|E(G)| if q5/2m � √
qm, that is, q � m−1/4. How-

ever, a fairly simple argument based on the Sparse Regularity Lemma (Proposition 9) yields that
the much weaker condition q � m−1/2 actually suffices.

Let us mention that there exists a C5-free, (q,O(
√

qm))-bi-jumbled graph A5 with q =
Θ(m−3/5). Thus, the “threshold” for this problem lies between m−3/5 and m−1/2. Hence, even
in this case, we do not have an optimal result. For a general odd cycle C2�+1, the “threshold” is
between m−1+2/(2�+1) and m−1+1/�. The lower end of the gap is proved considering a C2�+1-
free, (q,O(

√
qm))-bi-jumbled graph A2�+1 with q = Θ(m−1+2/(2�+1)). The existence of the

graphs A2�+1 may be proved suitably adapting a beautiful construction of Alon [1] (see also [28,
Section 3, Example 10]).

We believe that it would be interesting to weaken the bi-jumbledness hypothesis in Theorem 5.
Moreover, it would be interesting to drop the triangle-freeness condition on the graph H . In this
direction, we only mention that in [25] a result similar to Theorem 5 for arbitrary graphs H

is proved, but a stronger bi-jumbledness hypothesis on G is required. We finish this section
deducing Theorem 3 from Theorem 5.

5 This fact may be checked by combining Lemma 3.8 in [16] and the fact that, almost surely, all vertices of G(m,q)

have degree (1 + o(1))qm for qm � logm.
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Proof of Theorem 3. It is a well-known fact (see Corollary 9.2.5 in [2]) that any (m,d,λ)-
graph G is (d/m,λ)-bi-jumbled. Therefore, the graph G will be (d/m,γ (d/m)νH m)-bi-jumbled
if

λ � γ (d/m)νH m, (9)

which is equivalent to (6). �
3. An outline of the proof of Theorem 5 and auxiliary results

In this section we introduce all the necessary tools for the proof of Theorem 5. We also try to
motivate these tools by discussing the underlying ideas in the proof.

3.1. Additional definitions and notation

We start with some basic notation. Let � be a positive integer. We denote by [�] the set
{1,2, . . . , �}. For a multiset I = {i1, . . . , ir } we write I ⊂ [�] to mean that i1, . . . , ir ∈ [�].
We also adopt the convention that we always write the elements of I in non-decreasing or-
der, i.e., i1 � · · · � ir . For three real numbers a, b, and c, the expression a = b ± c means
b−c � a � b+c. We also write a/bc instead of a/(bc) whenever there is no danger of confusion.
For functions f = f (n) and g = g(n) we write f � g and g � f if limn→∞ f (n)/g(n) = +∞.
For clarity, we omit inessential floor and ceiling brackets.

Let G = (V ,E) be a graph. For a vertex x ∈ V let N(x) be the set of all neighbors of x in G.
If U ⊂ V then NU(x) denotes the set of neighbors of x ∈ V belonging to U , that is, NU(x) =
N(x) ∩ U . For an r-set X = {x1, . . . , xr} ⊂ V and a set U ⊂ V , we let N(X) = N(x1, . . . , xr ) =
N(x1) ∩ · · · ∩ N(xr) and NU(X) = NU(x1, . . . , xr ) = N(x1) ∩ · · · ∩ N(xr) ∩ U .

We say that J is an (�, n,p)-partite graph if J is �-partite with V (J ) = ⋃�
j=1 Vj , |Vj | = n

for all j ∈ [�], and e(J [Vi,Vj ]) = pn2 for all i �= j ∈ [�].
For an (�, n,p)-partite graph J , an integer r � 1, and a multiset I = {i1, . . . , ir} ⊂ [�], denote

by T (I ) the set of all r-tuples (x1, . . . , xr ) ∈ Vi1 × · · · × Vir such that xi �= xj for all 1 � i <

j � r . Note that

(n − r)r < (n − r + 1)r �
∣∣T (I )

∣∣ � nr, (10)

since each xi can be chosen in at least n − r + 1 ways to avoid x1, . . . , xi−1.
Now we define two important properties of (�, n,p)-partite graphs.

Definition 7. An (�, n,p)-partite graph J has property TUPLE�(ε, d) if for every integer 1 �
r � d , every multiset I = {i1, . . . , ir } ⊂ [�], and for all j ∈ [�] \ I , we have

∣∣NVj
(x1, . . . , xr )

∣∣ = (1 ± ε)prn

for all but at most εnr r-tuples (x1, . . . , xr ) ∈ T (I ).
When d = 2 we say that J satisfies the pair condition PAIR�(ε).



Y. Kohayakawa et al. / Journal of Combinatorial Theory, Series A 114 (2007) 631–657 637
3.2. An outline of the proof of Theorem 5

We now outline the proof of Theorem 5. We hope that this will motivate the somewhat tech-
nical looking auxiliary lemmas that will be required. Our proof strategy is natural and proceeds
as follows: consider an arbitrary spanning subgraph G′ of G with

∣∣E(G′)
∣∣ �

(
1 − 1

χ(H) − 1
+ δ

)∣∣E(G)
∣∣. (11)

Suppose first that the density q of G is constant, independent of n. We apply Szemerédi’s regu-
larity lemma [32] with ε significantly smaller than δ and q , and obtain a partition

⋃t
j=0 Vj of the

vertex set of G′ into a bounded number t + 1 of parts so that all but at most ε
(
t
2

)
pairs (Vi,Vj ),

1 � i < j � t , are ε-regular, i.e., for all V ′
i ⊂ Vi and V ′

j ⊂ Vj with |V ′
i | � ε|Vi | and |V ′

j | � ε|Vj |,
we have∣∣dG(Vi,Vj ) − dG

(
V ′

i , V
′
j

)∣∣ � ε.

Standard arguments (see, e.g., [7, Section 7.5, pp. 186–187]) show that there exist � = χ(H) sets
(without loss of generality, V1, . . . , V�) so that there is an (�, n,p)-partite graph J ⊂ G′ with
�-partition

⋃�
j=1 Vj such that p = αq , α is considerably larger than ε, and each pair (Vi,Vj )

is ε-regular.6 It is a well-known fact (e.g., Theorem 3.1 in [27]) that J satisfying the conditions
above also contains a copy of H . We remark that this statement (sometimes called the Embedding
Lemma) is ensured by the regularity of J itself.

For the case q = o(1) we utilize the same approach. First we apply a version of the regularity
lemma for sparse graphs (Proposition 9) to G′ and obtain an (ε,G′, q)-regular partition V0 ∪V1 ∪
· · · ∪ Vt of V (G′) (see Section 3.4 for the relevant definitions). In the same way as above (see
Section 4 for the details) we obtain an (�, n,p)-partite graph J with �-partition

⋃�
j=1 Vj with

p = αq for some constant α > 0 and such that each pair (Vi,Vj ) is (ε, q)-regular. Unfortunately,
the embedding lemma required in this context does not hold (see, e.g., [21, Theorem B′]).

One way to deal with this problem is to restrict the choice of G to certain classes of graphs
(such as random graphs) and to prove an appropriate embedding lemma that works for their
subgraphs G′ (for instance, see Theorem B′′ in [21] and Lemmas 2.2 and 2.2′ in [23]). In this
paper, roughly speaking, we follow an approach in [26]. An embedding lemma in [26] is as
follows:

(∗) Let H be a triangle-free graph and C a positive constant. If J is an n-vertex graph with

density p = p(n) = |E(J )|(n
2

)−1 � n−1/DH satisfying properties BDD(C,DH ) and PAIR
given below, then J contains H as a subgraph, as long as n is sufficiently large.

BDD(C,DH ): |NJ (x1, . . . , xr )| � Crprn holds for all mutually distinct vertices x1, . . . , xr ∈
V (J ) and 1 � r � DH .

PAIR: |NJ (x1, x2)| = (1 + o(1))p2n holds for all but at most o(n2) pairs {x1, x2} ⊂ V (J ).

6 From
⋃t

j=0 Vj we construct a “cluster” graph Fc on [t] whose edges are those pairs {i, j} for which the pair
(Vi ,Vj ) is ε-regular and has large density. The graph Fc has enough edges for us to apply Turán’s theorem and ob-
tain a copy of Kχ(H) . To deduce this we need dG′ (Vi ,Vj ) � (1 + o(1))q for all i �= j , which may be guaranteed by the
bi-jumbledness of G. This copy of Kχ(H) corresponds to a subgraph of G′ that may be further reduced or “sliced” (see
Lemma 10) to the (χ(H),n,p)-partite graph J we are looking for.
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Going back to the proof of Theorem 5, we recall that we had arrived at an (�, n,p)-partite
graph J ⊂ G′ with �-partition

⋃�
j=1 Vj such that p = αq with α a positive constant and each

pair (Vi,Vj ) is (ε, q)-regular. The first discrepancy that one notices between our current setup
and the hypotheses in (∗) is that our J is �-partite, whereas in (∗) we do not have an �-partite
graph. As the reader may guess, albeit cumbersome, this difference is not essential, and one
may in fact prove an appropriate “�-partite version” of (∗). In the discussion that follows, for
simplicity, when not important, we shall blur this discrepancy and we shall ignore the fact that
we have an �-partite graph J at hand.

A more substantial discrepancy occurs in the hypotheses BDD(C,DH ) and PAIR in (∗): in
our proof of Theorem 5, we have arrived at an �-partite (ε, q)-regular graph J .

Achieving PAIR
The reader may be familiar with the fact that in the case of dense graphs, the o(1)-regularity

of a pair (Vi,Vj ) and property PAIR(o(1)) are equivalent (in a certain precise sense, see [6,33]
for details). Unfortunately, this equivalence breaks down in the sparse setting, as observed in
Theorem A′ in [21]. Therefore, achieving hypothesis PAIR in (∗) requires some work. This will
be accomplished by making use of Proposition 11 below, which, roughly speaking, states that
one recovers the fact that o(1)-regularity implies PAIR if one has a graph J that is a subgraph of
a suitably bi-jumbled graph Γ , as long as one has a positive fraction α of the edges of Γ in J .

Loosening BDD
Let us now discuss hypothesis BDD(C,DH ) in (∗). Basically, if G has property BDD(C,DH ),

then any subgraph J ⊂ G with a positive fraction of the edges of G has BDD(C′,DH ) for some
C′ � C. As it turns out, the constant C′ ends up depending on some other parameters in the proof
in such a way that we are not able to use this simple hereditary property of BDD. Therefore, we
take a different route. For every 1 � r � DH , define an r-uniform hypergraph Br on the vertex
set of J , putting an r-set B ⊂ V (J ) in Br if the joint neighborhood NJ (B) of B in J violates the
upper bound in the definition of BDD(C,DH ), that is, |NJ (B)| > Crprn. A simple consequence
of the bi-jumbledness of G is that the hypergraphs Br are in a certain sense locally sparse: for
every 1 � r � DH , if an (r − 1)-set is not a member of Br−1, then it cannot be contained in
many members of Br (see Lemma 14). This sparseness of the Br turns out to be enough for our
purposes.

The Embedding Lemma
As the discussion above suggests, the embedding lemma that we shall make use of is an �-

partite variant of (∗), with the BDD hypothesis replaced by the hypothesis that J should be a
subgraph of a suitably bi-jumbled graph G, with a positive fraction α of the edges of G in J .
From this hypothesis, one obtains PAIR and the local sparseness of the Br . For the precise state-
ment of this embedding lemma, see Proposition 8.

Before we finish this outline, we just mention a step in the proof of this embedding lemma.
We remark that we shall use the bi-jumbledness of G to show that, in fact, PAIR implies the
following property:

TUPLE(dH ): |NJ (x1, . . . , xr )| = (1 + o(1))prn holds for all but at most o(nr) r-sets {x1, . . . ,

xr} ⊂ V (J ) for any 1 � r � dH
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(see Proposition 12). Going from PAIR to TUPLE(dH ) is also an important step in the proof
of (∗). For this step, hypothesis BDD is used in [26]; here, in the proof of Proposition 12, we
again replace BDD with the local sparseness of the Br .

3.3. An embedding lemma for �-partite bi-jumbled graphs

In this section we state the adjusted version of one of the main results from [26] (see (∗))
discussed in Section 3.2. Given an �-partite graph H with �-partition V (H) = ⋃�

j=1 Uj , an
embedding of H in an (�, n,p)-partite graph J is an injective, edge preserving map f :V (H) →
V (J ) such that f (Uj ) ⊂ Vj for all 1 � j � �. The next proposition shows that TUPLE� and
large enough density guarantee an embedding of any triangle-free graph H in J , as long as J

satisfies a certain sparseness condition (see (12) below).

Proposition 8 (Embedding Lemma). Let H be a fixed triangle-free, �-partite graph with h ver-
tices and e edges. Then for all 0 < α,η � 1 there exist ε = ε(H,α,η) > 0 and γ = γ (H,α,η) >

0 such that for any function p = p(n) satisfying pdH n � 1 there is N1 = N1(H,α,η,p) > 0 for
which the following holds. Suppose that

(a) J is an (�, n,p)-partite graph and n > N1,
(b) for all U ⊂ Vi and W ⊂ Vj , i �= j ∈ [�], we have

eJ (U,W) � p

α
|U ||W | + γ

(
p

α

)νH

n
√|U ||W |, (12)

(c) J satisfies TUPLE�(ε, dH ).

Then the number of embeddings of H in J is at least (1 − η)penh.

We shall apply Proposition 8 to an (�, n,p)-partite graph J that is obtained from a sub-
graph G′ of a (q, γ qνH m)-bi-jumbled graph G, as explained in Section 3.2. Moreover, we shall
have p = αq for some constant α > 0. Condition (12) will follow from the upper bound in the
(q, γ qνH m)-bi-jumbledness hypothesis on G (see (7)), by substituting p/α for q . The proof of
Proposition 8 is given in Section 6.

3.4. The Sparse Regularity Lemma

Let G = (V ,E) be a graph. Suppose 0 < q � 1, ξ > 0 and C > 1. For two disjoint subsets X,
Y of V , we let

dG,q(X,Y ) = eG(X,Y )

q|X||Y | ,

which we refer to as the q-density of the pair (X,Y ).
We say that G is a (ξ,C)-bounded graph with respect to density q if for all pairwise disjoint

X,Y ⊂ V , with |X|, |Y | � ξ |V |, we have eG(X,Y ) � Cq|X||Y |.
For ε > 0 fixed and X,Y ⊂ V , X ∩ Y = ∅, we say that the pair (X,Y ) is (ε, q)-regular if for

all X′ ⊂ X and Y ′ ⊂ Y with

|X′| � ε|X| and |Y ′| � ε|X|,
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we have∣∣dG,q(X,Y ) − dG,q(X′, Y ′)
∣∣ � ε.

Note that for q = 1 we get the well-known definition of ε-regularity [32].
When G is (�, n,p)-partite with �-partition

⋃�
i=1 Vi we say that G is (ε, q)-regular if all pairs

(Vi,Vj ), 1 � i < j � �, are (ε, q)-regular.
Let

⋃t
j=0 Vj be a partition of V . We call V0 the exceptional class. This partition is called

(ε, t)-equitable if |V0| � ε|V | and |V1| = · · · = |Vt |.
We say that an (ε, t)-equitable partition

⋃t
j=0 Vj of V is (ε,G,q)-regular if all but at most

ε
(
t
2

)
pairs (Vi,Vj ), 1 � i < j � k, are (ε, q)-regular. Now we can state a variant of Szemerédi’s

regularity lemma [32] for sparse graphs (see, e.g., [18,22]).

Proposition 9 (Sparse Regularity Lemma). For any ε > 0, C > 1, and t1 � 1, there exist con-
stants T1 = T1(ε,C, t1), ξ = ξ(ε,C, t1) � min{1/2T1, ε}, and M1 = M1(ε,C, t1) such that any
graph G with at least M1 vertices that is (ξ,C)-bounded with respect to density 0 < q � 1 admits
an (ε, t)-equitable (ε,G,q)-regular partition of its vertex set with t1 � t � T1.

After applying the lemma above we obtain (ε, q)-regular bipartite graphs with different den-
sities. The next lemma will allow us to change these densities to a particular value without losing
regularity.

Lemma 10 (Slicing Lemma [23]). For every 0 < α, ε � 1, C > 1, and a function q = q(n)

satisfying qn � 1 there exists n0 = n0(α, ε,C,q) such that if B = (U ∪ W,E) is a bipartite
graph satisfying

(i) |U | = |W | = n > n0,
(ii) αq|U ||W | � eB(U,W) � Cq|U ||W |, and

(iii) B is (ε, q)-regular,

then there exists a (3ε, q)-regular subgraph B ′ = (U ∪ W,E′) ⊂ B such that eB ′(U,W) =
αq|U ||W |.

3.5. Regularity and the pair condition

The next proposition shows that, under certain restrictions, a regular (�, n,p)-partite graph
also has property PAIR�.

Proposition 11 (Regularity-to-Pair Lemma [25]). For any 0 < α,� � 1 and any integer � > 1,
there exist δ = δ(α,�, �) > 0 and γ = γ (α,�, �) > 0 such that for every function q = q(n) there
exists an n0 = n0(α,�, �, q) > 1 for which the following holds.

Let Γ be a (q, γ q2�n)-bi-jumbled graph on �n vertices with n > n0. Suppose J is a (δ, q)-
regular (�, n,p)-partite subgraph of Γ satisfying p � αq . Then J also has property PAIR�(�).

We remark that if p is a constant then the above statement holds for any (δ,1)-regular
(�, n,p)-partite graph J (i.e., J need not to be a subgraph of some bi-jumbled graph Γ ).

Clearly, any graph having property TUPLE�(ε, d), d � 2, also satisfies PAIR�(ε). The next
proposition shows that under certain conditions the converse is also true.
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Proposition 12 (Pair-to-Tuple Lemma). Let d � 1 and � � 2 be integers. Then for every
0 < α,ε � 1 there exist δ = δ(d, �,α, ε) > 0 and γ = γ (d, �,α, ε) > 0 such that for every func-
tion p = p(n) satisfying pdn � 1 there is N0 = N0(d, �,α, ε,p) with the following property:
any (�, n,p)-partite graph J with n > N0 satisfying

(i) for all U ⊂ Vi and W ⊂ Vj , i �= j ∈ [�], we have

eJ (U,W) � p

α
|U ||W | + γ

(
p

α

)(d+3)/2

n
√|U ||W |, (13)

(ii) PAIR�(δ),

also satisfies TUPLE�(ε, d).

We shall apply Proposition 12 with d = dH to an (�, n,p)-partite graph J that is obtained
from a subgraph G′ of a (q, γ q(dH +3)/2m)-bi-jumbled graph G, as explained in Section 3.2.
Moreover, we shall have p = αq for some constant α > 0. Condition (13) will follow from the
upper bound in the (q, γ q(dH +3)/2m)-bi-jumbledness hypothesis on G (see (7)), by substituting
p/α for q . The proof of Proposition 12 appears in Section 7.

4. Proof of the main result

Now we are ready to prove the main result, Theorem 5. When DH = 1, the graph H is a
matching and we just need qm > (4/δ)|E(H)| to prove Theorem 5. Indeed, for any graph G

with |E(G)| = q
(
m
2

)
> (2/δ)|E(H)|(m− 1) edges, let G′ be any spanning subgraph with at least

δ|E(G)| > 2|E(H)|(m − 1) edges. In this subgraph we find a copy of the matching H greedily.
When q is constant, Theorem 5 follows from an easy application of Szemerédi’s regularity

lemma (see Section 3.2 for some details). Hence, we shall henceforth suppose that q = o(1),
DH � 2, and (cf. (5)) νH � 2. Now we proceed with the details of the proof.

Proof of Theorem 5. Let H be a fixed, triangle-free graph with h vertices and e � 1 edges.
Without loss of generality, let δ be a constant such that 1/(χ(H) − 1) > δ > 0. We start our
proof by choosing the constants. Since Theorem 5 and Propositions 11, 12, and 8 involve a
double alternation (“∀∃∀∃”), this choice will consist of two rounds. In the first round (A)–(G) we
address the choice of γ . After this we get the function q and we deal with the choice of M0 in
the second round (H)–(L).

(A) Set α = δ/16, η = 1/2, and � = χ(H) > 1.
(B) Proposition 8 (Embedding Lemma) applied with αEL = α and ηEL = η yields εEL and γEL.
(C) Then we apply Proposition 12 (Pair-to-Tuple Lemma) with d = dH , αP2T = α, εP2T = εEL,

and obtain δP2T and γP2T.
(D) Proposition 11 (Regularity-to-Pair Lemma) applied with αR2P = α and �R2P = δP2T yields

δR2P and γR2P.
(E) We define

ε = min

{
δR2P

3
,

δ

160

}
. (14)
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(F) We then apply Proposition 9 (Sparse Regularity Lemma) with εRL = ε, CRL = 1 +
δ/4, and t1,RL = max{2�/δ1/2,80/δ} and obtain T1,RL � t1,RL, ξRL � min{1/2T1,RL, ε},
and M1,RL.

(G) Finally, we fix the constant γ promised by Theorem 5 by setting

γ = 1 − ε

T1,RL
min{γEL, γP2T, γR2P, δξRL/4}. (15)

Now let q = q(m) = o(1) be a function satisfying q � qγ,H (m) (see Remark 6). From this we
have qdH m � 1.

(H) Proposition 8 (Embedding Lemma) applied with αEL = α, ηEL = η, and pEL = αq

yields NEL.
(I) Then we apply Proposition 12 (Pair-to-Tuple Lemma) with d = dH , αP2T = α, εP2T = εEL,

pP2T = pEL = αq and obtain NP2T.
(J) Proposition 11 (Regularity-to-Pair Lemma) applied with αR2P = α, �R2P = δP2T, and qR2P =

q yields nR2P.
(K) We use Lemma 10 (Slicing Lemma) with αSL = α, CSL = 1 + δ/4, εSL = ε, and qSL = q to

obtain nSL.
(L) Finally, we let

M0 = max

{
1 + 16

δ2
,M1,RL,max{NEL,NP2T, nR2P, nSL} · T1,RL

}
.

Let G be any (q, γ qνH m)-bi-jumbled graph with m � M0 vertices, and let G′ be an arbitrary
spanning subgraph of G with∣∣E(G′)

∣∣ �
(

1 − 1

� − 1
+ δ

)∣∣E(G)
∣∣. (16)

By (q, γ qνH m)-bi-jumbledness of G and νH � 2, we have

∣∣E(G)
∣∣ � qm2 − γ qνH m2

2

(15)

�
(

1 − δ

4

)
q

(
m

2

)
.

Hence (16) implies∣∣E(G′)
∣∣ �

(
1 − 1

� − 1
+ 3δ

4

)
q

(
m

2

)
. (17)

We claim that G′ is (ξRL,CRL)-bounded with respect to q . Indeed, for any two sets X,Y ⊂
V (G′), |X|, |Y | � ξRLm, we have

eG′(X,Y ) � eG(X,Y ) � q|X||Y | + γ qνH m
√|X||Y |

�
(

1 + γ

√
m

|X|
m

|Y |
)

q|X||Y | �
(

1 + γ

ξRL

)
q|X||Y | (15)

� CRLq|X||Y |.

Since G′ has at least M0 � M1,RL vertices, we can apply Proposition 9 (Sparse Regularity
Lemma) to G′ with parameters εRL = ε, CRL, and t1,RL defined in (F). This yields an (ε, q)-
regular (ε,G′, t)-equitable partition

⋃t
i=0 Vi of V (G′) such that t1,RL � t � T1,RL, |V1| = · · · =

|Vt | = n, where (1 − ε)m/t � n � m/t , and |V0| � εm.
Let Gc be the subgraph of G′ obtained by removing all edges in the following four sets:
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B1 = {
e ∈ E(G′): e ∩ V0 �= ∅}

,

B2 =
⋃

1�i�t

{
e ∈ E(G′): e ⊂ Vi

}
,

B3 =
⋃

1�i<j�t

{
e ∈ EG′(Vi,Vj ): (Vi,Vj ) is not (ε, q)-regular in G′},

B4 =
⋃

1�i<j�t

{
e ∈ EG′(Vi,Vj ): eG′(Vi,Vj ) < αqn2}.

Standard calculations show that

e(Gc) �
(

1 − 1

� − 1
+ δ

2

)
q

(
m

2

)
(18)

(see [24] for details). We define the cluster graph Fc of G′ as the graph with vertex set V (Fc) =
{1, . . . , t} and edge set

E(Fc) = {{i, j}: (Vi,Vj ) is (ε, q)-regular in G′ and eGc(Vi,Vj ) � αqn2}.
We claim that Fc contains a copy of K�. To prove this observe first that, since G′ is (ξRL,CRL)-
bounded with respect to q , we have eGc(Vi,Vj ) = eG′(Vi,Vj ) � CRLqn2 � CRLq(m/t)2 for
every 1 � i < j � t such that eGc(Vi,Vj ) �= 0.

Now using (18), the fact that CRL = 1 + δ/4, and the definition of Fc , we get

e(Fc) � e(Gc)

CRLq(m/t)2
�

(
1 − 1

� − 1
+ δ

2

)(
1 − 1

m

)(
1 + δ

4

)−1
t2

2
.

Since m � M0 > 16/δ2, we have

e(Fc) >

(
1 − 1

� − 1
+ δ

2

)(
1 − δ

4

)
t2

2
>

(
1 − 1

� − 1

)
t2

2
.

The above implies that Fc contains K� as a subgraph by Turán’s theorem [34] (see also Exercise 7
on p. 189 in [7]). From this we now deduce that G′ contains H as a subgraph.

Without loss of generality assume {1, . . . , �} ⊂ V (Fc) is the vertex set of a copy of K� in Fc.
Since G′ is (ξRL,CRL)-bounded with respect to q , it follows from the definition of Fc that the
subgraphs Gc[Vi,Vj ] = G′[Vi,Vj ], 1 � i < j � �, satisfy

(i) |Vi | = |Vj | = n,
(ii) CRLqn2 � e(Gc[Vi,Vj ]) � αqn2,

(iii) Gc[Vi,Vj ] is (ε, q)-regular.

Therefore, we can apply Lemma 10 (Slicing Lemma) with εSL = ε � δR2P/3 (see (14)), αSL = α,
CSL = CRL = 1+ δ/4, and qSL = q . This yields subgraphs Jij ⊂ Gc[Vi,Vj ], 1 � i < j � �, such
that

(iv) eJij
(Vi,Vj ) = αqn2,

(v) Jij is (3ε, q)-regular and 3ε � δR2P.
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Now let Γ be the subgraph of G induced on V1 ∪ · · ·∪V� and let J be the subgraph of Γ defined
by

J =
⋃

1�i<j��

Jij .

Note that since G is (q, γ qνH m)-bi-jumbled, n � (1 − ε)m/t , and νH � 2 the graph Γ is
(q, (γ t/(1 − ε)�)q2�n)-bi-jumbled. It follows from (15) and t � T1,RL that γ t/(1 − ε)� � γR2P.
Consequently, Γ is (q, γR2Pq2�n)-bi-jumbled.

Furthermore, by (iv), J is (�, n,p)-partite with p = p(n) = αq(n). By (v), J is also (δR2P, q)-
regular.

Clearly we can apply Proposition 11 (Regularity-to-Pair Lemma) with parameters αR2P = α,
�R2P = δP2T, and qR2P = q and deduce that J satisfies PAIR�(δP2T).

To conclude that J satisfies the conditions of Proposition 12 (Pair-to-Tuple Lemma), we just
need to show that for all U ⊂ Vi and W ⊂ Vj , i �= j ∈ [�], we have

eJ (U,W) � p

α
|U ||W | + γP2T

(
p

α

)(dH +3)/2

n
√|U ||W |.

From the (q, γ qνH m)-bi-jumbledness of G, p = αq , νH = (dH + DH + 1)/2, and DH � 2, we
obtain

eJ (U,W) � eG(U,W) � p

α
|U ||W | + γ

(
p

α

)(DH +dH +1)/2

m
√|U ||W | (19)

� p

α
|U ||W | + γ

(
p

α

)(dH +3)/2

m
√|U ||W |. (20)

Hence, we just need to show that γm � γP2Tn. This, however, follows from (15), m � nt/(1−ε),
and t � T1,RL:

γm � (1 − ε)γP2T

T1,RL
· nt

1 − ε
� γP2Tn. (21)

Thus, we can apply Proposition 12 to J with d = dH , εP2T = εEL, and pP2T = αq to infer that
J satisfies property TUPLE�(εP2T, dH ).

Finally, we verify the hypothesis of Proposition 8 (Embedding Lemma). The graph J is
(�, n,p)-partite and has property TUPLE�(εEL, dH ). Similarly as in (21) we obtain γm � γELn.
This together with (19) show that J also satisfies (12). Hence, the conditions of Proposition 8
are met and we may conclude that J ⊂ G′ contains at least (1 − ηEL)penh = penh/2 � 1 copies
of H . �
5. Sets with large neighborhoods

The motivation for the results in this section already appeared in the outline of the proof of
Theorem 5. Indeed, recall that, in our discussion in Section 3.2, we defined the hypergraphs Br

(1 � r � DH ), whose members are the r-sets B of vertices of J with the joint neighbor-
hood NJ (B) overshooting a certain bound. In what follows, we shall make this more precise
and we shall prove the “local sparseness” condition of the Br mentioned in Section 3.2.
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Definition 13. Let J be an (�, n,p)-partite graph with �-partition
⋃�

j=1 Vj . For a given C > 1,
we say that an s-set S ⊂ V (J ) is C-exceptionally neighborly if its common neighborhood in Vj

satisfies∣∣NJ (S) ∩ Vj

∣∣ > Cspsn

for some j ∈ [�] so that S ∩ Vj = ∅. The set S is C-reasonable if it is not C-exceptionally
neighborly.

The following lemma states that, under the technical hypothesis (22), in an (�, n,p)-partite
graph J there are only O(γ 2p2d−1−sn) ways how to extend a C-reasonable (s − 1)-set into a
C-exceptionally neighborly s-set, where the implicit constant in the big O notation depends only
on C, s, d , and α.

Lemma 14. For a given 0 < α � 1 and d > 0 suppose that an (�, n,p)-partite graph J with
�-partition

⋃�
j=1 Vj also satisfies the property that for all U ⊂ Vi and W ⊂ Vj , i �= j ∈ [�], we

have

eJ (U,W) � p

α
|U ||W | + γ

(
p

α

)d

n
√|U ||W |. (22)

Let s be a positive integer, let S ⊂ V (J ) be any (s−1)-set, let i �= j ∈ [�] be such that S∩Vj = ∅,
and suppose C is such that 1/p > C > 1/α � 1. Set

Wij (S) = {
w ∈ Vi \ S:

∣∣NJ

(
S ∪ {w}) ∩ Vj

∣∣ > Cspsn
}
.

If |NJ (S) ∩ Vj | � Cs−1ps−1n, then∣∣Wij (S)
∣∣ � γ 2(1/α)2d(C − 1/α)−2C−(s−1)p2d−1−sn.

Proof. Let U ⊂ Vj be a set of vertices of J containing the common neighborhood of S and of
size |U | = Cs−1ps−1n. Note that the definition of Wij (S) implies that

eJ

(
U,Wij (S)

)
> Cspsn

∣∣Wij (S)
∣∣ = Cp|U |∣∣Wij (S)

∣∣.
From inequality (22), we deduce that

(C − 1/α)p|U |∣∣Wij (S)
∣∣ < γ (p/α)dn

√
|U |∣∣Wij (S)

∣∣,
whence, recalling that |U | = Cs−1ps−1n, the claimed bound on |Wij (S)| follows. �

We now state three corollaries that we later use in our proofs. Although these corollaries hold
in more general settings, we prefer to present them in the exact way they are used later.

Corollary 15. For a given 0 < α � 1 and a graph H , suppose that an (�, n,p)-partite graph J

with �-partition
⋃�

j=1 Vj satisfies the property that for all U ⊂ Vi and W ⊂ Vj , i �= j ∈ [�], we
have

eJ (U,W) � p

α
|U ||W | + γ

(
p

α

)νH

n
√|U ||W |.

Set C = 2/α > 1 and assume p < α/2 holds. Let S be an arbitrary subset of V (J ) not containing
any C-exceptionally neighborly s′-set S′ for every 1 � s′ � DH . Then, for every i ∈ [�], the
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number of vertices y ∈ Vi \ S such that S ∪ {y} contains a C-exceptionally neighborly s′-set S′
for some 1 � s′ � DH is at most

2|S|�cp2νH −1−DH n, (23)

where

c = γ 2(1/α)2νH −2.

Proof. Fix i ∈ [�]. Since S contains no C-exceptionally neighborly s′-set, 1 � s′ � DH , the set
S ∪ {y} (y ∈ Vi \ S) will contain a C-exceptionally neighborly s′-set with 1 � s′ � DH if and
only if there exists a set of the form S′ ∪ {y} with S′ ⊂ S that is C-exceptionally neighborly.

Fix S′ ⊂ S and suppose |S′| = s′ −1, where 1 � s′ � DH . We apply Lemma 14, and conclude
that the number of y ∈ Vi \ S such that S′ ∪ {y} is C-exceptionally neighborly is at most � ·
cp2νH −1−s′

n (we multiply by � to account for all possible j ∈ [�]). We now take the union over
all S′ ⊂ S, |S′| � DH − 1, and get (23), as required. �
Corollary 16. For a given 0 < α � 1 and d > 0 suppose that an (�, n,p)-partite graph J with
�-partition

⋃�
j=1 Vj satisfies the property that for all U ⊂ Vi and W ⊂ Vj , i �= j ∈ [�], we have

eJ (U,W) � p

α
|U ||W | + γ

(
p

α

)(d+3)/2

n
√|U ||W |.

Set C = 2/α > 1 and assume p < α/2 holds. Then

(a) all but at most �γ 2(1/α)d+1pd+1n vertices x ∈ Vi satisfy |NJ (x) ∩ Vj | � Cpn for every
j �= i ∈ [�];

(b) let x ∈ Vi be a vertex satisfying |NJ (x) ∩ Vj | � Cpn for every j �= i. Then all but at most
�γ 2α−dpdn/2 vertices x′ ∈ Vi \ {x} satisfy |NJ (x, x′) ∩ Vj | � C2p2n for every j �= i.

Outline of the proof. The first part of this corollary follows from Lemma 14 applied with s = 1,
S = ∅, and d replaced with (d + 3)/2, by summing |Wij (S)| for all j ∈ [�], j �= i. In the second
part we use s = 2 and S = {x} instead of S = ∅. �
6. Proof of the Embedding Lemma (Proposition 8)

The proof of Proposition 8, our Embedding Lemma, will generally follow the same lines as
the proof of (∗), discussed in Section 3.2. We start with some preliminary definitions and facts.

6.1. The Extension Lemma and clean embeddings

We first fix a setup under which we shall work in this section.

Setup 17. Let H and J be graphs such that

(a) J is (�, n,p)-partite with �-partition
⋃�

j=1 Vj ;

(b) H has h vertices, e edges, and an �-partition V (H) = ⋃�
j=1 Uj .
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Recall that an embedding of H in J is an injective, edge-preserving map f :V (H) → V (J )

such that f (Uj ) ⊂ Vj for all 1 � j � �.
For a given C > 1 we say that the embedding f of H in J is (DH ,C)-reasonable if f (H)

contains no C-exceptionally neighborly set of size at most DH . Denote by R(H,J ;DH ,C) the
set of all (DH ,C)-reasonable embeddings of H in J .

Moreover, for t ∈ [h] and t-tuples F = (u1, . . . , ut ) ∈ V (H)t and X = (x1, . . . , xt ) ∈
V (J )t , let R(H,J,F,X;DH ,C) denote the set of all (DH ,C)-reasonable embeddings f ∈
R(H,J ;DH ,C) such that f (ui) = xi for all i ∈ [t]. Clearly, we may always assume that all ui ,
1 � i � t , and all xi , 1 � i � t , are distinct. Set F set = {u1, . . . , ut } and Xset = {x1, . . . , xt }.

Below, for any graph H ′ and any t-tuple F of vertices of H ′, we write w(H ′,F ) for the
number of edges in H ′ that do not have both endpoints in F set. That is,

w(H ′,F ) = ∣∣E(H ′)
∣∣ − ∣∣E(

H ′[F set])∣∣.
Let u1, . . . , uh be the vertices of H . We denote by Hi , 1 � i � h, the subgraph induced

by u1, . . . , ui , i.e., Hi = H [{u1, . . . , ui}]. Recall that the ordering u1, . . . , uh is d-degenerate
if degHi

(ui) � d for all 1 � i � h. We now state the following lemma.

Lemma 18 (Extension Lemma). Let C > 1 be a given constant. Suppose 0 � t � max{2, dH },
and let F ∈ V (H)t and X ∈ V (J )t be fixed. Then∣∣R(H,J,F,X;DH,C)

∣∣ � C(h−t)DH pw(H,F )nh−t .

In particular, if F set ⊂ V (H) is a stable set, then∣∣R(H,J,F,X;DH,C)
∣∣ � C(h−t)DH penh−t .

Proof. It is observed in [26] that there is a DH -degenerate ordering u1, . . . , uh of the vertices
of H with F set = {u1, . . . , ut }. Fix such an ordering. We shall prove

(∗) for all t � i � h, we have∣∣R(Hi, J,F,X;DH,C)
∣∣ � C(i−t)DH pw(Hi,F )ni−t , (24)

where Hi = H [{u1, . . . , ui}].

Our lemma follows from setting i = h above. One may easily prove (∗) by induction on i. We
omit the details here (see [24]). �

Now we derive two corollaries of Lemma 18. Denote by Rni(H,J ;DH ,C) the set of all
mappings f ∈ R(H,J ;DH ,C) for which f (H) is a non-induced copy of H in J . The next
corollary shows that the set Rni(H,J ;DH ,C) is small.

Corollary 19. Let C > 1 and η > 0 be fixed and let p = p(n) = o(1) be a function of n. Then
there exists an integer n2 = n2(p) such that if graphs J and H satisfy Setup 17 for n > n2, then∣∣Rni(H,J ;DH ,C)

∣∣ � ηpenh. (25)

Proof. Let η > 0, C > 1, integers h, � � 1, and a function p = p(n) = o(1) be given. Let n1 > 0
be such that

p(n) � η

h2C(h−2)(h−1)
(26)

for every n > n1.
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Suppose that graphs H and J satisfy Setup 17 with n � n1. The case in which h = 1 or H is
a complete graph is clear, hence we assume h � 2 and H �= Kh. To count non-induced (DH ,C)-
reasonable embeddings of H in J , we select an edge {x, x′} ∈ E(J ) and a pair u, u′ of distinct,
non-adjacent vertices of H . By Lemma 18 applied to F = (u,u′) and X = (x, x′), the number
of (DH ,C)-reasonable embeddings f :V (H) → V (J ) such that f (u) = x and f (u′) = x′ is at
most C(h−2)DH penh−2.

Since {x, x′} ∈ E(J ) can be selected in at most pn2 ways, the ordered pair X can be selected
in at most 2pn2 ways. Similarly, F can be selected in at most 2

(
h
2

)
ways. Therefore,

∣∣Rni(H,J ;DH ,C)
∣∣ � 4pn2

(
h

2

)
· C(h−2)DH penh−2 < h2C(h−2)DH pe+1nh.

The inequality |Rni(H,J ;DH ,C)| � ηpenh follows from DH � Δ(H) � h − 1 and (26). �
The next two definitions introduce several important terms for our proof of Proposition 8.

Definition 20. For ε > 0, we call an s-set S ε-untypical if S ∩ Vj = ∅ for some j ∈ [�] and∣∣NJ (S) ∩ Vj

∣∣ �= (1 ± ε)psn.

To give some intuition behind Definition 21(i) below, we first recall that we are dealing with
a triangle-free graph H , and hence the neighborhood of a vertex of H is stable. In view of
Corollary 19, we may and shall basically disregard non-induced embeddings of H in J . Putting
these two observations together, we see that we may disregard embeddings f of H in J in which
we have a vertex u in V (H) with f (NH (u)) non-stable. Finally, we remark that, in the inductive
proof that will follow, we shall be interested in avoiding ε-untypical sets for f (NH (u)).

Definition 21. Let graphs J and H be as in Setup 17 and let u1, . . . , uh be any dH -degenerate
ordering of the vertices of H . For (i)–(iii) below, we suppose that 1 < i � h.

(i) An embedding f :V (Hi−1) → V (J ) is ε-polluted if the set f (NHi
(ui)) is stable but it is

ε-untypical. Otherwise f is called ε-clean.
(ii) Set

Rpoll(Hi−1, J ;DH ,C) = {
f ∈R(Hi−1, J ;DH ,C): f is ε-polluted

}
.

(iii) Finally, we say that f :V (Hi−1) → V (J ) is ε-perfect if f is ε-clean and f (Hi−1) is an
induced copy of Hi−1 in J . We also set

Rperf(Hi−1, J ;DH ,C) = {
f ∈R(Hi−1, J ;DH ,C): f is ε-perfect

}
.

In Corollary 22 below, we estimate the size of Rpoll(Hi−1, J ;DH ,C) for 1 < i � h.

Corollary 22. Let ε > 0 and C > 1 be fixed. Let J and H be graphs satisfying Setup 17 and let
u1, . . . , uh be any dH -degenerate ordering of the vertices of H . Suppose 1 < i � h and set r =
degHi

(ui). If J satisfies TUPLE�(ε, dH ) and H is triangle-free, then∣∣Rpoll(Hi−1, J ;DH ,C)
∣∣ � ε�C(i−1−r)DH pe(Hi−1)ni−1.

In particular, if for a given η > 0 we set ε = ε′(η,C,H) = η/�ChDH , then
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∣∣Rpoll(Hi−1, J ;DH ,C)
∣∣ � ηpe(Hi−1)ni−1

for all 1 < i � h.

Proof. By definition, an embedding f ∈ R(Hi−1, J ;DH ,C) is ε-polluted if f (NHi
(ui)) is sta-

ble and ε-untypical. Fix an r-tuple F such that F set = NHi
(ui). Note that we have

Rpoll(Hi−1, J ;DH ,C) =
⋃
X

R(Hi−1, J,F,X;DH,C),

where the union is taken over all stable and ε-untypical r-tuples X. Therefore∣∣Rpoll(Hi−1, J ;DH ,C)
∣∣ �

∑
X

∣∣R(Hi−1, J,F,X;DH ,C)
∣∣, (27)

where the sum is over the same set of r-tuples X.
Since J satisfies TUPLE�(ε, dH ), the number of r-tuples X that we are summing over

in (27) is at most ε�nr , where r = degHi
(ui) � dH . Observe also that NHi

(ui) is a stable set
in Hi , because Hi ⊂ H is triangle-free. We now apply Lemma 18 to deduce from (27) that
|Rpoll(Hi−1, J ;DH ,C)| is at most

ε�nr · C(i−1−r)DH pe(Hi−1)ni−1−r = ε�C(i−1−r)DH pe(Hi−1)ni−1,

and our corollary follows. �
6.2. Proof of Proposition 8

Now we prove the Embedding Lemma.

Proof. Let H be any triangle-free, �-partite graph with h vertices and e edges. We also fix any
dH -degenerate ordering u1, . . . , uh of the vertices of H , and set Hi = H [{u1, . . . , ui}] for every i,
1 � i � h.

Throughout this proof, we suppose that 0 < α,η � 1 and C = 2/α > 1 are fixed constants.
We shall prove by induction on i that

(∗∗) for all 1 � i � h and all δ > 0, there are εi = εi(H,α, δ) > 0, γi = γi(H,α, δ) > 0 such that
for a given function p = p(n) = o(1) satisfying pdH n � 1 there is n(i) = n(i;H,α, δ,p)

such that if
(a) J is (�, n,p)-partite and n > n(i),
(b) for all U ⊂ Vj and W ⊂ Vj ′ , j �= j ′ ∈ [�], we have

eJ (U,W) � p

α
|U ||W | + γi

(
p

α

)νH

n
√|U ||W |,

(c) J satisfies TUPLE�(εi, dH ),
then ∣∣R(Hi, J ;DH ,C)

∣∣ = (1 ± δ)pe(Hh)ni . (28)

Note that Proposition 8 follows from (∗∗) by taking δ = η, ε = εh, γ = γh, and N1(H,α,η,p) =
n(h;H,α,η,p).
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Clearly, when h � i = 1, (∗∗) holds with ε1 = δ, γ1 = n(1) = 1 for any δ > 0 and any p.
Suppose now that 1 < i � h and that (∗∗) holds for all smaller values of i.

For a given δ > 0, set

δ′ = min

{
δ

6
,

δ

2�DH CDH

}
and let εi−1(H,α, δ′) and γi−1(H,α, δ′) be given by the induction hypothesis. Furthermore, let
ε′(δ′/2,C,H) be guaranteed by Corollary 22. We now set

εi = min

{
εi−1(H,α, δ′), ε′

(
δ′

2
,C,H

)
,
δ

8

}
, (29)

γi = min

{(
εi

2i−1�(C
2 )2νH −2

)1/2

, γi−1(H,α, δ′)
}
. (30)

For any p = p(n) = o(1) with pdH n � 1, let n(i − 1) = n(i − 1;H,α, δ′,p) be given by the
induction hypothesis to guarantee that∣∣R(Hi−1, J ;DH ,C)

∣∣ = (1 ± δ′)pe(Hi−1)ni−1 (31)

for any graph J satisfying (a)–(c) for n > n(i − 1).
Now Corollary 19 tells us that for n > n2(δ

′/2),∣∣Rni(Hi−1, J ;DH ,C)
∣∣ � δ′

2
pe(Hi−1)ni−1 (32)

holds for any (�, n,p)-partite graph J .
Finally, let n3 be such that pdH n � h/εi and p < α/2 for n > n3. We set

n(i) = max
{
n(i − 1), n2(δ

′/2), n3
}
, (33)

and claim that this choice will do. Observe that we have

(1 − 2δ′)(1 − 3εi) � 1 − δ, (34a)

(1 + δ′)(1 + εi) � 1 + δ

2
, (34b)

δ′�DH CDH � δ

2
. (34c)

Let J be a graph satisfying (a)–(c) for n > n(i). Then, in addition to (31) and (32), the in-
equality∣∣Rpoll(Hi−1, J ;DH ,C)

∣∣ � δ′

2
pe(Hi−1)ni−1 (35)

also holds because εi � ε′(δ′/2,C,H) (see Corollary 22).
We start by showing the lower bound on |R(Hi, J ;DH ,C)|. Let r = degHi

(ui) � min{i −
1, dH }. Note that then e(Hi−1) = e(Hi)− r . By our choice of εi and n(i), the number of embed-
dings in R(Hi−1, J ;DH ,C) that are either εi -polluted or non-induced is at most

2
δ′

2
pe(Hi−1)ni−1 = δ′pe(Hi−1)ni−1 = δ′pe(Hi)−rni−1

(see (32) and (35)). Hence, by (31), the number |Rperf(Hi−1, J ;DH ,C)| of εi -perfect embed-
dings of Hi−1 in J is such that

(1 − 2δ′)pe(Hi)−rni−1 <
∣∣Rperf(Hi−1, J ;DH ,C)

∣∣ < (1 + δ′)pe(Hi)−rni−1. (36)



Y. Kohayakawa et al. / Journal of Combinatorial Theory, Series A 114 (2007) 631–657 651
Given any such embedding f ′ ∈Rperf(Hi−1, J ;DH ,C), we estimate the number of embeddings
f ∈R(Hi, J ;DH ,C) that extend f ′. Let Vj be the vertex class into which we need to embed ui .7

Since f ′ is εi -clean, by Definition 21 we must have that either f ′(NHi
(ui)) is not a stable set

in J , or f ′(NHi
(ui)) is not εi -untypical.

Since H is triangle-free, the set NHi
(ui) is a stable set in Hi . Since f ′ is induced, the

set f ′(NHi
(ui)) is also a stable set. Hence, the second option must be true, and, consequently,∣∣∣∣NJ

(
f ′(NHi

(ui)
)) ∩ Vj

∣∣ − prn
∣∣ � εip

rn. (37)

Note that, to obtain an extension f of f ′ that belongs to R(Hi, J ;DH ,C), we only need to
select f (ui) in (NJ (f ′(NHi

(ui))) ∩ Vj ) \ f ′(V (Hi−1)) so that f ′(V (Hi−1)) ∪ {f (ui)} does not
contain a C-exceptionally neighborly s′-set for any 1 � s′ � DH . We apply Corollary 15 with
S = f ′(V (Hi−1)) and obtain that at most

2i−1�γ 2
i

(
C

2

)2νH −2

p2νH −1−DH n
(30)

� εip
rn (38)

vertices in Vj cannot be chosen as f (ui). The last inequality follows from the fact that 2νH −
1 − DH = 2(DH + dH + 1)/2 − 1 − DH = dH � r and from (30). The reader may check that
this tight inequality for the exponents of p in (38) explains why we cannot reduce the exponent
of q in the hypothesis of Proposition 8 that G should be (q, γ qνH m)-bi-jumbled.

From (37) it follows that the size of (NJ (f ′(NHi
(ui))) ∩ Vj ) \ f ′(V (Hi−1)) is at least

(1 − εi)p
rn − (h − 1) � (1 − 2εi)p

rn. (39)

Consequently, every embedding f ′ ∈ Rperf(Hi−1, J ;DH ,C) can be extended to an embedding
f ∈R(Hi, J ;DH ,C) in at least∣∣(NJ

(
f ′(NHi

(ui)
)) ∩ Vj

) \ f ′(V (Hi−1)
)∣∣ − εip

rn
(39)
> (1 − 3εi)p

rn (40)

ways. Combining (36) and (40) yields

∣∣R(Hi, J ;DH ,C)
∣∣ > (1 − 2δ′)pe(Hi)−rni−1 · (1 − 3εi)p

rn
(34a)
� (1 − δ)pe(Hi)ni .

For the upper bound, we need to show that |R(Hi, J ;DH ,C)| � (1 + δ)pe(Hi)ni . Fix an
arbitrary f ′ ∈ R(Hi−1, J ;DH ,C). The number of extensions of f ′ to embeddings of Hi in J is
bounded from above by∣∣NJ

(
f ′(NHi

(ui)
))∣∣. (41)

If, furthermore, f ′ ∈ Rperf(Hi−1, J ;DH ,C), then we know that (37) holds and hence the quan-
tity in (41) is bounded by (1 + εi)p

rn. Combining this fact with the upper bound in (36), we
obtain that the number of embeddings f ∈ R(Hi, J ;DH ,C) whose restrictions to V (Hi−1) are
in Rperf(Hi−1, J ;DH ,C) is at most

(1 + δ′)pe(Hi)−rni−1 · (1 + εi)p
rn

(34b)

�
(

1 + δ

2

)
pe(Hi)ni . (42)

We already know that (see (31) and (36))∣∣R(Hi−1, J ;DH ,C) \Rperf(Hi−1, J ;DH ,C)
∣∣ � 3δ′pe(Hi)−rni−1.

7 By definition, every embedding f must preserve the vertex classes of H , that is, if ui ∈ Uj then f (ui) ∈ Vj .
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Since r = degJ (ui) � dH � DH and f ′ is (DH ,C)-reasonable, each such embedding f ′ gives
rise to at most Crprn embeddings f ∈ R(Hi, J ;DH ,C). Therefore, the number of embeddings
f ∈R(Hi, J ;DH ,C) whose restrictions to V (Hi−1) are not in Rperf(Hi−1, J ;DH ,C) is at most

3δ′pe(Hi)−rni−1 · Crprn
(34c)
� δ

2
pe(Hi)ni . (43)

From (42) and (43) we deduce that |R(Hi, J ;DH ,C)| � (1 + δ)pe(Hi)ni, as required. �
7. Proof of the Pair-to-Tuple Lemma (Proposition 12)

Recall first the statement we are proving: for given integers d � 1 and � > 1 and reals
0 < α,ε � 1, we need to find δ > 0 and γ > 0 such that for any function p = p(n) with pdn � 1
there exists N0 > 0 with the following property: any (�, n,p)-partite graph J , where n � N0,
such that

(i) for all U ⊂ Vi and W ⊂ Vj , i �= j ∈ [�], we have

eJ (U,W) � p

α
|U ||W | + γ

(
p

α

)(d+3)/2

n
√|U ||W |, (44)

(ii) J possesses PAIR�(δ)

also satisfies TUPLE�(ε, d).
Let d , �, α, and ε be given. Without loss of generality we may assume d � 3 because (ii)

implies TUPLE�(ε, d) for d = 1,2 and ε � δ (we do not need assumption (i) at all). Hence we
must define δ and γ and, for a given p = p(n), we must also define N0 and then show that
this choice is correct. Our proof uses a technique from [26,30] (see Lemma 26 and the proof of
Lemma 43 in [26]) and is based on the following lemma, which is a well-known consequence of
the Cauchy–Schwarz inequality.

Lemma 23. For all ε > 0, there exists 0 < � = �(ε) < ε such that, for any family of real numbers
{ai � 0: 1 � i � M} satisfying the conditions

(1)
∑M

i=1 ai � (1 − �)Ma and

(2)
∑M

i=1 a2
i � (1 + �)Ma2

for some a � 0, we have∣∣{i: |ai − a| < εa
}∣∣ > (1 − ε)M.

Our application of Lemma 23 will involve the sets T (I ) defined in Section 3.1. We first
show that for any � > 0 there is δ > 0 so that if J possesses PAIR�(δ), then for every fixed
multiset I = {i1, . . . , ir} ⊂ [�] with 3 � r � d , and for every j ∈ [�] \ I , we can verify conditions
(1) and (2) for the number M = |T (I )| of r-tuples (x1, . . . , xr ) ∈ T (I ), a = prn, and each ai

corresponding to |NVj
(x1, . . . , xr )| for some r-tuple (x1, . . . , xr ) ∈ T (I ). This is formally done

in the next fact. In what follows we denote by∑
(xτ )∈T (I )

the sum over all (x1, . . . , xr ) ∈ T (I ).
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Fact 24. For every 0 < � � 1 there exist δ = δ(d, �,α,�) and γ = γ (d, �,α,�) such that for
every p = p(n) = o(1) with pdn � 1 there is an integer N4 = N4(d, �,α,�,p) with the follow-
ing property: If an (�, n,p)-partite graph J satisfies conditions (i) and (ii) above for n � N4,
then for every multiset I = {i1, . . . , ir } ⊂ [�] with 3 � r � d , and for every j ∈ [�] \ I , we have

(1)
∑

(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣ = (1 ± �)nr · prn,

(2)
∑

(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣2
< (1 + �)nr · (prn)2.

Comparing Lemma 23 and Fact 24, one may expect that the upper bound in Fact 24(1) would
not be necessary. However, it turns out that this upper bound is required in the proof of Fact 24(2).

Now we are ready to define δ and N0: let � = �(ε2) < ε2 be the constant guaranteed by
Lemma 23 and δ = δ(d, �,α,�/3), γ = γ (d, �,α,�/3), and N4 = N4(d, �,α,�/3,p) be given
by Fact 24. Let N5 > 0 be such that for any n � N5 and 3 � r � d , we have

nr

1 + �/3
� (n − r)r . (45)

Set N0 = max{N4,N5}.
To prove that J satisfies TUPLE�(ε, d), we fix an arbitrary multiset I = {i1, . . . , ir } ⊂ [�] with

3 � r � d and any j ∈ [�] \ I , and show that∣∣NVj
(x1, . . . , xr )

∣∣ = (1 ± ε)prn

for all but at most εnr r-tuples (x1, . . . , xr ) ∈ T (I ).
By (10) and (45), we have

nr

1 + �/3
� (n − r)r � M = ∣∣T (I )

∣∣ � nr . (46)

By our choice of constants we can apply Fact 24 and obtain

∑
(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣ >

(
1 − �

3

)
nr · prn,

∑
(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣2
<

(
1 + �

3

)
nr · (prn

)2
.

It follows from (46) that∑
(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣ > (1 − �)M · prn,

and ∑
(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣2
< (1 + �)M · (prn

)2
.

We are now clearly in position to apply Lemma 23 with a = prn and M = |T (I )|. We deduce
that ∣∣NVj

(x1, . . . , xr )
∣∣ = (

1 ± ε2)prn = (1 ± ε)prn
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holds for at least(
1 − ε2)M (46)

�
(

1 + ε

1 + �/3

)
(1 − ε)nr > (1 − ε)nr

r-tuples (x1, . . . , xr ) ∈ T (I ). The last inequality follows from the fact that �/3 < ε2 � 1. What
remains to be proved is Fact 24.

Proof of Fact 24. Let 0 < � < 1, in addition to d � 3, � � 2, and 0 < α � 1, be given. We first
set an auxiliary constant C = 2/α > 1 and then we let

δ = δ(d, �,α,�) = min

{
�

�(d + 2)
,

�

2d+3
,

�

8�C2d

}
(47)

and

γ = γ (d, �,α,�) = min

{√
�αd+1

2�
,

√
�αd

4�Cd

}
. (48)

For any p = p(n) = o(1), pdn � 1, let N4 = N4(d, �,α,�,p) be such that

d

(1 − δ)δ
< pn,

1 + �

�/8
< pdn, and p <

α

2
(49)

for every n � N4.
Now let an (�, n,p)-partite graph J satisfies conditions (i) and (ii) for n � N4. We fix an

arbitrary multiset I = {i1, . . . , ir} ⊂ [�], 3 � r � d , and j ∈ [�] \ I .
To prove the lower bound in the first part of this fact, we observe

∑
(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣ �
∑
y∈Vj

r∏
k=1

(∣∣NVik
(y)

∣∣ − r
)
. (50)

Since J satisfies PAIR�(δ), it follows that for all j ∈ [�] \ I and any i ∈ I , at least (1 − δ)n

vertices y ∈ Vj satisfy∣∣NVi
(y) − pn

∣∣ < δpn. (51)

Since I contains at most � distinct numbers, there are at least (1−�δ)n vertices y ∈ Vj for which
(51) holds simultaneously for all i ∈ I . Consequently, (50) yields∑

(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣ > (1 − �δ)n
(
(1 − δ)pn − r

)r
. (52)

Applying the fact that (a − b)r � ar − rar−1b for a > b � 0 and (1 − δ)pn > r by (49) to the
right-hand side of (52), we obtain

∑
(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣ � (1 − �δ)r+1n(pn)r
(

1 − r

(1 − δ)pn

)
. (53)

Since r/(1 − δ)pn � d/(1 − δ)pn < δ by (49), we deduce from (52) that∑ ∣∣NVj
(x1, . . . , xr )

∣∣ > (1 − �δ)r+2nr · prn. (54)

(xτ )∈T (I )
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Since δ � �/�(d + 2) and r � d , we obtain (1 − �δ)r+2 � 1 − (r + 2)�δ � 1 − �. Thus (54)

becomes
∑

(xτ )∈T (I ) |NVj
(x1, . . . , xr )| > (1 − �)nr · prn.

To prove the upper bound in (1) of Fact 24, we first observe that

∑
(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣ �
∑
y∈Vj

r∏
k=1

∣∣NVik
(y)

∣∣. (55)

For each y ∈ Vj such that inequality (51) is satisfied for all i ∈ I , we have

r∏
k=1

∣∣NVik
(y)

∣∣ � (1 + δ)r (pn)r .

Since J satisfies PAIR�(δ), there are at most �δn vertices y ∈ Vj for which inequality (51) fails
for some i ∈ I .

Define the set A = {y ∈ Vj : |NVi
(y)| � Cpn ∀i ∈ I }. Corollary 16(a)8 and (48) imply |A| >

(1 − �γ 2(1/α)d+1pd+1)n � (1 − (�/2)pd+1)n. Note that for every y ∈ A we have
r∏

k=1

∣∣NVik
(y)

∣∣ � (Cpn)r .

Finally, for every y /∈ A we have the trivial bound
∏r

k=1 |NVik
(y)| � nr . From (55) we obtain∑

(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣ � n · (1 + δ)r (pn)r + �δn · (Cpn)r + �

2
pd+1n · nr

(47)

�
(

1 + �

8
+ �

8
+ �

2

)
nr · prn < (1 + �)nr · prn.

This concludes the proof of the first part of Fact 24.
Now we prove the second part of Fact 24. By counting in two ways the pairs ((y1, y2),

(x1, . . . , xr )) such that (x1, . . . , xr ) ∈ T (I ) and y1 �= y2 ∈ NVj
(x1, . . . , xr ), we obtain the fol-

lowing inequality:

∑
(xτ )∈T (I )

(|NVj
(x1, . . . , xr )|

2

)
2! �

∑
(y1,y2)∈T ({j,j})

r∏
k=1

∣∣NVik
(y1, y2)

∣∣,
or, equivalently,

∑
(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣2 �
∑

(y1,y2)∈T ({j,j})

r∏
k=1

∣∣NVik
(y1, y2)

∣∣
+

∑
(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣. (56)

The second term on the right-hand side was already estimated in part (1):∑
(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣ < (1 + �)nrprn
(49)

� �

8
nr

(
prn

)2
. (57)

8 Note that we need (44), C = 2/α, and (49) to verify the assumptions of Corollary 16(a).
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To estimate the first term on the right-hand side of (56), one analyzes four cases, namely:
(a) The pairs of vertices (y1, y2) such that∣∣NVik

(y1, y2) − p2n
∣∣ < δp2n

holds simultaneously for k = 1, . . . , r .
(b) The pairs of vertices (y1, y2) not included in (a) for which∣∣NVik

(y1, y2)
∣∣ � C2p2n

holds simultaneously for all k = 1, . . . , r .
(c) The pairs of vertices (y1, y2) for which y1 or y2 ∈ A and∣∣NVik

(y1, y2)
∣∣ > C2p2n

holds for some k ∈ {1, . . . , r}.
(d) The pairs of vertices (y1, y2) for which y1 /∈ A and y2 /∈ A.
One may check that the corresponding contributions to the first term on the right-hand side

of (56) are bounded by

n2 · ((1 + δ)p2n
)r (47)

�
(

1 + �

8

)
· nr · (prn

)2 in case (a), (58)

�δn2 · (C2p2n
)r (47)

� �

8
· nr · (prn

)2 in case (b), (59)

�

4Cd
pdn2 · (Cpn)r � �

4
· nr · (prn

)2 in case (c), (60)(
�

2
pd+1n

)2

· nr � �

4
· nr · (prn

)2 in case (d). (61)

(The calculations to derive (58)–(61) are simple; for (60), one uses Corollary 16(b). See [24] for
details.) Using (56)–(61) above, we see that∑

(xτ )∈T (I )

∣∣NVj
(x1, . . . , xr )

∣∣2

�
(

1 + �

8
+ �

8
+ �

8
+ �

4
+ �

4

)
nr

(
prn

)2
< (1 + �)nr

(
prn

)2
,

which completes the proof of Fact 24(2). �
Acknowledgments

The authors thank the referees for their helpful suggestions on the presentation of the paper.

References

[1] N. Alon, Explicit Ramsey graphs and orthonormal labelings, Electron. J. Combin. 1 (1994), research paper 12,
approx. 8 pp. (electronic). MR 1302331 (95k:05145).

[2] N. Alon, J. Spencer, The Probabilistic Method, second ed., Wiley–Intersci. Ser. Discrete Math. Optim., Wiley–
Interscience [John Wiley & Sons], New York, 2000, with an appendix on the life and work of Paul Erdős.
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1990, pp. 467–478. MR 1117038 (92f:11003).
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