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Abstract

Machine learning techniques have gained consider-1

able attention in the field of empirical asset pric-2

ing. Conditioning on a broad set of firm char-3

acteristics, one of the most popular no-arbitrage4

workhorses is a nonlinear conditional asset pric-5

ing model that consists of two modules within a6

neural network structure, i.e., factor and beta es-7

timates, for which we propose a novel contrastive8

adversarial variational Bayes (CAVB) framework.9

To exploit the factor structure, we employ adversar-10

ial variational Bayes that transforms the maximum-11

likelihood problem into a zero-sum game between12

a variational autoencoder (VAE) and a generative13

adversarial network (GAN), where an auxiliary dis-14

criminative network brings in arbitrary expressive-15

ness to the inference model. To tackle the prob-16

lem of learning indistinguishable feature represen-17

tations in the beta network, we introduce a con-18

trastive loss to learn distinctive hidden features19

of the factor loadings in correspondence to con-20

ditional quantiles of return distributions. CAVB21

establishes a robust relation between the cross-22

section of asset returns and the common latent fac-23

tors with nonlinear factor loadings. Extensive ex-24

periments show that CAVB not only significantly25

outperforms prominent models in the existing liter-26

ature in terms of out-of-sample total and predictive27

R2s, but also delivers superior Sharpe ratios after28

transaction costs for both long-only and long-short29

portfolios.30

1 Introduction31

Factor models have become the workhorse for predicting as-32

set returns using conditional information such as asset char-33

acteristics. In particular, dynamic factor models (DFM) are34

broadly employed. [Duan et al., 2022] incorporate a varia-35

tional autoencoder (VAE) into a DFM and propose a prior-36

posterior learning scheme for return prediction. [Wei et al.,37

2023] design a hierarchical VAE-based DFM, which adap-38

tively captures the regime-switching spatio-temporal rela-39

tions in return prediction. [Xiang et al., 2024] also emphasize40

the importance of regime switches in the DFM and rely on ad- 41

versarial posterior factors to correct mapping deviations from 42

prior factors. [Jia et al., 2024] introduce adaptive graphs into 43

a VAE-based factor model to capture dynamic asset relations. 44

[Duan et al., 2025] propose a hypergraph-based DFM with 45

temporal contrastive learning that extracts additional hidden 46

factors from residual information beyond the prior factors. 47

[Shi et al., 2025] design a surrogate model to predict fit- 48

ness scores for factor mining and dynamically adjust factor 49

weights in factor combinations. However, these papers ig- 50

nore the well-known factor structure embedded in asset re- 51

turns, which is the focus of this study. 52

A general factor model for empirical asset pricing assumes 53

that the excess return ri,t of asset i = 1, ..., N at time t = 54

1, ..., T exhibits a K-factor structure as follows: 55

ri,t+1 = β′
i,tft+1 + ϵi,t+1, (1)

where βi,t ∈ RK×1 is the factor loading vector that can 56

be interpreted as the exposures to K common latent factors 57

ft+1 ∈ RK×1, and ϵi,t+1 is the idiosyncratic error. The em- 58

pirical estimation of (1) is challenging, as the factors are un- 59

observable or unknown. 60

Most existing studies prespecify factors and estimate the 61

corresponding betas via regression. A key limitation of 62

this approach is its reliance on prior knowledge to identify 63

relevant factors, a challenge often addressed in the litera- 64

ture through portfolio sorting based on characteristics. This 65

results in the ‘factor zoo’ issue in empirical asset pricing 66

[Cochrane, 2011]. 67

[Kozak et al., 2018] argue that given substantial common- 68

ality in the cross-section of returns, the absence of near- 69

arbitrage opportunities implies that the stochastic discount 70

factor (SDF) for explaining the return variations can be sum- 71

marized by a few dominating factors. To address the issues 72

of conventional principal component analysis applied to asset 73

pricing, [Kelly et al., 2019] propose the instrumented PCA 74

(IPCA) method to estimate ft+1 as follows: 75

ri,t+1 = β(zi,t)
′ft+1 + ϵi,t+1. (2)

Here zi,t ∈ RP×1 is the observable characteristics of asset 76

i with P strictly greater than K, and β(zi,t) is a linear beta 77

function of zi,t. The dynamic factor loadings are given by 78

β(zi,t)
′ = z′i,tΓβ , where Γβ ∈ RP×K is a coefficient ma- 79

trix. This setup specifies that characteristics are proxies for 80



the sensitivities to common factors and thereby predict the81

average returns. Accordingly, [Kelly et al., 2019] consider82

characteristics as instruments in PCA and find that the IPCA83

model with five factors significantly outperforms competing84

models published previously.85

Using adaptive group LASSO, [Freyberger et al., 2020]86

show that many of the previously identified characteristics do87

not offer incremental predictive information about expected88

returns. [Bryzgalova et al., 2023a] employ Bayesian model89

averaging to handle the model specification problem with90

weakly identified factors. These studies still fall into the cate-91

gory of linear models. However, [Freyberger et al., 2020] ar-92

gue that the nonlinearities in characteristics are important for93

providing incremental information about the cross-section of94

expected returns. [Bryzgalova et al., 2023b] propose a split-95

and-select model that spans the SDF based on decision trees,96

and show that it outperforms random forest or conventional97

deep learning methods.98

[Gu et al., 2021] also criticize the linearity assumption of99

the IPCA approach. They propose conditional autoencoder100

(CAE) asset pricing models that allow for a flexible non-101

linear function of the covariates by applying a neural net-102

work method to learn β(zi,t). They employ the autoencoder103

method to compress the N -dimensional rt+1 return matrix104

into a K-dimensional latent factor ft+1 using a neural net-105

work g, i.e., ft+1 = g(rt+1). Then (2) is re-written in a106

nonlinear form as107

ri,t+1 = β(zi,t)
′g(rt+1) + ϵi,t+1. (3)

Without an intercept, this equality respects the no-arbitrage108

condition. [Gu et al., 2021] apply a fully connected network109

to estimate the model and find that characteristics predict av-110

erage returns because they help to identify the risk exposures111

to common latent factors rather than capture mispricings.1112

They also show that IPCA is a special case of linear CAE113

when the covariance matrix of the characteristics is constant.114

Moreover, even if the covariance matrix varies over time, the115

empirical results remain similar.116

With the rapid development of deep learning methods, re-117

cent studies have notably improved the performance of empir-118

ical asset pricing models by enhancing the learning capability119

of feature representation of the latent factors and factor load-120

ings. Similarly to [Kozak et al., 2020], who shrink redundant121

characteristics, [Chatigny et al., 2021] rely on the attention122

mechanism [Vaswani et al., 2017] to learn sparse features of a123

broad set of characteristics in an asset pricing model based on124

the high-dimensional optimization of the SDF weights. The125

resulting model significantly improves the performance of the126

baseline model without the attention mechanism.127

Other research focuses on alternative training strategies.128

[Chen et al., 2024] suggest that, within the SDF-based asset129

pricing framework, the loss function of weighted moments in130

the sample can be interpreted as weighted mean pricing er-131

rors. With this point of view, minimizing the objective loss is132

equivalent to imposing the no-arbitrage restriction. They em-133

ploy adversarial learning to train neural networks, i.e., gener-134

1Accordingly, the alpha αi = Et[ri,t+1] − Et[β
′
i,tft+1] can be

tested against zero for mispricing.

alized adversarial networks (GANs), and achieve better per- 135

formance than other classical deep learning frameworks, such 136

as feed-forward or recurrent neural networks, including long 137

short-term memory networks. 138

[Yang et al., 2024] propose the conditional quantile vari- 139

ational autoencoder (CQVAE) network, which links the fac- 140

tor structure to the conditional quantiles of returns. Specifi- 141

cally, CQVAE learns the J quantile-dependent beta functions 142

βj(zt) via a multi-head neural network, where j = 1, ..., J is 143

the quantile index. Then it estimates f(rt+1) via a VAE net- 144

work. Compared to the standard autoencoder network, VAE 145

alleviates the overfitting problem of deep learning methods. 146

As a result, the CQVAE model significantly outperforms the 147

CAE model. 148

Although the CQVAE model achieves impressive results, 149

two major challenges remain. First, while it is economically 150

meaningful for the CQVAE to learn quantile-dependent beta 151

functions based on conditional return distributions, there is 152

no empirical guarantee that the factor loadings learned by the 153

beta network differ meaningfully across quantiles. This is 154

because the preset quantile boundaries are not conditioned 155

on additional information, making them suboptimal from a 156

feature clustering perspective. If certain learned beta func- 157

tions are indistinguishable from each other, the model will in- 158

evitably fail to explain the cross-section of asset returns. Sec- 159

ond, as shown in the left panel of Figure 1, it is difficult for 160

the approximate distributions of latent factors ft+1 learned 161

by the VAE-based inference model qϕ(ft+1|rt+1) in the CQ- 162

VAE to capture the true posterior distributions, which limits 163

the representational capability of latent factors. This is due to 164

the limited expressiveness of the inference model, which con- 165

strains the performance of the resulting asset pricing model. 166

Therefore, it is crucial to improve the feature extraction ca- 167

pacity of the factor network. 168

To address the above challenges, we propose a novel con- 169

trastive adversarial variational Bayes (CAVB) network to es- 170

timate (3). As shown in Figure 2, the proposed CAVB model 171

consists of two neural network modules. The first module 172

that improves the factor network aims to learn the common 173

latent factors ft+1 by applying the adversarial variational 174

Bayes (AVB) method. Especially, AVB improves the infer- 175

ence models qϕ(ft+1|rt+1, ϵt+1) by treating the noise ϵt as an 176

additional input to the inference model, instead of adding it 177

at the very end to construct the distributions in the VAE. This 178

approach enables the inference network to learn the complex 179

implicit probability distributions using adversarial training, 180

which is achieved by introducing an auxiliary discriminative 181

network as in the GAN that transforms the maximum likeli- 182

hood problem into a zero-sum game where two networks con- 183

test with each other. This allows us to train the VAE with arbi- 184

trarily expressive inference models, and therefore, the repre- 185

sentational capability of common latent factors is largely en- 186

hanced. The comparison of the conventional VAE and AVB 187

is shown in Figure 1. 188

The second module of CAVB improves the beta network by 189

introducing a contrastive learning method that focuses on ex- 190

tracting distinctive features for the return quantile-dependent 191

beta functions βτ (zt). Given a set of characteristics zt as 192

inputs, each βτ (zt) is a neural network of three fully con- 193



(a) VAE (b) AVB

Figure 1: Comparison of the standard VAE and AVB architectures. The inference model qϕ(ft|rt) of the standard VAE is Gaussian, while
the inference model qϕ(ft|rt, ϵt) of the AVB can be arbitrary.

nected layers (FCLs) with a ReLu activation function and194

outputs the quantile-dependent factor loadings. To enhance195

the learning capacity of distinctive features between differ-196

ent quantile-dependent functions, we incorporate contrastive197

learning into the model training process. Contrastive learn-198

ing was proposed by [He et al., 2020] and aims to learn the199

feature representations of data by distinguishing similar data200

from dissimilar data through the use of appropriate positive201

and negative samples. To avoid learning indistinguishable202

feature representations for the beta functions, a contrastive203

loss is introduced by setting different quantile-dependent fea-204

tures as negative samples and those within the same condi-205

tional quantile distributions of returns as positive samples.206

The remaining article is structured as follows. We present207

the overall architecture of the proposed CAVB model in Sec-208

tion 2. The architecture consists of a beta network and a fac-209

tor network. In this section, we also provide the details of the210

training process of the CAVB network, including contrastive211

and adversarial learning methods. Section 3 presents empiri-212

cal studies on a comprehensive real-world dataset. Section 4213

concludes.214

2 Methodology215

We next present the overall architecture of the proposed216

framework, namely, the contrastive adversarial variational217

Bayes (CAVB), as described in Figure 2. It consists of two218

modules, namely a factor network using adversarial varia-219

tional Bayes (AVB) and the beta network using conditional220

quantile-based contrastive learning. We also provide details221

of their training process.222

2.1 Factor Network223

In the factor network, we employ AVB, as proposed by224

[Mescheder et al., 2017], wich unifies the VAE and GAN225

methods for learning the common latent factors ft. The in-226

ference model of the conventional VAE method does not pro-227

duce a sufficiently rich expressiveness to capture the true pos-228

terior distributions of the latent factors. To address this is-229

sue, AVB introduces an additional auxiliary discriminative230

network that allows the inference model to generate arbi-231

trarily flexible and diverse probability distributions qϕ(ft|rt).232

The two competing networks, GAN and VAE, rephrase the233

maximum-likelihood problem as a zero-sum game that allows234

the model to closely approximate the true posterior distribu-235

tion pθ(ft|rt). In comparison with conventional VAE (see left 236

panel of Figure 1), AVB (see right panel of Figure 1) treats 237

noise as an additional input to the inference model, rather 238

than adding it at the very end. This particular setup enables 239

the inference network to learn complex implicit probability 240

distributions via adversarial training. 241

The conventional VAE is trained by maximizing the evi- 242

dence lower bound (ELBO) that estimates the marginal log- 243

likelihood log pθ(rt) in 244

max
θ,ϕ

Eft∼qϕ(ft|rt) [log pθ(rt|ft)]−KL(qϕ(ft|rt)||pθ(ft)).

AVB shares the same objective function but is accompa- 245

nied by an implicit inference model. The objective function 246

of AVB is formally given by 247

max
θ,ϕ

Ert∼pD(rt)[
Eft∼qϕ(ft|rt)[log pθ(rt|ft)]−KL(qϕ(ft|rt)||pθ(ft))

]
,

(4)
where pD(rt) is the sample distribution of rt. Since VAE has 248

an explicit Gaussian inference model of qϕ(ft|rt) parameter- 249

ized by a neural network, it is easy to optimize its objective 250

function by an appropriate re-parameterization and stochastic 251

gradient descent (SGD). However, as shown in the right panel 252

of Figure 1, the inference model qϕ(ft|rt) of AVB is implicit. 253

Hence, we cannot apply the re-parameterization to calculate 254

the term KL(qϕ(ft|rt)||pθ(ft)) in (4). 255

To solve this problem, we introduce a discriminative net- 256

work Gψ(rt, ft) that takes the asset returns rt and common 257

latent factors ft as inputs and gives corresponding discrimina- 258

tive values. The discriminative network first concatenates rt 259

and ft, then feeds them into several linear layer blocks with 260

residual connections, and finally outputs the discriminative 261

values hout as follows: 262
hin =Win (rt C⃝ft) + bin,

h = ELU(W (hin) + b+ hin),

hout =Wout (h) + bout,

where Win ∈ RD×(N+K), W ∈ RD×D, and Wout ∈ R1×D 263

are the matrices of weight parameters, bin ∈ RD, b ∈ RD, 264

and bout ∈ R1 are the bias parameters, D is the hidden di- 265

mension, and ELU(·) is the exponential linear unit activation 266

function. 267
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Figure 2: Architecture of the CAVB model. The CVAB consists of two modules, the beta network (on the left side) and the factor network
(on the right side). The factor network compresses rt into a common latent factor ft by AVB. The beta network learns J different quantile-
dependent factor loadings by a contrastive learning method. The cross-sectional expected returns r̂t are then given by the product of the
common latent factors and factor loadings.

The discriminative network in a standard GAN is used for268

judging whether the generated data are real or fake. In the269

proposed CAVB, we employ this type of discriminator to dif-270

ferentiate the pairs (rt, ft) sampled from the posterior dis-271

tributions qϕ(ft|rt)pD(rt) and those sampled from the prior272

distributions p(ft)pD(rt). To do so, we assign the following273

task to the discriminator Gψ(rt, ft):274

max
ψ

(
Ert∼pD(rt)

[
Eft∼qϕ(ft|rt)[log(σ(Gψ(rt, ft)))]

]
+ Ert∼pD(rt)

[
Eft∼p(ft) [log(1− σ(Gψ(rt, ft)))]

])
,

(5)
where σ is the sigmoid function. When the discrim-
inator maximizes the objective function in (4), in the
literature the optimal discriminator commonly replaces
KL(qϕ(ft|rt)||pθ(ft)), and we can use

Gψ(rt, ft)
∗ = log qϕ(ft|rt)− log pθ(ft).

As a result, we can replace KL(qϕ(ft|rt)||pθ(ft)) by the op-275

timal discriminator, and the objective function of AVB in (4)276

changes to277

max
θ,ϕ

Ert∼pD(rt)

[
Eft∼qϕ(ft|rt)[log pθ(rt|ft)−Gψ(rt, ft)

∗]
]
.

(6)
As shown in the right panel of Figure 1, AVB incorporates278

the noise ϵt ∼ N (0, I) as an additional input to the inference279

model. In this way, we can infer more flexible and diverse280

distributions with the proposed encoder. Using an appropriate281

re-parameterization, (6) can be rewritten as282

max
θ,ϕ

Ert∼pD(rt)[
Eϵt∼N (0,I)[log pθ(rt|f encϕ (rt, ϵt))−Gψ(rt, f

enc
ϕ (rt, ϵt))

∗]
]
,

(7)

where f encϕ (rt, ϵt) = qϕ(ft|rt, ϵt) is the encoder of AVB. 283

Next, we apply Monte Carlo to estimate the first term of the 284

ELBO in (7) through sampling the data M times, similar to 285

M min-batch training: 286

Ert∼pD(rt)

[
Eϵt∼N (0,I)[log pθ(rt|f encϕ (rt, ϵt)]

]
≈ 1

M

M∑
m=1

Eϵt∼N (0,I)[log pθ(rt|f encϕ (rt, ϵt))]. (8)

The objective function in (7) has two competing terms. To 287

optimize their difference, we resort to an alternate training 288

scheme, namely an adversarial learning method, see Subsec- 289

tion 2.3. 290

We provide more details on the network structures of the 291

encoder and decoder in Online Appendix A.1. 292

2.2 Beta Network 293

The beta network is also an encoder-decoder neural network 294

architecture that aims to learn J different quantile-dependent 295

factor loadings for asset pricing. Specially, we construct J 296

different beta functions βτ (zi,t) using a multi-head structure. 297

The encoder with a multi-head structure is used for extracting 298

the hidden features H1
t in different conditional quantile dis- 299

tributions of returns. With the hidden features H1
t as inputs, 300

the decoder constructs the quantile-dependent factor loadings 301

βτ,t for each of the quantiles. We delegate the network struc- 302

tures of the encoder and decoder to Online Appendix A.2. 303

Contrastive learning is an ideal tool to enhance the dif- 304

ferentiations in extracted features between different quantile- 305

dependent beta functions. The first step of contrastive learn- 306

ing is to construct positive and negative pairs. In the cross- 307

sectional asset pricing exercise, it is economically intuitive to 308



treat the hidden features from the same quantile as the posi-309

tive pairs and the hidden features from different quantiles as310

the negative pairs. Moreover, we construct two beta encoders311

with the same architecture but different parameters, i.e., en-312

coder P and encoder Q to capture the hidden features. As313

one of the most popular ways of data augmentation, given314

the inputs zt at each point of time, we employ the encoder315

Q to extract the hidden features hQ,2t . Then we add random316

Gaussian noise into the asset characteristics zt to obtain new317

inputs z′t, and feed z′t into the encoder P yielding another set318

of hidden features hP,2t . Finally, given these hidden features,319

we compute the contrastive loss at time t as320

Lcl =
1

J

J∑
j=1

log
exp(hQ,2j,t ∗ hP,2j,t )∑J
m=1 exp(h

Q,2
m,t ∗ h

P,2
m,t)

. (9)

We update the beta network by SGD with contrastive loss.321

Encoder Q is used for the entire empirical analysis while en-322

coder P is only used in the training process.323

2.3 Training in the CAVB Network324

We train the factor network and the beta network in two steps.325

First, we train the factor network using AVB with its objec-326

tive function in (7). To this end, we use SGD to update the327

parameter ϕ in the encoder and decoder in the factor network328

by using the loss function329

Lfactor =
1

M

M∑
m=1

(
(rt−fdecθ (ft))

2+Gψ(rt, f
enc
ϕ (rt, ϵt))

)
,

(10)
where fdecθ (ft) is the decoder network, and M and330

Gψ(rt, f
enc
ϕ (rt, ϵt)) are as in Subsection 2.1.331

As we rely on adversarial training in the factor network,332

we also need to train the discriminator (i.e., the parameter ψ).333

According to the corresponding objective function in (5), the334

loss function is given by335

LG = − log(σ(Gψ(rt, ft)))−log(1−σ(Gψ(rt, ft))), (11)

where σ is the sigmoid function. Therefore, to optimize the336

encoder, the decoder, and the discriminator altogether, we ar-337

range an alternate training scheme based on adversarial learn-338

ing for the factor network. The overall training process of the339

factor network is introduced in Algorithm 1 of Online Ap-340

pendix B. It yields the estimated parameters of the factor net-341

work, i.e., θ̂, ϕ̂, and ψ̂. Then the common latent factors f̂t+1342

can be constructed by the estimated encoder.343

Given the estimated latent factor f̂t+1 and zt, we can train344

the beta network in the second step using SGD with the loss345

Lbeta =
1

T

T∑
t=1

(
1

NJ

N∑
i=1

J∑
j=1

ρτj (ri,t+1−βτj (zi,t)′f̂t+1)+Lcl

)
,

(12)
where ρτj (u) = |u|(τj1u≥0 + (1 − τj)1u<0) denotes the346

check function with τj as the quantile [Koenker and Bas-347

sett Jr, 1978] and Lcl is the contrastive loss of (9). Algo-348

rithm 2 in Online Appendix C shows the min-batch train-349

ing process of the beta network. Following Algorithm 1, we350

obtain the estimated parameters of the beta network ψ̂, and 351

accordingly the estimated quantile-dependent beta functions 352

β̂τ (zt). Given β̂τ (zt) and the estimated latent factor f̂t+1, we 353

can compute the quantiles of returns Q̂i,t(τj) = β̂τ (zt)
′f̂t+1. 354

Finally, we plug Q̂i,t(τj) into the discrete conditional distri- 355

bution function of returns and calculate the cross-section of 356

expected returns r̂i,t from the asset pricing model. 357

The above training process of the CAVB model is divided 358

into two steps. Alternatively, one might simultaneously opti- 359

mize the factor network and the beta network within one step. 360

The corresponding loss function is then given by 361

L =
1

T

T∑
t=1

(
1

NJ

N∑
i=1

J∑
j=1

ρτj (ri,t+1 − βτj (zi,t)
′

fdecθ (ft+1)) + Lcl) +Gψ(rt, f
enc
ϕ (rt, ϵt)

)
. (13)

This one-step approach aims to price and predict asset re- 362

turns by adaptively learning latent factors and factor loadings, 363

optimizing the parameters of the beta network δ, the encoder 364

θ, and the decoder ϕ, simultaneously. The algorithm is shown 365

in Algorithm 3 in Online Appendix D. 366

3 Experiment 367

3.1 Dataset 368

We evaluate the proposed CAVB model using the Open 369

Source Asset Pricing dataset consisting of a variety of 370

monthly firm characteristics. We focus on liquidly traded 371

stocks to ensure the scalability of portfolio strategies, and re- 372

move the binary characteristics. All in all, the dataset consists 373

of 96 different observable firm characteristics and individual 374

returns (obtained from the CRSP database) of stocks traded 375

on NYSE, AMEX, and NASDAQ from January 1980 to De- 376

cember 2022. Missing values in the dataset are replaced by 377

the corresponding cross-sectional medians as in [Gu et al., 378

2021]. To capture the time-varying market states, we adopt a 379

moving window of 31 years, split by a 20-year training sam- 380

ple, 10-year validation sample, and 1-year test sample, start- 381

ing from January 1980. Therefore, the moving window rolls 382

13 times up to December 2022, yielding an out-of-sample pe- 383

riod of 13 years to test the empirical asset pricing models. 384

3.2 Baselines 385

In the empirical analysis, we compare CAVB with the latest 386

asset pricing models, including: 387

• Instrumented PCA (IPCA) [Kelly et al., 2019] use firm 388

characteristics as instruments for learning factor load- 389

ings in PCA to establish relations between average re- 390

turns and latent factors. 391

• Conditional Autoencoder (CAE) [Gu et al., 2021] em- 392

ploy the autoencoder method to learn the nonlinear rela- 393

tions between firm characteristics and average returns in 394

a neural network-based asset pricing model. 395

• Attention-Guided Deep Learning (AGDL) [Chatigny et 396

al., 2021] propose an attention-guided deep learning 397



Model Test Assets Total R2 (%) Predictive R2 (%)

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

IPCA rt 8.12 13.26 18.54 20.76 22.43 23.11 3.06 3.52 6.85 7.85 8.22 8.56
xt 9.57 15.49 21.85 24.47 26.35 27.23 3.62 4.13 8.01 9.22 9.56 10.06

CAE rt 15.27 17.62 18.43 19.87 21.34 22.75 2.13 2.45 2.62 2.71 2.74 2.85
xt 18.06 20.85 21.78 23.45 25.21 26.89 2.53 2.89 3.12 3.22 3.27 3.39

AGDL rt 21.07 23.82 24.76 26.33 28.13 29.56 1.84 1.95 2.11 2.09 2.14 2.21
xt 24.84 28.10 29.19 31.20 33.18 34.85 2.19 2.34 2.51 2.48 2.54 2.63

GAN rt 22.18 24.32 25.81 25.73 26.89 27.94 1.93 1.98 2.09 2.03 2.11 2.14
xt 26.17 28.72 30.45 30.34 32.04 32.97 2.27 2.33 2.45 2.39 2.48 2.52

CQVAE rt 38.38 40.26 41.13 41.60 41.63 41.46 3.81 5.62 7.43 8.27 9.18 10.85
xt 43.31 45.43 46.38 46.90 46.98 46.79 4.27 6.29 8.32 9.27 10.28 12.16

CAVB rt 40.98 41.35 41.77 42.03 42.54 42.65 6.81 8.98 10.46 12.37 15.17 16.09
xt 47.53 48.03 48.51 48.71 49.39 49.54 8.07 10.62 12.52 14.76 18.07 19.15

CAVBw/o A
rt 39.94 40.85 41.94 41.98 42.12 42.17 5.12 6.38 8.12 9.64 10.77 11.14
xt 46.73 47.79 48.62 48.69 49.27 49.34 5.65 8.40 8.97 10.64 11.88 12.51

CAVBw/o C
rt 40.28 40.92 41.36 41.84 42.23 42.02 5.83 7.61 8.27 11.94 13.37 14.06
xt 45.56 46.28 46.78 47.32 47.74 47.53 6.47 8.41 9.17 13.17 14.74 15.51

CAVB1-Step
rt 51.90 53.31 52.68 51.90 53.64 53.76 7.12 10.73 10.64 13.16 18.51 19.99
xt 60.82 60.98 61.84 60.94 62.74 63.77 8.58 11.33 12.46 14.92 20.30 20.96

Table 1: The out-of-sample total R2 and predictive R2 comparisons of all competing models with different numbers of latent factors K. The
figures in bold (underlined) indicate the best (second best) results.

method to learn the sparse features of firm characteris-398

tics in a weighted SDF-based asset pricing model.399

• Generative Adversarial Networks (GAN) [Chen et al.,400

2024] apply adversarial learning method to train non-401

linear neural networks with an objective function of402

weighted sample moments, which also guarantee the ab-403

sence of arbitrage.404

• Conditional Quantile Variational Autoencoder405

(CQVAE) [Yang et al., 2024] employ the VAE406

method to learn the conditional quantile-based relations407

between average returns and firm characteristics in408

terms of factor loadings.409

The two main CAVB models are two-step CAVB and one-410

step CAVB1-Step . To validate the effectiveness of contrastive411

learning and AVB, we show two variants of CAVB in the ab-412

lation study: CAVBw/o A uses plain vanilla VAE instead of the413

AVB method; CAVBw/o C trains the quantile-dependent beta414

network without the use of contrastive learning.415

3.3 Performance Metrics416

Following [Kelly et al., 2019], [Gu et al., 2021], and [Yang
et al., 2024], we evaluate the out-of-sample performance of
all competing asset pricing models by two metrics in the test
data. The first one is the total R2 defined as

R2
total = 1−

∑
i,t(ri,t+1 − r̂totali,t+1)

2∑
i,t r

2
i,t+1

,

where

r̂totali,t+1 =

J∑
j=1

(τ∗j − τ∗j−1)β̂τj (zi,t)
′f̂t+1,

β̂τj (zi,t) is the estimated quantile-dependent beta function,
and f̂t+1 the estimated latent factors. The total R2 mea-
sures how well a model explains the cross-sectional varia-
tions of asset returns or the characteristic-managed portfolio.

The second evaluation metric is the predictive R2 defined as
R2

total but with r̂totali,t+1 replaced by

r̂predi,t+1 =

J∑
j=1

(τ∗j − τ∗j−1)β̂τj (zi,t)
′λ̂t,

where λ̂t = Et[ft+1] measures the expected risk compen- 417

sation, computed as the sample average of f̂ up to time 418

t. We use a standard 60-month rolling window to calculate 419

λ̂t.2 In addition to testing on individual stock returns rt+1, 420

we also test on characteristic-managed portfolios xt+1 = 421

(z′tzt)
−1z′trt+1, where zt is an N × P weighting matrix that 422

constructs P characteristic-based portfolios from N assets. 423

3.4 Statistical Evaluation 424

Table 1 reports the out-of-sample total R2 and predictive R2 425

of the CAVB models and the baseline models with K = 426

1, 2, . . . , 6 latent factors as in [Kelly et al., 2019], [Gu et al., 427

2021], and [Yang et al., 2024], for individual stock returns 428

ri,t and characteristic-managed portfolios xt. Similar to these 429

three papers, both the total R2 and predictive R2 generally 430

increase with the number of the latent factors but the perfor- 431

mance seems to reach its peak around K = 5 or K = 6. A 432

smaller K results in the loss of valuable information, while 433

a larger K leads to model overfitting; see also [Kelly et al., 434

2019] for a justification to test up to 6 factors. 435

As we can see in Table 1, compared with the competing 436

models, the proposed (one-step or two-step) CAVB models 437

achieve the best performance in terms of both total and pre- 438

dictiveR2. The two-step CAVB follows the standard setup of 439

[Gu et al., 2021] and [Yang et al., 2024] to estimate the factor 440

and beta networks separately, while the one-step CAVB1-Step 441

focuses on the asset returns by adaptively learning and simul- 442

taneously optimizing the parameters of both networks. For 443

2We find that the empirical results are not sensitive to the rolling
window size in the dataset.



Model Long-Only Portfolios Long-Short Portfolios

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

IPCA 0.76 0.87 1.38 2.21 2.94 3.41 0.79 0.94 1.53 2.46 2.98 3.74
CAE 0.27 0.53 0.67 0.83 1.02 1.11 0.38 0.48 0.63 0.79 0.93 0.91

AGDL 0.47 0.68 1.21 1.67 1.92 2.20 0.52 0.78 1.37 1.93 2.39 2.56
GAN 0.59 0.87 1.41 1.89 2.28 2.39 0.67 0.92 1.74 2.10 2.34 2.64

CQVAE 0.68 0.92 1.48 1.83 2.17 2.24 0.71 0.98 1.52 1.71 1.78 1.86

CAVB 0.82 1.19 2.28 3.14 3.96 4.42 0.94 1.36 2.47 3.23 4.32 4.62
CAVBw/o A 0.78 0.96 1.53 2.48 3.15 3.63 0.91 0.89 1.64 2.57 3.42 3.38
CAVBw/o C 0.84 1.04 1.98 2.53 2.81 3.46 0.87 1.22 1.87 2.48 3.02 3.86
CAVB1-Step 1.25 1.41 2.04 2.85 2.54 3.17 0.88 1.27 1.80 3.32 2.47 3.53

Table 2: The out-of-sample Sharpe ratios of long-only and long-short portfolios with 30 bps transaction costs in comparison with different
numbers of latent factors K. The figures in bold (underlined) indicate the best (second best) results.

the two-step models, its variant CAVBw/o A performs better in444

the total R2 when K = 3. This result may be driven by the445

fact that we did not fine-tune the hyperparameters in the two-446

step optimization. Both CAVB variants outperform the com-447

peting models. In particular, the CAVB1-Step and CAVB mod-448

els considerably outperform the competing models by large449

margins in the predictiveR2, e.g., the CAVB1-Step (CAVB) im-450

proves the predictive R2 of CQVAE by 84.24% (48.29%) for451

individual stocks and by 72.37% (57.48%) for characteristic-452

managed portfolios whenK = 6. These findings indicate that453

the CAVB model possesses not only better explanation power454

in the cross-sectional return variations but also far more ro-455

bust predictive power for future returns.456

Moreover, to evaluate the components of the proposed457

CAVB model, we investigate its two variants, i.e., CAVBw/o A458

and CAVBw/o C, to verify the importance of using AVB to459

learn the latent factor and applying contrastive learning to460

train the quantile-dependent beta network. As Table 1 il-461

lustrates, both components contribute to the superior perfor-462

mance of the CAVB model. Specifically, CAVBw/o C con-463

sistently outperforms CQVAE across all cases in terms of464

evaluation metrics, numbers of latent factors, and tested as-465

sets. This indicates that AVB can capture common latent466

factors with higher-quality features. Similarly, the perfor-467

mance of CAVBw/o A also demonstrates the usefulness of468

contrastive learning in learning distinctive features of the469

quantile-dependent factor loadings across different condi-470

tional quantile distributions of returns, although its contribu-471

tion is not as significant as that of AVB.472

3.5 Economic Evaluation473

To evaluate the economic contribution of the CAVB models,474

we conduct an out-of-sample portfolio trading experiment ac-475

cording to the rank of the predicted returns of the individual476

assets and run horse races for all competing models with dif-477

ferent numbers of latent factors. Specifically, we sort the pre-478

dictive returns r̂pred
i,t+1 by different models and select stocks479

within the top 10% and bottom 10% of predicted returns. To480

construct the long-only portfolios, we buy and hold the top481

10% stocks and rebalance the portfolio monthly. To construct482

the long-short zero-investment portfolios, we short-sell the483

bottom 10% of stocks by short-selling, rebalancing them also484

at a monthly frequency. We make sure that the funding leg485

has the same portfolio size as the investment leg. All selected486

stocks are equally weighted in the portfolios, and the transac- 487

tion cost for portfolio rebalancing is assumed to be 30 basis 488

points (bps), which is reasonably high for U.S. stocks. We 489

evaluate the economic performance via Sharpe ratios of the 490

constructed portfolios on the test data. 491

Table 2 reports the out-of-sample Sharpe ratios of both 492

long-only and long-short portfolios for all competing models 493

with different numbers of latent factors K. We find that the 494

proposed CAVB models consistently and significantly outper- 495

form the competing models in terms of Sharpe ratio. As ex- 496

pected, the long-short portfolios overall perform better than 497

the long-only ones. This is due to the benefit of portfo- 498

lio hedging. Surprisingly, the linear conditional asset pric- 499

ing model IPCA is more effective in converting its statis- 500

tical predictive power into economic value than other non- 501

CAVB models in terms of Sharpe ratio. Yet, CAVB manages 502

to achieve higher Sharpe ratios than IPCA, namely 29.62% 503

higher for long-only portfolios and 23.53% higher for long- 504

short portfolios withK = 6. CAVB also consistently and sig- 505

nificantly outperforms its variants, especially when the num- 506

ber of latent factors gets larger, except for the case K = 1 507

for long-only portfolios but the difference in Sharpe ratios 508

is minimal. In terms of Sharpe ratio, it seems that the AVB 509

(contrastive learning) module is more effective in converting 510

its statistical predictive power into economic value when K 511

is smaller (bigger). These findings suggest that both CAVB 512

components, i.e., the AVB and contrastive learning methods, 513

are equally important in profit generation. 514

4 Conclusion 515

We have presented a novel contrastive adversarial variational 516

Bayes (CAVB) network for nonlinear conditional asset pric- 517

ing with a broad set of firm characteristics. It establishes a 518

robust connection between the conditional quantile distribu- 519

tions of returns and the latent factor structure with nonlinear 520

factor loadings. Extensive experiments show that proposed 521

CAVB model significantly outperforms established models in 522

terms of out-of-sample total and predictive R2s. When ap- 523

plied to portfolio trading, it delivers superior transaction-cost 524

adjusted Sharpe ratios for both long-only and long-short port- 525

folios in comparison to the competing models. 526
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