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Abstract. Let X and Y denote two independent squared Bessel processes of dimension m and

n−m, respectively, with n ≥ 2 and m ∈ [0, n), making X+Y a squared Bessel process of dimension

n. For appropriately chosen function s, the process s(X + Y ) is a local martingale. We study the

representation and the dynamics of s(X + Y ), projected on the filtration generated by X. This

projection is a strict supermartingale if, and only if, m < 2. The finite-variation term in its

Doob-Meyer decomposition only charges the support of the Markov local time of X at zero.

Introduction

Optional projections of martingales are martingales; however, optional projections of local mar-

tingales are not necessarily local martingales. If the local martingale is nonnegative, Fatou’s

lemma only yields that these optional projections are supermartingales.

Due to their analytic tractability, scaled Bessel processes of dimension two or higher are ideal

to study this phenomenon. A first important step has been taken by [FP11] and [Lar14], who con-

sider the three-dimensional Bessel process, namely the modulus of a three-dimensional Brownian

motion started away from zero, in the filtration generated by its components. The reciprocal of the

three-dimensional Bessel process is a local martingale; in [FP11] and [Lar14], it is observed that

its optional projection becomes a strict supermartingale when projecting on the first component of

the three-dimensional Brownian motion. However, when projecting on the first two components,

the optional projection preserves the local martingale property.

In this article, we investigate these surprising observations further by providing a systematic

study of optional projections of scaled Bessel processes of any dimension greater than or equal to

two. We provide two proofs to demonstrate our main result: one mostly analytic, while the other

more probabilistic.

Date: May 16, 2019.

2000 Mathematics Subject Classification. 60G44; 60G48; 60H10; 60J55; 60J60.

Key words and phrases. Bessel process; Filtering; Local martingale; Local time.

The authors would like to thank anonymous referees for their valuable comments. A shortened version of this

article been submitted for journal publication.

1
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We need to point out the deep work of [CPY98] on intertwining two related Markov processes.

In particular, two squared Bessel processes of different dimensions are intertwined by an appro-

priate use of the expectation operator. As already mentioned above, in this article, we complement

their insights by focusing on the distinction between strict and non-strict supermartingales.

1. Main Result

Consider a probability space (Ω,G,P), equipped with two independent Brownian motions BX

and BY . Fix n ≥ 2 and m ∈ [0, n) and consider the two stochastic differential equations

Xt = 1 +mt+ 2

∫ t

0

√
XudBX

u , t ≥ 0;

Yt = (n−m)t+ 2

∫ t

0

√
YudBY

u , t ≥ 0.

These stochastic differential equations have unique strong solutions, called squared Bessel process

of dimension m and n − m, respectively; see [RY99, Section XI.1]. Lévy’s characterisation of

Brownian motion yields that X+Y is also a squared Bessel process, now of dimension n. Feller’s

test for explosions yields that X + Y is strictly positive since n ≥ 2. We shall use G· throughout

to denote the natural filtration generated by the pair (X,Y ).

Next, consider the function

s : (0,∞) 3 w 7→

w1−n/2, if n > 2;

− log(w), if n = 2.

Itô’s formula yields that s(X + Y ) is a local martingale. Let F· now denote the smallest right-

continuous filtration that makesX adapted. For future reference, note that the process
∫ ·

0

√
XudBX

u

is adapted to the filtration F·. We are interested in the F·–optional projection Z of s(X + Y ),

which is the unique F·–optional process Z such that

Zτ = E [s(Xτ + Yτ )|Fτ ]

holds for all bounded F· stopping times τ .

Remark 1.1. In order to ensure that Z above exists, it suffices that E [|s(Xτ + Yτ )|] <∞ holds for

a fixed bounded F· stopping time τ . When n > 2, E [|s(Xτ + Yτ )|] < ∞ holds from the optional

sampling theorem because s(X + Y ) is a nonnegative local martingale, thus a supermartingale,

under G·. For n = 2, we claim that E[| log(Jτ )|] < ∞ for all bounded stopping times τ when J is

two-dimensional squared Bessel process with J0 = 1. Indeed, first note that E[Jτ ] ≤ 1+2E[τ ] <∞
holds from the dynamics of J , localisation, Fatou’s lemma and monotone convergence. Therefore,

E[log+(Jτ )] ≤ E[Jτ ] < ∞ holds. Furthermore, since log J is a local martingale and J0 = 1, we

have E[log−(Jτ∧τm)] = E[log+(Jτ∧τm)] ≤ 1 + 2E[τ ∧ τm] along a localising sequence (τm)m∈N, giving

E[log−(Jτ )] ≤ 1 + 2E[τ ] <∞ by Fatou’s lemma and monotone convergence.
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In order to set the stage for the statement of our main result, recall the Gamma function

(0,∞) 3 k 7→ Γ(k) :=

∫ ∞
0

wk−1e−wdw.

Furthermore, define the stopping time

ρ := inf {t ≥ 0 | Xt = 0} ,(1.1)

which is P–almost surely finite when 0 ≤ m < 2.

In the case 0 < m < 2, note that X allows for Markov local time process Λ at zero, defined via

(1.2) Λt := lim
ε↓0

mε−m/2
∫ t

0
1{Xu<ε}du, t ≥ 0.

References for existence and properties of Λ are provided in Section 2 below; in particular, it will

also be shown there that Λ coincides with the semimartingale local time at zero of the scaled

process X1−m/2/(2−m).

With the above notation, we now present the main result of this note.

Theorem 1.2. The F·–optional projection Z of s(X + Y ) exists and satisfies Zt = f(t,Xt) for all

t > 0, where

f(t, x) :=
1

Γ ((n−m)/2)
×


∫∞

0 (x+ 2tw)1−n/2w(n−m)/2−1e−wdw, if n > 2;∫∞
0 − log(x+ 2tw)w−m/2e−wdw, if n = 2

(1.3)

for all t > 0 and x ≥ 0. Furthermore, the following statements hold:

• If m ≥ 2 (thus, n > 2), then

Z = 1 + 2

∫ ·
0
f ′x(u,Xu)

√
XudBX

u ;(1.4)

hence Z is a strict local martingale.

• If m ∈ (0, 2), then Z is a strict supermartingale, that is, not a local martingale. With Λ

given by (1.2), the Doob-Meyer decomposition of Z is

Z =

1 + 2
∫ ·

0 f
′
x(u,Xu)

√
XudBX

u −
Γ(m/2)

Γ(n/2−1)

∫ ·
0 (1/2u)(n−m)/2 dΛu, if n > 2;

2
∫ ·

0 f
′
x(u,Xu)

√
XudBX

u − Γ (m/2)
∫ ·

0 (1/2u)1−m/2 dΛu, if n = 2.
(1.5)

• If m = 0, then Z is again a strict supermartingale of the form

Z =

1 + 2
∫ ρ∧·

0 f ′x(u,Xu)
√
XudBX

u − 2
Γ(n/2−1)

∫ ·
0 (1/2u)n/2 1{ρ≤u}du, if n > 2;

2
∫ ρ∧·

0 f ′x(u,Xu)
√
XudBX

u −
∫ ·

0 (1/u)1{ρ≤u}du, if n = 2.
(1.6)

Section 3 contains a mostly analytic proof of Theorem 1.2. Section 4 contains an alternative

proof, using more probabilistic arguments, for the case n > 2. This alternative route provides

further intuition on the appearance of the local time in the Doob-Meyer decomposition of Z.

(Furthermore, this alternative route helped us to formulate the precise statements of Theorem 1.2.)
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Lemma 2.1 in Section 2 below summarises some results concerning the Markov local time process

Λ, appearing in (1.5).

Remark 1.3. Here is a quick argument why Z is a strict supermartingale if m ∈ [0, 2) and n > 2. In

general, the strict supermartingale property of Z will follow from the non-constant finite-variation

terms in (1.5) and (1.6) in the Doob-Meyer decomposition of Z. All these assertions shall be

argued in the proof of Theorem 1.2. Assume now that 0 ≤ m < 2 < n, and suppose (as we shall

see, by way of contradiction) that Z is a local martingale. Since X and Y are independent and

since the function s is decreasing, we have

Zt ≤ E[s(Yt)] = f(t, 0) <∞, t > 0.

Since Z is additionally strictly positive (recall that n > 2 is assumed), hence bounded, it would

then follow that (Zt)t>0 is an actual martingale. This would imply by Fatou’s lemma (note that

t = 0 was not covered) that Z is an actual martingale. But this is impossible, since it would have

constant expectation, meaning that s(X+Y ) also has constant expectation, contradicting the fact

that it is a strict local martingale; see (2.3) below. Therefore, we obtain that Z fails to be a local

martingale whenever 0 ≤ m < 2 < n.

Remark 1.4. The special cases n = 3 and m ∈ {1, 2} in Theorem 1.2 are studied in [FP11] and

[Lar14]. When n = 3 and m = 1, using (1.3) we obtain

Zt =

∫ ∞
0

1

2t
√
Xt + y

exp
(
− y

2t

)
dy

= exp

(
Xt

2t

)∫ ∞
Xt

1

2t
√
w

exp
(
−w

2t

)
dw

=
1√
t

exp

(
Xt

2t

)∫ ∞
√
Xt/t

exp

(
−y

2

2

)
dy,

=

√
2π

t
exp

(
Xt

2t

)(
1− Φ

(√
Xt

t

))
, t ≥ 0,

where Φ denotes the cumulative normal distribution. Recall the discussion after (1.2), note that

Λ in (1.5) is the semimartingale local time of
√
X. In contrast, [FP11] uses Brownian local time.

These local times differ by a factor of 2; see [RY99, Exercise VI.1.17]. This explains the slight

difference in the presentation of the finite-variation part in (1.5) from its representation in [FP11].

When n = 3 and m = 2, we obtain

Zt =
1√
2πt

∫ ∞
0

1√
y(Xt + y)

exp
(
− y

2t

)
dy

=
1√
2πt

exp

(
Xt

4t

)∫ ∞
1

1√
w2 − 1

exp

(
−wXt

4t

)
dy
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=
1√
2πt

exp

(
Xt

4t

)
K0

(
Xt

4t

)
, t ≥ 0,

where

(0,∞) 3 k 7→ K0(k) :=

∫ ∞
1

1√
y2 − 1

e−ykdy

denotes the modified Bessel function of the second kind of order zero.

Remark 1.5. As pointed out by [SW73], if X and Y are appropriately chosen squared radial

Ornstein-Uhlenbeck processes (of which squared Bessel processes are special cases) then so

is X + Y . While it should be possible to extend the arguments below to the case that X, Y ,

and X + Y are squared radial Ornstein-Uhlenbeck processes (such that X + Y converted to

natural scale is a local martingale), the notation would get unnecessarily complicated. We choose

to sacrifice this bit of generality for more transparent formulas.

Remark 1.6. The function f of (1.3) satisfies the partial differential equation

(1.7) f ′t(t, x) +mf ′x(t, x) + 2xf ′′x,x(t, x) = 0, (t, x) ∈ (0,∞)2.

This partial differential equation is derived from the assertion of Theorem 1.2 via an application of

Itô’s formula to the local martingale f(·, Xρ∧·)—see Step 2 of the theorem’s proof. The required

derivatives of f in (1.7) exist due dominated convergence.

2. Squared Bessel Processes and Their Markov Local Time

We keep all notation from Section 1, and discuss here some useful properties of squared Bessel

processes and their Markov local time.

2.1. Facts concerning squared Bessel processes. According to [RY99, Corollary XI.1.4], the

process Y has a density (with respect to Lebesgue measure), given by

(2.1) P[Yt ∈ dy] =
1

Γ ((n−m) /2) (2t)(n−m)/2
y(n−m)/2−1 exp

(
− y

2t

)
dy, t > 0, y ≥ 0.

By Feller’s test of explosions, for m ≥ 2, the process X is strictly positive. For m ∈ (0, 2), X

visits level zero, but is instantaneously reflected there, i.e.,

(2.2)

∫ ·
0
1{Xt=0}dt = 0.

For m = 0, the process X is absorbed when it hits zero. For a proof of these facts, see, for example,

[RY99, Proposition XI.1.5] (but note that semimartingale local time is used there, while we shall

only consider Markov local time—see Remark 2.2 later on). When m ∈ (0, 2), the process X

accrues local time; i.e., with positive probability its Markov local time at zero is strictly positive.

This is a consequence of Lemma 2.1.
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Direct computations with the density of X + Y , or [Kot06, Example 1], yield that

(2.3) s(X + Y ) is a strict local martingale in the filtration G·.

Similarly, the process X
1−m/2
·∧ρ is a martingale. This yields that the F· stopping time

ρκ := inf

{
t ≥ 0

∣∣∣ Xt ≤
1

κ

}
,(2.4)

where κ > 1, has unbounded support. An alternative justification is provided in [BR16, Corol-

lary 1.2].

2.2. Markov local time. The next result discusses properties of local time of X at zero.

Lemma 2.1. Assume that 0 < m < 2. Then the process Λ defined via

Λt := lim
ε↓0

mε−m/2
∫ t

0
1{Xu<ε}du, t ≥ 0.

is a nondecreasing continuous additive functional, whose inverse, given by

As := inf{t ≥ 0 : Λt > s}, s ≥ 0,(2.5)

has (conditional) Laplace transform

E
[
e−zAs |Fρ

]
= exp

(
−zρ− Γ (m/2)

Γ (1−m/2)
s
(z

2

)1−m/2
)
, z ≥ 0.(2.6)

Here, the stopping time ρ is given in (1.1). Furthermore, we have

1

1−m/2
X1−m/2 =

1

1−m/2
+ 2

∫ ·
0
X(1−m)/2
u 1{Xu>0}dB

X
u + Λ.(2.7)

Remark 2.2. The process Λ of Lemma 2.1 is sometimes called “Markov” local time, in contrast to

“semimartingale” local time, which only exists for semimartingales. For Markov semimartingales,

these two local times may differ; however, as (2.7) shows, here the Markov local time Λ of X

at zero is also the semimartingale local time of the process X1−m/2/(2 −m) at zero. We refer to

[GRVY99] and [DMRVY08] for a deeper study of Bessel local time.

Proof of Lemma 2.1. We refer to [BS02, Section II.2 and Appendix 1.23], where properties of Λ

are discussed, and further references are given.

The Laplace transform of A is, to the best of our knowledge, first discussed in [MO69], but

with X replaced by
√

2X and some missing constants. To argue (2.6), note that

As = ρ+ inf{t ≥ 0 : Λt+ρ − Λρ > s}, s ≥ 0.

Hence ‘Row 2’ in [PY99] yields

E
[
e−zAs |Fρ

]
= exp

(
−zρ− s

(∫ ∞
0

e−zu
1

2m/2−1um/2Γ(m/2)
du

)−1
)
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= exp

(
−zρ− s 2m/2−1Γ (m/2)∫∞

0 e−zuu1−m/2−1du

)
= exp

(
−zρ− s2m/2−1Γ (m/2) z1−m/2

Γ (1−m/2)

)
,

where we have used the transition density of X, provided in in [BS02, Appendix 1.23 ] or in [RY99,

Corollary XI.1.4 ].

Continuing, the process V := X1−m/2/(2−m) is a diffusion in natural scale; thus a semimartin-

gale; see, for example, [AS98, Lemma 5.22 ]. The Tanaka formula then yields

V = max(V, 0) = V0 +

∫ ·
0
1{Vu>0}dVu +

1

2
l0 = V0 +

∫ ·
0
1{Xu>0}X

(1−m)/2
u dBX

u +
1

2
l0

= V0 +

∫ ·
0
1{Vu>0} ((2−m)Vu)(1−m)/(2−m) dBX

u +
1

2
l0.(2.8)

Here, (lv)v≥0 denotes the semimartingale local time of V , continuous in time and right-continuous

in the spatial variable v ≥ 0, satisfying the occupations time formula∫ t

0
g(Vu)d[V, V ]u =

∫ ∞
0

g(v)lvt dv, t ≥ 0,

for all Borel–measurable functions g : [0,∞) → [0,∞); see [RY99, Section VI.1]. Hence, we also

have ∫ t

0
g(Vu)du =

∫ t

0
g(Vu)1{Vu>0}du =

∫ ∞
0

g(v)lvt ((2−m)v)(2m−2)/(2−m) dv(2.9)

for all Borel–measurable functions g : [0,∞) → [0,∞) Here, the first equality follows from the

fact that X, and hence V , are Lebesgue–almost everywhere strictly positive, by (2.2). Now, the

continuity properties of (lv)v≥0 and (2.9) yield

l0t = lim
ε↓0

1∫ ε
0 ((2−m)v)(2m−2)/(2−m) dv

∫ ε

0
lvt ((2−m)v)(2m−2)/(2−m) dv

= lim
ε↓0

m ((2−m)ε)m/(m−2)
∫ t

0
1{Vu<ε}du

= lim
ε↓0

m ((2−m)ε)m/(m−2)
∫ t

0
1{Xu<((2−m)ε)2/(2−m)}du = lim

ε↓0
mε−m/2

∫ t

0
1{Xu<ε}du

= Λt, t ≥ 0,

where the last equality follows from the definition of Λ. Then, (2.7) follows from (2.8) and the

above equality. �

3. A Mostly Analytic Proof of Theorem 1.2

3.1. Three technical lemmas. Before we embark on proving Theorem 1.2, we shall provide some

auxiliary analytic results.
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Lemma 3.1. Assume that m ∈ [0, 2) and recall the function f from (1.3). Then, with

(0,∞) 3 x 7→ ψ(x) :=
1

Γ ((n−m) /2)
×


∫∞

0

(
1− (w/ (1 + w))n/2−1

)
w−m/2e−xwdw, if n > 2;∫∞

0 log (1 + 1/w)w−m/2e−xwdw, if n = 2,

(3.1)

it holds that ψ ∈ C∞((0,∞)), that

f(t, x) = f(t, 0)− x1−m/2

(2t)(n−m)/2
ψ
( x

2t

)
, t > 0, x > 0,(3.2)

and that

lim
x↓0

x1−m/2

(2t)(n−m)/2
ψ
( x

2t

)
= 0, t > 0.(3.3)

Proof. Let us only consider the case n > 2; the case n = 2 follows in the same manner. Since

f(t, 2tx) =
1

Γ ((n−m)/2)
(2t)1−n/2

∫ ∞
0

(
w

x+ w

)n/2−1

w−m/2e−wdw,

for all t > 0 and x > 0, we have

(2t)n/2−1 f(t, 0)− f(t, 2tx)

x1−m/2 =
1

Γ ((n−m)/2)

∫ ∞
0

(
1−

(
w

x+ w

)n/2−1
)(w

x

)−m/2
e−w

dw

x

=
1

Γ ((n−m)/2)

∫ ∞
0

(
1−

(
w

1 + w

)n/2−1
)
w−m/2e−xwdw

= ψ(x).

Therefore, substituting x for 2tx, we obtain (3.2). Finally, (3.3) follows from the continuity of f

as seen easily in (1.3). �

Lemma 3.2. Assume that m ∈ [0, 2), and recall the function ψ from (3.1). Define the function

(0,∞) 3 x 7→ p(x) := −x1−m/2ψ′(x).

Then, p is nonnegative and decreasing with 0 < p(0+) <∞. As a consequence, supx>0 p(x) <∞.

Proof. We just consider the case n > 2; the case n = 2 follows in the same manner with the

appropriate modifications. To simplify notation we shall consider the function p0 := Γ((n−m)/2)p.

Simple algebra and a change of variables gives

p0(x) =

∫ ∞
0

1

x

(
1−

(
w

1 + w

)n/2−1
)

(xw)1−m/2e−xwd(xw)

=
1

x

∫ ∞
0

(
1−

(
v

x+ v

)n/2−1
)
v1−m/2e−vdv

=
1

x
(L(0)− L(x)), x > 0,
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where

L(x) =

∫ ∞
0

(
v

x+ v

)n/2−1

v1−m/2e−vdv, x > 0.

Hence we get

p0(x) = −
∫ 1

0
L′(tx)dt =

(n
2
− 1
)∫ ∞

0

∫ 1

0

1

(tx+ v)n/2
v(n−m)/2e−vdtdv, x > 0.

Thus, p0 (and hence p) is nonnegative and decreasing with

p0(0+) =
(n

2
− 1
)∫ ∞

0
v−m/2e−vdv =

(n
2
− 1
)

Γ
(

1− m

2

)
.

This concludes the proof. �

Lemma 3.3. Assume that m ∈ (0, 2). Then, we have

ψ(0) =


Γ(m/2)

(1−m/2)Γ(n/2−1) , if n > 2;

Γ(m/2)
1−m/2 , if n = 2.

Proof. Again, we only treat the case n > 2, as the case n = 2 can be argued in the same way.

Straightforward computations yield∫ ∞
0

(
1−

(
w

1 + w

)n/2−1
)
w−m/2dw =

(n
2
− 1
)∫ ∞

0

∫ ∞
w

(
vn/2−2

(1 + v)n/2

)
dvw−m/2dw

=
n/2− 1

1−m/2

∫ ∞
0

v(n−m)/2−1

(1 + v)n/2
dv

=
n/2− 1

1−m/2

∫ 1

0
w(n−m)/2−1(1− w)m/2−1dw

=
n/2− 1

1−m/2
Γ ((n−m) /2) Γ (m/2)

Γ (n/2)

=
1

1−m/2
Γ ((n−m) /2) Γ (m/2)

Γ (n/2− 1)
,

where we used the substitution w = v/(1 + v) in the third equality and the identity∫ 1

0
wa−1(1− w)b−1du =

Γ(a)Γ(b)

Γ(a+ b)
, a, b > 0

in the fourth equality, which connects the Beta and Gamma functions. In the last equality of the

long display, we have used the identity Γ(k) = (k − 1)Γ(k − 1), which holds for all k > 1. �

3.2. Proof of Theorem 1.2. We proceed in several steps.

• Step 1: Using the density provided in (2.1), we obtain

f(t, x) = E[s(x+ Yt)], t > 0, x ≥ 0,
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where the function f is given in (1.3). Note that the process f(·, X·) is F·–optional. Since we have

already established the existence of the F·-optimal projection Z of s(X + Y ) in Remark 1.1, it

immediately follows that Zt = f(t,Xt) holds for all t ≥ 0.

• Step 2: Consider first the case n > 2, fix some κ > 1, and recall the stopping times from (2.4).

Then s(Xρκ + Y ρκ) is bounded, hence a martingale under G·. Its F·–optional projection, which

is Zρκ , will also be a martingale. By Itô’s formula and the fact that the derivatives of f are

continuous and the product Lebesgue⊗P measure of {(t, ω) : (t,Xt(ω)) ∈ U} is strictly positive

whenever U is a nonempty open subset of (0,∞)2 due to the unbounded support of ρ of (1.1), the

partial differential equation in (1.7) holds for all (t, x) ∈ (0,∞)2.

Let us now consider the case n = 2 and fix again some κ > 1. In this case, Itô’s formula yields

s(X + Y ) = 2

∫ ·
0

1√
Xu + Yu

dWu

for some Brownian motion W . Hence, s(Xρκ+Y ρκ) is a martingale under G·. Now we may conclude

as in the case n > 2 that the partial differential equation in (1.7) holds.

• Step 3: When m ≥ 2, then limκ↑∞ ρκ = ∞ holds for the stopping times of (2.4), thanks to the

facts in §2.1. Hence, Z is indeed a local martingale satisfying (1.4) by Itô’s formula and (1.7).

It is, moreover, a strict local martingale since s(X + Y ) is not a martingale under G·, as noted in

(2.3).

• Step 4: We now focus on the case 0 < m < 2 and argue the finite-variation term appearing in

the Doob-Meyer decomposition of Z in (1.5). To make headway, Lemma 3.1 yields

Zt = f(t,Xt) = f(t, 0)− X
1−m/2
t

(2t)(n−m)/2
ψ

(
Xt

2t

)
, t > 0.

where the function ψ is given in (3.1). Unfortunately, since ψ′(0) = −∞ by Lemma 3.2, we cannot

use the product rule directly. Instead, we shall approximate the function ψ. For ε > 0, define the

function ψε : [0,∞)→ R by ψε(x) = ψ(x) for all x > ε and by

ψε(x) = ψ(ε) + ψ′(ε)(x− ε), x ∈ [0, ε].

Since ψ is nonnegative, decreasing and convex, the same properties transfer to ψε; furthermore,

ψε ≤ ψ.

Next, fix some t0 > 0. We shall first derive the dynamics of Z for t ≥ t0 via approximation,

and then send t0 to zero. Given that ψε is convex and continuously differentiable on [0,∞), twice

continuously differentiable except at ε > 0, and E
[∫∞

0 1{Xt=2εt}dt
]

= 0 holds, it follows that

(ψε(Xt/(2t)))t≥t0 is a semimartingale satisfying

(3.4) ψε

(
Xt

2t

)
= ψε

(
Xt0

2t0

)
+

∫ t

t0

1{Xu>2uε}dψ

(
Xu

2u

)
+ ψ′(ε)

∫ t

t0

1{Xu≤2uε}d

(
Xu

2u

)
, t ≥ t0.
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Define now the process

Zεt := f(t, 0)− X
1−m/2
t

(2t)(n−m)/2
ψε

(
Xt

2t

)
, t > 0.(3.5)

An application of (3.2) and integration-by-parts, in conjunction with (3.4) and Tanaka’s formula

(see (2.7)), and recalling the partial differential equation (1.7) yield

Zε − Zεt0 = 2

∫ ·
t0

f ′x(u,Xu)
√
Xu1{Xu>2uε}dB

X
u

+

∫ ·
t0

f ′t(u, 0)1{Xu≤2uε}du+
n−m

2

∫ ·
t0

2X
1−m/2
u

(2u)(n−m)/2+1
ψε

(
Xu

2u

)
1{Xu≤2uε}du

− (2−m)

∫ ·
t0

ψε (Xu/(2u))

(2u)(n−m)/2
X(1−m)/2
u 1{0<Xu≤2uε}dB

X
u −

(
1− m

2

)
ψε(0)

∫ ·
t0

dΛu

(2u)(n−m)/2

− ψ′(ε)
∫ ·
t0

X
1−m/2
u

(2u)(n−m)/2
1{Xu≤2uε}d

(
Xu

2u

)
− (2−m)ψ′(ε)

∫ ·
t0

2X
1−m/2
u

(2u)(n−m)/2+1
1{Xu≤2uε}du.

To derive this long display, two cases are considered. Whenever Xu > 2uε, then Zε has the

dynamics of a local martingale, provided in the first line of the long display. For the second case,

namely when Xu ≤ 2uε, we break up the second term on the right side of (3.5) in three components

and apply the Itô product rule. The second line of the long display provides the contribution of

the first term in (3.5) and of the component involving the power of t. The third line corresponds

to the contribution of the power of X, after using the Tanaka formula in (2.7). The fourth line

provides the contribution of (ψε(Xt/(2t)))t≥t0 , worked out in (3.4). Finally, the last line yields the

cross-product dynamics.

We now let ε go to zero. Then Zεt tends to Zt, for each t > 0. Let us next consider the right side

of the long display. Using (2.2) and the bound ψε ≤ ψ, the dominated convergence theorem yields

that the terms in the second line converge to zero. By a similar argument and Itô’s isometry, so

does the first term of the third line. For the fourth line, we bound the integrand∣∣∣∣∣ψ′(ε) X
1−m/2
u

(2u)(n−m)/2
1{Xu≤2uε}

∣∣∣∣∣ ≤ −ε1−m/2ψ′(ε)

(2t0)(n−m)/2−1
1{Xu≤2uε} ≤

p(0+)

(2t0)(n−m)/2−1
1{Xu≤2uε}

in the notation of Lemma 3.2. Hence, the term in the fourth line also converges to zero as ε tends

to zero. By exactly the same arguments, so does the term in the last line of the long display.

We are left with two terms. Consider the integral in the first line. Lemma 3.1 yields that

f ′x(t, x) = −
(

1− m

2

) x−m/2

(2t)(n−m)/2
ψ
( x

2t

)
− x1−m/2

(2t)(n−m)/2
ψ′
( x

2t

)
, t > 0, x > 0,

so that x(f ′x(t, x))2 behaves like kx1−m/tn−m when x ∼ 0, where k > 0 is an appropriate constant.

However,
∫ ·

0 X
1−m
u du is a finite process, because it is (proportional to) the quadratic variation of
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the local martingale part in the dynamics of X1−m/2. Therefore, it follows that the integral in the

first line converges to

2

∫ ·
t0

f ′x(u,Xu)
√
Xu1{Xu>0}dB

X
u .

The only remaining term, namely the second term in the third line, converges to

−
(

1− m

2

)
ψ(0)

∫ ·
t0

1

(2u)(n−m)/2
dΛu.

To summarize, we have

Z − Zt0 = 2

∫ ·
t0

f ′x(u,Xu)
√
Xu1{Xu>0}dB

X
u −

(
1− m

2

)
ψ(0)

∫ ·
t0

1

(2u)(n−m)/2
dΛu.

We can now sent t0 to zero, noting that none of the integrals will explode because X is away from

zero on the stochastic interval [0, ρ2], where ρ2 is given as in (2.4) with κ = 2. It then follows that

Z = 1 + 2

∫ ·
0
f ′x(u,Xu)

√
Xu1{Xu>0}dB

X
u −

(
1− m

2

)
ψ(0)

∫ ·
0

1

(2u)(n−m)/2
dΛu.

In conjunction with Lemma 3.3, this then yields (1.5).

• Step 5: Finally, for the case m = 0 basic computations with (1.3) yield (1.6). Indeed, if n > 2

we have

f(t, x) =
1

Γ(n/2)

∫ ∞
0

(x+ 2tw)1−n/2wn/2−1e−wdw, t > 0, x ≥ 0.

This gives directly

f(t, 0) =
(2t)1−n/2

Γ(n/2)

∫ ∞
0

w1−n/2wn/2−1e−wdw =
(2t)1−n/2

Γ(n/2)
, t > 0.

One then concludes by observing that X gets absorbed when hitting zero; hence

f(t,Xt) = f(t ∧ ρ,Xt∧ρ) + 1{ρ<t}(f(t, 0)− f(ρ, 0)).

The case n = 2 is argued again in exactly the same way. �

4. A Mostly Probabilistic Proof of Theorem 1.2

In this section we only consider the case n > 2, and provide an alternative proof of Theorem 1.2

in §4.2, after some prerequisites for a certain dominating probability measure in §4.1.
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4.1. A dominating probability measure in the canonical space. Note that the assertions of

Theorem 1.2 only depend on the joint law on the path space of the process couple (X,Y ). Indeed,

the local time Λ only depends on X and, moreover, we may write

2

∫ ·
0
f ′x(u,Xu)

√
XudBX

u =

∫ ·
0
f ′x(u,Xu)d(Xu −mu)

for the stochastic integral appearing in (1.4)–(1.6). Hence, throughout Section 4, we may and

shall work on the space of functions from [0,∞) to [0,∞)2, where (0, 0) will be a “cemetery” state

and functions will be continuous in the open interval before hitting (0, 0). More precisely, given a

right-continuous function ω : [0,∞) 7→ [0,∞)2, define

ζ(ω) := inf {t ≥ 0 | ω(t) = (0, 0)} ,

and let Ω denote the set of all right-continuous functions ω : [0,∞) 7→ [0,∞)2 such that ω(0) =

(1, 0), ω is continuous on [0, ζ(ω)), and ω(t) = (0, 0) holds for all t ∈ [ζ(ω),∞). Writing ω(t) =

(ωx(t), ωy(t)) ∈ [0,∞)2 for all t ≥ 0, we define a pair of processes (X,Y ) via X(ω, t) = ωx(t) and

Y (ω, t) = ωy(t) for all (ω, t) ∈ Ω × [0,∞). We let G· be the right-continuous augmentation of the

natural filtration generated by (X,Y ), and note that ζ is a G· stopping time. Furthermore, F·
will be the right-continuous augmentation of the smallest filtration which makes X adapted and

ζ a stopping time. With G∞ :=
∨
t≥0 Gt we let P denote the probability on (Ω,G∞) under which

P[ζ < ∞] = 0, and the coordinate process (X,Y ) consists of two independent squared Bessel

processes, with dimensions m and n−m respectively, and recall that X0 = 1 and Y0 = 0 identically

hold by the construction of Ω.

We set Z equal to the (F·,P)–optional projection of s(X + Y ). We recall that s(X + Y ) is a

strictly positive G·–local martingale, with localising sequence (τ1/n)n∈N, where

τκ := inf {t ≥ 0 | Xt + Yt ≤ κ} , κ ≥ 0,

the latter localising sequence having P–almost sure limit τ0, which coincides P–almost surely with

ζ. Hence we may use Föllmer’s construction and obtain a probability measure Q on (Ω,G∞) such

that Q[τ0 = ζ] = 1, and

(4.1) EP

[
Vτs(Xτ + Yτ )1{τ<ζ}

]
= EQ

[
Vτ1{τ<ζ}

]
,

valid for any G· stopping time τ and nonnegative G·–optional process V ; see [Föl72] and [PR15].1

In particular, (4.1) above gives Q[τ1/κ < ζ] = 1 for all κ > 0, which together with Q[τ0 = ζ] = 1

implies that ζ is Q–almost surely equal to a G·–predictable stopping time. As shown in the next

1To see that Föllmer’s construction can indeed be used as suggested, equip the space E := [0,∞)2 \ {(0, 0)}
with the metric

d(x, y) = ‖x− y‖+

∣∣∣∣ 1

‖x‖ −
1

‖y‖

∣∣∣∣ , (x, y) ∈ E × E,

where ‖ · ‖ denotes Euclidean norm in R2. Then E equipped with the topology stemming from the previous metric

is a Polish space, and the point (0, 0) /∈ E can be identified with a cemetery state.
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result, the (F·,P)–local martingale property of Z is related to whether ζ is Q–almost surely equal

to an F·–predictable stopping time.

Lemma 4.1. The following statements hold:

(1) Write 1[[0,ζ[[ = L(1−K), where K is F·–predictable, nondecreasing, with K0 = 0, and L is

an (F·,Q)–local martingale. Then the process Z/(1−K) is an (F·,P)–local martingale.

(2) If ζ is Q–almost surely equal to an F·–predictable stopping time, then Z is an (F·,P)–local

martingale.

Proof. Write 1[[0,ζ[[ = L(1 − K) as in the statement, and set N = 1/s(X + Y ). Bayes’ formula

(see, e.g., Theorem 5.1 in [Ruf13]) yields

Zt =
EQ[Nt(1/Nt)1{ζ>t} | Ft]

EQ[Nt1{ζ>t}|Ft]
=

1{ζ>t}

EQ[Nt|Ft]
= (1−Kt)

Lt
EQ[Nt|Ft]

, t ≥ 0,

where the denominator denotes optional projection. Since L is an (F·,Q)–local martingale, the

last fraction in the displayed formula above is an (F·,P)–local martingale; hence so is Z/(1−K).

To see the validity of statement (2), note that if ζ is Q–almost surely equal to an F·–predictable

stopping time, then K = 0 and L = 1 hold on [[0, ζ[[; since P[ζ < ∞] = 0, it follows that Z is an

(F·,P)–local martingale. �

The previous lemma also yields that 1−K is the finite-variation component in the multiplicative

(F·,P)–Doob-Meyer decomposition of the (F·,P)–supermartingale Z. For future reference, and

with L(1 − K) := −
∫ ·

0 1/(1 − Ku)dKu denoting the stochastic logarithm of 1 − K, note that

Itô’s product rule yields that L(1−K) is the finite-variation component in the additive (F·,Q)–

Doob-Meyer decomposition of the (F·,Q)–supermartingale 1[[0,ζ[[. Similarly, and using the fact

that P[ζ = ∞] = 1, we have
∫ ·

0 Zu−dL(1 − K)u is the finite-variation component in the additive

(F·,P)–Doob-Meyer decomposition of Z.

4.2. Putting everything together—a more probabilistic proof of Theorem 1.2. Showing

the cases m = 0, Z = f(·, X), and (1.4) for m ≥ 2 is done exactly as in Section 3. However, here

is an alternative argument for the local martingale property of Z if m ≥ 2. Define ρ as in (1.1), so

that, Q–almost surely, ρ ≤ τ0 = ζ. Next, note that

Q [ρ < ζ] = Q [ρ < τ0] = Q [Xρ = 0, Yρ > 0, ρ <∞]

= Q [Xρ = 0, Nρ > 0, ρ <∞] ≤ EP

[
Zρ1{Xρ=0}∩{ρ<∞}

]
= 0,

the latter following from the fact that, under P, X is an m–dimensional squared Bessel process,

which never hits zero. Thus, ζ is Q–almost surely equal to an F·–predictable stopping time, yielding

that Z is an (F·,P)–local martingale by Lemma 4.1(2).

Let us now consider the case m ∈ (0, 2). We start by computing the additive (F·,Q)–predictable

compensator of 1[[ζ,∞[[. To this end, note that the inverse local time A of X at zero, given in (2.5),
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is right-continuous. Hence we may define the time-changed filtration F̂· = (F̂s)s≥0 = (FAs)s≥0.

With all relationships that follow valid under Q, λ0 := Λτ0 = Λζ is an F̂· stopping time and

ζ = τ0 = Aλ0 = AΛτ0

holds. Define also the processes X̂ = XA· , Ŷ = YA· and N̂ = NA· = 1/s(X̂ + Ŷ ). Since X̂ = 0 we

have N̂ = Ŷ n/2−1. Noting that τ0 may only happen at times that Λ charges, we conclude that if

F̂ is the (F̂·,Q)–compensator of 1[[λ0,∞[[, then F = F̂Λ is the (F·,Q)–compensator of 1[[ζ,∞[[.

Fix now u ≥ 0 and h > 0. In preparation for the calculations below, note that, since X is

independent of Y under P, the scaling property of the squared Bessel processes Y starting from

zero (e.g., this can be seen from the density in (2.1)) will give

EP

[
Ẑu

∣∣∣F̂u ] = EP

[
Y

1−n/2
Au

∣∣∣F̂u ] = EP

[
Y

1−n/2
1

]
A1−n/2
u .

From this observation it follows that

EP

[
Ẑu+h

∣∣∣F̂u ] = EP

[
EP

[
Ẑu+h

∣∣∣F̂u+h

] ∣∣∣F̂u ] = EP

[
Y

1−n/2
1

]
EP

[
A

1−n/2
u+h

∣∣∣F̂u ] ,
which in turn gives

EP

[
Ẑu+h

∣∣∣F̂u ]
EP

[
Ẑu

∣∣∣F̂u ] = EP

[
A

1−n/2
u+h

A
1−n/2
u

∣∣∣F̂u] = EP

[(
x

x+Ah − ρ

)n/2−1
]∣∣∣∣∣
x=Au

,(4.2)

the last equality following from the fact that A is an additive functional. As a consequence of the

previous calculations, on {λ0 > u} = {Λτ0 > u} we have

Q
[
λ0 > u+ h

∣∣∣F̂u ] = Q
[
Ŷv > 0 for all v ∈ (u, u+ h]

∣∣∣F̂u ] = Q
[
Ŷu+h > 0

∣∣∣F̂u ]
=

EP

[
Ẑu+h

∣∣∣F̂u ]
EP

[
Ẑu

∣∣∣F̂u ] = EP

[(
x

x+Ah − ρ

)n/2−1
]∣∣∣∣∣
x=Au

.(4.3)

Here the second equality follows from Q[τ0 = ζ] = 1, which implies that zero is an absorbing state

for Ŷ under Q. The second equality comes from Bayes’ formula and the third equality is (4.2).

In order to evaluate the last quantity, we shall use the following identity for the Gamma function:

yn/2−1 =
1

Γ (n/2− 1)

∫ ∞
0

zn/2−2e−z/ydz, y > 0.

The Laplace transform in (2.6) then yields, for x > 0 and h ≥ 0, that

EP

[(
x

x+Ah − ρ

)n/2−1
]

=
1

Γ (n/2− 1)

∫ ∞
0

zn/2−2e−zEP

[
exp

(
− z
x

(Ah − ρ)
)]

dz

=
1

Γ (n/2− 1)

∫ ∞
0

zn/2−2 exp

(
−z − Γ (m/2)

Γ (1−m/2)

( z
2x

)1−m/2
h

)
dz
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=

∫ ∞
0

g(h, z;x)dz,(4.4)

where we have used, for fixed x > 0, the function

[0,∞)2 3 (h, z) 7→ g(h, z;x) :=
1

Γ (n/2− 1)
zn/2−2 exp

(
−z − Γ (m/2)

Γ (1−m/2)

( z
2x

)1−m/2
h

)
.(4.5)

Note that, for all h > 0 and z > 0,

0 ≥ ∂

∂h
g(h, z;x) ≥ ∂

∂h
g(h, z;x)

∣∣∣∣
h=0+

= − Γ (m/2)

Γ (n/2− 1) Γ (1−m/2)
zn/2−2

( z
2x

)1−m/2
e−z.(4.6)

Since the right side of the last inequality is integrable, a combination of (4.3), (4.4), L’Hôpital’s

rule, and the dominated convergence theorem give, for all u ≥ 0, on the event {λ0 > u},

lim
h↓0

1

h
Q
[
λ0 ≤ u+ h

∣∣∣F̂u ] = lim
h↓0

1

h

(
1−

∫ ∞
0

g(h, z;Au)dz

)
= −

∫ ∞
0

∂

∂h
g(h, z;Au)

∣∣∣∣
h=0+

dz

=
Γ (m/2)

Γ (n/2− 1) Γ (1−m/2)

(
1

2Au

)1−m/2 ∫ ∞
0

z(n−m)/2−1e−zdz

= β

(
1

2Au

)1−m/2
,

where

β :=
Γ (m/2) Γ ((n−m) /2)

Γ (n/2− 1) Γ (1−m/2)
.

It is now intuitively clear, and we in fact provide a precise argument at the end of the proof, that

the additive (F·,Q)–compensator F̂ of 1[[λ0,∞[[ has the form

F̂ = β

∫ ·∧λ0
0

(
1

2As

)1−m/2
ds.

Hence, in the notation of Lemma 4.1, and also in view of the discussion following it, the additive

(F·,Q)–compensator F = −L(1−K) of 1[[τ0,∞[[ = 1[[ζ,∞[[ has the form

F = β

∫ ·∧τ0
0

(
1

2u

)1−m/2
dΛu.

Since

Γ

(
n−m

2

)
f(u, 0) =

∫ ∞
0

1

(2uw)n/2−1
w(n−m)/2−1e−wdw =

1

(2u)n/2−1
Γ
(

1− m

2

)
,

the process

−
∫ ·

0
Zu−dFu = −

∫ ·
0
f(u, 0)dFu = − Γ (m/2)

Γ (n/2− 1)

∫ ·
0

1

(2u)(n−m)/2
dΛu

is the finite-variation component in the additive (F·,P)–Doob-Meyer decomposition of Z. The

fact that the martingale part will have the form as in (1.5) can be shown analytically, as in Section 3.
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It remains to argue that, for fixed u ≥ 0 and ∆ > 0, on the event {λ0 > u}, we have

Q
[
λ0 ≤ u+ ∆| F̂u

]
= EQ

[
β

∫ u+∆

u

(
1

2As

)1−m/2
1{λ0>s}ds

∣∣∣∣∣ F̂u
]
.(4.7)

To see this, note that, for each N ∈ N, we have

Q
[
λ0 ≤ u+ ∆| F̂u

]
= EQ

 2N∑
n=1

1{u+(n−1)2−N∆<λ0≤u+n2−N∆}

∣∣∣∣∣∣ F̂u


= EQ

 2N∑
n=1

1{λ0>u+(n−1)2−N∆}Q
[
λ0 ≤ u+

n

2N
∆
∣∣∣ F̂u+(n−1)2−N∆

]∣∣∣∣∣∣ F̂u


= EQ

[∫ u+∆

u
ηNu du

∣∣∣∣ F̂u] ,
for the piecewise constant process

ηN :=
2N∑
n=1

1{λ0>u+(n−1)2−N∆}

(
2NQ

[
λ0 ≤ u+

n

2N
∆
∣∣∣ F̂u+(n−1)2−N∆

])
1[[u+(n−1)2−N∆,u+n2−N∆[[

=
2N∑
n=1

1{λ0>u+(n−1)2−N∆}

(
− ∂

∂h

∫ ∞
0

g
(
hNn , z;Au+(n−1)2−N∆

)
dz

)
1[[u+(n−1)2−N∆,u+n2−N∆[[,

by (4.3), (4.4), and the mean value theorem, where hNn is a [0, 2−N∆]–valued F̂u+(n−1)2−N∆–

measurable random variable and the function g is defined in (4.5). Thanks to (4.6), on the event

{Au > 1/κ} for any κ > 0, the sequence (ηN )N∈N is uniformly bounded. It also satisfies

lim
N↑∞

ηN = 1[[u,λ0∧(u+∆)[[ β

(
1

2A

)1−m/2
,

Lebesgue⊗Q–almost everywhere. Hence, an application of the dominated convergence theorem

yields the claim in (4.7). This concludes the proof. �
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d = 2(1− α), 0 < α < 1, Studia Sci. Math. Hungar. 45 (2008), no. 2, 207–221.



18 CONSTANTINOS KARDARAS AND JOHANNES RUF
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