A REMARK ON 7! MARTINGALES
HARDY HULLEY AND JOHANNES RUF

ABSTRACT. The space of /#! martingales is interesting because of its duality with the
space of BMO martingales. It is straightforward to show that every 7! martingale is a
uniformly integrable martingale. However, the converse is not true. That is to say, some
uniformly integrable martingales are not .7#’! martingales. This brief note provides a
template for systematically constructing such processes.

1. INTRODUCTION

Let (§2,.7,3,P) be a filtered probability space, whose filtration § = (.%#;):>¢ is right-
continuous. By assumption, all processes are defined on ({2,.%,§,P) and have cadlag
sample paths. The families of local martingales and uniformly integrable martingales
are denoted by .#),. and .#, respectively. Given p > 1, let J#” be the family of local
martingales M € ./, for which E([M]"/?) < co. Then #? forms a Banach space,
when endowed with the norm || - ||, defined by

1y = (e(r)) "

for all M € JP. Let J4". denote the family of local martingales that are locally in J#7.

The space 7' has several interesting features. For example, #' contains 7>
as well as all local martingales with integrable variation (see e.g Protter 2005, The-
orem IV.49). It can also be shown that #? and the family of bounded (uniformly
integrable) martingales are both dense in 7! (see e.g Protter 2005, Theorem IV.50).
In addition, .#,. C %’ﬁc (see e.g Protter 2005, Theorem IV.51). However, the most
significant result is the duality between .7#! and the space of BMO martingales. In

detail, let
BMO = {M € A*| E((MOO — MT_)Q) < ¢, forall 7 € G and some ¢ € R+},

where & denotes the family of stopping times defined on (€2, .7, §, P) and subject to the
convention M,_ = 0, for all M € .#,.. Then BMO becomes a Banach space, when
endowed with the norm || - ||gmo, defined by

|
E(Mw — M,_)?)
M =
1M |Brvo jlelg\/ Pr <o)

for all M € BMO. It follows that (#!)* ~ BMO (see e.g Protter 2005, Theorem IV.55).

Now, suppose M € .71, in which case the Burkholder-Davis-Gundy inequalities (see
e.g Protter 2005, Theorem IV.48) imply that E(supt>0 |Mt|) < 00. An application of the
dominated convergence theorem then gives M € .#. This establishes that #! C ..
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However, the reverse inclusion does not hold. We demonstrate this fact below, by
providing a recipe for constructing non-negative uniformly integrable martingales in

N A

2. CONSTRUCTION OF PROCESSES IN . \ !

Given a local martingale M € .#,,., observe that

E(sup |Mt|> = / P<sup | My| > u) du
t>0 0 t>0

> P(sup | M| > n) < / P(sup | M| > u) du <1+ P(sup | M| > n)
ot 0 0 >0 =1 \t>0

>

and

Since M € ' if and only if E(sup,s, |M;|) < oo, by virtue of the Burkholder-Davis-
Gundy inequalities, it follows that M € 7! if and only if

Z P(sup | M| > n> < 00. (2.1)

n=1 t>0
This condition plays a key role in our construction.

Fix a non-negative local martingale M € .#,. \ .# that is not a uniformly integrable
martingale, and define the non-decreasing sequence (¢, ),en C (1, 00), by setting

Cp = ln<e + Z P(sup M, > k)), (2.2)

k=1 \1=20

for each n € N. Since M ¢ 7 1. it follows that lim,400 ¢, = 00. Next, suppose that
(Q,.#,P) accommodates a discrete .%#;-measurable random variable ¥ € N that is
independent of M, and whose distribution satisfies P(Y > n) = 1/c,, for each n € N,
and let

o =inf{t >0|M, >Y} (2.3)
denote the first time M exceeds Y. It follows that
1
P(suth" > n) > P(sup M, > n)P(Y >n) = —P(sup M, > n),
t>0 t>0 Cp t>0

for each n € N. Consequently,

o0 1 m Cm __
ZP(supr > n) > lim —ZP(suth > n> — lim © ©_ 00,

n=1 \t>0 mtoo Cm 21 \ 120 mteo

since (¢, )nen is non-decreasing and lim,,1o, ¢, = co. This implies that M7 ¢ 5'. On
the other hand, the almost sure limit M7 = M7 _ € R, exists, since M’ is a non-
negative local martingale, and hence also a non-negative supermartingale. Moreover,

E(MZ) = 25(1\4; Y =n)P(Y =n) = iE(Mgg Y =n)P(Y =n)

I
Nk

E(MZ)P(Y = n) = i E(Mp)P(Y = ) = E(MY),

3
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where
T, = 1inf{t > 0| M; > n}
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for each n € N. Here, the penultimate equality follows from the fact that M™ € .#, for
each n € N. Consequently, M? € ./ .

Example 2.1. Consider a non-negative local martingale M € .#,. that belongs to
Class (Cp), according to the terminology of Nikeghbali and Yor (2006), and suppose
that M, = 1. In that case, M is a strictly positive local martingale without any positive
jumps, for which M., := M,_ = 0. The construction above is then applicable, since
E(Msx) = 0 < 1 = E(M,) implies that M € .#,. \ .#. Moreover, an application
of Doob’s maximal identity (see Nikeghbali and Yor 2006, Lemma 2.1) provides the
following concrete representation for the non-decreasing sequence (¢, ),cn, defined by
(2.2):

"1
Cp = ln<e+ > ),
il
for each n € N. It is then straightforward to see that lim, 1 ¢, = oo, which is the

crucial ingredient for showing that M° ¢ J#', where the stopping time ¢ is given by
(2.3).

Note that the previous construction requires .%; to be sufficiently large to admit an
Fo-measurable random variable Y, independent of M and such that P(Y > n) can
be defined appropriately, for each n € N. Example 2.2 below demonstrates that the
construction above does always not work without this requirement. That is to say,
given a non-negative local martingale M € .#, \ .#, there may be no stopping time
7 € &, such that M™ € .4 \ .

Example 2.2. Let (0,,),cn be a sequence of independent and identically distributed ran-
dom variables satisfying P(¢; = 0) = P(¢; = 1) = 1/2. Define the process M = (M;);>o,
by setting M, = 2! Hﬁl 0;, where [ -| are the Gauss brackets. Note that M is a mar-
tingale under its own filtration " = (ZM),>,. However, it is not uniformly integrable,
since M,, = 0. Consequently, M € .#. \ .#. Note that FM = o(0,,0,0,, - - , Eil 0;),
for all ¢ > 0. In particular, .#/ = {),2}. We now claim that M™ € (M. \ ) U H*,
for all §-stopping times 7. This implies that the above construction does not work
unless ﬂ]{” is enriched. Indeed, fix an arbitrary §"/-stopping time 7, and assume that
MT™ € .# . We then have to show that M € J#!. To see this, note that

T ::min{n€Z+|P(T§nandMT>0)>0}<oo,

otherwise, M™ = M ¢ ./, contradicting the assumption. Hence we have

P(Tgn*and H@i:1>>0 and {Tgn*}ﬂ{HGizl}Eﬁg.
i=1

i=1
This again implies that {[[/*; 0; = 1} C {7 < n.}, yielding M7 < 2"+, whence M € 7.

REFERENCES

Fefferman, C. and E. M. Stein (1972). H? spaces of several variables. Acta Math. 129(3-
4), 137-193.

Nikeghbali, A. and M. Yor (2006). Doob’s maximal identity, multiplicative decomposi-
tions and enlargements of filtrations. Illinois J. Math. 50(4), 791-814.

Protter, P. E. (2005). Stochastic Integration and Differential Equations (Second ed.).
Berlin: Springer.



HARDY HULLEY AND JOHANNES RUF

HArDY HULLEY, FINANCE DEPARTMENT, UNIVERSITY OF TECHNOLOGY SYDNEY, P.O. Box 123, BRoADWAY, NSW
2007, AUSTRALIA

Email address: hardy.hulley@uts.edu.au

JOHANNES RUF, DEPARTMENT OF MATHEMATICS, LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE,
HouGHTON STREET, LONDON WC2A 2AE, UNITED KINGDOM
Email address: j.ruf@lse.ac.uk



