A REMARK ON \mathscr{H}^1 MARTINGALES

HARDY HULLEY AND JOHANNES RUF

ABSTRACT. The space of \mathcal{H}^1 martingales is interesting because of its duality with the space of BMO martingales. It is straightforward to show that every \mathcal{H}^1 martingale is a uniformly integrable martingale. However, the converse is not true. That is to say, some uniformly integrable martingales are not \mathcal{H}^1 martingales. This brief note provides a template for systematically constructing such processes.

1. INTRODUCTION

Let $(\Omega, \mathscr{F}, \mathfrak{F}, \mathsf{P})$ be a filtered probability space, whose filtration $\mathfrak{F} = (\mathscr{F}_t)_{t\geq 0}$ is rightcontinuous. By assumption, all processes are defined on $(\Omega, \mathscr{F}, \mathfrak{F}, \mathsf{P})$ and have càdlàg sample paths. The families of local martingales and uniformly integrable martingales are denoted by \mathscr{M}_{loc} and \mathscr{M} , respectively. Given $p \geq 1$, let \mathscr{H}^p be the family of local martingales $M \in \mathscr{M}_{\text{loc}}$, for which $\mathsf{E}([M]^{p/2}_{\infty}) < \infty$. Then \mathscr{H}^p forms a Banach space, when endowed with the norm $\|\cdot\|_p$, defined by

$$\|M\|_p \coloneqq \left(\mathsf{E}\big([M]_{\infty}^{p/2}\big)\big)^{1/p},\right.$$

for all $M \in \mathscr{H}^p$. Let $\mathscr{H}^p_{\text{loc}}$ denote the family of local martingales that are locally in \mathscr{H}^p . The space \mathscr{H}^1 has several interesting features. For example, \mathscr{H}^1 contains \mathscr{H}^2

The space \mathscr{H}^1 has several interesting features. For example, \mathscr{H}^1 contains \mathscr{H}^2 as well as all local martingales with integrable variation (see e.g Protter 2005, Theorem IV.49). It can also be shown that \mathscr{H}^2 and the family of bounded (uniformly integrable) martingales are both dense in \mathscr{H}^1 (see e.g Protter 2005, Theorem IV.50). In addition, $\mathscr{M}_{\text{loc}} \subseteq \mathscr{H}^1_{\text{loc}}$ (see e.g Protter 2005, Theorem IV.51). However, the most significant result is the duality between \mathscr{H}^1 and the space of BMO martingales. In detail, let

$$BMO \coloneqq \left\{ M \in \mathscr{H}^2 \,|\, \mathsf{E} \big((M_{\infty} - M_{\tau-})^2 \big) \le c^2, \text{ for all } \tau \in \mathfrak{S} \text{ and some } c \in \mathbb{R}_+ \right\},\$$

where \mathfrak{S} denotes the family of stopping times defined on $(\Omega, \mathscr{F}, \mathfrak{F}, \mathsf{P})$ and subject to the convention $M_{0-} \coloneqq 0$, for all $M \in \mathcal{M}_{\text{loc}}$. Then BMO becomes a Banach space, when endowed with the norm $\|\cdot\|_{\text{BMO}}$, defined by

$$\|M\|_{\rm BMO} \coloneqq \sup_{\tau \in \mathfrak{S}} \sqrt{\frac{\mathsf{E}\big((M_{\infty} - M_{\tau-})^2\big)}{\mathsf{P}(\tau < \infty)}},$$

for all $M \in BMO$. It follows that $(\mathscr{H}^1)^* \simeq BMO$ (see e.g Protter 2005, Theorem IV.55).¹

Now, suppose $M \in \mathscr{H}^1$, in which case the Burkholder-Davis-Gundy inequalities (see e.g Protter 2005, Theorem IV.48) imply that $\mathsf{E}(\sup_{t\geq 0} |M_t|) < \infty$. An application of the dominated convergence theorem then gives $M \in \mathscr{M}$. This establishes that $\mathscr{H}^1 \subseteq \mathscr{M}$.

Date: October 19, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary: 60G44.

¹This result is the probability-theoretic analogue of the classical H^1 -BMO duality, due to Fefferman and Stein (1972).

However, the reverse inclusion does not hold. We demonstrate this fact below, by providing a recipe for constructing non-negative uniformly integrable martingales in $\mathcal{M} \setminus \mathcal{H}^1$.

2. Construction of Processes in $\mathscr{M} \setminus \mathscr{H}^1$

Given a local martingale $M \in \mathscr{M}_{loc}$, observe that

$$\mathsf{E}\left(\sup_{t\geq 0}|M_t|\right) = \int_0^\infty \mathsf{P}\left(\sup_{t\geq 0}|M_t| > u\right) \mathrm{d}u$$

and

$$\sum_{n=1}^{\infty} \mathsf{P}\bigg(\sup_{t\geq 0} |M_t| > n\bigg) \leq \int_0^{\infty} \mathsf{P}\bigg(\sup_{t\geq 0} |M_t| > u\bigg) \,\mathrm{d}u \leq 1 + \sum_{n=1}^{\infty} \mathsf{P}\bigg(\sup_{t\geq 0} |M_t| > n\bigg).$$

Since $M \in \mathscr{H}^1$ if and only if $\mathsf{E}(\sup_{t\geq 0} |M_t|) < \infty$, by virtue of the Burkholder-Davis-Gundy inequalities, it follows that $M \in \mathscr{H}^1$ if and only if

$$\sum_{n=1}^{\infty} \mathsf{P}\left(\sup_{t\geq 0} |M_t| > n\right) < \infty.$$
(2.1)

This condition plays a key role in our construction.

Fix a non-negative local martingale $M \in \mathscr{M}_{loc} \setminus \mathscr{M}$ that is not a uniformly integrable martingale, and define the non-decreasing sequence $(c_n)_{n \in \mathbb{N}} \subset (1, \infty)$, by setting

$$c_n \coloneqq \ln\left(e + \sum_{k=1}^n \mathsf{P}\left(\sup_{t \ge 0} M_t > k\right)\right),\tag{2.2}$$

for each $n \in \mathbb{N}$. Since $M \notin \mathscr{H}^1$, it follows that $\lim_{n\uparrow\infty} c_n = \infty$. Next, suppose that $(\Omega, \mathscr{F}, \mathsf{P})$ accommodates a discrete \mathscr{F}_0 -measurable random variable $Y \in \mathbb{N}$ that is independent of M, and whose distribution satisfies $\mathsf{P}(Y > n) = \frac{1}{c_n}$, for each $n \in \mathbb{N}$, and let

$$\sigma \coloneqq \inf\{t \ge 0 \mid M_t > Y\}$$
(2.3)

denote the first time M exceeds Y. It follows that

$$\mathsf{P}\left(\sup_{t\geq 0} M_t^{\sigma} > n\right) \ge \mathsf{P}\left(\sup_{t\geq 0} M_t > n\right) \mathsf{P}(Y > n) = \frac{1}{c_n} \mathsf{P}\left(\sup_{t\geq 0} M_t > n\right),$$

for each $n \in \mathbb{N}$. Consequently,

$$\sum_{n=1}^{\infty} \mathsf{P}\left(\sup_{t\geq 0} M_t^{\sigma} > n\right) \geq \lim_{m\uparrow\infty} \frac{1}{c_m} \sum_{n=1}^m \mathsf{P}\left(\sup_{t\geq 0} M_t > n\right) = \lim_{m\uparrow\infty} \frac{\mathrm{e}^{c_m} - \mathrm{e}}{c_m} = \infty,$$

since $(c_n)_{n \in \mathbb{N}}$ is non-decreasing and $\lim_{n \uparrow \infty} c_n = \infty$. This implies that $M^{\sigma} \notin \mathscr{H}^1$. On the other hand, the almost sure limit $M_{\infty}^{\sigma} \coloneqq M_{\infty-}^{\sigma} \in \mathbb{R}_+$ exists, since M^{σ} is a nonnegative local martingale, and hence also a non-negative supermartingale. Moreover,

$$\begin{split} \mathsf{E}(M_{\infty}^{\sigma}) &= \sum_{n=1}^{\infty} \mathsf{E}(M_{\infty}^{\sigma} \mid Y = n) \mathsf{P}(Y = n) = \sum_{n=1}^{\infty} \mathsf{E}(M_{\infty}^{\tau_n} \mid Y = n) \mathsf{P}(Y = n) \\ &= \sum_{n=1}^{\infty} \mathsf{E}(M_{\infty}^{\tau_n}) \mathsf{P}(Y = n) = \sum_{n=1}^{\infty} \mathsf{E}(M_0) \mathsf{P}(Y = n) = \mathsf{E}(M_0^{\sigma}), \end{split}$$

where

$$\tau_n \coloneqq \inf\{t \ge 0 \mid M_t > n\}$$

for each $n \in \mathbb{N}$. Here, the penultimate equality follows from the fact that $M^{\tau_n} \in \mathcal{M}$, for each $n \in \mathbb{N}$. Consequently, $M^{\sigma} \in \mathcal{M}$.

Example 2.1. Consider a non-negative local martingale $M \in \mathscr{M}_{loc}$ that belongs to Class (\mathcal{C}_0), according to the terminology of Nikeghbali and Yor (2006), and suppose that $M_0 = 1$. In that case, M is a strictly positive local martingale without any positive jumps, for which $M_{\infty} \coloneqq M_{\infty-} = 0$. The construction above is then applicable, since $\mathsf{E}(M_{\infty}) = 0 < 1 = \mathsf{E}(M_0)$ implies that $M \in \mathscr{M}_{loc} \setminus \mathscr{M}$. Moreover, an application of Doob's maximal identity (see Nikeghbali and Yor 2006, Lemma 2.1) provides the following concrete representation for the non-decreasing sequence $(c_n)_{n \in \mathbb{N}}$, defined by (2.2):

$$c_n = \ln\left(e + \sum_{k=1}^n \frac{1}{k}\right),$$

for each $n \in \mathbb{N}$. It is then straightforward to see that $\lim_{n\uparrow\infty} c_n = \infty$, which is the crucial ingredient for showing that $M^{\sigma} \notin \mathscr{H}^1$, where the stopping time σ is given by (2.3).

Note that the previous construction requires \mathscr{F}_0 to be sufficiently large to admit an \mathscr{F}_0 -measurable random variable Y, independent of M and such that $\mathsf{P}(Y > n)$ can be defined appropriately, for each $n \in \mathbb{N}$. Example 2.2 below demonstrates that the construction above does always not work without this requirement. That is to say, given a non-negative local martingale $M \in \mathscr{M}_{\mathrm{loc}} \setminus \mathscr{M}$, there may be no stopping time $\tau \in \mathfrak{S}$, such that $M^{\tau} \in \mathscr{M} \setminus \mathscr{H}^1$.

Example 2.2. Let $(\theta_n)_{n \in \mathbb{N}}$ be a sequence of independent and identically distributed random variables satisfying $\mathsf{P}(\theta_1 = 0) = \mathsf{P}(\theta_1 = 1) = 1/2$. Define the process $M = (M_t)_{t \geq 0}$, by setting $M_t \coloneqq 2^{[t]} \prod_{i=1}^{[t]} \theta_i$, where $[\cdot]$ are the Gauss brackets. Note that M is a martingale under its own filtration $\mathfrak{F}^M = (\mathscr{F}^M_t)_{t \geq 0}$. However, it is not uniformly integrable, since $M_{\infty} = 0$. Consequently, $M \in \mathscr{M}_{\text{loc}} \setminus \mathscr{M}$. Note that $\mathscr{F}^M_t = \sigma(\theta_1, \theta_1 \theta_2, \cdots, \prod_{i=1}^{[t]} \theta_i)$, for all $t \geq 0$. In particular, $\mathscr{F}^M_0 = \{\emptyset, \Omega\}$. We now claim that $M^{\tau} \in (\mathscr{M}_{\text{loc}} \setminus \mathscr{M}) \cup \mathscr{H}^1$, for all \mathfrak{F}^M_0 is enriched. Indeed, fix an arbitrary \mathfrak{F}^M_0 -stopping time τ , and assume that $M^{\tau} \in \mathscr{M}$. We then have to show that $M \in \mathscr{H}^1$. To see this, note that

$$n_* \coloneqq \min\{n \in \mathbb{Z}_+ \mid \mathsf{P}(\tau \le n \text{ and } M_\tau > 0) > 0\} < \infty,$$

otherwise, $M^{\tau} = M \notin \mathcal{M}$, contradicting the assumption. Hence we have

$$\mathsf{P}\bigg(\tau \le n_* \text{ and } \prod_{i=1}^{n_*} \theta_i = 1\bigg) > 0 \quad \text{ and } \quad \{\tau \le n_*\} \cap \left\{\prod_{i=1}^{n_*} \theta_i = 1\right\} \in \mathscr{F}_{n_*}^M.$$

This again implies that $\{\prod_{i=1}^{n_*} \theta_i = 1\} \subset \{\tau \leq n_*\}$, yielding $M^{\tau} \leq 2^{n_*}$, whence $M \in \mathscr{H}^1$.

References

- Fefferman, C. and E. M. Stein (1972). *H*^{*p*} spaces of several variables. *Acta Math.* 129(3–4), 137–193.
- Nikeghbali, A. and M. Yor (2006). Doob's maximal identity, multiplicative decompositions and enlargements of filtrations. *Illinois J. Math.* 50(4), 791–814.
- Protter, P. E. (2005). Stochastic Integration and Differential Equations (Second ed.). Berlin: Springer.

HARDY HULLEY AND JOHANNES RUF

HARDY HULLEY, FINANCE DEPARTMENT, UNIVERSITY OF TECHNOLOGY SYDNEY, P.O. BOX 123, BROADWAY, NSW 2007, AUSTRALIA

Email address: hardy.hulley@uts.edu.au

JOHANNES RUF, DEPARTMENT OF MATHEMATICS, LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE, HOUGHTON STREET, LONDON WC2A 2AE, UNITED KINGDOM

Email address: j.ruf@lse.ac.uk