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Abstract. The space of H 1 martingales is interesting because of its duality with the
space of BMO martingales. It is straightforward to show that every H 1 martingale is a
uniformly integrable martingale. However, the converse is not true. That is to say, some
uniformly integrable martingales are not H 1 martingales. This brief note provides a
template for systematically constructing such processes.

1. Introduction

Let (Ω,F ,F, P) be a filtered probability space, whose filtration F = (Ft)t≥0 is right-
continuous. By assumption, all processes are defined on (Ω,F ,F, P) and have càdlàg
sample paths. The families of local martingales and uniformly integrable martingales
are denoted by Mloc and M , respectively. Given p ≥ 1, let H p be the family of local
martingales M ∈ Mloc, for which E([M ]p/2∞ ) < ∞. Then H p forms a Banach space,
when endowed with the norm  · p, defined by

Mp :=
Å

E
Ä
[M ]

p/2
∞
äã1/p

,

for all M ∈ H p. Let H p
loc denote the family of local martingales that are locally in H p.

The space H 1 has several interesting features. For example, H 1 contains H 2

as well as all local martingales with integrable variation (see e.g Protter 2005, The-
orem IV.49). It can also be shown that H 2 and the family of bounded (uniformly
integrable) martingales are both dense in H 1 (see e.g Protter 2005, Theorem IV.50).
In addition, Mloc ⊆ H 1

loc (see e.g Protter 2005, Theorem IV.51). However, the most
significant result is the duality between H 1 and the space of BMO martingales. In
detail, let

BMO :=
¶
M ∈ H 2 | E

Ä
(M∞ −Mτ−)

2
ä
≤ c2, for all τ ∈ S and some c ∈ R+

©
,

where S denotes the family of stopping times defined on (Ω,F ,F, P) and subject to the
convention M0− := 0, for all M ∈ Mloc. Then BMO becomes a Banach space, when
endowed with the norm  · BMO, defined by

MBMO := sup
τ∈S

Ã
E
Ä
(M∞ −Mτ−)2

ä

P(τ < ∞)
,

for all M ∈ BMO. It follows that (H 1)∗ ≃ BMO (see e.g Protter 2005, Theorem IV.55).1

Now, suppose M ∈ H 1, in which case the Burkholder-Davis-Gundy inequalities (see
e.g Protter 2005, Theorem IV.48) imply that E

Ä
supt≥0 |Mt|

ä
< ∞. An application of the

dominated convergence theorem then gives M ∈ M . This establishes that H 1 ⊆ M .
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1This result is the probability-theoretic analogue of the classical H1–BMO duality, due to Fefferman and
Stein (1972).
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However, the reverse inclusion does not hold. We demonstrate this fact below, by
providing a recipe for constructing non-negative uniformly integrable martingales in
M \ H 1.

2. Construction of Processes in M \ H 1

Given a local martingale M ∈ Mloc, observe that

E

Ç
sup
t≥0

|Mt|
å
=

 ∞

0
P

Ç
sup
t≥0

|Mt| > u

å
du

and
∞

n=1

P

Ç
sup
t≥0

|Mt| > n

å
≤

 ∞

0
P

Ç
sup
t≥0

|Mt| > u

å
du ≤ 1 +

∞

n=1

P

Ç
sup
t≥0

|Mt| > n

å
.

Since M ∈ H 1 if and only if E(supt≥0 |Mt|) < ∞, by virtue of the Burkholder-Davis-
Gundy inequalities, it follows that M ∈ H 1 if and only if

∞

n=1

P

Ç
sup
t≥0

|Mt| > n

å
< ∞. (2.1)

This condition plays a key role in our construction.
Fix a non-negative local martingale M ∈ Mloc \M that is not a uniformly integrable

martingale, and define the non-decreasing sequence (cn)n∈N ⊂ (1,∞), by setting

cn := ln

Ç
e +

n

k=1

P

Ç
sup
t≥0

Mt > k

åå
, (2.2)

for each n ∈ N. Since M /∈ H 1, it follows that limn↑∞ cn = ∞. Next, suppose that
(Ω,F , P) accommodates a discrete F0-measurable random variable Y ∈ N that is
independent of M , and whose distribution satisfies P(Y > n) = 1/cn, for each n ∈ N,
and let

σ := inf{t ≥ 0 |Mt > Y } (2.3)
denote the first time M exceeds Y . It follows that

P

Ç
sup
t≥0

Mσ
t > n

å
≥ P

Ç
sup
t≥0

Mt > n

å
P(Y > n) =

1

cn
P

Ç
sup
t≥0

Mt > n

å
,

for each n ∈ N. Consequently,
∞

n=1

P

Ç
sup
t≥0

Mσ
t > n

å
≥ lim

m↑∞

1

cm

m

n=1

P

Ç
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t≥0

Mt > n

å
= lim

m↑∞

ecm − e

cm
= ∞,

since (cn)n∈N is non-decreasing and limn↑∞ cn = ∞. This implies that Mσ /∈ H 1. On
the other hand, the almost sure limit Mσ

∞ := Mσ
∞− ∈ R+ exists, since Mσ is a non-

negative local martingale, and hence also a non-negative supermartingale. Moreover,

E(Mσ
∞) =

∞

n=1

E(Mσ
∞ |Y = n)P(Y = n) =

∞

n=1

E(M τn
∞ |Y = n)P(Y = n)

=
∞

n=1

E(M τn
∞ )P(Y = n) =

∞

n=1

E(M0)P(Y = n) = E(Mσ
0 ),

where
τn := inf{t ≥ 0 |Mt > n}
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for each n ∈ N. Here, the penultimate equality follows from the fact that M τn ∈ M , for
each n ∈ N. Consequently, Mσ ∈ M .

Example 2.1. Consider a non-negative local martingale M ∈ Mloc that belongs to
Class (C0), according to the terminology of Nikeghbali and Yor (2006), and suppose
that M0 = 1. In that case, M is a strictly positive local martingale without any positive
jumps, for which M∞ := M∞− = 0. The construction above is then applicable, since
E(M∞) = 0 < 1 = E(M0) implies that M ∈ Mloc \ M . Moreover, an application
of Doob’s maximal identity (see Nikeghbali and Yor 2006, Lemma 2.1) provides the
following concrete representation for the non-decreasing sequence (cn)n∈N, defined by
(2.2):

cn = ln

Ç
e +

n

k=1

1

k

å
,

for each n ∈ N. It is then straightforward to see that limn↑∞ cn = ∞, which is the
crucial ingredient for showing that Mσ /∈ H 1, where the stopping time σ is given by
(2.3).

Note that the previous construction requires F0 to be sufficiently large to admit an
F0-measurable random variable Y , independent of M and such that P(Y > n) can
be defined appropriately, for each n ∈ N. Example 2.2 below demonstrates that the
construction above does always not work without this requirement. That is to say,
given a non-negative local martingale M ∈ Mloc \ M , there may be no stopping time
τ ∈ S, such that M τ ∈ M \ H 1.

Example 2.2. Let (θn)n∈N be a sequence of independent and identically distributed ran-
dom variables satisfying P(θ1 = 0) = P(θ1 = 1) = 1/2. Define the process M = (Mt)t≥0,
by setting Mt := 2[t]

[t]
i=1 θi, where [ · ] are the Gauss brackets. Note that M is a mar-

tingale under its own filtration FM = (FM
t )t≥0. However, it is not uniformly integrable,

since M∞ = 0. Consequently, M ∈ Mloc \M . Note that FM
t = σ(θ1, θ1θ2, · · · ,

[t]
i=1 θi),

for all t ≥ 0. In particular, FM
0 = {∅,Ω}. We now claim that M τ ∈ (Mloc \ M ) ∪ H 1,

for all FM -stopping times τ . This implies that the above construction does not work
unless FM

0 is enriched. Indeed, fix an arbitrary FM -stopping time τ , and assume that
M τ ∈ M . We then have to show that M ∈ H 1. To see this, note that

n∗ := min
¶
n ∈ Z+ | P(τ ≤ n and Mτ > 0) > 0

©
< ∞,

otherwise, M τ = M /∈ M , contradicting the assumption. Hence we have

P

Ç
τ ≤ n∗ and

n∗

i=1

θi = 1

å
> 0 and {τ ≤ n∗} ∩

® n∗

i=1

θi = 1

´
∈ FM

n∗ .

This again implies that {n∗
i=1 θi = 1} ⊂ {τ ≤ n∗}, yielding M τ ≤ 2n∗, whence M ∈ H 1.
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