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Abstract

We analyze the social learning process of a group of individuals
who have limited information about the payoff distributions of each
action. We say that a behavioral rule is first-order monotone (FOM) if
the number of individuals who play actions with first-order stochastic
dominant payoff distributions is expected to increase in any environ-
ment. We provide a characterization of FOM rules. Both Imitate if
Better and Schlag’s (J Econ Theory 78:130-156, 1998) Proportional
Imitation rule are FOM. No FOM rule is dominant in the sense of
having the best performance in every environment.
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1 Introduction

People often learn from their own experiences and by observing others. As
decision makers, we compare the performance of our decisions with the per-
formance of the actions selected by other people. Actions leading to better
results are more likely to be played in the future when the same problem
is faced again. In this paper we find conditions, for this manner of learn-
ing, under which the number of individuals who play the actions with the
best payoff-distribution is expected to increase. We show that this requires
the social learning process to exhibit three simple and intuitively appealing
features. First, the action each individual plays in the next period is either
the action she played in the current period or an action played by another
individual she observed. Second, the higher the payoff provided by an action,
the more likely this action is to be played in the next period. Third, all the
actions are treated in a pairwise symmetric way.

We analyze a finite population of individuals facing the same multi-armed
bandit repeatedly. The information context we analyze is the one introduced
by Schlag [15]: every period each member of the population (she) has to
choose one action out of a fixed set that is common to the entire population.
The decision makers do not know the payoff distributions of these actions; the
only information available to each of them is the action that she played last
period, the action played by some other member of the population (he), and
the corresponding payoffs. This information determines the probability with
which the individual will play each action in the next period. The function
mapping the available information to the probability of choosing each action
is what we call a behavioral rule, or, simply, the rule.

We study how the behavioral rule used by the individuals determines
whether a greater fraction of the population will, in the future, choose actions
that are more likely to give higher payoffs. A behavioral rule is said to be
first-order monotone (FOM) if the fraction of the population who plays the
actions whose distributions are first-order stochastically dominant is expected
to increase. This is required for every possible set of probability distributions
associated to the different actions.

In economics, an important role for learning and evolution theory is pro-
viding an analytical framework to asses when experience will lead individuals
to behave as rational agents (for example, see the discussion in Börgers [4]).
This theory should illuminate our understanding of when it is plausible that
simple and natural learning processes may lead decision makers to ratio-
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nal decisions in complex environments. In this paper, we derive the precise
characteristics that a social learning process has to satisfy in order to lead
the population to choose the actions which fully informed rational agents
would choose. Consistency of decisions with the order defined by first-order
stochastic dominance may be regarded as one of the most elemental charac-
teristics of rational choice. Our results reveal that very simple and rather
natural behavioral rules may display this property. In this sense the results
implied by the characterization of FOM rules suggest that, indeed, we could
have posed the question in the opposite direction. In other words, we could
have asked how simple behavioral rules could be characterized in terms of
the dynamics of the fraction of the population who play first-order stochastic
dominant actions. The characterization we provide below reveals that the
set of FOM rules can be obtained in either way.

In multi-armed bandit problems as the one studied here, payoffs are typ-
ically interpreted as units of money. For example, in Rothschild [14], payoffs
represent the profits of a store trying to price an item in its inventory; and in
the recent experiments of Apesteguia, Huck, and Oechssler [1], payoffs cor-
respond to the profits of oligopolistic firms playing a Cournot game. When
payoffs are interpreted as monetary units, our focus on rules that lead to play
actions with first-order stochastic dominant payoff distributions is consistent
with the developments in the theory of rational choice under risk (expected
utility theory, EUT) with regards to stochastic dominance.1 In EUT, de-
cision makers with increasing Bernoulli utility functions prefer first-order
stochastically dominant distributions. However, they do not always prefer
payoff distributions with the highest expected value. Therefore, we identify
the behavioral rules that lead to decision making consistent with first-order
stochastic dominance. The results reveal that such rules are indeed simple
and intuitive. Alternatively, Schlag [15] introduces and characterizes improv-
ing rules; this is the set of rules for which the average payoff of the population
is expected to increase in every environment. Using Schlag’s [15] characteri-
zation for improving rules and the characterization of FOM rules we provide
here, it is easy to see that every (non-trivial) improving rule is FOM. In EUT,
the class of Bernoulli functions consistent with first-order stochastic domi-
nance contains all the Bernoulli functions that are increasing, not only those
that are linear. Analogously, FOM rules do not need to be linear in payoffs;
this contrasts with the set of improving rules where linearity in payoffs is a

1See, for example, Hanoch and Levy [9].
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necessary condition. In other words, our definition of FOM rules allows for a
wider range of specifications because it is based on the notion of first-order
stochastic dominance and not on the notion of expected values. Besides of
its technical importance, this generalization is of interest in economics, since,
as we will see below, it allows for behavioral rules that play an important
rule in the literature.2

Alternatively, payoffs may be (more generally) interpreted as a numerical
representation of a preference order over outcomes associated to the played
actions. A sufficient condition for this representation is that preferences over
outcomes induce a linear order over this set and that the cardinality of the
set of outcomes is smaller than the cardinality of the set of payoffs in the
analysis.3 Under this interpretation FOM rules are those leading individuals
to choose actions that are more likely to provide preferred outcomes.

After introducing the framework in Section 2, in Section 3 we provide
two characterizations for FOM rules. The first characterization reveals that
a necessary condition for first-order monotonicity is that the behavioral rule
must be imitative. A behavioral rule is called imitative if each individual
plays either the action that she played in the previous period or the action
played by the individual she observed. Furthermore, this characterization
shows that when the payoff distribution of one action strictly first-order
stochastically dominates the payoff distribution of the other, then the ex-
pected net-switch to the first-order dominant action is strictly positive. The
analysis also reveals that this condition requires the behavioral rule to be
impartial. A behavioral rule is called impartial if, when all the distributions
of payoffs associated to the different actions are the same, the proportion of
individuals who choose each action is expected to remain the same.

In the second characterization we describe FOM rules in terms of their
functional form. In particular, besides being imitative, FOM rules can be de-
scribed in terms of what we call the net-switching functions of a behavioral
rule. For each pair of actions a and a′, we define the net-switching function
from a to a′. This is the difference between the probability of playing a′ in

2The concept of first-order monotonicity may also be motivated by evolutionary con-
siderations, however we have not explored formally that possibility in this paper. We also
discuss this in Section 6.

3In other words, if it is possible to define an injective function from the set of outcomes
to the set of payoffs. If a preference order is indifferent over two or more different outcomes,
the set of outcomes can be redefined in such a way that these outcomes are the same in
order to obtain a linear order.
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the next period by an individual who played a in this period and observed
another individual who played a′, and the probability of playing action a in
the next period by an individual who played a′ in this period and observed
another individual who played a, when the payoff obtained from each action
in both cases is the same. The arguments of this function are the payoffs
obtained from playing each action. This characterization reveals that the
net-switching functions are symmetric in the obtained payoffs in the sense
that if the payoff obtained with action a is substituted for the payoff obtained
with action a′ and vice versa, then only the sign of the net-switching function
changes. The magnitude remains the same. From the proof of this result it
is easy to see that this feature is derived from the impartial property. Fur-
thermore we prove that the net-switching function from a to a′ is increasing
in the payoff obtained with action a′. Likewise, and as a consequence of the
symmetry described above, the net-switching function is decreasing in the
payoff obtained with action a. Finally, we show that the net-switching func-
tions are strictly positive if the payoff of the action to which the probability
is being switched is strictly greater than the payoff of the action from which
the probability is being switched. However, the net-switching functions do
not need to be strictly increasing in the payoff of the action that receives the
probability. A technical lemma that is a corner stone for the proof of this
result is relegated to Appendix A. The characterizations of FOM rules that
we provide in Section 3 assume that all the individuals in the population
use the same behavioral rule. Appendix B shows that it is straightforward
to generalize these characterizations to the case of heterogenous behavioral
rules.

In Section 4 we discuss a number of examples in the literature that satisfy
the properties we described above. It is easy to show that the rule Imitate
if Better (IIB) and Schlag’s [15] Proportional Imitation rule are FOM. As
suggested by its name, the rule IIB prescribes switching (with probability
one) to the observed action only if the payoff of that action is higher.4 The
Proportional Imitation rule prescribes switching to the observed action only
if the payoff of that action is higher and with a probability proportional to the
difference in the payoffs. We define formally these rules in the next section.
We also show that no FOM behavioral rule can be said to be dominant in the
sense that for all of them we can find a set of distributions for the payoffs such

4The rule IIB plays an important role in the literature, see for example Ellison and
Fudenberg [8] and Vega-Redondo [20].
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that, in that set, another FOM behavioral rule has a greater expected increase
in the fraction of the population playing a dominant action. However, a rule
may be dominant within a certain class of environments. In particular, we
characterize the class of environments for which the rule IIB is dominant.

In Section 5 we study the dynamics of the choices in large populations.
We show that if decision makers use a FOM rule, then it is very likely that
an arbitrarily large fraction of the population will play a dominant action
after a finite number of periods, provided that some initial experimentation
takes place.

Section 6 discusses and motivates alternative directions for further re-
search. Some of these extensions are analyzed formally in Appendix C and
Appendix D. Appendix C provides the analysis of individually monotone
behavioral rules. These rules are imitative rules such that when the payoff
distribution of one of the actions an individual observes first-order stochas-
tically dominates the payoff distribution of the other, then the expected
probability of playing the dominant action is higher than the expected prob-
ability of playing the other. Appendix D analyzes second-order monotone
(SOM) rules. These rules are the analogous of FOM rules with regards to
second-order stochastic dominance.

Learning in social contexts has received considerable attention. Ellison
and Fudenberg [7], [8] show how simple behavioral rules may lead a popu-
lation to play optimal actions in the long run. Proceeding in the opposite
direction, Schlag [15] and Morales [10] propose and characterize a number of
desirable properties for behavioral rules. Our work moves in this direction
too, but in contrast to theirs, our paper focuses on properties of performance
based on the concept of stochastic dominance rather than on the expected
value of the payoffs. Other information contexts and problems are considered
in Schlag [16], Bala and Goyal [2], Morales [10], and Offerman and Schotter
[11]. Schlag [16] analyzes a model similar to the one analyzed in this paper,
but the decision maker is able to observe the actions and obtained payoffs
of two other individuals of the population, instead of only one. He identi-
fies behavioral rules that lead an infinite population to the expected payoff
maximizing action. Bala and Goyal [2] analyze a model where individuals
can learn from their own experience and their neighbors’ about wether one
of two actions has a better payoff distribution than the other. In their model
individuals use a boundedly (rational) Bayesian rule to update their beliefs
about the payoff distribution of each action. There are only two possible
payoffs, high and low. If one of the actions is more likely to provide the high
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payoff than the other, then, with probability 1, all the individuals converge
to choosing that action after a finite number of periods. In Morales [10]
decision makers observe their actions and obtained payoffs and the action
played by another member of the population and the corresponding payoff.
He identifies the behavioral rules for which the expected payoff of each indi-
vidual is expected to increase in every environment. Agents’ information in
Morales [10] is the same as in the model discussed here, but in his model only
the probabilities of the played and observed actions can be updated. Offer-
man and Schotter [11] study an experiment of endogenous sampling where
the experimental subjects, after observing everyone’s payoff, are allowed to
choose the individuals from whom they will observe the played actions. They
find that experimental subjects choose to observe the actions played by the
individuals who obtained the highest payoffs and then imitate them, even
though in their setup, this leads decision makers to choose actions that are
not optimal in terms of expected payoffs. Finally, similar information set-
tings have been studied in Vega-Redondo [20] and Apesteguia et al. [1], in
the context of Cournot games. In Vega-Redondo’s paper, in every period and
with positive probability, each firm can modify its action. He assumes that in
the next period firms would play any of the actions that obtained the highest
profit in the current period and shows that this leads to Walrasian quantities.
Apesteguia et al. [1] provide some experimental results that show how the
imitation patterns of experimental subjects respond to different information
treatments. An important result in their experiments is that the probability
of switching to observed actions responds to both sign and magnitude of the
difference in payoffs.

2 Framework

We analyze the behavior of a population described as a set of agents W .
For most of our analysis the size of the population is finite, so |W | < ∞. In
every period, each member of the population has to choose an action a ∈ A,
where A is the finite set of actions available to the decision maker. The
chosen action, a, yields a payoff x ∈ [0, 1]; this payoff is a random variable
whose probability measure and distribution are denoted by µa and Fa, re-
spectively. We will refer to the vector of distributions as the environment
and we will denote it by F , i.e. F := (Fa)a∈A. We assume that the payoffs
obtained from different actions are pairwise independent and independent in
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time. The fraction of the population that chooses the action a in the current
period is denoted by pa. In what follows, first-order stochastic dominance is
abbreviated by Fa fosd Fa′ and means that Fa(x) ≤ Fa′(x) for all x ∈ [0, 1];
and strict first-order stochastic dominance, denoted by Fa sfosd Fa′ , means
that Fa fosd Fa′ and Fa(x) < Fa′(x) for at least one element x ∈ [0, 1]. Let
A∗ := {a ∈ A : Fa fosd Fa′ ∀ a′ ∈ A} and for every set S ⊆ A, let p(S) be
the fraction of the population that chooses, in the current period, an action
contained in this set, i.e. p(S) :=

∑
a∈S pa.

Each member of the population is able to observe the action that she
chose in the current period and the payoff she obtains. She is also able to
observe the action chosen in the current period by one of the other mem-
bers of the population and the payoff he obtains. This is all the information
individuals use at the moment of choosing their actions in the next period.
Decisions are assumed to be probabilistic, i.e., we assume that the action
each decision maker chooses in the next period is random. The available in-
formation, however, affects the probability with which each action is chosen.
In particular, we assume that the behavior of each individual in the popula-
tion can be described by the function L : A× [0, 1]×A× [0, 1] → ∆(A). This
function maps each quartet (a, x, a′, y) to a vector L(a, x, a′, y). Here a is the
action chosen by the agent in the current period, x is the payoff she obtains,
a′ is the action chosen by the agent that she observes and y is the payoff he
obtains. All of these variables will determine the vector L(a, x, a′, y) contain-
ing the probabilities of choosing each action in the next period. The element
L(a, x, a′, y)a′′ of L(a, x, a′, y) denotes the probability with which the decision
maker will play action a′′ in the next period. L(a, x, a′, y) must be contained
in ∆(A), which is the set of all probability distributions over A. Accordingly,
the vector-valued function L is called the behavioral rule of the individual.
For notational convenience, we assume that all the individuals in the pop-
ulation use the same rule. However, as we show in Appendix B, it is easy
to generalize the characterization of FOM rules to the case of heterogenous
behavioral rules. Note that if we know the behavioral rule, the action chosen
by the agent and the action chosen by the agent that she is able to observe,
we can compute the expected probability of playing each action in the next
period. Let La′′

a,a′ be the expected probability, before the realization of the
payoffs, of choosing action a′′ tomorrow by a member of the population with
behavioral rule L who played action a and observed another individual who
played action a′, i.e., La′′

a,a′ :=
∫ ∫

L(a, x, a′, y)a′′dFa(x)dFa′(y).
For each member of the population, the individual that she is able to
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observe is determined by a random procedure. Formally, the probability that
the agent c ∈ W observes another agent d ∈ W will be denoted by Pr(c y d);
thus

∑
d∈W\{c} Pr(c y d) = 1 for all c ∈ W . It is assumed that the sampling

process is symmetric, i.e., Pr(c y d) = Pr(d y c) for all c, d ∈ W . Without
this assumption the analysis rapidly becomes more complex. Furthermore,
we assume that Pr(c y d) > 0 for all c, d ∈ W such that c 6= d. As we
will see in the next section, this assumption guarantees that any individual
playing a non-dominant action can learn from any other individual playing a
dominant action with some positive probability, and therefore, it allows the
fraction of the population playing dominant actions to increase in expected
terms.

The expected fraction of the population that will play action a ∈ A in
the next period, given the choices of the population in the current period, is
denoted by p′a. Let s(c) be the action c ∈ W played in the current period. It
is easy to see that p′a can be computed as

p′a =
1

|W |
∑
c∈W

∑
d∈W\{c}

Pr(c y d)La
s(c),s(d).

Likewise, if we denote the expected fraction of the population that will play
an action in A∗ during the next period by p′(A∗), it is easy to see that

p′(A∗) =
∑
a∈A∗

1

|W |
∑
c∈W

∑
d∈W\{c}

Pr(c y d)La
s(c),s(d).

In the next section we characterize the behavioral rules that guarantee
that p′(A∗) > p(A∗) when p(A∗) ∈ (0, 1), in every environment.

We end this section with two examples of behavioral rules that are well
known in the literature and that will be discussed in detail in Section 4.
Our first example is Schlag’s [15] Proportional Imitation rule. This rule
never switches unless the payoff of the sampled action is strictly greater than
the payoff of the action played by the individual. If this is the case, the
probability of switching is y − x. This rule is defined as follows: for all a,
a′ ∈ A let

L(a, x, a′, y)a′ =

{
y − x if y > x

0 if y ≤ x

L(a, x, a′, y)a =

{
1− y + x if y > x

1 if y ≤ x.
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Our second example is a version of the rule IIB. This rule prescribes
switching with probability one when y > x, with probability 1/2 if y = x,
and not to switch otherwise. This rule can be written as

L(a, x, a′, y)a′ =


1 if y > x
1

2
if y = x

0 if y < x

L(a, x, a′, y)a =


0 if y > x
1

2
if y = x

1 if y < x

for all a, a′ ∈ A.
Later on, in Section 4, we use the characterizations we provide in the

next section for FOM behavioral rules to verify that these rules display this
property.

3 First-order monotone behavioral rules

In this section we provide the formal analysis of FOM rules. These behavioral
rules lead a population to increase the number of its members that play a
dominant action.

Definition 1. A rule L is said to be FOM if p′(A∗) ≥ p(A∗), with strict
inequality when p(A∗) ∈ (0, 1), in every environment.

Definition 1 does not impose extra restrictions on the random process
that determines how individuals sample each other. Furthermore, it does
not specify what the proportions of the population playing each action in the
current period are. Therefore p′(A∗) ≥ p(A∗) is required to be satisfied for
any environment, any symmetric sampling procedure where each individual
may observe any of the others with a positive probability, and regardless the
actions that are currently being played by the members of the population.
Furthermore, in expected terms, the fraction of the population playing a
dominant action always increases strictly as long as at least one individual
plays a dominant action and at least one individual does not. By definition,
p(A∗) cannot increase strictly when it is equal to one. The reason why we
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do not impose p(A∗) to increase strictly when p(A∗) = 0 is a little bit more
subtle and we discuss about it with more detail below.

We provide two characterizations for FOM rules. The first characteriza-
tion reveals that these rules need to satisfy a number of restrictions. The
first restriction requires that each member of the population will not choose
in the next period any action that is not either the action she chose or the
one that was chosen by the agent she observed. Schlag [15] calls such rules
imitative.

Definition 2. A rule L is said to be imitative if for all actions a, a′, a′′ ∈ A,
such that a′′ /∈ {a, a′}, we have L(a, x, a′, y)a′′ = 0 for all x, y ∈ [0, 1].

The following preliminary result describes the expected change in the
fraction of the population who plays action a ∈ A for imitative rules.

Lemma 0. If L is imitative, then

p′a − pa =
1

|W |
∑

c∈W, s(c) 6=a

∑
d∈W, s(d)=a

Pr(c y d)(La
s(c),a − L

s(c)
a,s(c)).

The expression above is just the difference between the expected fraction
of the population that will switch from an action a′ ∈ A \ {a} to action
a in the next period and the expected fraction of the population that will
switch from action a to a different action in the next period. The proof of
Lemma 0 follows from straightforward calculations and the assumption that
Pr(c y d) = Pr(d y c) for all c, d ∈ W .

We also found that every FOM behavioral rule is not expected to change
the proportion of the population which chooses each action in all the envi-
ronments where the distributions of payoffs associated with each action are
the same. We call that property impartiality.

Definition 3. We say that a rule is impartial if p′a − pa = 0 for all a ∈ A,
whenever Fa(x) = Fa′(x) for all x ∈ [0, 1] for all a′ ∈ A.

We now present a first characterization of FOM rules. This characteriza-
tion shows that both imitation and impartiality are necessary conditions for
a rule to be FOM.

Lemma 1. A rule L is FOM if and only if it satisfies the following conditions:

(i) L is imitative.
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(ii) Fa′ sfosd Fa ⇒ La′

aa′ − La
a′a > 0, ∀ a, a′ ∈ A for all environments.

Proof. Sufficiency :
First note that (ii) implies that Fa′ fosd Fa ⇒ La′

aa′−La
a′a ≥ 0, ∀ a, a′ ∈ A, for

all environments. To see this suppose that for some a, a′ ∈ A, Fa′ = Fa, but
La′

aa′−La
a′a < 0. For ε ∈ (0, 1) consider the modified environment F̃ such that

for any interval I ⊆ [0, 1), µ̃a′(I) = (1− ε)µa′(I), µ̃a′(1) = µa′(1) + εµa′ [0, 1);
and for any interval I ⊆ (0, 1], µ̃a(I) = (1−ε)µa(I), µ̃a(0) = µa(0)+εµa(0, 1].

In this modified environment F̃a′ sfosd F̃a. Since La′

a,a′ − La
a′,a < 0 in the

original environment, and L̃a′

a,a′−L̃a
a′a can be written as a continuous function

in ε, we obtain that for small enough ε, L̃a′

aa′−L̃a
a′a < 0. This is a contradiction

because F̃a′ sfosd F̃a.
Now, since L is imitative, Lemma 0 applies. Therefore, for all a ∈ A we

have

p′a − pa =
1

|W |
∑

c,d∈W ;s(c) 6=a,s(d)=a

Pr(c y d)
(
La

s(c),a − L
s(c)
a,s(c)

)
.

Because of (ii), and the argument above, for every a ∈ A∗ and c ∈ W,

we have La
s(c),a − L

s(c)
a,s(c) ≥ 0. It follows that p′a − pa ≥ 0 for all a ∈ A∗,

therefore p′(A∗) ≥ p(A∗). Note that when p(A∗) ∈ {0, 1} we have that
p′(A∗) = p(A∗), because L is imitative. Now consider p(A∗) ∈ (0, 1). We
know that p′a′ − pa′ ≥ 0 for all a′ ∈ A∗. Furthermore, by Lemma 0, for all
a′ ∈ A∗, we have p′a′ − pa′ > 0, because p(A \ A∗) > 0 and La′

a,a′ − La
a′,a > 0

for all a ∈ A \ A∗.

Necessity of (i):
Suppose that there are some x, y ∈ [0, 1], a, a′, a′′ ∈ A, a′′ /∈ {a, a′} such
that L(a, x, a′, y)a′′ > 0. Furthermore, suppose pa + pa′ = 1, Fa = Fa′ ,
µa(x) = µa(y) = µa(1) = 1/3, and µa′′′(0) = 1 for all a′′′ ∈ A \ {a, a′}.5 It
follows that A∗ = {a, a′}, therefore p(A∗) = 1. Suppose that there are c,
d ∈ W such that s(c) = a, and s(d) = a′, then p′(A∗) < 1. Thus, L has to
be imitative.

Necessity of (ii):
Suppose that Fa′ sfosd Fa, but La′

aa′ − La
a′a ≤ 0, for some a, a′ ∈ A. Suppose

5If x 6= y = 1, then it means that µa(1) = 2/3 and µa(x) = 1/3; if x = y = 1, then
µa(1) = 1; etc. In what follows we adopt this notation convention.
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that pa + pa′ = 1, pa < 1, pa′ < 1 and that A∗ = {a′}. Since L is imitative,
Lemma 0 yields

p′a′ − pa′ =
1

|W |
∑

c,d∈W ;s(c)=a,s(d)=a′

Pr(c y d)
(
La′

a,a′ − La
a′,a

)
.

Assume that s(c) = a and s(d) = a′ for some c, d ∈ W. Then, we have that
p(A∗) ∈ (0, 1), but La′

aa′ − La
a′a ≤ 0 implies p′(A∗) ≤ p(A∗).

Remark 1. Note that Lemma 1 implies that if Fa(x) = Fa′(x) for all x ∈ [0, 1]
and L is FOM then La′

aa′ − La
a′a = 0. From Lemma 0, this implies that every

FOM rule is impartial.

As revealed by the proof of Lemma 1, the imitative property of FOM rules
follows from the fact that improvement is required in every environment,
regardless of the fraction of the population that is playing each action in
the current period. In particular, if all the members of the population play
an action in A∗, then the expected fraction of the population that plays an
action in A∗ in the next period will be strictly less than one unless all of them,
with probability one, play either the action they played in the current period
or the action played by the other member of the population they observed.
This requires the behavioral rule to be imitative. This condition implies
that when no individual in the population is playing a dominant action the
population is unable to learn to play actions in A∗. For this reason we do not
impose that p′(A∗) > p(A∗) when p(A∗) = 0. Clearly a behavioral rule that
satisfies p′(A∗) > p(A∗) when p(A∗) = 0 and p′(A∗) = p(A∗) when p(A∗) = 1
cannot exist.

The necessity of properties that are similar to our notion of impartiality
has been found in many places in the literature. From Schlag’s [15] results
it follows that, if the average payoff of the population is expected to increase
in every environment, then the behavioral rule of the population must verify
that, in every environment where all the actions have the same expected
payoffs, the expected fraction of the population who plays each action in the
next period is the same as today. Similar results for individual learning have
been found by Börgers, Morales, and Sarin [5] and Oyarzun and Sarin [12].

The next result provides a characterization of FOM behavioral rules in
terms of the shape of L(a, x, a′, y)a′′ , for all a, a′, a′′ ∈ A. In the analysis
below, we will recurrently use the concept of net-switching function from
action a to action a′. We denote this function by gaa′(x, y) and it is defined
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as gaa′(x, y) := L(a, x, a′, y)a′ − L(a′, y, a, x)a. This function measures how
much probability is being shifted from action a to action a′ when two agents
playing a and a′ observe each other.

Proposition 1. A rule L is FOM if and only if it satisfies the following
conditions:

(i) L is imitative.

(ii) For all a, a′ ∈ A, the net-switching functions gaa′(x, y) satisfy

(ii.1) gaa′(x, y) = −gaa′(y, x),∀ x, y ∈ [0, 1].

(ii.2) gaa′(x, y) is non-decreasing in y, for all x ∈ [0, 1].

(ii.3) gaa′(x, y) > 0, ∀ x, y ∈ [0, 1] such that y > x.

Proof. Necessity of (ii.1):
We start by proving that gaa′(x, x) = 0 for all x ∈ [0, 1] and all a, a′ ∈ A.
Consider an arbitrary x ∈ [0, 1] and an environment where µa(x) = µa′(x) =
1. Notice that Fa = Fa′ . Therefore, by Remark 1, La′

aa′−La
a′a = 0. But in this

environment La′

aa′ − La
a′a = gaa′(x, x). It follows that gaa′(x, x) = 0.

Now, for any x, y ∈ [0, 1] and some a, a′ ∈ A, consider an environment
where µa(x) = µa′(x) = µa(y) = µa′(y) = 1/2, and notice that Fa = Fa′ . By
Remark 1,

0 = La′

aa′ − La
a′a

=
1

4
(gaa′(x, y) + gaa′(y, x) + gaa′(x, x) + gaa′(y, y))

=
1

4
(gaa′(x, y) + gaa′(y, x)).

Therefore, gaa′(x, y) = −gaa′(y, x).

Necessity of (ii.2):
Suppose that for some a, a′ ∈ A and x, y′, y ∈ [0, 1] such that y′ > y,
we have that gaa′(x, y′) < gaa′(x, y). Consider an environment such that
µa(x) = µa′(x) = 1− ε, µa(y) = µa′(y

′) = ε, and notice that Fa′ sfosd Fa. It
follows that

0 < La′

aa′ − La
a′a

= (1− ε)εgaa′(x, y′) + (1− ε)εgaa′(y, x) + (1− ε)2gaa′(x, x) + ε2gaa′(y, y′)
= ε[(1− ε){gaa′(x, y′)− gaa′(x, y)}+ εgaa′(y, y′)].
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The last equality holds because of the necessity of (ii.1). The term inside
the brackets {.} is negative. Thus, for small enough ε, the term inside the
brackets [.] is negative, causing a contradiction.

Necessity of (ii.3):
Suppose that y > x and gaa′(x, y) ≤ 0. Consider a, a′ ∈ A such that µa(x) =
µa′(y) = 1. Clearly Fa′ sfosd Fa, but La′

aa′ − La
a′a = gaa′(x, y) ≤ 0, which

violates Condition (ii) of Lemma 1.

Sufficiency :
Sufficiency follows directly from Lemma 3. This lemma and its proof are
provided in Appendix A.

Proposition 1 reveals the properties of the functional form of FOM be-
havioral rules that we described in the introduction. Besides being imitative,
these rules treat every pair of actions in a pairwise symmetric way [Condi-
tion (ii.1)]. Furthermore, net-switching from action a to action a′ must be
a non-decreasing function of the payoff of action a′ [Condition (ii.2)], and
strictly positive if the payoff of a′ is greater than the payoff of a [Condi-
tion (ii.3)]. This result allows us to check, directly from the functional form
of a behavioral rule, whether it is FOM or not. In Section 4 we analyze a
number of behavioral rules from the literature and use Proposition 1 to asses
whether they are FOM.

The following corollary follows directly from Conditions (ii.1) and (ii.2)
in Proposition 1.

Corollary 1. If L is FOM then gaa′(x, y) is non-increasing in x, for all
y ∈ [0, 1].

In our definition of A∗, all the distributions in this set are the same. This
can be slightly generalized. If A can be partitioned in A∗∗ and A\A∗∗ in such
a way that for all actions a ∈ A∗∗ and a′ ∈ A \ A∗∗, we have that Fa sfosd
Fa′ , then the set of rules that satisfy p′(A∗∗) ≥ p(A∗∗), with strict inequality
when p(A∗) ∈ (0, 1), in every environment, is equivalent to the set of FOM
rules.6

6Clearly every rule that satisfies p′(A∗∗) ≥ p(A∗∗), in every environment, with strict
inequality when p(A∗∗) ∈ (0, 1) has to be FOM. The fact that FOM rules satisfy p′(A∗∗) ≥
p(A∗∗) in every environment, with strict inequality when p(A∗∗) ∈ (0, 1), follows directly
from Lemmas 0, 1, and straightforward algebraic manipulations.
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4 Examples

In this section we provide a number of examples of behavioral rules that
satisfy the properties studied above. We also show that no FOM rule can
be said to be dominant in the sense of having the greatest p′(A∗) in every
environment among all the FOM rules. However it is possible to identify
classes of environments in which a given rule may be dominant. In particular
we characterize the environments for which the rule IIB is dominant. We
begin with the analysis of Schlag’s [15] Proportional Imitation rule. We
described this rule formally in Section 2. Straightforward calculations show
that gaa′(x, y) = y − x. It follows that this rule is FOM. Schlag [15] shows
that this rule has a number of interesting properties. For example, it has the
greatest increase in the expected average payoff of the population among all
the improving behavioral rules.

Now we analyze the rule IIB we introduced in Section 2. For this rule

gIIB
aa′ (x, y) =


1 if y > x
0 if y = x
−1 if y < x

for all a, a′ ∈ A.
This rule is FOM, yet, as shown by Schlag [15], IIB is not improving, so

it is not expected to increase the expected average payoff of the population
in every environment. Can we claim that any FOM rule is better than
the others in any sense? Or more important, can we find any rule that is
the “best”? A natural notion to assess the performance of different rules
is based on the expected increase in the number of individuals that play a
dominant action in the next period. Therefore, a rule may be said to be
the best if the expected increase in the fraction of the population that plays
a dominant action in the next period is bigger than for any other rule, in
every environment, regardless the initial state and sampling process. This is
captured in the following definition.

Definition 4. A FOM rule L is dominant if p′L(A∗)−p(A∗) ≥ p′L′(A∗)−p(A∗)
for every FOM rule L′ in every environment.

The next result shows that such a behavioral rule cannot exist.

Proposition 2. FOM dominant rules do not exist.
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Proof. The proof proceeds in two steps. First, we show that if a dominant
rule exists, it has to be the rule Imitate if Better.7 This rule satisfies

gIIB
aa′ (x, y) =


1 if y > x
0 if y = x
−1 if y < x

for all x, y ∈ [0, 1], and a, a′ ∈ A. Consider any other FOM rule L′ such
that g′aa′(x, y) < 1 for some y > x. Consider an environment such that
µa′(y) = µa(x) = 1. Assume pa + pa′ = 1, pa, pa′ ∈ (0, 1), and A∗ = {a′}.
Then,

p′L′(A∗)− p(A∗) = p′a′ − pa′

=
1

|W |
∑

c,d∈W ;s(c)=a,s(d)=a′
Pr(c y d)(L′a′

aa′ − L′a
a′a)

=
1

|W |
∑

c,d∈W ;s(c)=a,s(d)=a′
Pr(c y d)g′aa′(x, y)

<
1

|W |
∑

c,d∈W ;s(c)=a,s(d)=a′
Pr(c y d)

= p′IIB(A∗)− p(A∗).

It follows that if a dominant rule exists, it has to be the rule Imitate if
Better. Now, we prove that this rule is not dominant either. Consider an
environment such that µa′(.05) = µa′(.9) = µa(.05) = µa(.1) = 1/2, and
consider a FOM rule L′ such that

g′aa′(x, y) =


1 if y ≥ 0.8 and x ≤ 0.2
−1 if x ≥ 0.8 and y ≤ 0.2

1
2
(1{y>x} − 1{x>y}) otherwise.

It is easy to compute that for this rule, L
′a′

a,a′ − L′a
a′,a = 3/8, while IIBa′

a,a′ −
IIBa

a′,a = 2/8. As above, assume that pa + pa′ = 1 and A∗ = {a′}. With
similar calculations to those in the first step, we obtain

p′L′(A∗)− p(A∗) > p′IIB(A∗)− p(A∗).

Thus, the rule IIB is not dominant either.

7By IIB rules we mean any behavioral rule with net-switching functions gaa′(x, y) =
gIIB

aa′ (x, y). In particular, L(a, x, a′, x)a′ does not need to be 1/2 as in our earlier example.
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Proposition 2 shows that no FOM rule is dominant. However, the proof
of this result suggests that there are classes of environments within which
a behavioral rule may be dominant. For example, as the first part of that
proof reveals, the rule IIB is dominant within all the environments where the
support of the payoff distribution of each action is a singleton. This result
can be strengthened further as formalized in the following proposition, which
provides a full characterization of the environments for which the rule IIB is
dominant.

Proposition 3. Let Γ be the class of all sets B ⊂ [0, 1]2 which satisfy

(x, y) ∈ B ⇒ (y, x) ∈ B

and for y > x

(x, y) ∈ B ⇒ (x, z) ∈ B and (z, y) ∈ B ∀ z ∈ (x, y).

The set of environments for which the rule IIB is dominant corresponds to
exactly all those environments for which the condition∫ ∫

B

1{y>x}dFa(x)dFa′(y) ≥
∫ ∫

B

1{y<x}dFa(x)dFa′(y)

is verified for all B ∈ Γ, a ∈ A\A∗, and a′ ∈ A∗.

Proof. First, consider an environment which does not satisfy the characteri-
zation, that is, there are actions a ∈ A\A∗ and a′ ∈ A∗ such that, for some
set B ∈ Γ, we have∫ ∫

B

1{y>x}dFa(x)dFa′(y) <

∫ ∫
B

1{y<x}dFa(x)dFa′(y).

Consider the rule L′ with net-switching function g′aa′(x, y) given by

g′aa′(x, y) =

{
1
2
(1{y>x} − 1{x>y}) if (x, y) ∈ B

gIIB
aa′ (x, y) otherwise.

All the other net-switching functions involving any action a′′ ∈ A\{a, a′} (if
any) are the same as for the rule IIB. Using Proposition 1 and the conditions
on B it can be verified that L′ is FOM. Straightforward calculations reveal
that ∫ ∫

g′aa′(x, y)dFa(x)dFa′(y) >

∫ ∫
gIIB

aa′ (x, y)dFa(x)dFa′(y),
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which implies that L′ outperforms IIB.
Now consider any environment which satisfies the hypothesis. Suppose that
there exists another FOM rule L′, with net switching functions g′aa′ , which
outperforms IIB in this environment. This implies that there exists some
ε > 0 such that, for some actions a ∈ A\A∗ and a′ ∈ A∗, we have that∫ ∫

g′aa′(x, y)dFa(x)dFa′(y)−
∫ ∫

gIIB
aa′ (x, y)dFa(x)dFa′(y) > ε. Choose n large

enough so that 1
n

< ε. For k = 1, . . . , n, let

Bk :=

{
(x, y) ∈ [0, 1]2 :

k − 1

n
< g′aa′(x, y) ≤ k

n

}
,

B̃k :=

{
(x, y) ∈ [0, 1]2 : −k − 1

n
> g′aa′(x, y) ≥ −k

n

}
and

g0
aa′ :=

n∑
k=1

k

n
(1Bk − 1B̃k).

Using Proposition 1, g0
aa′ can be shown to be a FOM rule. Since 1

n
< ε,

we also have that |g′aa′(x, y) − g0
aa′(x, y)| < ε for all (x, y) ∈ [0, 1]2, and thus∫ ∫

g0
aa′(x, y)dFa(x)dFa′(y) >

∫ ∫
gIIB

aa′ (x, y)dFa(x)dFa′(y). Now let

g1
aa′ := g0

aa′ +
1

n

(
1∪n−1

k=1Bk − 1∪n−1
k=1 B̃k

)
.

For k = 2, . . . , n− 1, define inductively the functions gk
aa′ as

gk
aa′ := gk−1

aa′ +
1

n

(
1∪n−k

i=1 Bi − 1∪n−k
i=1 B̃i

)
.

It follows that gn−1
aa′ = gIIB

aa′ . Using our assumptions about the environment,
for all i = 1, . . . , n− 1, we have∫ ∫

1∪i
k=1BkdFadFa′ ≥

∫ ∫
1∪i

k=1B̃kdFadFa′

and thus for all k = 1, . . . , n− 1,∫ ∫
gk

aa′(x, y)dFa(x)dFa′(y) ≥
∫ ∫

gk−1
aa′ (x, y)dFa(x)dFa′(y).
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Therefore,∫ ∫
gIIB

aa′ (x, y)dFa(x)dFa′(y) =

∫ ∫
gn−1

aa′ (x, y)dFa(x)dFa′(y)

≥
∫ ∫

g0
aa′(x, y)dFa(x)dFa′(y)

>

∫ ∫
gIIB

aa′ (x, y)dFa(x)dFa′(y),

which is a contradiction.

Intuitively the condition in Proposition 3 guarantees that given that both
payoffs are greater than an arbitrary x and smaller than an arbitrary y, the
probability of obtaining the higher payoff with the dominant action is greater
than the probability of obtaining the higher payoff with the dominated ac-
tion. For environments where this condition is not satisfied, rules which
do not change with probability one when differences in the payoffs are ob-
served can outperform IIB as the example of the second part of the proof
of Proposition 2 shows. It is easy to verify that all the environments where
almost surely the payoffs provided by a dominant action are greater than the
payoffs provided by a non-dominant action are included in the set of environ-
ments characterized above. However when this condition is not verified, the
construction of environments which satisfy the characterization is not triv-
ial. An example of an environment which satisfies the characterization, and
where the supports of dominant and non-dominant actions exhibit consider-
able overlapping, is the following: for all actions a ∈ A\A∗ and a′ ∈ A∗ we
have µa(0.1) = µa(0.5) = µa(0.6) = 1/3 and µa′(0.5) = µa′(0.6) = 1/2. The
discussion above suggests that if individuals have some information about the
environment, then they may use a rule which performs well in such environ-
ment. For example, if the payoffs obtained with each action are not random
and decision makers are aware of this (either by experience with that par-
ticular problem or previous knowledge of this property of the environment),
then they may use the rule IIB. An analogous argument could be applied
to argue that a different rule may be used in a different environment which
satisfies some basic property that allows the individual to identify the rule
which performs the best in such a problem. We discuss this point further in
Section 6.8

8We thank a referee for rising this issue.
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5 Large population dynamics

In this section we analyze the dynamics of the fraction of the population
playing a dominant action in large populations. We provide conditions un-
der which, with a probability arbitrarily close to one, the fraction of the
population that plays a dominant action is arbitrarily close to one after a
finite number of periods. This can be achieved for a large enough population
of individuals who use a FOM rule provided that either a fraction of the pop-
ulation play a dominant action in the first period or some experimentation
takes place, but vanishes as time goes to infinity.

In the rest of this section we will assume that Pr(c y d) = 1/(|W |−1) for
all c, d ∈ W such that c 6= d. We will also assume that the sampling process
is independent.9 We use these assumptions below, when we approximate the
behavior of a finite population by analyzing the dynamics of a population
that is a continuum.

In order to allow for experimentation, in this section we allow behavioral
rules to depend on time. In particular, we consider a population in which
each individual uses a FOM rule, but with some probability experiments any
action with some positive probability. Formally, we define an experimentation
sequence as a sequence {(et

a)a∈A}∞t=0 where et
a ∈ [0, 1] for all a ∈ A and

t = 0, 1, ... and define et :=
∑

a et
a ≤ 1. In every period, each individual uses

a FOM rule L with probability (1− et), and experiments (plays each action
a with probability et

a/e
t) with probability et. The resulting rule is denoted

by L̃t, i.e.,

L̃t(a′, x, a′′, y)a := (1− et)L(a′, x, a′′, y)a + et
a ∀ a ∈ A, t = 0, 1, ...

We call these rules experimentally first-order monotone (EFOM).
The analysis below benefits from studying the dynamical system

pt+1
a =

∑
a′∈A

∑
a′′∈A

pt
a′p

t
a′′

∫ ∫
L̃t(a′, x, a′′, y)adFa′(x)dFa′′(y), ∀a ∈ A, t = 0, 1, ...

with p0
a ∈ [0, 1] given for all a ∈ A and

∑
a∈A p0

a = 1. This system is
called the dynamics of an infinite population because this expression can
be interpreted as the motion equation of the fraction of the population

9Independent sampling means that the joint probability of the events c samples d and
d samples c is given by Pr(c y d) Pr(d y c) for all c, d ∈ W such that c 6= d.
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that plays action a in a population that is a continuum. Here each in-
dividual samples another member of the population according to a uni-
form distribution. For each action a′ ∈ A, the expected fraction of the
population that plays action a′ in this period and a in the next period is
given by pt

a′
∑

a′′∈A pt
a′′

∫ ∫
L̃t(a′, x, a′′, y)adFa′(x)dFa′′(y). Adding across ac-

tions a′ ∈ A, we obtain that the total fraction of the population that will play
action a in the next period, pt+1

a , corresponds to the expression above. Notice

that this system depends on the behavioral rule L̃t used by the individuals
of the population. The fraction of the population that plays an action in
A∗ at time t will be denoted by pt(A∗). In other words, pt(A∗) :=

∑
a∈A∗ pt

a.
Straightforward calculations reveal the following result.

Remark 2. The dynamics of an infinite population associated to an EFOM
behavioral rule L̃t can be simplified to

pt+1
a = [pt

a + pt
a

∑
a′∈A

pt
a′(L

a
a′a − La′

aa′)](1− et) + et
a, ∀ a ∈ A, t = 0, 1, ...

It follows then that, for all t = 0, 1, ..., we have

pt+1(A∗)−pt(A∗) =
∑
a∈A∗

pt
a

∑
a′∈A\A∗

pt
a′(L

a
a′a−La′

aa′)(1−et)+et


∑

a∈A∗
et

a

et
− pt(A∗)

 .

In the rest of this section we assume that et > 0 for some t = 0, 1, 2...,
lim
t→∞

et = 0, and et > 0 implies et
a > 0 for all a ∈ A and t = 0, 1.... This

means that individuals experiment and, furthermore, each action is played
with positive probability when experimentation takes place. Experimenta-
tion rates, however, vanish as time goes to infinity. An example of such
an experimentation can be obtained by setting et

a = 1
|A|t for all a ∈ A and

t = 0, 1, ....
The next result shows that, if the behavioral rule used by the population

is EFOM, then, pt(A∗) converges to one for the dynamics of an infinite pop-
ulation. If a FOM rule is used, the same result may be obtained assuming
that in the first period a fraction of the population plays a dominant action.

Lemma 2. The dynamics of an infinite population of individuals who use
an EFOM rule, or use a FOM rule with p0(A∗) > 0, satisfy lim

t→∞
pt(A∗) = 1.
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Proof. Suppose α := lim sup
t→∞

pt(A∗) < 1 and let p∗ := α + 1−α
2

. Also, define

γ := min
a∈A∗,a′∈A\A∗

{La
a′a − La′

aa′} > 0.

If et > 0 infinitely often then, pt(A∗) > 0 infinitely often. If et > 0 finitely
many times (or never) then pt(A∗) > 0 infinitely often because after the last

period in which et > 0, L̃t becomes a FOM rule and thus pt(A∗) becomes a
monotonely increasing sequence.

Since pt(A∗) > 0 infinitely often, lim
t→∞

et = 0, and p∗ > α, there exists a t∗

such that pt∗(A∗) > 0; and (1− p∗)γ(1− et∗)− et∗ > γ(1−p∗)
2

and pt(A∗) < p∗

for all t ≥ t∗. Then, we obtain

pt∗+1(A∗) > pt∗(A∗) + pt∗(A∗)((1− p∗)γ(1− et)− et)

> pt∗(A∗) +
pt∗(A∗)γ(1− p∗)

2
.

Thus, inductively, we obtain pt∗+n(A∗) > pt∗(A∗) + npt∗(A∗)γ(1 − p∗)/2,
n = 1, 2..., which leads to a contradiction.

Now we prove that lim
t→∞

pt(A∗) = 1. For any ε ∈ (0, 1) let p∗ := 1 − ε
2

and define γ as above. There exists a t∗ such that for all t ≥ t∗ we have
et < min{ ε

4
, (1−p∗)γ

2(1+(1−p∗)γ)
}. Since lim sup

t→∞
pt = 1, there exists t̃ > t∗ such that

pt̃ > p∗. Now observe that for all t > t∗ we have that pt+1 is bounded below
by pt− ε

4
and the inequality pt+1(A∗) > pt(A∗) holds (by the same argument

as above) whenever pt(A∗) ≤ p∗. It follows that pt̃+1 ≥ p∗ or pt̃+1 ∈ (1−ε, p∗),

which implies that pt̃+2 > pt̃+1. In either case we have that pt(A∗) > 1 − ε
for all t ≥ t̃.

In our next result, we use Theorem 3 in Schlag [15] and Lemma 2 to
prove that, with a probability arbitrarily close to one, the fraction of the
population that plays a dominant action is arbitrarily close to one after a
finite number of periods, provided that the population is large enough, and
either (i) decision makers use an EFOM rule, or (ii) at least one individual
in the population plays a dominant action in the initial period and decision
makers use a FOM rule. Let pt,N

a denote the fraction of the population that,
at time t, plays a in a population of size N and let pt,N(A∗) :=

∑
a∈A∗ pt,N

a .
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First, we provide a generalized version of Theorem 3 in Schlag [15].10

Theorem. (Schlag [15]) Assume that all individuals of a population use the

rule L̃t and p0,N
a = p0

a for all a ∈ A. Then, for every ε, δ > 0, T ∈ {1, 2, ...},
and (p0,N

a )a∈A, there exists N0 ∈ {1, 2, ...} such that for any population of size

N > N0, the event {
[∑

a∈A(pT,N
a − pT

a )2
]1/2

> δ} occurs with probability less
than ε.

Proposition 4. If the population uses an EFOM rule, or p0,N(A∗) > 0 and
the population uses a FOM rule, then for all ε, δ > 0, there exist N0, T < ∞
such that for all N > N0, P (1− pT,N(A∗) > δ) < ε.

Proof. By Lemma 2, we know that there exists a natural number T such that
1− pT (A∗) < δ/2. Now, by Theorem 3 in Schlag [15], for this T there exists
N0 such that for all N > N0 we have

P (|pT (A∗)− pT,N(A∗)| > δ/2) < ε.

Then, by the triangle inequality, we obtain that P (1−pT,N(A∗) > δ) < ε.

It is worth noting that the force driving the population to choose a first-
order dominant action is first-order monotonicity. Nevertheless, and since
FOM rules are imitative, initial experimentation plays a key role by allowing
a part of the population to play a dominant action, so that the rest of the
population can imitate it later.11

Finally, we shall point out that the FOM rules L which we use to construct
EFOM rules do not need to be time-homogeneous. The following result
formalizes this.

Remark 3. Consider a population of individuals who use a rule L̃t given by

L̃t(a′, x, a′′, y)a := (1− et)Lt(a′, x, a′′, y)a + et
a ∀ a ∈ A, t = 0, 1, ...

where Lt is a FOM rule for t = 0, 1, ...and {(et
a)a∈A}∞t=0 is an experimentation

sequence which satisfies

∞∑
t=1

(
c(1− et)γt − et

)
= ∞ ∀ c > 0,

10It is straightforward to verify that this theorem generalizes to the case of time depen-
dent rules as the ones we consider in this section.

11We thank an anonymous referee who suggested that we introduce experimentation as
an alternative to just assuming pN,0(A∗) > 0.
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with γt := min
a∈A∗,a′∈A\A∗

{Lta
a′a − Lta′

aa′}, for all environments. Then for all

ε, δ > 0, there exist N0, T < ∞ such that for all N > N0, P (1− pT,N(A∗) >
δ) < ε.12

The condition of this remark is satisfied, for example, if finitely many
rules are used. Intuitively, it means that if the monotone dynamic effect of
the sequence of FOM rules vanishes, it does it slowly enough.

6 Discussion

In this section we consider possible directions for future research. The mo-
tivation for the construction of FOM rules is based on the performance of
these rules in terms of the fraction of the population that is expected to play
a dominant action in the next period. The analysis provided so far has not
considered how the way in which each individual uses the information she
gets helps her improve her own payoffs. Can the construction of FOM rules
be derived from the analysis of individual performance? A first observation
is that FOM rules are imitative. As revealed by the analysis, this feature
follows from fundamental characteristics of the social learning process and
the properties, in terms of social performance, to be obtained: imitation is
required to avoid that a population, already playing dominant actions, ex-
periment non-dominant choices. In the analysis of individual choices, such
an argument does not apply. Each individual must be exposed to go from
dominant to non-dominant choices when learning takes place. As a conse-
quence, when studying improved performance properties at the individual
level, imitation cannot be derived from the analysis as we did in the case
of improved performance at the social level. Therefore, in order to derive
FOM rules from properties related to individual level performance, imitation
must be assumed –not derived. In this sense, an individual level derivation
of FOM rules takes imitative behavior as given, but provides the specific
ways in which imitation has to be implemented in order to satisfy improved

12Note that in order to obtain this result and Proposition 4 we rely on the fact that
lim sup

t→∞
pt(A∗) = 1. In particular, it is not necessary that lim

t→∞
pt(A∗) = 1. We can also

obtain that lim
t→∞

pt(A∗) = 1 under the assumptions of Remark 3 if we additionally assume

that for all c > 0, there exists t∗c such that (c(1− et)γt − et) ≥ 0 for all t > t∗c and all
environments.
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performance at the individual level.13 Formally, we can characterize a family
of imitative rules such that, if the payoff distribution of one of the observed
actions first-order stochastically dominates the distribution associated with
the other observed action, then the expected probability of playing the domi-
nant action is higher than the expected probability of playing the dominated
action. We call such rules individually monotone (IM). The characterization
of these rules reveals that, indeed, they are a refinement of the family of
FOM rules. The formal analysis of IM rules is provided in Appendix C.

A natural extension of the analysis in this paper relates to the concept of
second-order stochastic dominance. When payoffs are monetary, very often
decision makers are concerned about risk. Usually this concern leads them to
refrain from playing actions providing higher expected payoffs when they are
associated with a higher risk. Are there specific features that one can impose
on behavioral rules in order to lead the population to choices consistent with
risk aversion? In order to introduce such concerns, a similar analysis to
the one provided for first-order stochastic dominance and FOM rules can be
developed for second-order stochastic dominance. This analysis reveals the
conditions that need to be imposed on rules so that they lead the population
to make safer choices. Formally, we can characterize a family of rules such
that, in environments where all the actions have the same expected payoffs,
the expected fraction of the population playing in the next period an action
that second-order stochastically dominates all the other actions in the set is
higher than that fraction in the current period. We call such rules second-
order monotone (SOM) and their characterization is provided in Appendix D.
The characterization of SOM rules is analogous to the characterization of
FOM rules, except that the net-switching functions are concave instead of
increasing in the payoff of the action that receives the probability. It follows
that an interesting subset of FOM rules is the one with rules that are both
FOM and SOM at the same time, i.e., those with increasing, concave net-
switching functions. These rules lead to rational choice in the sense of first-
order monotonicity and, at the same time, are consistent with risk-averse
decision making.

As discussed in the introduction, our motivation to study FOM rules was
identifying a set of behavioral rules that lead individuals to choose actions in
a way that is consistent with the decisions of fully informed rational agents.

13Indeed, imitative behavior is sometimes considered an intrinsic characteristic of the
human decision process. For example, see Cubitt and Sugden [6].
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However, one can think about a motivation for FOM rules based on argu-
ments related to evolutionary theory. For example, Schlag’s [15] improving
rules are motivated by their performance under selection pressure. If survival
of behavioral rules depends on their average payoff, then a successful rule
must be able to lead decision towards expected payoff maximizing actions.
A formal analysis of these ideas is provided in Björnerstedt and Schlag [3].
An interesting direction for further research is finding the conditions under
which FOM rules may prevail under selection pressure. More specifically, it
would be interesting to find the specific ways (if any) in which survival must
be determined in order to allow FOM rules to be dominant. The analysis in
Robson [13] and To [19] is also related.

A restrictive feature in our analysis is the assumption that the payoff-
distributions associated to the different actions are the same for all individ-
uals in the population. In many settings one would like to allow for different
payoff distributions for agents with different characteristics. In Ellison and
Fudenberg [7] heterogeneity of the population makes it harder for a social
learning process to lead the population to play the action that provides the
highest expected payoff. Future research could extend the analysis to allow
for this possibility and try to identify rules that lead to (expected) better
decisions in the future in heterogenous environments. Future research could
also identify and characterize properties based on notions analogous to the
ones studied in our paper, but suitable to the information contexts of different
models, for example when two or more other individuals are sampled.

We have shown that no FOM rule performs better than any other FOM
rule in every environment. Yet, it is possible to identify classes of environ-
ments within which a given FOM rule is dominant. In particular we charac-
terized the class of environments for which the rule IIB is dominant within
the FOM rules. Future research could identify other classes of environments
where a given rule is dominant. Another interesting question concerns the
circumstances under which individuals may be able to figure out that the en-
vironment they face belongs to a class within which a given rule is dominant.
For example, individuals may be aware that they face an environment in
which payoffs are not random within each action and therefore they may use
the rule IIB. Alternatively, such knowledge may arise from experience.14 Fu-

14A related work in this direction is Stahl [17], [18]. In these papers, individuals consider
alternative rules to update their behavior and these rules are reinforced according to per-
formance. However, in the information context of those papers, individuals receive much
more feedback than in the model studied here, specially concerning to forgone payoffs.
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ture research could study how, in the limited feedback context of this model,
agents may keep track of the performance of a behavioral rule and eventu-
ally switch to the rule that performs the best in the environment they are
facing. Alternatively, a rule may be selected by evolution as in the work of
Björnerstedt and Schlag [3] discussed above. Future research could also at-
tempt to identify alternative ways in which the probabilities of survival can
be determined so that in a given class of environments the corresponding
dominant rule is selected.

Our concept of FOM rules serves to provide a foundation for a number
of behavioral rules in the literature, including very simple rules such as IIB
and relatively more sophisticated rules such as the Proportional Imitation
rule. We show that among all the FOM rules, none of them outperforms
all the others in every environment. Therefore we do not single out a best
rule. This non-uniqueness parallels non-uniqueness in rational choice. In our
view, a next step in order to bound the set of behavioral rules should be
based on experimental evidence. Future research could test if experimental
subjects use behavioral rules that are FOM and try to find out what are the
specific shapes of the rules they use. The hypothesis of risk-averse imitation
described above may be of interest as well.

A Technical lemma

Lemma 3. Consider a function g : [0, 1]2 → [−1, 1] that satisfies

(i) g(x, y) = −g(y, x), ∀ x, y ∈ [0, 1].

(ii) g(x, y) is non-decreasing in y, for all x ∈ [0, 1].

(iii) g(x, y) > 0, ∀ x, y ∈ [0, 1] such that y > x.

Then, for any two independent random variables X and Y, taking values
in [0, 1] such that Y sfosd X, we have that E(g(X, Y )) > 0.

Proof. The proof proceeds in two steps:

Step 1: We first prove that Y sfosd X implies P (Y > X) > P (Y < X).
Let M := {z ∈ [0, 1] : FX(z) > FY (z)} denote the set of all points in [0, 1]
where the distribution function of X is strictly larger than the distribution
function of Y . M is non-empty since Y sfosd X. We show PX(M) > 0,
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where PX is the measure induced by X. If 0 ∈ M then PX(M) ≥ FX(0) > 0.
So, without loss of generality we will assume 0 /∈ M . Let z̃ ∈ M . Define
z0 := sup{z : z ≤ z̃, FX(z) = FY (z)} ≥ 0. If z0 ∈ M , then lim

z→z0−
FX(z) =

lim
z→z0−

FY (z) because of the definition of z0 and

PX(M) ≥ P (X = z0)
= FX(z0)− lim

z→z0−
FX(z)

= FX(z0)− lim
z→z0−

FY (z)

≥ FX(z0)− FY (z0)
> 0.

If z0 /∈ M , then FX(z) > FY (z) for all z ∈ (z0, z̃] =: N and

PX(M) ≥ PX(N)
= FX(z̃)− FX(z0)
= FX(z̃)− FY (z0)
≥ FX(z̃)− FY (z̃)
> 0.

We define now h(a, b) := 1{b>a} and 4h(a, b) := h(a, b) − h(b, a). For all
a ∈ M , we have the inequality

E(4h(a, Y )) = 1− FY (a)− FY (a−)
> 1− FX(a)− FX(a−)
= E(4h(a, X)).

The inequality holds weakly for a /∈ M. Let X̃
d
= X be a random variable

which is independent from X and Y . Then we get

E(4h(X, Y )) = E(E(4h(X, Y )|X))

> E(E(4h(X, X̃)|X))

= E(4h(X, X̃))
= 0

and therefore, using the definition of4h, we obtain P (Y > X) > P (Y < X).

Step 2: Because of the monotonicity of the probability measure P , there
exists ε > 0 such that P (Y −X > ε) > P (X > Y ). Let D := {(x, y) : x, y ∈
[0, 1], y − x > ε}. Now, we prove that

c := inf{g(x, y) : x, y ∈ D} > 0.
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Let k := inf{n ∈ N : n > 2/ε} and Ii := [0, i−1
k

]×[ i
k
,1] for all i ∈ {2, ..., k−1}.

It is easy to see that D ⊂
⋃k−1

i=2 Ii. Then ci := inf{g(x, y) : x, y ∈ Ii} =
g( i−1

k
, i

k
) > 0 for all i ∈ {2, ..., k − 1} because of the monotonicity of g and

assumption (iii). Then c ≥ min{ci : i ∈ {2, ..., k − 1}} > 0.
Let

g1(x, y) := (g(x, y)− c) · 1{g(x,y)≥c} + (g(x, y) + c) · 1{g(x,y)≤−c},

and

g2(x, y) := c · (1{g(x,y)≥c} − 1{g(x,y)≤−c}) + g(x, y) · 1{−c<g(x,y)<c}.

We have g(x, y) = g1(x, y) + g2(x, y) where g1, g2 satisfy Conditions (i) and
(ii) of the hypothesis. It follows that E(g1(X, Y )) ≥ 0 because

E(g1(X, Y )) =
∫ ∫

g1(x, y)dFY (y)dFX(x)
≥

∫ ∫
g1(x, y)dFX(y)dFX(x)

≥
∫ ∫

g1(x, y)dFY (x)dFX(y)
= −

∫ ∫
g1(y, x)dFY (x)dFX(y)

= −E(g1(X, Y )),

where we have used the independence of X and Y and the fact that g1(x, y)
is non-decreasing in the second argument and non-increasing in the first
argument. On D, we have g2(x, y) = c and on C := {(x, y) : x > y}, we have
g2(x, y) ≥ −c. Thus, we get

E(g2(X, Y )) ≥ c · P (D)− c · P (C) > 0.

Summarized, we have E(g(X, Y )) > 0.

B Heterogeneous behavioral rules

This appendix provides a characterization of first-order monotonicity when
behavioral rules may be different across individuals and each individual may
imitate different observed individuals in different ways.

For each c ∈ W, a behavioral rule is a function L(c) : A × [0, 1] ×W ×
A× [0, 1] → ∆(A). These functions map each tuple (a, x, d, a′, y) to a vector
L(c)(a, x, d, a′, y). Here a is the action chosen by c in the current period,
x is the payoff she obtains, a′ is the action chosen by d (who is observed
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by c) and y is the payoff he obtains. The element L(c)(a, x, d, a′, y)a′′ of
L(c)(a, x, d, a′, y) denotes the probability with which c will play action a′′

in the next period. A vector of behavioral rules L := (L(c))c∈W is called
a behavioral process. Let La′′

a,a′(c, d) be the expected probability, before the
realization of the payoffs, of choosing action a′′ tomorrow by c when she
played action a and observed d, who played action a′, i.e., La′′

a,a′(c, d) :=∫ ∫
L(c)(a, x, d, a′, y)a′′dFa(x)dFa′(y).
The expected fraction of the population that will play action a ∈ A in

the next period, p′a, can be computed as

p′a =
1

|W |
∑
c∈W

∑
d∈W\{c}

Pr(c y d)La
s(c),s(d)(c, d).

Likewise, p′(A∗) is given by

p′(A∗) =
∑
a∈A∗

1

|W |
∑
c∈W

∑
d∈W\{c}

Pr(c y d)La
s(c),s(d)(c, d).

The concept of imitative behavioral rules generalizes in the obvious way
to the case of heterogenous behavioral rules. In the same way, the concept of
impartial and FOM behavioral rules generalizes to the concept of impartial
and FOM processes. Now we proceed to characterize FOM processes.

Lemma 0*. If L(c) is imitative for all c ∈ W , then

p′a − pa =
1

|W |
∑

c∈W, s(c) 6=a

∑
d∈W, s(d)=a

Pr(c y d)(La
s(c),a(c, d)− L

s(c)
a,s(c)(d, c)).

Lemma 1*. An imitation process L is FOM if and only if it satisfies the
following conditions:

(i) L(c) is imitative for all c ∈ W .

(ii) Fa′ fosd Fa ⇒ La′

aa′(c, d)− La
a′a(d, c) ≥ 0, ∀ a, a′ ∈ A, c, d ∈ W, for all

environments.

(iii) For all a, a′ ∈ A, Fa′ sfosd Fa ⇒ La′

aa′(c, d) − La
a′a(d, c) > 0, for some

c ∈ V and d ∈ W \ V, for all V ⊂ W such that V is not empty and
V 6= W, in every environment.
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Proof. Sufficiency :
Since L(c) is imitative for all c ∈ W , Lemma 0* applies. Therefore, for

all a ∈ A we have

p′a − pa =
1

|W |
∑

c,d∈W ;s(c) 6=a,s(d)=a

Pr(c y d)(La
s(c),a(c, d)− L

s(c)
a,s(c)(d, c)).

Now, because of (ii), for every a ∈ A∗ and c ∈ W, we have La
s(c),a(c, d) −

L
s(c)
a,s(c)(d, c) ≥ 0. It follows that p′a− pa ≥ 0 for all a ∈ A∗, therefore p′(A∗) ≥

p(A∗). Now consider p(A∗) ∈ (0, 1). We know that p′a′−pa′ ≥ 0 for all a′ ∈ A∗.
Now, let V be the set of individuals who play an action in A \ A∗, therefore
La′

a,a′(c, d)−La
a′,a(d, c) > 0 for some c, d ∈ W such that s(c) = a ∈ A\A∗ and

s(d) = a′ ∈ A∗. Then, by Lemma 0*, for some a′ ∈ A∗, we have p′a′−pa′ > 0.

Necessity of (i):
This proof is identical to the proof of necessity of (i) in Lemma 1.

Necessity of (ii):
Suppose that Fa′ sfosd Fa, but La′

aa′(c, d) − La
a′a(d, c) < 0, for some a,

a′ ∈ A. Suppose that pa + pa′ = 1, A∗ = {a′}, and s(d) = a′ and s(e) = a for
all e ∈ W \ {d}. Since L(c) is imitative for all c ∈ W , Lemma 0* yields

p′a′ − pa′ =
1

|W |
∑

e∈W\{d}

Pr(e y d)(La′

a,a′(e, d)− La
a′,a(d, e)).

Then, if the sampling process is such that Pr(e y d) is small enough for
all e ∈ W \ {c, d} then La′

aa′(c, d) − La
a′a(d, c) < 0 implies that p′a′ − pa′ < 0

and therefore p′(A∗) < p(A∗). If Fa′ = Fa, as in the proof of Lemma 1, the

environment F can be modified and turned into an environment F̃ such that
F̃a′ sfosd F̃a, but still L̃a′

aa′(c, d)− L̃a
a′a(d, c) < 0, so the analysis above applies

in the same way.

Necessity of (iii):
Suppose that there exists a, a′ ∈ A with Fa′ sfosd Fa and A∗ = {a′}.

Suppose further that there exists a non-empty set V ⊂ W, such that V 6= W,
La′

aa′(c, d) − La
a′a(d, c) = 0 for all c ∈ V and d ∈ W \ V. Suppose also that

s(c) = a and s(d) = a′ for all c ∈ V and d ∈ W \ V. Lemma 0* leads to the
result.
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The next result provides a characterization of FOM behavioral processes
in terms of the shape of L(c)(a, x, d, a′, y)a′′ , for all a, a′, a′′ ∈ A. In the
analysis below, we will use the concept of net-switching function from action
a to action a′ for each c, d ∈ W . We denote this function by gaa′(c, x, d, y)
and it is defined as gaa′(c, x, d, y) := L(c)(a, x, d, a′, y)a′ − L(d)(a′, y, c, a, x)a.
This function measures how much probability is being shifted from action a
to action a′ when c and d play a and a′ respectively and observe each other.

Proposition 1*. A behavioral process L is FOM if and only if it satisfies
the following conditions:

(i) L(c) is imitative for all c ∈ W .

(ii) For all a, a′ ∈ A, the net-switching functions gaa′(c, x, d, y) satisfy

(ii.1) gaa′(c, x, d, y) = −gaa′(c, y, d, x), ∀ x, y ∈ [0, 1], for all c ∈ W and
d ∈ W \ {c}.

(ii.2) gaa′(c, x, d, y) is non-decreasing in y, for all x ∈ [0, 1] for all c ∈ W
and d ∈ W \ {c}.

(ii.3) gaa′(c, x, d, y) > 0, ∀ x, y ∈ [0, 1] such that y > x for some c ∈ V
and d ∈ W \ V for all V ⊂ W such that V is not empty and
V 6= W .

Proof. The proof of necessity is identical to the proof of Proposition 1, ex-
cept for the fact that for Condition (ii.2) the strict inequality 0 < La′

aa′ −La
a′a

turns into the weak inequality 0 ≤ La′

aa′(c, d)−La
a′a(d, c). Sufficiency for Con-

dition (iii) of Lemma 1* follows directly from Lemma 3 and sufficiency for
Condition (ii) of Lemma 1* follows from the same argument used to prove
that E(g1(X, Y )) ≥ 0 in Step 2 of the proof of Lemma 3.

Remark 4. The behavioral process associated to a heterogenous population
of individuals who use FOM behavioral rules is not necessarily FOM.

For example, it is easy to check that the behavioral process of a popu-
lation where some individuals use Schlag’s [15] Proportional Imitation rule
and some others use the rule IIB is not FOM, because Condition (ii.1) in
Proposition 1* is not satisfied.
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C Individual monotonicity

This appendix provides the formal analysis of individually monotone (IM)
rules that we discussed in Section 6.

Definition 5. An imitative rule is said to be individually monotone if Fa′

sfosd Fa ⇒

(i) La′

aa′ > La
aa′

(ii) La′

a′a > La
a′a.

15

We can characterize individually monotone rules using the mathematical
structures we discovered in the analysis of net-switching functions for FOM
rules. Specifically, we find that the probability of switching, L(a, x, a′, y)a′ ,
must be increasing in the payoff of the sampled action and symmetric with
respect to payoffs, in the sense that, if payoffs of the actions are interchanged,
the probabilities of playing them are also interchanged.

Proposition 5. An imitative rule L is individually monotone if and only if,
for all a, a′ ∈ A, L(a, x, a′, y)a′ satisfies

(i) L(a, x, a′, y)a′ = L(a, y, a′, x)a, ∀ x, y ∈ [0, 1].

(ii) L(a, x, a′, y)a′ is non-decreasing in y, for all x ∈ [0, 1].

(iii) L(a, x, a′, y)a′ > 1/2 for all x, y ∈ [0, 1] such that y > x.

Proof. Suppose Fa′ fosd Fa. We need to verify∫ ∫
L(a, x, a′, y)a′dFa(x)dFa′(y) >

∫ ∫
L(a, x, a′, y)adFa(x)dFa′(y).

But, since L is imitative, this is equivalent to∫ ∫
L(a, x, a′, y)a′dFa(x)dFa′(y) > 1/2.

Let haa′(x, y) := 2L(a, x, a′, y)a′ − 1. Then, the last expression is equivalent
to ∫ ∫

haa′(x, y)dFa(x)dFa′(y) > 0.

15It might seem more attractive to find rules L such that, when Fa′ sfosd Fa, the lower
bound for La′

aa′ is greater than 1/2 for any environment. However, an argument similar to
the one that leads to the first statement in Remark 1 shows that such rules cannot exist.
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The arguments in the proof of Proposition 1 can be used to prove that a
necessary and sufficient condition for the last statement to be true is that
haa′(x, y) satisfies

(i) haa′(x, y) = −haa′(y, x),∀xy ∈ [0, 1].

(ii) haa′(x, y) is non-decreasing in y, for all x ∈ [0, 1].

(iii) haa′(x, y) > 0 for all x, y ∈ [0, 1] such that y > x.

These conditions are equivalent to Conditions (i)–(iii) in the hypothesis.

For example, the rule IIB discussed in Section 4 is IM if and only if
L(a, x, a′, x) = 1/2 for all a, a′ ∈ A and for all x ∈ [0, 1]. The Proportional
Imitation rule is not IM, but the rule given by

L(a, x, a′, y)a =
1

2
(1 + x− y)

L(a, x, a′, y)a′ =
1

2
(1 + y − x)

is both improving and IM.
If every member of the population uses an IM rule, which may be differ-

ent across individuals, the resulting behavioral process is FOM. This result
follows from Propositions 5 and 1* of Appendix B.

Proposition 6. If every individual in the population uses an IM rule, then
the corresponding behavioral process is FOM.

D Second-order monotonicity

This appendix provides the analysis of SOM rules as discussed in Section 6.
These rules may be interpreted as capturing risk averse attitudes of the in-
dividuals. In order to isolate risk attitudes, in this appendix we consider
properties of rules in environments where the expected payoff of the distribu-
tions of different actions is the same. In what follows, second-order stochastic
dominance, abbreviated by Fa sosd Fa′ , means that

∫ x

0
(Fa′(t)−Fa(t))dt ≥ 0

for all x ∈ [0, 1]. We start by defining the set of actions that would be pre-
ferred for risk-averse decision makers, i.e., the set of actions whose payoff
distribution second-order stochastically dominates the distributions of the
other actions in the set. Let A∗ := {a ∈ A : Fa sosd Fa′ ∀ a′ ∈ A}.
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Definition 6. A rule L is said to be SOM if p′(A∗) ≥ p(A∗) in every envi-
ronment where all the actions have the same expected payoff.

Since the structure of the definition of SOM rules is analogous to that of
FOM rules, they can be characterized in an analogous way. This characteri-
zation is provided in Lemma 4 and Proposition 7.16

Lemma 4. A rule L is SOM if and only if it satisfies the following conditions:

(i) L is imitative.

(ii) Fa′ sosd Fa ⇒ La′

aa′ − La
a′a ≥ 0, ∀ a, a′ ∈ A, in every environment.

Proof. Sufficiency is proved analogously to the proof of sufficiency in Lemma 1.

Necessity of (i):
Consider the SOM rule L. Let x, y ∈ [0, 1]; a, a′, a′′ ∈ A, a′′ /∈ {a, a′}.

Suppose L(a, x, a′, y)a′′ > 0. Consider an environment where Fa = Fa′ ,
µa(x) = µa(y) = µa(1/2) = 1/3, and for all a′′′ ∈ A \ {a, a′}, µa′′′(x) =
µa′′′(y) = 1/3 and µa′′′(1/4) = µa′′′(3/4) = 1/6. It follows that A∗ = {a, a′}.
Assume that p(A∗) = 1. Suppose that there are c, d ∈ W such that s(c) = a,
and s(d) = a′, then p′(A∗) < 1. Thus, L has to be imitative.

Necessity of (ii):
Suppose that for some a, a′ ∈ A, Fa′ sosd Fa, but La′

aa′ − La
a′a < 0.

Suppose a′ ∈ A∗. Consider ε ∈ (0, 1). If µa(1) = 1 for all a ∈ A, then

consider the modified environment F̂ such that µ̂a(1) = 1− ε and µ̂a(y) = ε
for some y ∈ [0, 1), for all a ∈ A. If µa(0) = 1 for all a ∈ A, then consider

the modified environment F̂ such that µ̂a(0) = 1 − ε and µ̂a(y) = ε for

some y ∈ (0, 1], for all a ∈ A. Otherwise just let F̂ = F. Denote by π

the expected value of the distributions in the environment F̂ . Now consider
the new modified environment F̃ such that for any interval I ⊆ [0, 1] \ {π},
µ̃a′(I) = (1 − ε)µ̂a′(I), µ̃a′(π) = µ̂a′(π) + εµ̂a′([0, 1] \ {π}); for any interval
I ⊆ (0, 1), µ̃a′′′(I) = (1 − ε)µ̂a′′′(I), µ̃a′′′(1) = (1 − ε)µ̂a′′′(1) + επ, and
µ̃a′′′(0) = (1−ε)µ̂a′′′(0)+ε(1−π) for all a′′′ ∈ A\{a′}. In this new environment

Ã∗ = {a′}. Now, conclude as in Lemma 1.

16As in EUT, the analysis of SOM rules is easier to carry on when properties are stated
in terms of weak inequalities.
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¿From Lemma 4, it is clear that SOM rules are impartial.

Proposition 7. L is SOM if and only if it satisfies the following conditions:

(i) L is imitative.

(ii) For all a, a′ ∈ A, the net-switching function gaa′(x, y) satisfies

(ii.1) gaa′(x, y) = −gaa′(y, x), ∀ x, y ∈ [0, 1].

(ii.2) gaa′(x, y) is concave in y, for all x ∈ [0, 1].

Proof. Sufficiency and the necessity of the Condition (ii.1) can be proven in
the same way as in Proposition 1. Now we prove that gaa′(x, y) is concave
with respect to y for SOM rules. Suppose that for some x, y′, y, λ ∈ [0, 1],
and y′′ := λy + (1− λ)y′ we have that

gaa′(x, y′′) < λgaa′(x, y) + (1− λ)gaa′(x, y′).

Consider an environment where µa(x) = µa′(x) = 1 − ε, µa(y) = λε,
µa(y

′) = ε(1 − λ), µa′(y
′′) = ε, and notice that Fa′ sosd Fa. Lemma 4 and

Condition (ii.1) imply

0 ≤ La′

aa′ − La
a′a

= (1− ε)2gaa′(x, x) + (1− ε)εgaa′(x, y′′) + (1− ε)λεgaa′(y, x)
+(1− ε)ε(1− λ)gaa′(y

′, x) + λε2gaa′(y, y′′) + (1− λ)ε2gaa′(y
′, y′′)

= ε[λεgaa′(y, y′′) + (1− λ)εgaa′(y
′, y′′)

+(1− ε){gaa′(x, y′′)− λgaa′(x, y)− (1− λ)gaa′(x, y′)}].

By our hypothesis, the term inside the brackets {.} is negative. Thus, for
small enough ε, the term inside the brackets [.] is negative, causing a contra-
diction.

The following corollary completes the analogy between the characteriza-
tions of FOM and SOM rules and it follows directly from Condition (ii) of
Proposition 7.

Corollary 2. If L is SOM then gaa′(x, y) is convex in x, for all y ∈ [0, 1].
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