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Abstract

Let X and Y denote two independent squared Bessel processes of dimension m and
n−m, respectively, with n ≥ 2 and m ∈ [0, n), making X+Y a squared Bessel process
of dimension n. For appropriately chosen function s, the process s(X + Y ) is a local
martingale. We study the representation and the dynamics of s(X + Y ), projected on
the filtration generated by X. This projection is a strict supermartingale if, and only if,
m < 2. The finite-variation term in its Doob-Meyer decomposition only charges the
support of the Markov local time of X at zero.

Keywords: Bessel process; Filtering; Local martingale; Local time.
AMS MSC 2010: 60G44; 60G48; 60H10; 60J55; 60J60.
Submitted to ECP on January 3, 2019, final version accepted on June 2, 2019.

Introduction

Optional projections of martingales are martingales; however, optional projections of
local martingales are not necessarily local martingales. If the local martingale is nonneg-
ative, Fatou’s lemma only yields that these optional projections are supermartingales.

Due to their analytic tractability, scaled Bessel processes of dimension two or higher
are ideal to study this phenomenon. A first important step has been taken by [6] and
[10], who consider the three-dimensional Bessel process, namely the modulus of a three-
dimensional Brownian motion started away from zero, in the filtration generated by its
components. The reciprocal of the three-dimensional Bessel process is a local martingale;
in [6] and [10], it is observed that its optional projection becomes a strict supermartingale
when projecting on the first component of the three-dimensional Brownian motion.
However, when projecting on the first two components, the optional projection preserves
the local martingale property.

In this article, we investigate these surprising observations further by providing a
systematic study of optional projections of scaled Bessel processes of any dimension
greater than or equal to two. The arguments here are mostly analytic; an alternative
approach, involving more probabilistic quantities such as the Laplace transform of the
inverse Markov local time of the observed component, can be found in the extended
arXiv version [8].

We need to point out the deep work of [4] on intertwining two related Markov
processes. In particular, two squared Bessel processes of different dimensions are
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Projections of Scaled Bessel Processes

intertwined by an appropriate use of the expectation operator. As already mentioned
above, in this article, we complement their insights by focusing on the distinction
between strict and non-strict supermartingales.

1 Main Result

Consider a probability space (Ω,G, P), equipped with two independent Brownian
motions BX and BY . Fix n ≥ 2 and m ∈ [0, n) and consider the two stochastic differential
equations

Xt = 1 +mt+ 2

∫ t

0

√
XudBXu , t ≥ 0;

Yt = (n−m)t+ 2

∫ t

0

√
YudBYu , t ≥ 0.

These stochastic differential equations have unique strong solutions, called squared
Bessel process of dimension m and n−m, respectively; see [11, Section XI.1]. Lévy’s
characterisation of Brownian motion yields that X + Y is also a squared Bessel process,
now of dimension n. Feller’s test for explosions yields that X+Y is strictly positive since
n ≥ 2. We shall use G· throughout to denote the natural filtration generated by the pair
(X,Y ).

Next, consider the function

s : (0,∞) 3 w 7→

{
w1−n/2, if n > 2;

− log(w), if n = 2.

Itô’s formula yields that s(X + Y ) is a local martingale. Let F· now denote the smallest
right-continuous filtration that makes X adapted. For future reference, note that the
process

∫ ·
0

√
XudBXu is adapted to the filtration F·. We are interested in the F·–optional

projection Z of s(X + Y ), which is the unique F·–optional process Z such that

Zτ = E [s(Xτ + Yτ )|Fτ ]

holds for all bounded F· stopping times τ .

Remark 1.1. In order to ensure that Z above exists, it suffices that E [|s(Xτ + Yτ )|] <∞
holds for a fixed bounded F· stopping time τ . When n > 2, E [|s(Xτ + Yτ )|] < ∞ holds
from the optional sampling theorem because s(X + Y ) is a nonnegative local martingale,
thus a supermartingale, under G·. For n = 2, we claim that E[| log(Jτ )|] < ∞ for all
bounded stopping times τ when J is two-dimensional squared Bessel process with
J0 = 1. Indeed, first note that E[Jτ ] ≤ 1 + 2E[τ ] < ∞ holds from the dynamics of
J , localisation, Fatou’s lemma and monotone convergence. Therefore, E[log+(Jτ )] ≤
E[Jτ ] < ∞ holds. Furthermore, since log J is a local martingale and J0 = 1, we have
E[log−(Jτ∧τm)] = E[log+(Jτ∧τm)] ≤ 1 + 2E[τ ∧ τm] along a localising sequence (τm)m∈N,
giving E[log−(Jτ )] ≤ 1 + 2E[τ ] <∞ by Fatou’s lemma and monotone convergence.

In order to set the stage for the statement of our main result, recall the Gamma
function

(0,∞) 3 k 7→ Γ(k) :=

∫ ∞
0

wk−1e−wdw.

Furthermore, define the stopping time

ρ := inf {t ≥ 0 | Xt = 0} , (1.1)
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which is P–almost surely finite when 0 ≤ m < 2.
In the case 0 < m < 2, note that X allows for Markov local time process Λ at zero,

defined via

Λt := lim
ε↓0

mε−m/2
∫ t

0

1{Xu<ε}du, t ≥ 0. (1.2)

References for existence and properties of Λ are provided in Section 2 below; in particu-
lar, it will also be shown there that Λ coincides with the semimartingale local time at
zero of the scaled process X1−m/2/(2−m).

With the above notation, we now present the main result of this note.

Theorem 1.2. The F·–optional projection Z of s(X +Y ) exists and satisfies Zt = f(t,Xt)

for all t > 0, where

f(t, x) :=
1

Γ ((n−m)/2)
×

{∫∞
0

(x+ 2tw)1−n/2w(n−m)/2−1e−wdw, if n > 2;∫∞
0
− log(x+ 2tw)w−m/2e−wdw, if n = 2

(1.3)

for all t > 0 and x ≥ 0. Furthermore, the following statements hold:

• If m ≥ 2 (thus, n > 2), then

Z = 1 + 2

∫ ·
0

f ′x(u,Xu)
√
XudBXu ; (1.4)

hence Z is a strict local martingale.

• If m ∈ (0, 2), then Z is a strict supermartingale, that is, not a local martingale. With
Λ given by (1.2), the Doob-Meyer decomposition of Z is

Z =

{
1 + 2

∫ ·
0
f ′x(u,Xu)

√
XudBXu −

Γ(m/2)
Γ(n/2−1)

∫ ·
0

(1/2u)
(n−m)/2

dΛu, if n > 2;

2
∫ ·

0
f ′x(u,Xu)

√
XudBXu − Γ (m/2)

∫ ·
0

(1/2u)
1−m/2

dΛu, if n = 2.

(1.5)

• If m = 0, then Z is again a strict supermartingale of the form

Z =

{
1 + 2

∫ ρ∧·
0

f ′x(u,Xu)
√
XudBXu − 2

Γ(n/2−1)

∫ ·
0

(1/2u)
n/2 1{ρ≤u}du, if n > 2;

2
∫ ρ∧·

0
f ′x(u,Xu)

√
XudBXu −

∫ ·
0

(1/u)1{ρ≤u}du, if n = 2.

(1.6)

Section 3 contains a mostly analytic proof of Theorem 1.2. The extended arXiv version
[8] contains an alternative proof, using more probabilistic arguments, for the case n > 2.
This alternative route provides further intuition on the appearance of the local time in
the Doob-Meyer decomposition of Z. (Furthermore, this alternative route helped us
to formulate the precise statements of Theorem 1.2.) Lemma 2.1 in Section 2 below
summarises some results concerning the Markov local time process Λ, appearing in
(1.5).

Remark 1.3. Here is a quick argument why Z is a strict supermartingale if m ∈ [0, 2)

and n > 2. In general, the strict supermartingale property of Z will follow from the
non-constant finite-variation terms in (1.5) and (1.6) in the Doob-Meyer decomposition
of Z. All these assertions shall be argued in the proof of Theorem 1.2. Assume now that
0 ≤ m < 2 < n, and suppose (as we shall see, by way of contradiction) that Z is a local
martingale. Since X and Y are independent and since the function s is decreasing, we
have

Zt ≤ E[s(Yt)] = f(t, 0) <∞, t > 0.

ECP 0 (2019), paper 0.
Page 3/11

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.vVOL-PID
http://ecp.ejpecp.org/


Projections of Scaled Bessel Processes

Since Z is additionally strictly positive (recall that n > 2 is assumed), hence bounded,
it would then follow that (Zt)t>0 is an actual martingale. This would imply by Fatou’s
lemma (note that t = 0 was not covered) that Z is an actual martingale. But this is
impossible, since it would have constant expectation, meaning that s(X + Y ) also has
constant expectation, contradicting the fact that it is a strict local martingale; see (2.3)
below. Therefore, we obtain that Z fails to be a local martingale whenever 0 ≤ m < 2 < n.

Remark 1.4. The special cases n = 3 and m ∈ {1, 2} in Theorem 1.2 are studied in [6]
and [10]. When n = 3 and m = 1, using (1.3) we obtain

Zt =

∫ ∞
0

1

2t
√
Xt + y

exp
(
− y

2t

)
dy

= exp

(
Xt

2t

)∫ ∞
Xt

1

2t
√
w

exp
(
−w

2t

)
dw

=
1√
t

exp

(
Xt

2t

)∫ ∞
√
Xt/t

exp

(
−y

2

2

)
dy,

=

√
2π

t
exp

(
Xt

2t

)(
1− Φ

(√
Xt

t

))
, t ≥ 0,

where Φ denotes the cumulative normal distribution. Recall the discussion after (1.2),
note that Λ in (1.5) is the semimartingale local time of

√
X. In contrast, [6] uses Brownian

local time. These local times differ by a factor of 2; see [11, Exercise VI.1.17]. This
explains the slight difference in the presentation of the finite-variation part in (1.5) from
its representation in [6].

When n = 3 and m = 2, we obtain

Zt =
1√
2πt

∫ ∞
0

1√
y(Xt + y)

exp
(
− y

2t

)
dy

=
1√
2πt

exp

(
Xt

4t

)∫ ∞
1

1√
w2 − 1

exp

(
−wXt

4t

)
dy

=
1√
2πt

exp

(
Xt

4t

)
K0

(
Xt

4t

)
, t ≥ 0,

where

(0,∞) 3 k 7→ K0(k) :=

∫ ∞
1

1√
y2 − 1

e−ykdy

denotes the modified Bessel function of the second kind of order zero.

Remark 1.5. As pointed out by [12], if X and Y are appropriately chosen squared radial
Ornstein-Uhlenbeck processes (of which squared Bessel processes are special cases)
then so is X + Y . While it should be possible to extend the arguments below to the case
that X, Y , and X +Y are squared radial Ornstein-Uhlenbeck processes (such that X +Y

converted to natural scale is a local martingale), the notation would get unnecessarily
complicated. We choose to sacrifice this bit of generality for more transparent formulas.

Remark 1.6. The function f of (1.3) satisfies the partial differential equation

f ′t(t, x) +mf ′x(t, x) + 2xf ′′x,x(t, x) = 0, (t, x) ∈ (0,∞)2. (1.7)

This partial differential equation is derived from the assertion of Theorem 1.2 via an
application of Itô’s formula to the local martingale f(·, Xρ∧·)—see Step 2 of the theorem’s
proof. The required derivatives of f in (1.7) exist due dominated convergence.
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2 Squared Bessel Processes and Their Markov Local Time

We keep all notation from Section 1, and discuss here some useful properties of
squared Bessel processes and their Markov local time.

2.1 Facts concerning squared Bessel processes

According to [11, Corollary XI.1.4], the process Y has a density (with respect to
Lebesgue measure), given by

P[Yt ∈ dy] =
1

Γ ((n−m) /2) (2t)(n−m)/2
y(n−m)/2−1 exp

(
− y

2t

)
dy, t > 0, y ≥ 0.

(2.1)
By Feller’s test of explosions, for m ≥ 2, the process X is strictly positive. For m ∈ (0, 2),
X visits level zero, but is instantaneously reflected there, i.e.,∫ ·

0

1{Xt=0}dt = 0. (2.2)

For m = 0, the process X is absorbed when it hits zero. For a proof of these facts, see,
for example, [11, Proposition XI.1.5] (but note that semimartingale local time is used
there, while we shall only consider Markov local time—see Remark 2.2 later on). When
m ∈ (0, 2), the process X accrues local time; i.e., with positive probability its Markov
local time at zero is strictly positive. This is a consequence of Lemma 2.1.

Direct computations with the density of X + Y , or [9, Example 1], yield that

s(X + Y ) is a strict local martingale in the filtration G·. (2.3)

Similarly, the process X1−m/2
·∧ρ is a martingale. This yields that the F· stopping time

ρκ := inf

{
t ≥ 0

∣∣∣ Xt ≤
1

κ

}
, (2.4)

where κ > 1, has unbounded support. An alternative justification is provided in [3,
Corollary 1.2].

2.2 Markov local time

The next result discusses properties of local time of X at zero.

Lemma 2.1. Assume that 0 < m < 2. Then the process Λ defined via

Λt := lim
ε↓0

mε−m/2
∫ t

0

1{Xu<ε}du, t ≥ 0.

is a nondecreasing continuous additive functional. Furthermore, we have

1

1−m/2
X1−m/2 =

1

1−m/2
+ 2

∫ ·
0

X(1−m)/2
u 1{Xu>0}dB

X
u + Λ. (2.5)

Remark 2.2. The process Λ of Lemma 2.1 is sometimes called “Markov” local time,
in contrast to “semimartingale” local time, which only exists for semimartingales. For
Markov semimartingales, these two local times may differ; however, as (2.5) shows, here
the Markov local time Λ of X at zero is also the semimartingale local time of the process
X1−m/2/(2−m) at zero. We refer to [7] and [5] for a deeper study of Bessel local time.

Proof of Lemma 2.1. We refer to [2, Section II.2 and Appendix 1.23], where properties
of Λ are discussed, and further references are given.
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The process V := X1−m/2/(2−m) is a diffusion in natural scale; thus a semimartin-
gale; see, for example, [1, Lemma 5.22 ]. The Tanaka formula then yields

V = max(V, 0) = V0 +

∫ ·
0

1{Vu>0}dVu +
1

2
l0 = V0 +

∫ ·
0

1{Xu>0}X
(1−m)/2
u dBXu +

1

2
l0

= V0 +

∫ ·
0

1{Vu>0} ((2−m)Vu)
(1−m)/(2−m)

dBXu +
1

2
l0. (2.6)

Here, (lv)v≥0 denotes the semimartingale local time of V , continuous in time and right-
continuous in the spatial variable v ≥ 0, satisfying the occupations time formula∫ t

0

g(Vu)d[V, V ]u =

∫ ∞
0

g(v)lvt dv, t ≥ 0,

for all Borel–measurable functions g : [0,∞)→ [0,∞); see [11, Section VI.1]. Hence, we
also have∫ t

0

g(Vu)du =

∫ t

0

g(Vu)1{Vu>0}du =

∫ ∞
0

g(v)lvt ((2−m)v)
(2m−2)/(2−m)

dv (2.7)

for all Borel–measurable functions g : [0,∞) → [0,∞) Here, the first equality follows
from the fact that X, and hence V , are Lebesgue–almost everywhere strictly positive, by
(2.2). Now, the continuity properties of (lv)v≥0 and (2.7) yield

l0t = lim
ε↓0

1∫ ε
0

((2−m)v)
(2m−2)/(2−m)

dv

∫ ε

0

lvt ((2−m)v)
(2m−2)/(2−m)

dv

= lim
ε↓0

m ((2−m)ε)
m/(m−2)

∫ t

0

1{Vu<ε}du

= lim
ε↓0

m ((2−m)ε)
m/(m−2)

∫ t

0

1{Xu<((2−m)ε)2/(2−m)}du = lim
ε↓0

mε−m/2
∫ t

0

1{Xu<ε}du

= Λt, t ≥ 0,

where the last equality follows from the definition of Λ. Then, (2.5) follows from (2.6)
and the above equality.

3 A Mostly Analytic Proof of Theorem 1.2

3.1 Three technical lemmas

Before we embark on proving Theorem 1.2, we shall provide some auxiliary analytic
results.

Lemma 3.1. Assume that m ∈ [0, 2) and recall the function f from (1.3). Then, with

ψ(x) :=
1

Γ ((n−m) /2)
×

{∫∞
0

(
1− (w/ (1 + w))

n/2−1
)
w−m/2e−xwdw, if n > 2;∫∞

0
log (1 + 1/w)w−m/2e−xwdw, if n = 2,

(3.1)

for all x ∈ (0,∞), it holds that ψ ∈ C∞((0,∞)), that

f(t, x) = f(t, 0)− x1−m/2

(2t)(n−m)/2
ψ
( x

2t

)
, t > 0, x > 0, (3.2)

and that

lim
x↓0

x1−m/2

(2t)(n−m)/2
ψ
( x

2t

)
= 0, t > 0. (3.3)
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Proof. Let us only consider the case n > 2; the case n = 2 follows in the same manner.
Since

f(t, 2tx) =
1

Γ ((n−m)/2)
(2t)1−n/2

∫ ∞
0

(
w

x+ w

)n/2−1

w−m/2e−wdw,

for all t > 0 and x > 0, we have

(2t)n/2−1 f(t, 0)− f(t, 2tx)

x1−m/2 =
1

Γ ((n−m)/2)

∫ ∞
0

(
1−

(
w

x+ w

)n/2−1
)(w

x

)−m/2
e−w

dw

x

=
1

Γ ((n−m)/2)

∫ ∞
0

(
1−

(
w

1 + w

)n/2−1
)
w−m/2e−xwdw

= ψ(x).

Therefore, substituting x for 2tx, we obtain (3.2). Finally, (3.3) follows from the continuity
of f as seen easily in (1.3).

Lemma 3.2. Assume that m ∈ [0, 2), and recall the function ψ from (3.1). Define the
function

(0,∞) 3 x 7→ p(x) := −x1−m/2ψ′(x).

Then, p is nonnegative and decreasing with 0 < p(0+) < ∞. As a consequence,
supx>0 p(x) <∞.

Proof. We just consider the case n > 2; the case n = 2 follows in the same manner
with the appropriate modifications. To simplify notation we shall consider the function
p0 := Γ((n−m)/2)p. Simple algebra and a change of variables gives

p0(x) =

∫ ∞
0

1

x

(
1−

(
w

1 + w

)n/2−1
)

(xw)1−m/2e−xwd(xw)

=
1

x

∫ ∞
0

(
1−

(
v

x+ v

)n/2−1
)
v1−m/2e−vdv

=
1

x
(L(0)− L(x)), x > 0,

where

L(x) =

∫ ∞
0

(
v

x+ v

)n/2−1

v1−m/2e−vdv, x > 0.

Hence we get

p0(x) = −
∫ 1

0

L′(tx)dt =
(n

2
− 1
)∫ ∞

0

∫ 1

0

1

(tx+ v)
n/2

v(n−m)/2e−vdtdv, x > 0.

Thus, p0 (and hence p) is nonnegative and decreasing with

p0(0+) =
(n

2
− 1
)∫ ∞

0

v−m/2e−vdv =
(n

2
− 1
)

Γ
(

1− m

2

)
.

This concludes the proof.

Lemma 3.3. Assume that m ∈ (0, 2). Then, we have

ψ(0) =

{
Γ(m/2)

(1−m/2)Γ(n/2−1) , if n > 2;
Γ(m/2)
1−m/2 , if n = 2.
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Proof. Again, we only treat the case n > 2, as the case n = 2 can be argued in the same
way. Straightforward computations yield∫ ∞

0

(
1−

(
w

1 + w

)n/2−1
)
w−m/2dw =

(n
2
− 1
)∫ ∞

0

∫ ∞
w

(
vn/2−2

(1 + v)n/2

)
dvw−m/2dw

=
n/2− 1

1−m/2

∫ ∞
0

v(n−m)/2−1

(1 + v)n/2
dv

=
n/2− 1

1−m/2

∫ 1

0

w(n−m)/2−1(1− w)m/2−1dw

=
n/2− 1

1−m/2
Γ ((n−m) /2) Γ (m/2)

Γ (n/2)

=
1

1−m/2
Γ ((n−m) /2) Γ (m/2)

Γ (n/2− 1)
,

where we used the substitution w = v/(1 + v) in the third equality and the identity∫ 1

0

wa−1(1− w)b−1du =
Γ(a)Γ(b)

Γ(a+ b)
, a, b > 0

in the fourth equality, which connects the Beta and Gamma functions. In the last equality
of the long display, we have used the identity Γ(k) = (k − 1)Γ(k − 1), which holds for all
k > 1.

3.2 Proof of Theorem 1.2

We proceed in five steps.

• Step 1: Using the density provided in (2.1), we obtain

f(t, x) = E[s(x+ Yt)], t > 0, x ≥ 0,

where the function f is given in (1.3). Note that the process f(·, X·) is F·–optional. Since
we have already established the existence of the F·-optimal projection Z of s(X + Y ) in
Remark 1.1, it immediately follows that Zt = f(t,Xt) holds for all t ≥ 0.

• Step 2: Consider first the case n > 2, fix some κ > 1, and recall the stopping times from
(2.4). Then s(Xρκ +Y ρκ) is bounded, hence a martingale under G·. Its F·–optional projec-
tion, which is Zρκ , will also be a martingale. By Itô’s formula and the fact that the deriva-
tives of f are continuous and the product Lebesgue⊗P measure of {(t, ω) : (t,Xt(ω)) ∈ U}
is strictly positive whenever U is a nonempty open subset of (0,∞)2 due to the unbounded
support of ρ of (1.1), the partial differential equation in (1.7) holds for all (t, x) ∈ (0,∞)2.

Let us now consider the case n = 2 and fix again some κ > 1. In this case, Itô’s
formula yields

s(X + Y ) = 2

∫ ·
0

1√
Xu + Yu

dWu

for some Brownian motion W . Hence, s(Xρκ + Y ρκ) is a martingale under G·. Now we
may conclude as in the case n > 2 that the partial differential equation in (1.7) holds.

• Step 3: When m ≥ 2, then limκ↑∞ ρκ =∞ holds for the stopping times of (2.4), thanks
to the facts in §2.1. Hence, Z is indeed a local martingale satisfying (1.4) by Itô’s formula
and (1.7). It is, moreover, a strict local martingale since s(X + Y ) is not a martingale
under G·, as noted in (2.3).
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• Step 4: We now focus on the case 0 < m < 2 and argue the finite-variation term
appearing in the Doob-Meyer decomposition of Z in (1.5). To make headway, Lemma 3.1
yields

Zt = f(t,Xt) = f(t, 0)− X
1−m/2
t

(2t)(n−m)/2
ψ

(
Xt

2t

)
, t > 0.

where the function ψ is given in (3.1). Unfortunately, since ψ′(0) = −∞ by Lemma 3.2,
we cannot use the product rule directly. Instead, we shall approximate the function ψ.
For ε > 0, define the function ψε : [0,∞)→ R by ψε(x) = ψ(x) for all x > ε and by

ψε(x) = ψ(ε) + ψ′(ε)(x− ε), x ∈ [0, ε].

Since ψ is nonnegative, decreasing and convex, the same properties transfer to ψε;
furthermore, ψε ≤ ψ.

Next, fix some t0 > 0. We shall first derive the dynamics of Z for t ≥ t0 via approxima-
tion, and then send t0 to zero. Given that ψε is convex and continuously differentiable
on [0,∞), twice continuously differentiable except at ε > 0, and E

[∫∞
0

1{Xt=2εt}dt
]

= 0

holds, it follows that (ψε(Xt/(2t)))t≥t0 is a semimartingale satisfying

ψε

(
Xt

2t

)
= ψε

(
Xt0

2t0

)
+

∫ t

t0

1{Xu>2uε}dψ

(
Xu

2u

)
+ψ′(ε)

∫ t

t0

1{Xu≤2uε}d

(
Xu

2u

)
, t ≥ t0.

(3.4)
Define now the process

Zεt := f(t, 0)− X
1−m/2
t

(2t)(n−m)/2
ψε

(
Xt

2t

)
, t > 0. (3.5)

An application of (3.2) and integration-by-parts, in conjunction with (3.4) and Tanaka’s
formula (see (2.5)), and recalling the partial differential equation (1.7) yield

Zε − Zεt0 = 2

∫ ·
t0

f ′x(u,Xu)
√
Xu1{Xu>2uε}dB

X
u

+

∫ ·
t0

f ′t(u, 0)1{Xu≤2uε}du+
n−m

2

∫ ·
t0

2X
1−m/2
u

(2u)(n−m)/2+1
ψε

(
Xu

2u

)
1{Xu≤2uε}du

− (2−m)

∫ ·
t0

ψε (Xu/(2u))

(2u)(n−m)/2
X(1−m)/2
u 1{0<Xu≤2uε}dB

X
u −

(
1− m

2

)
ψε(0)

∫ ·
t0

dΛu
(2u)(n−m)/2

− ψ′(ε)
∫ ·
t0

X
1−m/2
u

(2u)(n−m)/2
1{Xu≤2uε}d

(
Xu

2u

)
− (2−m)ψ′(ε)

∫ ·
t0

2X
1−m/2
u

(2u)(n−m)/2+1
1{Xu≤2uε}du.

To derive this long display, two cases are considered. Whenever Xu > 2uε, then Zε has
the dynamics of a local martingale, provided in the first line of the long display. For
the second case, namely when Xu ≤ 2uε, we break up the second term on the right
side of (3.5) in three components and apply the Itô product rule. The second line of the
long display provides the contribution of the first term in (3.5) and of the component
involving the power of t. The third line corresponds to the contribution of the power
of X, after using the Tanaka formula in (2.5). The fourth line provides the contribution
of (ψε(Xt/(2t)))t≥t0 , worked out in (3.4). Finally, the last line yields the cross-product
dynamics.

We now let ε go to zero. Then Zεt tends to Zt, for each t > 0. Let us next consider
the right side of the long display. Using (2.2) and the bound ψε ≤ ψ, the dominated
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convergence theorem yields that the terms in the second line converge to zero. By a
similar argument and Itô’s isometry, so does the first term of the third line. For the
fourth line, we bound the integrand∣∣∣∣∣ψ′(ε) X

1−m/2
u

(2u)(n−m)/2
1{Xu≤2uε}

∣∣∣∣∣ ≤ −ε1−m/2ψ′(ε)

(2t0)(n−m)/2−1
1{Xu≤2uε} ≤

p(0+)

(2t0)(n−m)/2−1
1{Xu≤2uε}

in the notation of Lemma 3.2. Hence, the term in the fourth line also converges to zero
as ε tends to zero. By exactly the same arguments, so does the term in the last line of
the long display.

We are left with two terms. Consider the integral in the first line. Lemma 3.1 yields
that

f ′x(t, x) = −
(

1− m

2

) x−m/2

(2t)(n−m)/2
ψ
( x

2t

)
− x1−m/2

(2t)(n−m)/2
ψ′
( x

2t

)
, t > 0, x > 0,

so that x(f ′x(t, x))2 behaves like kx1−m/tn−m when x ∼ 0, where k > 0 is an appropriate
constant. However,

∫ ·
0
X1−m
u du is a finite process, because it is (proportional to) the

quadratic variation of the local martingale part in the dynamics of X1−m/2. Therefore, it
follows that the integral in the first line converges to

2

∫ ·
t0

f ′x(u,Xu)
√
Xu1{Xu>0}dB

X
u .

The only remaining term, namely the second term in the third line, converges to

−
(

1− m

2

)
ψ(0)

∫ ·
t0

1

(2u)(n−m)/2
dΛu.

To summarize, we have

Z − Zt0 = 2

∫ ·
t0

f ′x(u,Xu)
√
Xu1{Xu>0}dB

X
u −

(
1− m

2

)
ψ(0)

∫ ·
t0

1

(2u)(n−m)/2
dΛu.

We can now sent t0 to zero, noting that none of the integrals will explode because X is
away from zero on the stochastic interval [0, ρ2], where ρ2 is given as in (2.4) with κ = 2.
It then follows that

Z = 1 + 2

∫ ·
0

f ′x(u,Xu)
√
Xu1{Xu>0}dB

X
u −

(
1− m

2

)
ψ(0)

∫ ·
0

1

(2u)(n−m)/2
dΛu.

In conjunction with Lemma 3.3, this then yields (1.5).

• Step 5: Finally, for the case m = 0 basic computations with (1.3) yield (1.6). Indeed, if
n > 2 we have

f(t, x) =
1

Γ(n/2)

∫ ∞
0

(x+ 2tw)1−n/2wn/2−1e−wdw, t > 0, x ≥ 0.

This gives directly

f(t, 0) =
(2t)1−n/2

Γ(n/2)

∫ ∞
0

w1−n/2wn/2−1e−wdw =
(2t)1−n/2

Γ(n/2)
, t > 0.

One then concludes by observing that X gets absorbed when hitting zero; hence

f(t,Xt) = f(t ∧ ρ,Xt∧ρ) + 1{ρ<t}(f(t, 0)− f(ρ, 0)).

The case n = 2 is argued again in exactly the same way.
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