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1. Introduction

E.R. Fernholz established Stochastic Portfolio Theory (SPT) to provide a theoretical tool
for applications in equity markets, and for analysing portfolios with controlled behaviour; see
Fernholz (1999) and Fernholz and Karatzas (2009), for example. SPT studies so called func-
tionally generated portfolios. The value of a functionally generated portfolio relative to the
total market capitalization is merely a function, known as the so called master formula, of the
market weights. This formula does not involve stochastic integration or drifts, which makes the
analysis very easy as the need for estimation is reduced.

One very interesting topic following up this construction is the study of relative arbitrage
opportunities between functionally generated portfolios and the market portfolio. Fernholz
(2002, 1999, 2001) states conditions for such relative arbitrage to exist over sufficiently large
time horizons. To implement this relative arbitrage, trading strategies generated by suitable
portfolio generating functions are required. Karatzas and Ruf (2017) interpret portfolio gen-
erating functions as Lyapunov functions. More precisely, the supermartingale property of the
corresponding wealth processes after an appropriate change of measures is utilised to study the
performance of functionally generated trading strategies. Relative arbitrage over arbitrary time
horizons under appropriate conditions is also studied by Fernholz et al. (2018).

One offspring of portfolio generating functions is a generalised portfolio generating function,
which depends on an additional argument with continuous path and finite variation. This is in-
spired by the fact that in practice, people tend to take historical data, such as past performance
of stocks, or statistical estimates, into consideration when constructing portfolios. Besides, this
generalisation provides additional flexibility in choosing portfolio generating functions. Sec-
tion 3.2 of Fernholz (2002) formulates the concept of time-dependent generating functions, and
presents the master formula under this situation. In the same framework, Strong (2014) shows
an extension of the master formula to portfolios generated by functions that also depend on
the current state of some continuous path process of finite variation. Also based on Fernholz’s
structure, Schied et al. (2018) provide a pathwise version of the relevant master formula. They
also analyze examples where the additional process is chosen to be the moving average of the
market weights. In a recent paper, Karatzas and Kim (2018) generalise the methodology devel-
oped by Karatzas and Ruf (2017) in a pathwise, probability-free setting. They also generalise
portfolio generating functions with path-dependent functionals.

All the above mentioned papers (Fernholz (2002), Strong (2014), Schied et al. (2018), and
Karatzas and Kim (2018)) make assumptions on the smoothness of the portfolio generating
function with respect to both the finite variation process and the market weights. In this paper,
we weaken these assumptions such that the choice for the portfolio generating function is less
restricted. To this end, we use a mollification argument and the Komlós theorem. Then we
study several examples empirically, using data from the S&P 500 index.1

An outline of the paper is as follows. Section 2 specifies the market model and recalls the
definitions of trading strategies and relative arbitrage. Section 3 first gives the definitions of
regular functions and Lyapunov functions, and then presents sufficient conditions for a function
to be regular and Lyapunov, respectively. The appendix presents the proofs of these results.
Section 4 defines additive and multiplicative generation, and the corresponding trading strate-
gies and wealth processes. Section 4 also gives conditions for arbitrage relative to the market
portfolio to exist. Section 5 describes the data involved and the processing method to implement
the empirical analysis. Section 6 contains several examples of portfolio generating functions and
discusses empirical results. Section 7 concludes.

1As the constituent list of the stocks in the S&P 500 index changes over time, we avoid a survivorship bias by
not restricting the analysis to the current stocks in the S&P 500 index. Instead, we reconstruct the historical
constituent list of the S&P 500 index and adjust the portfolios appropriately when the constituent list changes.
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2. Model setup

We fix a filtered probability space (Ω,F(∞),F(·),P), where F(·) is right-continuous and
F(0) = {∅,Ω}, and write

∆d =

{
(x1, · · · , xd)′ ∈ [0, 1]d :

d∑
i=1

xi = 1

}
and ∆d

+ = ∆d ∩ (0, 1)d.

We consider an equity market with d ≥ 2 companies, where each company has always one
share of stock outstanding. We denote the market weights process by µ(·) = (µ1(·), · · · , µd(·))′.
Here, µi(·) is the market weight process of company i computed by dividing the capitalization
of company i by the total capitalization of all d companies in the market, for all i ∈ {1, · · · , d}.
We assume that µ(·) is ∆d-valued with µ(0) ∈ ∆d

+, and that µi(·) is a continuous, non-negative
semimartingale, for all i ∈ {1, · · · , d}.

To define a trading strategy for µ(·), let us consider a process ϑ(·) = (ϑ1(·), · · · , ϑd(·))′ in Rd,
which is predictable and integrable with respect to µ(·). We denote the collection of all such
processes by L(µ).

For such a process ϑ(·) ∈ L(µ), we interpret ϑi(t) as the number of shares in the stock of
company i held at time t ≥ 0, for all i ∈ {1, · · · , d}. Then

V ϑ(·) =
d∑
i=1

ϑi(·)µi(·)

can be interpreted as the wealth process corresponding to ϑ(·).

Definition 1. (Trading strategies). A process ϕ(·) ∈ L(µ) is called a trading strategy if

V ϕ(·)− V ϕ(0) =

∫ ·
0

d∑
i=1

ϕi(t)dµi(t). �

Remark 2. To convert a predictable process ϑ(·) ∈ L(µ) into a trading strategy ϕ(·), we adapt
the measure of the “defect of self-financibility” of ϑ(·), introduced in Section 2 in Karatzas and
Ruf (2017) and defined as

Qϑ(·) = V ϑ(·)− V ϑ(0)−
∫ ·

0

d∑
i=1

ϑi(t)dµi(t). (2.1)

As a result, the process ϕ(·) with components

ϕi(·) = ϑi(·)−Qϑ(·) + C, i ∈ {1, · · · , d}, (2.2)

where C can be any real constant, is a trading strategy for µ(·). �

Below, we shall analyze the performance of certain long-only portfolios, that is, portfolios for
which the trading strategies ϕ(·) of Definition 1 are nonnegative at any time. Especially, we
focus on studying the conditions for the existence of so called relative arbitrage.

Definition 3. (Arbitrage relative to the market). A trading strategy ϕ(·) is said to be relative
arbitrage with respect to the market over a given time horizon [0, T ], for T ≥ 0, if

V ϕ(·) ≥ 0 and V ϕ(0) = 1,

along with

P [V ϕ(T ) ≥ 1] = 1 and P [V ϕ(T ) > 1] > 0. (2.3)

If P[V ϕ(T ) > 1] = 1 holds, we say that the relative arbitrage is strong over [0, T ]. �
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Remark 4. The trading strategy that invests in each asset in proportion to its relative capital-
ization at all times has constant components 1 throughout [0, T ]. This strategy is implemented
in the so-called market portfolio. Hence, Definition 3 makes sense due to the fact that the
wealth process of the market portfolio at any time is given by

V (1,··· ,1)(·) =
d∑
i=1

µi(·) = 1.

Then relative arbitrage exists over a given time horizon [0, T ] when a non-negative wealth
process V ϕ(·) has the same initial wealth as the market portfolio, the probability for V ϕ(T ) to
be greater than the wealth of the market portfolio is strictly positive, and V ϕ(T ) is not lower
than the wealth of the market portfolio. �

In the following sections, we study portfolio generating functions that depend on some Rm-
valued continuous process of finite variation on [0, T ], for T ≥ 0 and some m ∈ N. We use
Λ(·) to denote such a process. This process allows for more flexibility in selecting portfolio
generating functions. To this end, let W be some open subset of Rm × Rd such that

P[(Λ(t), µ(t)) ∈ W, ∀ t ≥ 0] = 1. (2.4)

The following notations are introduced for the ranked market weights, which are studied in
Theorem 11 and Example 12. For a vector x = (x1, · · · , xd)′ ∈ ∆d, denote its corresponding
ranked vector as x = (x(1), · · · , x(d))

′, where

max
i∈{1,··· ,d}

xi = x(1) ≥ x(2) ≥ · · · ≥ x(d−1) ≥ x(d) = min
i∈{1,··· ,d}

xi

are the components of x in descending order. Denote

Wd =
{Ä
x(1), · · · , x(d)

ä′ ∈ ∆d : 1 ≥ x(1) ≥ x(2) ≥ · · · ≥ x(d−1) ≥ x(d) ≥ 0
}

;

then the rank operator R : ∆d → Wd is a mapping such that R(x) = x. Moreover, denote
Wd

+ = Wd ∩ (0, 1)d.
The ranked market weights process µ(·) is given by

µ(·) = R(µ(·)) = (µ(1)(·), · · · , µ(d)(·))′, (2.5)

which is itself a continuous, ∆d-valued semimartingale whenever µ(·) is a continuous, ∆d-valued
semimartingale (see Theorem 2.2 in Banner and Ghomrasni (2008)). At last, let W be some
open subset of Rm × Rd such that

P[(Λ(t),µ(t)) ∈W , ∀ t ≥ 0] = 1. (2.6)

To conclude this section, we introduce several notions that will be used in the following. For a
continuous function F , write F ∈ C∞ if F is infinitely differentiable. If F = F (λ, x), write F ∈
C0,1 if F is differentiable with respect to the second argument and ∂F/∂x is jointly continuous;
write F ∈ C1,2 if F is once differentiable with respect to the first argument, twice differentiable
with respect to the second arguments, and ∂F/∂λ and ∂2F/∂x2 are both jointly continuous. In

addition, write ‖z‖2 =
(∑n

i=1 z
2
i

)1/2
to denote the L2 norm of z = (z1, · · · , zn)′ ∈ Rn.

3. Generalised regular and Lyapunov functions

In this section, we consider two classes of portfolio generating functions, regular and Lyapunov
functions, which are introduced in Karatzas and Ruf (2017). We generalise these notions here
to allow for the additional process Λ(·). To this end, recall the open setW, in which (Λ(·), µ(·))
take values, from (2.4).

Definition 5. (Generalised regular function). A continuous function G :W → R is said to be
generalised regular for Λ(·) and µ(·) if
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(1) there exists a measurable function DG = (D1G, · · · , DdG)′ : W → Rd such that the
process ϑ(·) = (ϑ1(·), · · · ,ϑd(·))′ with components

ϑi(·) = DiG(Λ(·), µ(·)), i ∈ {1, · · · , d}, (3.1)

is in L(µ); and
(2) the continuous, adapted process

ΓG(·) = G(Λ(0), µ(0))−G(Λ(·), µ(·)) +

∫ ·
0

d∑
i=1

ϑi(t)dµi(t) (3.2)

is of finite variation on the interval [0, T ], for all T ≥ 0.

�

Definition 6. (Generalised Lyapunov function). A generalised regular function G : W → R
is said to be a generalised Lyapunov function for Λ(·) and µ(·) if, for some function DG as in
Definition 5, the finite variation process ΓG(·) of (3.2) is non-decreasing. �

A Lyapunov function turns the semimartingale µ together with the finite variation process
Λ into a supermartingale under a related measure; also see Remark 3.4 in Karatzas and Ruf
(2017) for further explanations. In the following, we shall omit the terminology “generalised”
for simplicity.

In the next example, we discuss sufficient conditions for a smooth function to be regular or
Lyapunov.

Example 7. Consider a C1,2 function G : W → R. Setting ϑi(·) = ∂G/∂xi(Λ(·), µ(·)) and
applying Itô’s formula yield that G is regular for Λ(·) and µ(·). Indeed, we get the finite
variation process

ΓG(·) = −
∫ ·

0

m∑
v=1

∂G

∂λv
(Λ(t), µ(t))dΛv(t)−

1

2

d∑
i,j=1

∫ ·
0

∂2G

∂xi∂xj
(Λ(t), µ(t))d [µi, µj ] (t). (3.3)

Moreover, if the process ΓG(·) is non-decreasing, then G is not only a regular function, but
also a Lyapunov function for Λ(·) and µ(·). For instance, this holds if G is non-decreasing in
every dimension with respect to the first argument and Λ(·) is decreasing in every dimension,
and G is concave with respect to the second argument. �

Below we give sufficient conditions for a function G to be regular (Lyapunov). To this end,
recall the open set W from (2.4).

Theorem 8. For a continuous function G :W → R, consider the following conditions.

(ai) On any compact set V ⊂ W, there exists a constant L = L(V) ≥ 0 such that, for all
(λ1, x), (λ2, x) ∈ V,

|G(λ1, x)−G(λ2, x)| ≤ L‖λ1 − λ2‖2.
(aii) G(·, x) is non-increasing, for fixed x, and Λ(·) is non-decreasing in every dimension.
(bi) G is differentiable in the second argument and ∂G/∂x is jointly continuous. Moreover,

on any compact set V ⊂ W, there exists a constant L = L(V) ≥ 0 such that, for all
(λ, x1), (λ, x2) ∈ V,∥∥∥∥∂G∂x (λ, x1)− ∂G

∂x
(λ, x2)

∥∥∥∥
2
≤ L‖x1 − x2‖2.

(bii) G(λ, ·) is concave, for fixed λ.

If one of the conditions (ai) or (aii) holds and one of the conditions (bi) or (bii) holds, G
is a regular function for Λ(·) and µ(·). Moreover, in the case that (aii) and (bii) hold, G is
Lyapunov.
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The proof of Theorem 8 is given in the appendix. A generalised version of Itô’s formula
studied in Krylov (2009) is related but can only be applied in a Markovian setting.

Theorem 8 can be applied to functions not in C1,2, such as in Example 12. Another choice
of a non-C1,2 function G is the Gini function; see Example 6.1 in Karatzas and Ruf (2017) for
details.

Remark 9. Consider the special case where Λ(·) is set to be a constant λ. Then Theorem 8
generalises Theorem 3.7(i) and (ii) in Karatzas and Ruf (2017). If Λ(·) is non-constant, in
contrast to Theorem 3.7 in Karatzas and Ruf (2017), even if G can be extended to a continuous
function concave in the second argument, G may not be Lyapunov. A counterexample is given in
Example 10. Therefore, for the generalised case, Theorem 3.7 in Karatzas and Ruf (2017) cannot
be applied, and instead we have to use modified conditions such as given by Theorem 8. �

Example 10. Assume that µ(·) ∈ ∆d with [µ1, µ1](t) > 0, for all t > 0, and that

Λ(·) = γ
d∑
i=1

[µi, µi] (·),

where γ is a constant.
Define the concave quadratic function

G(λ, x) = λ−
d∑
i=1

x2
i , λ ∈ R, x ∈ ∆d.

Then from (3.3) we have

ΓG(·) = −
∫ ·

0
dΛ(t) +

d∑
i=1

∫ ·
0

d [µi, µi] (t) = (1− γ)
d∑
i=1

[µi, µi] (·).

Observe that ΓG(·) is decreasing for γ > 1; hence G is not a Lyapunov function for Λ(·) and
µ(·), although it is concave in its second argument.

Define now G(λ, x) = −G(λ, x). Then we have ΓG(·) = −ΓG(·). Therefore, if γ > 1 holds,

ΓG(·) is increasing; hence G is Lyapunov although convex in its second argument. �

Recall the ranked market weights process µ(·) defined in (2.5) and the open set W from
(2.6).

Theorem 11. If a function G : W → R is regular for Λ(·) and µ(·) = R(µ(·)), then the
composition G = G ◦R is regular for Λ(·) and µ(·).

To prove Theorem 2, we can apply the same techniques used in the proof of Theorem 3.8 in
Karatzas and Ruf (2017), but now with the generalised form of the function G; see the appendix
for details.

The following example concerns a function G which is not in C1,2.

Example 12. Assume that µ(·) ∈ ∆d
+ and consider the C1,2 function

G(λ,x) = −λ
d1∑
l=1

x(l) log x(l) + 1−
d2∑

l=d1+1

x2
(l), λ ∈ R, x ∈Wd

+,

where d1 and d2 are positive integers with d1 < d2 ≤ d. According to Example 7, G is regular
for Λ(·) and µ(·). In particular, the corresponding measurable function DG as in Definition 5
can be chosen with components

DlG(λ,x) =


−λ log x(l) − λ, if l ∈ {1, · · · , d1}
−2x(l), if l ∈ {d1 + 1, · · · , d2}
0, otherwise

. (3.4)
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In this case, Itô’s lemma yields

G(Λ(·),µ(·)) =G(Λ(0),µ(0)) +

∫ ·
0

d∑
l=1

DlG(Λ(t),µ(t))dµ(l)(t)− ΓG(·)

−
∫ ·

0

d1∑
l=1

µ(l)(t) logµ(l)(t)dΛ(t)

(3.5)

with DlG given in (3.4) and

ΓG(·) =
1

2

∫ ·
0

d1∑
l=1

Λ(t)

µ(l)(t)
d
î
µ(l), µ(l)

ó
(t) +

∫ ·
0

d2∑
l=d1+1

d
î
µ(l), µ(l)

ó
(t). (3.6)

Denote the number of components of x = (x1, · · · , xd)′ ∈ ∆d that coalesce at a given rank
l ∈ {1, · · · , d} by

Nl(x) =
d∑
i=1

1xi=x(l) .

Then by Theorem 2.3 in Banner and Ghomrasni (2008), the ranked market weights process µ(·)
has components

µ(l)(·) =µ(l)(0) +

∫ ·
0

d∑
i=1

1{µi(t)=µ(l)(t)}
Nl(µ(t))

dµi(t) +
d∑

k=l+1

∫ ·
0

dΛ(l,k)(t)

Nl(µ(t))

−
l−1∑
k=1

∫ ·
0

dΛ(k,l)(t)

Nl(µ(t))
, l ∈ {1, · · · , d},

(3.7)

where Λ(i,j)(·) with 1 ≤ i < j ≤ d is the local time process (refer to Section 6, Chapter 3 in
Karatzas and Shreve (2012) for details) of the continuous semimartingale µ(i)(·) − µ(j)(·) ≥ 0
at the origin.

By Theorem 11, the function

G(λ, x) = G(λ,R(x)) = −λ
d1∑
l=1

d∑
i=1

1xi=x(l)
Nl(x)

xi log xi + 1−
d2∑

l=d1+1

d∑
i=1

1xi=x(l)
Nl(x)

x2
i

is regular for Λ(·) and µ(·), since G is regular for Λ(·) and µ(·).
Now, let us assume that Λ(·) is of the form

Λ(·) = ξ ∧
Ä
ξ ∨ Λ′(·)

ä
,

where ξ and ξ are two positive constants with ξ < ξ, and the process Λ′(·) is of finite variation.

Let G(λ′, x) = G(ξ ∧ (ξ ∨ λ′), x), for all λ′ ∈ R and x ∈ ∆d
+. Then with DlG and ΓG(·) given in

(3.4) and (3.6), respectively, inserting (3.7) into (3.5) yields

G(Λ′(·), µ(·)) = G(Λ′(0), µ(0)) +

∫ ·
0

d∑
i=1

DiG(Λ′(t), µ(t))dµi(t)− ΓG(·),

where

DiG(λ′, x) =
d∑
l=1

1xi=x(l)
Nl(x)

DlG(ξ ∧ (ξ ∨ λ′),R(x)), i ∈ {1, · · · , d},
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and

ΓG(·) =ΓG(·) +

∫ ·
0

d1∑
l=1

µ(l)(t) logµ(l)(t)1{ξ≤Λ′(t)≤ξ}dΛ′(t)

−
d−1∑
l=1

d∑
k=l+1

∫ ·
0

DlG(Λ(t),R(µ(t)))

Nl(µ(t))
dΛ(l,k)(t)

+
d∑
l=2

l−1∑
k=1

∫ ·
0

DlG(Λ(t),R(µ(t)))

Nl(µ(t))
dΛ(k,l)(t).

Observe that G is regular for Λ′(·) and µ(·), yet it is not in C1,2. �

4. Functional generation and relative arbitrage

In Karatzas and Ruf (2017), two types of functional generation, additive and multiplicative
generation, are constructed to study the properties of relative values of functionally generated
portfolios. In this section, we first discuss the generalised versions of these functional genera-
tions and corresponding properties. Then we consider sufficient conditions for strong arbitrage
relative to the market to exist.

4.1. Additive generation. Recall the open set W from (2.4).

Definition 13. (Additive generation). For a function G : W → R, regular for Λ(·) and µ(·),
and the process ϑ(·) given in (3.1), the trading strategy ϕ(·) with components

ϕi(·) = ϑi(·)−Qϑ(·) + C, i ∈ {1, · · · , d},
in the manner of (2.2) and (2.1), and with the real constant

C = G(Λ(0), µ(0))−
d∑
j=1

µj(0)DjG(Λ(0), µ(0)), (4.1)

is said to be additively generated by the regular function G. �

Proposition 14. The trading strategy ϕ(·), generated additively by a regular function G :W →
R, has components

ϕi(·) =DiG(Λ(·), µ(·)) + ΓG(·) +G(Λ(·), µ(·))−
d∑
j=1

µj(·)DjG(Λ(·), µ(·)), (4.2)

for all i ∈ {1, · · · , d}. Moreover, the wealth process of ϕ(·) is given by

V ϕ(·) = G(Λ(·), µ(·)) + ΓG(·). (4.3)

Proof. The proposition is proven exactly like Proposition 4.3 in Karatzas and Ruf (2017). �

4.2. Multiplicative generation.

Definition 15. (Multiplicative generation). For a function G : W → (0,∞), regular for Λ(·)
and µ(·), let the process ϑ(·) be given in (3.1) and assume that 1/G(Λ(·), µ(·)) is locally bounded.

Consider the process ϑ̃(·) ∈ L(µ) with components

ϑ̃i(·) = ϑi(·)× exp

Ç∫ ·
0

dΓG(t)

G(Λ(t), µ(t))

å
, i ∈ {1, · · · , d}. (4.4)

Then the trading strategy ψ(·) with components

ψi(·) = ϑ̃i(·)−Qϑ̃(·) + C, i ∈ {1, · · · , d},
in the manner of (2.2) and (2.1), and with C given in (4.1), is said to be multiplicatively generated
by the regular function G. �
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Proposition 16. The trading strategy ψ(·), generated multiplicatively by a regular function
G :W → (0,∞) with 1/G(Λ(·), µ(·)) locally bounded, has components

ψi(·) = V ψ(·)
(

1 +
DiG(Λ(·), µ(·))−∑d

j=1 µj(·)DjG(Λ(·), µ(·))
G(Λ(·), µ(·))

)
, (4.5)

for all i ∈ {1, · · · , d}, where the wealth process of ψ(·) is given by

V ψ(·) = G(Λ(·), µ(·)) exp

Ç∫ ·
0

dΓG(t)

G(Λ(t), µ(t))

å
> 0. (4.6)

Proof. The same argument as in Proposition 4.8 in Karatzas and Ruf (2017) applies. �

4.3. Sufficient conditions for arbitrage relative to the market. In Karatzas and Ruf
(2017), Theorems 5.1 and 5.2 give sufficient conditions for strong arbitrage relative to the market
to exist for both additively and multiplicatively generated portfolios, respectively. These results
still hold for a regular / Lyapunov function G :W → [0,∞) under specific conditions.

To be consistent with the conditions of arbitrage relative to the market in (2.3), we normalise
G(Λ(0), µ(0)) = 1 such that both of the wealth processes in (4.3) and (4.6) have initial values
1. This normalisation is guaranteed by replacing G with G+ 1 when G(Λ(0), µ(0)) = 0, or with
G/G(Λ(0), µ(0)) when G(Λ(0), µ(0)) > 0.

Theorem 17. Fix a function G :W → [0,∞), Lyapunov for Λ(·) and µ(·), with G(Λ(0), µ(0)) =
1. For some real number T∗ > 0, suppose that

P
î
ΓG(T∗) > 1

ó
= 1.

Then the additively generated trading strategy ϕ(·) of Definition 13 is strong arbitrage relative
to the market over every time horizon [0, T ] with T ≥ T∗.

Proof. Use the same reasoning as in the proof of Theorem 5.1 in Karatzas and Ruf (2017). �

Theorem 18. Assume that |Λ(·)| is uniformly bounded. Fix a function G :W → [0,∞), regular
for Λ(·) and µ(·), with G(Λ(0), µ(0)) = 1. For some real numbers T∗ > 0, suppose that we can
find an ε = ε(T∗) > 0 such that

P
î
ΓG(T∗) > 1 + ε

ó
= 1.

Then there exists a constant c = c(T∗, ε) > 0 such that the trading strategy ψ(c)(·), generated
multiplicatively by the regular function

G(c) =
G+ c

1 + c

as in Definition 15, is strong arbitrage relative to the market over the time horizon [0, T∗].

Moreover, if G is a Lyapunov function for Λ(·) and µ(·), then ψ(c)(·) is also a strong relative
arbitrage over every time horizon [0, T ] with T ≥ T∗.

Proof. See the proof of Theorem 5.2 in Karatzas and Ruf (2017). Note that G(Λ(·), µ(·)) is
uniformly bounded thanks to the assumptions. �

5. Data source and processing

We start this section by describing the data used in the next section, where several trading
strategies are implemented. Then we discuss the method to process the data.
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5.1. Data source and description. We shall consider a market consisting of all stocks in the
S&P 500 index. We are interested in the beginning of day and the end of day market weights of
each of these stocks. To calculate these market weights accurately (according to the method in
Subsection 5.2), we make use of two time series: the daily market values (market capitalizations,
which exclude all the dividend payments) and the daily return indexes (used to consider the
effect of reinvestment of dividend payments) of the corresponding component stocks in the S&P
500 index. Both of these time series are available at the end of each trading day.

The data of the market values and return indexes is downloaded from DataStream2. The first
day, for which the data is available on DataStream, is September 29th, 1989. Since then there
are in total 1140 constituents that have belonged to the S&P 500 index. A list of stocks in the
S&P 500 index is also attainable on DataStream. In particular, for each month, we derive the
list of constituents of the index at the last day of this month. For a constituent delisted from
the index in that month, we keep it in our portfolio provided that the constituent still remains
in the market till the end of that month. However, we get rid of it from our portfolio on the
same day when the constituent does no longer exist in the market, usually due to mergers and
acquisitions, bankruptcies, etc. For a constituent newly added to the index in that month, we
put it into our portfolio from the first day of the following month.

5.2. Data processing. Theoretically, trading strategies vary continuously in time, while in the
empirical analysis a daily trading frequency is used. The following procedure illustrates how we
examine the gains and losses in our portfolio relative to the market portfolio.

We discretise the time horizon as 0 = t0 < t1 < · · · < tN−1 = T , where N is the total number
of trading days.

• The transaction on day tl, for all l ∈ {1, · · · , N − 1}, is made at the beginning of day
(tl), taking the beginning of day tl market weights µ(tl) as inputs. These market weights
µ(tl) are computed by

µi(tl) =
MVi(tl)

Σ(tl)
, i ∈ {1, · · · , d},

where MVi(tl) is the market value of stock i at the beginning of day tl, which is assumed
to be equal to the market value attainable at the end of the last trading day tl−1, and
Σ(tl) =

∑d
j=1 MVj(tl) denotes the total market capitalization at the beginning of day

tl.
• The theoretical (non-self-financing) trading strategy throughout tl, denoted by θ(tl),

is computed based on either (3.1) or (4.4), taking µ(tl) as inputs. Denote the imple-
mented (self-financing) trading strategy corresponding to θ(tl) by φ(tl). Then V φ(tl),
the beginning of day tl wealth of the portfolio corresponding to φ(tl), is given by

V φ(t1) =
V φ(tl−1)Σ(tl−1)

Σ(t1)
. (5.1)

This is based on the assumption that the real portfolio wealth does not change overnight.
In (5.1), V φ(tl−1) and Σ(tl−1) are the end of day tl−1 portfolio wealth and total market
capitalization, respectively, computed at tl−1 (thus already known at tl).
• To derive the implemented (self-financing) trading strategy φ(tl) corresponding to θ(tl),

we compute the number

C(tl) =
d∑
j=1

θj(tl)µj(tl)− V φ(tl). (5.2)

2DataStream, operated by Thomson Reuters, is a financial time series database; see https://financial.

thomsonreuters.com/en/products/data-analytics/economic-data.html.
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Then φ(tl) is derived by

φi(tl) = θi(tl)− C(tl), i ∈ {1, · · · , d}. (5.3)

This guarantees V φ(tl) =
∑d
i=1 φi(tl)µi(tl).

• At the end of day tl, the return indexes of the stocks for tl are available, and the total
returns TR(tl) are computed through dividing the return indexes of tl with the return
indexes of tl−1. Then the end of day tl implied market values MV(tl), which take the
dividend payments into consideration, are given by

MVi(tl) = MVi(tl)TRi(tl), i ∈ {1, · · · , d}.
The end of day tl modified total market capitalization Σ(tl) and market weights µ(tl)
are calculated similarly as Σ(tl) and µ(tl), with MV(tl) replaced by MV(tl).
• The end of day tl portfolio wealth is then computed by

V φ(tl) =
d∑
j=1

φj(tl)µj(tl).

Note that we have

V φ(tl) = V φ(tl) +
d∑
j=1

θj(tl) (µj(tl)− µj(tl)) . (5.4)

In particular, at the beginning of day t0, all of the above steps are still applied, except that we
have V φ(t0) = 1 instead of (5.1) due to Definition 3.

6. Examples and empirical results

In this section, several examples of portfolio generating functions are empirically studied.

Example 19. Define the generalised entropy function

G(λ, x) = λ
d∑
i=1

xi log

Å
1

xi

ã
, λ ∈ R+, x ∈ ∆d

+,

with values in (0, λ log d), for fixed λ > 0. Suppose that µ(·) takes values in ∆d
+ and that Λ(·)

is (0,∞)-valued.
From (3.3) we have

ΓG(·) =
d∑
i=1

∫ ·
0
µi(t) logµi(t)dΛ(t) +

1

2

d∑
i=1

∫ ·
0

Λ(t)
d [µi, µi] (t)

µi(t)
. (6.1)

Then G is a Lyapunov function for Λ(·) and µ(·) provided that ΓG(·) is non-decreasing. One
sufficient condition for this to hold is that Λ(·) is non-increasing.

From (4.2), the trading strategy ϕ(·), generated additively by G, has components

ϕi(·) = ΓG(·)− Λ(·) logµi(·), i ∈ {1, · · · , d}. (6.2)

Using (4.3), the corresponding wealth process V ϕ(·) = G(Λ(·), µ(·)) + ΓG(·) is strictly positive
if G is Lyapunov for Λ(·) and µ(·).

For the multiplicative generation, G is required to be bounded away from zero. One sufficient
condition for this to hold is that Λ(·) is bounded away from 0 and the market is diverse on [0,∞),
i.e., there exists ε > 0 such that G(Λ(t), µ(t)) ≥ Λ(t)ε, for all t ≥ 0 (see Proposition 2.3.2 in
Fernholz (2002)). Then from (4.5), the trading strategy ψ(·), generated multiplicatively by G,
has components

ψi(·) = −Λ(·) logµi(·) exp

Ç∫ ·
0

dΓG(t)

G(Λ(t), µ(t))

å
, i ∈ {1, · · · , d}.
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The corresponding wealth process V ψ(·) is given in (4.6).
Now, let us discuss sufficient conditions for the existence of arbitrage relative to the market.

To this end, let Λ(·) be such that G is Lyapunov for Λ(·) and µ(·), for example, let Λ(·) be
non-increasing. Next consider

G =
G

G(Λ(0), µ(0))
, (6.3)

together with the non-decreasing process

ΓG(·) =
ΓG(·)

G(Λ(0), µ(0))
. (6.4)

Then from Theorem 17, if

P
î
ΓG(T∗) > 1

ó
= P

î
ΓG(T∗) > G(Λ(0), µ(0))

ó
= 1,

then the trading strategy ϕ(·)/G(Λ(0), µ(0)), generated additively by G, is strong relative arbi-
trage over every time horizon [0, T ] with T ≥ T∗.

Similarly, from Theorem 18, if

P
î
ΓG(T∗) > 1 + ε

ó
= P

î
ΓG(T∗) > G(Λ(0), µ(0))(1 + ε)

ó
= 1,

then the trading strategy ψ(c)(·), generated multiplicatively by

G(c) =
G+ c

G(Λ(0), µ(0)) + c
, (6.5)

for some sufficiently large c > 0, is strong relative arbitrage over every time horizon [0, T ] with
T ≥ T∗.

To empirically examine the performance of the portfolio generated by G, we only restrict G
to be regular for Λ(·) and µ(·), although G is Lyapunov for some of the choices of Λ(·) in the
following.

Recall that the wealth processes of portfolios generated either additively or multiplicatively
are relative to the S&P 500 index. For a specific day tn, we estimate

[µi, µi] (tn) ≈
n∑
l=1

(µi(tl)− µi(tl))
2
, i ∈ {1, · · · , d},

where tl (tl) denotes the beginning (end) of the day tl.

Figure 6.1 presents ΓG(·) given in (6.4) and the relative wealth processes V ϕ(·) and V ψ
(0)

(·)
(minus 1 to start from 0 as ΓG(·)) of portfolios generated additively and multiplicatively by G,
respectively, with finite variation process Λ(·) = 1. As we can observe from the figure, both

V ϕ(·) and V ψ
(0)

(·) have been continuously outperforming the market portfolio since the year
2000.

Next, we examine the effect that choosing some non-constant Λ(·) may have on the portfolio
performance. Figures 6.2 and 6.3 display the relative wealth processes V ϕ(·) (in logarithmic
scale) generated additively corresponding to two different groups of Λ(·). The first group of
Λ(·) is increasing, which results in decreasing ΓG(·) given by (6.1); the corresponding G is
only regular but not Lyapunov for Λ(·) and µ(·). The second group of Λ(·) is decreasing; the
corresponding ΓG(·) given by (6.1) is increasing and G is Lyapunov for Λ(·) and µ(·).

More precisely, for all l ∈ {1, · · · , N}, in Figure 6.2, the wealth processes V ϕ(·) corresponding
to Λ(tl) = exp(10−4l) and Λ(tl) = exp(−10−4l) are plotted; in Figure 6.3, the wealth processes
V ϕ(·) corresponding to

Λ(tl) = exp

Ñ
100

d∑
j=1

[µj , µj ] (tl)

é
and Λ(tl) = exp

Ñ
−100

d∑
j=1

[µj , µj ] (tl)

é
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Figure 6.1. Gamma process ΓG(·) and relative wealth processes (minus 1) of
both the additively and the multiplicatively generated portfolios with constant
Λ(·) = 1.

Figure 6.2. Relative wealth process V ϕ(·) (in logarithmic scale) of additively
generated portfolios with Λ(·) a deterministic exponential.

are plotted. The constants 10−4 and 100 are chosen such that, with these forms, the daily
changes of both G(Λ(·), µ(·)) and ΓG(·) are roughly at the same level of magnitude. Hence, in
(4.3), neither part on the right hand side dominates the other.
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Figure 6.3. Relative wealth process V ϕ(·) (in logarithmic scale) of additively
generated portfolios with Λ(·) an exponential of the quadratic variation of µ(·).

As we can observe from the figures, choosing Λ(·) increasing seems to lead to a better per-
formance than choosing Λ(·) constant, which again seems to be better than choosing Λ(·) de-
creasing. We attribute the reason behind this observation to the state of market diversification
as follows.

Observe that (5.4) yields

V ϕ(tl) = V ϕ(tl) +
1

G(Λ(0), µ(0))
Λ(tl)D(tl), l ∈ {0, · · · , N}, (6.6)

where D(tl) is given by

D(tl) =
d∑
j=1

− logµj(tl) (µj(tl)− µj(tl)) . (6.7)

The value D(tl) can be considered as an indicator of the direction of changes in market
weights from the beginning to the end of date tl. The value D(tl) will be positive (negative), if
market weights are shifted from companies with large (small) beginning of day market weights to
companies with small (large) beginning of day market weights throughout date tl. We consider
a simple example to better understand why this is the case.

Fix d = 2 and assume that µ1(tl) > µ2(tl). Then

D(tl) = − logµ1(tl) (µ1(tl)− µ1(tl))− logµ2(tl) (µ2(tl)− µ2(tl))

= (− logµ1(tl) + log µ2(tl)) (µ1(tl)− µ1(tl))

holds due to the fact that (µ1(tl) − µ1(tl)) = −(µ2(tl) − µ2(tl)). Hence, D(tl) > 0 if and only
if µ1(tl) < µ1(tl), i.e., the market weight of the company with larger beginning of day market
weight decreases, while the market weight of the company with smaller beginning of day market
weight increases.

Hence, a positive D(·) indicates an enhancement in market diversification, while D(·) being
negative actually implies a reduction in market diversification. Figure 6.4 plots the cumulative
process E(·) =

∑·
tl=t1

D(tl). The process E(·) is increasing (decreasing) whenever D(·) is
positive (negative). From Figure 6.4 we can observe that after a slight increase from the year
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1991 to the year 1995, E(·) keeps declining till the year 2000. Then E(·) rises up in the long
run from the year 2000 until now

Figure 6.4. Integration process E(·) with components given by (6.7).

The behaviour of the process E(·) is in line with another measurement of the market diver-
sification. More precisely, let us consider the process

∑d
i=1(µi ∧ 0.002)(·). Note that the value

0.002 = 1/500, which is roughly the number of constituents in the portfolio. This process is a
measure of the market diversification, as it goes up when the market weights of small compa-
nies become larger, i.e., the market diversification is strengthened. Figure 6.5 plots the process,
which first grows from the year 1991 to the year 1995. Then from the year 1995 to 2000, the
process declines fast. This indicates that during this period, the market diversification weakens.
On the contrary, the market diversification strengthens afterwards until the year 2008, as the
process goes up. Then the level of market diversification remains within a relatively small range.

As a result, according to (6.6), if the market presents a trend of increasing diversification,
an increasing positive Λ(·) helps to reinforce this effect, and further assists in pulling up V ϕ(·),
while a decreasing positive Λ(·) is counteractive. On the other hand, if the market presents
a trend of decreasing diversification, then a decreasing positive Λ(·) helps to slow down the
declining speed of V ϕ(·), while an increasing positive Λ(·) would make the speed even faster.
This is confirmed in Figures 6.2 and 6.3, as from the year 1991 to the year 1995 and from the
year 2000 till now, an increasing positive Λ(·) makes V ϕ(·) perform better, while from the year
1995 to the year 2000, V ϕ(·) corresponding to a decreasing positive Λ(·) is slightly larger.

Although an increasing positive Λ(·) has positive effect on the portfolio performance V ϕ(·)
whenever the market diversification strengthens, we are not allowed to choose Λ(·) arbitrarily
fast increasing. The reason is that the portfolio is required to be long-only in our framework, i.e.,
the trading strategy ϕ(·) given by (6.2) must be nonnegative at any time. If Λ(·) is increasing
fast enough, ΓG(·) will become negative and decrease fast, which may result in negative ϕ(·)
according to (6.2).

As for the multiplicative generation, the different choices of finite variation processes do not
change the wealth processes significantly. Indeed, according to (6.1), an increasing Λ(·) may
slow down the growth rate of Γ(·), or even turn Γ(·) into a decreasing one. When applying (5.3)
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Figure 6.5. Process
∑d
i=1(µi ∧ 0.002)(·) as a measure of the market diversifi-

cation degree in the S&P 500 market.

to ϑ̃(·) from (4.4), we have

V ψ
(c)

(tl) = exp

Ç∫ tl

0

dΓG(t)

G(Λ(t), µ(t)) + c

å
Λ(tl)

G(Λ(0), µ(0)) + c
D(tl) + V ψ

(c)

(tl),

for all l ∈ {0, · · · , N}, with D(·) given in (6.7). In this example, according to the above

equation, the positive effect in boosting V ψ
(c)

(·) contributed by an increasing positive Λ(·) is
counteracted more or less by the opposite impact the same Λ(·) has on the exponential part. A
similar analysis also applies to a decreasing positive Λ(·). Therefore, under the above mentioned
situation (market diversification increases in general), the different choices of a monotone Λ(·)
do not influence V ψ

(c)
(·) as much as they do on V ϕ(·).

Note that our process D(·) is related but not the same as the Bregman divergence

DB,G [µ(tl)|µ(tl)] = Λ(tl)D(tl)− (G(Λ(tl), µ(tl))−G(Λ(tl), µ(tl))) ,

defined in Definition 3.6 in Wong (2017). For its connection to optimal transport, we refer to
Wong (2017).

To conclude this example, we compute several empirical indicators corresponding to the
performance of above mentioned portfolios over the chosen time horizon. The S&P 500 market
portfolio has an averaged yearly return of 9.87% and a Sharpe ratio3 of 0.37. As for the
functionally generated portfolios analyzed in this example, their averaged yearly returns are
ranging from 11.12% to 12%, their Sharpe ratios lie between 0.45 and 0.49, and their excess
returns with respect to the market portfolio vary from 1.25% to 2.13%. We refer to Banner
et al. (2018) for a detailed empirical study to explain these excess returns. �

The following example is motivated by Schied et al. (2018).

3To compute the Sharpe ratios of the market portfolio and other functionally generated portfolios, the one-year
U.S. Treasury yields are used. The data of these yields can be downloaded from https://www.federalreserve.

gov.
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Example 20. Consider the function

G(λ, x) =

(
d∑
i=1

(αxi + (1− α)λi)
p

) 1
p

, λ ∈ Rd+, x ∈ ∆d
+,

with constants α, p ∈ (0, 1). Then G is concave.
For fixed constant δ > 0, define the Rd+-valued moving average process Λ(·) by

Λi(·) =

{
1
δ

∫ ·
0 µi(t)dt+ 1

δ

∫ 0
·−δ µi(0)dt on [0, δ)

1
δ

∫ ·
·−δ µi(t)dt on [δ,∞)

,

for all i ∈ {1, · · · , d}.
Write µ(·) = αµ(·) + (1− α)Λ(·). Then by (3.3),

ΓG(·) = −(1− α)
d∑
i=1

∫ ·
0

Ç
G(Λ(t), µ(t))

µi(t)

å1−p
dΛi(t)

− α2(1− p)
2

d∑
i,j=1

∫ ·
0

Ç
G(Λ(t), µ(t))

µi(t)µj(t)

å1−p
1∑d

v=1 (µv(t))
pd [µi, µj ] (t)

+
α2(1− p)

2

d∑
i=1

∫ ·
0

Ç
G(Λ(t), µ(t))

µi(t)

å1−p
1

µi(t)
d [µi, µi] (t).

Notice that G is not Lyapunov in general.
The trading strategies ϕ(·) and ψ(·), generated additively and multiplicatively by G, respec-

tively, are given by

ϕi(·) = G(Λ(·), µ(·))

Ñ
α (µi(·))

p

µi(·)
∑d
v=1 (µv(·))

p −
d∑
j=1

αµj(·)
Ä
µj(·)

äp
µj(·)

∑d
v=1 (µv(·))

p + 1

é
+ ΓG(·)

and

ψi(·) =
Ä
ϕi(·)− ΓG(·)

ä
exp

Ç∫ ·
0

dΓG(t)

G(Λ(t), µ(t))

å
,

for all i ∈ {1, · · · , d}. The corresponding wealth processes V ϕ(·) and V ψ(·) can be derived from
(4.3) and (4.6), respectively.

Consider the normalised regular function G given in (6.3) and the corresponding process ΓG(·)
given in (6.4). By Theorem 18, if

P
î
ΓG(T∗) > 1 + ε

ó
= P

î
ΓG(T∗) > G(Λ(0), µ(0))(1 + ε)

ó
= 1,

then the trading strategy ψ(c)(·), generated multiplicatively by G(c) given in (6.5) for some
sufficiently large c > 0, is strong relative arbitrage over the time horizon [0, T∗].

To simulate the relative performance of the portfolio, we use the parameters δ = 250 days and

p = 0.8. Figure 6.6 shows ΓG(·) and the wealth processes V ϕ(·) and V ψ
(0)

(·) without the effect
of the moving average part, i.e., α = 1. In this case, G is Lyapunov. The relative performance
of the portfolio is similar to that in Example 19, when the finite variation process is chosen to
be constant. Figure 6.7 presents the case when α = 0.6. It can be observed that ΓG(·) increases
slower when the moving average part is considered. Compared with the case that the moving

average part is not included, the wealth processes V ϕ(·) and V ψ
(0)

(·) also take smaller values
in the long run. This is due to the fact that when α decreases, the volatility of µ(·) decreases
as well. In this case, we trade slower, and the gains and losses will also be relatively less.

For the four functionally generated portfolios examined in this example, their averaged yearly
returns range from 11.21% to 11.47%, their Sharpe ratios lie between 0.45 and 0.47, and their
excess returns with respect to the market portfolio vary from 1.34% to 1.6%. �
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Figure 6.6. Gamma process ΓG(·) and relative wealth processes (minus 1) of
both the additively and the multiplicatively generated portfolios with δ = 250
days, p = 0.8, and α = 1.

Figure 6.7. Gamma process ΓG(·) and relative wealth processes (minus 1) of
both the additively and the multiplicatively generated portfolios with δ = 250
days, p = 0.8, and α = 0.6.

The above two examples illustrate that the choice of the finite variation process Λ(·) has an
effect on the corresponding portfolio performance. The process Λ(·) can be chosen to magnify
the impact of market diversification on the portfolio performance, to speed up or slow down
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the trading frequency, etc. In addition, an extra source of randomness, such as market senti-
ment indicators used in sentiment trading strategies, could be introduced when constructing
Λ(·). We leave it to future research to develop a methodology to construct such processes Λ(·)
systematically.

7. Conclusion

Karatzas and Ruf (2017) build a simple and intuitive structure by interpreting the portfolio
generating functions G initiated by Fernholz (2002, 1999, 2001) as Lyapunov functions. They
formulate conditions for the existence of strong arbitrage relative to the market over appropriate
time horizons. The purpose of this paper is to investigate the dependence of the portfolio
generating functions G on an extra Rm-valued, progressive, continuous process Λ(·) of finite
variation on [0, T ], for all T ≥ 0.

The results of this paper are illuminated by several examples and shown to work on empirical
data using stocks from the S&P 500 index. The effects that different choices of Λ(·) have on the
portfolio wealths are analyzed. Provided that the market undergoes an explicit trend of either
increasing or decreasing market diversification, certain choices of Λ(·) are better than others.

Appendix A. Proofs of Theorems 8 and 11

A.1. Preliminaries. Before providing the proof of Theorem 8, we discuss some technical de-
tails.

Recall the open set W from (2.4) and consider a continuous function g : W → R. Define a
function g : Rm+d → R by

g(z) =

{
g(z), if z ∈ W
0, if z /∈ W

.

Next, let (gn1,n2)n1,n2∈N be the family of functions gn1,n2 :W → R given by

gn1,n2(λ, x) =

∫
Rd
ηn2(y)

∫
Rm

ηn1(u)g(λ− u, x− y)dudy, (A.1)

for all (λ, x) ∈ W, with gn1,n2(λ, x) = 0 whenever the right hand side of (A.1) is not defined.

Here in (A.1), for z ∈ Rl and n ∈ N,

ηn(z) =

βnl exp
(

1
n2‖z‖22−1

)
, if ‖z‖2 < 1

n

0, if ‖z‖2 ≥ 1
n

(A.2)

is used with the normalisation constant

β =

Ç∫
Rl

exp

Ç
1

‖y‖22 − 1

å
dy

å−1

,

independent of n.

Lemma 21. Let V denote any closed subset of W. Consider a continuous function g :W → R
and the mollification (gn1,n2)n1,n2∈N of g defined as in (A.1).

(i) We have
lim
n2↑∞

lim
n1↑∞

gn1,n2 = g.

(ii) For n1, n2 ∈ N large enough, gn1,n2 ∈ C∞(V).
(iii) If there exists a constant L = L(V) ≥ 0 such that, for all (λ1, x), (λ2, x) ∈ V,

|g(λ1, x)− g(λ2, x)| ≤ L‖λ1 − λ2‖2,
then, for n1, n2 ∈ N large enough and all (λ, x) ∈ V, we have∣∣∣∣∂gn1,n2

∂λv
(λ, x)

∣∣∣∣ ≤ L, v ∈ {1, · · · ,m}.
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(iv) If g ∈ C0,1, then, for all (λ, x) ∈ W, we have

lim
n2↑∞

lim
n1↑∞

∂gn1,n2

∂xi
(λ, x) =

∂g

∂xi
(λ, x), i ∈ {1, · · · , d}.

(v) If g ∈ C0,1 and if there exists a constant L = L(V) ≥ 0 such that, for all (λ, x1), (λ, x2) ∈
V, ∥∥∥∥∂g∂x(λ, x1)− ∂g

∂x
(λ, x2)

∥∥∥∥
2
≤ L‖x1 − x2‖2,

then, for n1, n2 ∈ N large enough and all (λ, x) ∈ V, we have

∣∣∣∣∣∂2gn1,n2

∂xi∂xj
(λ, x)

∣∣∣∣∣ ≤ L, i, j ∈ {1, · · · , d}.

Proof. For (i) and (ii), see Theorem 6 in Appendix C in Evans (1998).
For (iii), observe that, for each n1, n2 ∈ N large enough and all v ∈ {1, · · · ,m}, (A.1) yields

∣∣∣∣∂gn1,n2

∂λv
(λ, x)

∣∣∣∣ =

∣∣∣∣∣limδ→0

gn1,n2(λ+ δev, x)− gn1,n2(λ, x)

δ

∣∣∣∣∣
=

∣∣∣∣lim
δ→0

1

δ

∫
Rd
ηn2(y)

∫
Rm

ηn1(u)(g(λ+ δev − u, x− y)− g(λ− u, x− y))dudy

∣∣∣∣
≤ lim

δ→0

1

δ

∫
Rd
ηn2(y)

∫
Rm

ηn1(u) |g(λ+ δev − u, x− y)− g(λ− u, x− y)| dudy

≤ lim
δ→0

1

δ
δL

∫
Rd
ηn2(y)

∫
Rm

ηn1(u)dudy = L,

for all (λ, x) ∈ V, where ev is the unit vector in the v-th dimension.

For (iv), apply the dominated convergence theorem and (i) to ∂g
∂xi

, for all i ∈ {1, · · · , d}.
For (v), apply the dominated convergence theorem and a similar argument as in (iii). �

The following lemma is an extension of Lemma 2 in Bouleau (1981). For a continuous function
g :W → R, consider its corresponding mollification (gn1,n2)n1,n2∈N defined as in (A.1).

Lemma 22. If a continuous function g :W → R is concave in its second argument, then

lim
n2↑∞

lim
n1↑∞

∂gn1,n2

∂xi
= fi, i ∈ {1, · · · , d},

for some measurable function fi :W → R, bounded on any compact V ⊂ W.

Proof. Fix i ∈ {1, · · · , d}. With the notation in (A.2), we have

ηn(z) = nlη1(nz), z ∈ Rl, n ∈ N.
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For (λ, x) ∈ W and n2 ∈ N large enough, the definition of gn1,n2 in (A.1), the dominated
convergence theorem, and Lemma 21(i)&(ii) yield

lim
n1↑∞

∂gn1,n2

∂xi
(λ, x) = lim

n1↑∞

∫
Rd

∂ηn2

∂xi
(x− y)

∫
Rm

ηn1(u)g(λ− u, y)dudy

=

∫
Rd

∂ηn2

∂xi
(x− y) lim

n1↑∞

∫
Rm

ηn1(u)g(λ− u, y)dudy

=

∫
Rd

∂ηn2

∂xi
(x− y)g(λ, y)dy

= −
∫
Rd

∂ηn2

∂yi
(y)g(λ, x− y)dy

=

∫
Rd
n2
∂η1

∂yi
(y)g

Å
λ, x+

y

n2

ã
dy

=

∫
Rd

∂η1

∂yi
(y)n2

Å
g

Å
λ, x+

y

n2

ã
− g (λ, x)

ã
dy.

Note that the last equality holds due to the fact that∫
Rd

∂η1

∂yi
(y)dy = 0.

Next, for all (λ, x) ∈ W and y ∈ Rd, define the one-sided directional partial derivative as

∇g(λ, x; y) = lim
n2↑∞

g (λ, x+ y/n2)− g(λ, x)

1/n2
.

Such ∇g exists according to Theorem 23.1 in Rockafellar (1970). Since g is concave in the
second argument, it is locally Lipschitz in its second argument on W (see Theorem 10.4 in
Rockafellar (1970)). Hence, for each compact V ⊂ W, there exists a constant L = L(V) ≥ 0
such that ∇g(λ, x; y) ≤ L, for all y ∈ Rd and (λ, x) in the interior of V.

The statement now follows with

fi(λ, x) =

∫
Rd
∇g(λ, x; y)

∂η1

∂yi
(y)dy,

for all (λ, x) ∈ W, by the dominated convergence theorem. �

Lemma 23. Assume that µ(·) has Doob-Meyer decomposition µ(·) = µ(0)+M(·)+V (·), where
M(·) is a d-dimensional continuous local martingale and V (·) is a d-dimensional finite variation
process with M(0) = V (0) = 0. Moreover, suppose that,

(i) for some open V ⊂ W, we have (Λ(·), µ(·)) = (Λ(· ∧ τ), µ(· ∧ τ)), where

τ = inf {t ≥ 0; (Λ(t), µ(t)) /∈ V} ;

(ii) for some constant κ ≥ 0, we have

d∑
i=1

Å
[Mi,Mi] (∞) +

∫ ∞
0

d|Vi(t)|
ã

+
m∑
v=1

∫ ∞
0

d|Λv(t)| ≤ κ <∞. (A.3)

Let (hi)i∈{1,··· ,d} be a family of functions hi : V → R and let (hn1,n2
i )n1,n2∈N,i∈{1,··· ,d} be a

family of doubly indexed sequences of uniformly bounded functions hn1,n2
i : V → R. If

lim
n2↑∞

lim
n1↑∞

hn1,n2
i = hi, i ∈ {1, · · · , d},

then there exist two random subsequences (nk1)k∈N and (nk2)k∈N with limk↑∞ n
k
1 =∞ = limk↑∞ n

k
2

such that

lim
k↑∞

∫ t

0

d∑
i=1

h
nk
1 ,n

k
2

i (Λ(u), µ(u))dµi(u) =

∫ t

0

d∑
i=1

hi(Λ(u), µ(u))dµi(u), a.s., (A.4)
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for all t ≥ 0.

Proof. Fix i ∈ {1, · · · , d} and write

Θn1,n2
i (·) = hn1,n2

i (Λ(·), µ(·))− hi(Λ(·), µ(·)).
By (A.3) and the bounded convergence theorem, we have

0 = E
ï

lim
n2↑∞

lim
n1↑∞

∫ ∞
0

(Θn1,n2
i (t))2d [Mi,Mi] (t)

ò
= lim

n2↑∞
lim
n1↑∞

E
ï∫ ∞

0
(Θn1,n2

i (t))2d [Mi,Mi] (t)

ò
= lim

n2↑∞
lim
n1↑∞

E
ñÅ∫ ∞

0
Θn1,n2
i (t)dMi(t)

ã2
ô
,

by Itô’s isometry, and

0 = lim
n2↑∞

lim
n1↑∞

E
ñÅ∫ ∞

0
|Θn1,n2

i (t)| d|Vi(t)|
ã2
ô
. (A.5)

Since
∫ ·

0 Θn1,n2
i (t)dMi(t) is a uniformly integrable martingale (as it is a local martingale with

bounded quadratic variation), Doob’s submartingale inequality yields

E
[Ç

sup
t≥0

∣∣∣∣∣
∫ t

0
Θn1,n2
i (u)dMi(u)

∣∣∣∣∣
å2]
≤ 4E

ñÅ∫ ∞
0

Θn1,n2
i (t)dMi(t)

ã2
ô
,

which implies

0 = lim
n2↑∞

lim
n1↑∞

E
[Ç

sup
t≥0

∣∣∣∣∣
∫ t

0
Θn1,n2
i (u)dMi(u)

∣∣∣∣∣
å2]

. (A.6)

Therefore, (A.5), (A.6), and the triangle inequality yield

0 = lim
n2↑∞

lim
n1↑∞

E
[Ç

sup
t≥0

∣∣∣∣∣
∫ t

0
Θn1,n2
i (u)dµi(u)

∣∣∣∣∣
å2]

.

Write

En1,n2
i = E

[Ç
sup
t≥0

∣∣∣∣∣
∫ t

0
Θn1,n2
i (u)dµi(u)

∣∣∣∣∣
å2]

, n1, n2 ∈ N,

and
Ei = lim

n2↑∞
lim
n1↑∞

En1,n2
i .

For each n2 ∈ N, denote En2
i = limn1↑∞E

n1,n2
i . Then we can find a subsequence (n1(n2))n2∈N

of N with n1(n2) ↑ ∞ as n2 ↑ ∞ such that, for each n2 ∈ N,∣∣∣En1(n2),n2

i − En2
i

∣∣∣ ≤ 1

n2
.

Since the triangle inequality yields∣∣∣En1(n2),n2

i − Ei
∣∣∣ ≤ 1

n2
+ |En2

i − Ei| → 0 as n2 ↑ ∞,

we have limn2↑∞E
n1(n2),n2

i = Ei = 0. This implies

lim
n2↑∞

sup
t≥0

∣∣∣∣∣∣
∫ t

0

d∑
i=1

h
n1(n2),n2

i (Λ(u), µ(u))dµi(u)−
∫ t

0

d∑
i=1

hi(Λ(u), µ(u))dµi(u)

∣∣∣∣∣∣ = 0

in L2. Since convergence in L2 implies almost sure convergence of a subsequence, we can
find a random subsequence (nk2)k∈N of N with nk2 ↑ ∞ as k ↑ ∞ such that (A.4) holds with
nk1 = n1(nk2). �
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Lemma 24. Fix l ∈ N; let Λ(·) be an l-dimensional continuous process of finite variation;
let (Υu,n(·))u∈{1,··· ,l},n∈N be a family of processes with (Υu,n(·))n∈N uniformly bounded, for each

u ∈ {1, · · · , l}; and let (Θn(·))n∈N be a sequence of non-decreasing continuous processes. Define

Hn(·) =

∫ ·
0

l∑
u=1

Υu,n(t)dΛu(t) + Θn(·), n ∈ N.

If limn↑∞Hn(·) = H(·), a.s., then H(·) is of finite variation.

Proof. The following steps are partially inspired by the proof of Lemma 3.3 in Jaber et al.
(2018).

Since (Υ1,n(·))n∈N is uniformly bounded, the Komlós theorem (see Theorem 1.3 in Delbaen
and Schachermayer (1999)) yields the following. For each n ∈ N, there exists a convex combina-
tion Υ1

1,n(·) ∈ Conv(Υ1,k(·), k ≥ n) such that (Υ1
1,n(·))n∈N converges to some adapted bounded

process Υ1(·). More precisely, for each n ∈ N, we can find some random integer Nn ≥ 0 and
(wkn)n≤k≤Nn ⊂ [0, 1] such that

Nn∑
k=n

wkn = 1 and Υ1
1,n(·) =

Nn∑
k=n

wknΥ1,k(·).

For each n ∈ N, define

H1
n(·) =

Nn∑
k=n

wknHn(·), Θ1
n(·) =

Nn∑
k=n

wknΘk(·), and Υ1
u,n(·) =

Nn∑
k=n

wknΥu,k(·),

for all u ∈ {2, · · · , l}.
Since limn↑∞Hn(·) = H(·), a.s., we have

∣∣∣H1
n(·)−H(·)

∣∣∣ =

∣∣∣∣∣∣
Nn∑
k=n

wknHk(·)−H(·)

∣∣∣∣∣∣ ≤
Nn∑
k=n

wkn |Hk(·)−H(·)| → 0

as n ↑ ∞, which implies limn↑∞H
1
n(·) = H(·), a.s. Besides, Θ1

n(·) is non-decreasing, as it is a
convex combination of non-decreasing processes.

Since (Υ1
2,n(·))n∈N is also uniformly bounded, by the Komlós theorem again, for each n ∈ N,

there exists another convex combination Υ2
2,n(·) ∈ Conv(Υ1

2,k(·), k ≥ n) such that (Υ2
2,n(·))n∈N

converges to some adapted bounded process Υ2(·). With the same convex combination for
each n ∈ N, define Υ2

u,n(·), for all u ∈ {1, 3, · · · , l}, H2
n(·), and similarly Θ2

n(·). In particular,

(Υ2
1,n(·))n∈N still converges to Υ1(·), as for each n ∈ N, Υ2

1,n(·) is a convex combination of

processes that converge to Υ1(·). Similarly, we have limn↑∞H
2
n(·) = H(·), a.s. Moreover, Θ2

n(·)
is non-decreasing.

Iteratively, we construct sequences of processes (Υ3
u,n(·))n∈N, · · · , (Υl

u,n(·))n∈N, for each u ∈
{1, · · · , l}, and processes H3

n(·), · · · , H l
n(·) and Θ3

n(·), · · · ,Θl
n(·) in the same manner. In partic-

ular, (Υl
u,n(·))n∈N converges to some adapted bounded process Υu, for each u ∈ {1, · · · , l}, and

we have limn↑∞H
l
n(·) = H(·), a.s. Moreover, Θl

n(·) is non-decreasing.
By the dominated convergence theorem, we have

lim
n↑∞

∫ ·
0

l∑
u=1

Υl
u,n(t)dΛu(t) =

∫ ·
0

l∑
u=1

Υu(t)dΛu(t), a.s.,

which is of finite variation. Therefore, we have

H(·) = lim
n↑∞

H l
n(·) =

∫ ·
0

l∑
u=1

Υu(t)dΛu(t) + lim
n↑∞

Θl
n(·), a.s.
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Since Θl
n(·) is non-decreasing and converges, it is of finite variation, which implies the assertion.

�

A.2. Proof of Theorem 8.

Proof of Theorem 8. Assume that the semimartingale µ(·) has the Doob-Meyer decomposition
µ(·) = µ(0) +M(·) + V (·), where M(·) is a d-dimensional continuous local martingale and V (·)
is a d-dimensional finite variation process with M(0) = V (0) = 0.

Let (Wn)n∈N be a non-decreasing sequence of open sets such that the closure of Wn is in W,
for all n ∈ N. For each κ ∈ N, we consider the stopping time

τκ = inf

{
t ≥ 0; (Λ(t), µ(t)) /∈ Wκ

or
d∑

i,j=1

[Mi,Mj ] (t) +
d∑
i=1

∫ t

0
d|Vi(u)|+

m∑
v=1

∫ t

0
d|Λv(u)| ≥ κ

} (A.7)

with inf{∅} = ∞. Since (Λ(·), µ(·)) ∈ W, we have limκ↑∞ τκ = ∞, a.s. As
⋃
κ∈N{τκ > t} = Ω,

for all t ≥ 0, to prove that G is regular (Lyapunov), it is equivalent to show that G is regular
(Lyapunov) for Λ(· ∧ τκ) and µ(· ∧ τκ), for all κ ∈ N. Hence, without loss of generality, let us
assume that (Λ(·), µ(·)) = (Λ(· ∧ τκ), µ(· ∧ τκ)), for some κ ∈ N.

Without loss of generality, assume that aij(·) is a predictable and uniformly bounded process,
for all i, j ∈ {1, · · · , d}, such that

[µi, µj ] (t) =

∫ t

0
aij(u)dA(u) ≤ κ, t ≥ 0,

where A(·) =
∑d
i=1[µi, µi](·). Here, the equality holds according to the Kunita-Watanabe

inequality (see also Proposition 2.9 in Jacod and Shiryaev (2003)) and the inequality due to
(A.7).

Now, consider a mollification (Gn1,n2)n1,n2∈N of G defined as in (A.1). By Lemma 21(ii), for
n1, n2 ∈ N large enough, Itô’s lemma applied to Gn1,n2 yields

Gn1,n2(Λ(t), µ(t)) = Gn1,n2(Λ(0), µ(0)) +

∫ t

0

d∑
i=1

∂Gn1,n2

∂xi
(Λ(u), µ(u))dµi(u)

+

∫ t

0
Υ0,n1,n2(u)dA(u) +

∫ t

0

m∑
v=1

Υv,n1,n2(u)dΛv(u),

(A.8)

for all t ≥ 0, where

Υ0,n1,n2(t) =
1

2

d∑
i,j=1

∂2Gn1,n2

∂xi∂xj
(Λ(t), µ(t))aij(t) and Υv,n1,n2(t) =

∂Gn1,n2

∂λv
(Λ(t), µ(t)),

for all v ∈ {1, · · · ,m}.
For all (λ, x) ∈ W and i ∈ {1, · · · , d}, if (bi) holds, Lemma 21(iv) yields

lim
n2↑∞

lim
n1↑∞

∂Gn1,n2

∂xi
(λ, x) =

∂G

∂xi
(λ, x);

if (bii) holds, Lemma 22 yields

lim
n2↑∞

lim
n1↑∞

∂Gn1,n2

∂xi
(λ, x) = fi(λ, x),

for some measurable function fi. Moreover, thanks to (bi) or (bii), there exists a constant
L = L(Wκ) ≥ 0 such that, for n1, n2 ∈ N large enough,∣∣∣∣∂Gn1,n2

∂xi

∣∣∣∣ ≤ L, i ∈ {1, · · · , d}.
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This follows from the Lipschitz continuity of G on the closure ofWκ in the second argument and
a similar reasoning as in the proof of Lemma 21(iii). Then by Lemma 23, there exist random
subsequences (nk1)k∈N and (nk2)k∈N with limk↑∞ n

k
1 = ∞ = limk↑∞ n

k
2 such that, if we write

Gk = Gnk
1 ,n

k
2
, we have

lim
k↑∞

∫ t

0

d∑
i=1

∂Gk
∂xi

(Λ(u), µ(u))dµi(u) = F (Λ(t), µ(t)), a.s., (A.9)

for all t ≥ 0, where

F (Λ(t), µ(t)) =

{∫ t
0

∑d
i=1

∂G
∂xi

(Λ(u), µ(u))dµi(u), if (bi) holds∫ t
0

∑d
i=1 fi(Λ(u), µ(u))dµi(u), if (bii) holds

.

To proceed, write

Hk(t) = Gk(Λ(0), µ(0))−Gk(Λ(t), µ(t)) +

∫ t

0

d∑
i=1

∂Gk
∂xi

(Λ(u), µ(u))dµi(u),

for all k ∈ N, and

H(t) = G(Λ(0), µ(0))−G(Λ(t), µ(t)) + F (Λ(t), µ(t)),

for all t ≥ 0. Then, (A.8) with respect to the random subsequences (nk1)k∈N and (nk2)k∈N is of
the form

Hk(t) = −
∫ t

0
Υ0,k(u)dA(u)−

∫ t

0

m∑
v=1

Υv,k(u)dΛv(u), t ≥ 0.

Note that by Lemma 21(i) and (A.9), limk↑∞Hk(t) = H(t), a.s., for all t ≥ 0.
A measurable function DG in Condition 1 of Definition 5 is chosen with components

DiG(λ, x) =

{
∂G
∂xi

(λ, x), if (bi) holds

fi(λ, x), if (bii) holds
, i ∈ {1, · · · , d}.

Then, as ΓG(·) = H(·) according to (3.2), it is enough to show that H(·) is of finite variation in
the following four cases.

Case 1.
Assume that (ai) and (bi) hold. Then by Lemma 21(iii)&(v), the processes (Υ0,k(·))k∈N and

(Υv,k(·))v∈{1,··· ,m},k∈N are uniformly bounded. With l = m+1, Λv(·) = Λv(·) and (Υv,k(·))k∈N =

(Υv,k(·))k∈N, for all v ∈ {1, · · · ,m}, Λm+1(·) = A(·), (Υm+1,k(·))k∈N = (Υ0,k(·))k∈N, and

(Θk(·))k∈N = 0, Lemma 24 yields that H(·) is of finite variation on compact sets.
Case 2.
Assume that (ai) and (bii) hold. By Lemma 21(iii), the processes (Υv,k(·))v∈{1,··· ,m},k∈N are

uniformly bounded. Since G is concave in the second argument, for each k ∈ N, Gk is also
concave in the second argument. Using the negative semidefinite property of the Hessian of Gk
and choosing the matrix-valued process a(·) = (aij(·))i,j∈{1,··· ,d} to be symmetric and positive
semidefinite, one can show that Υ0,k(t) ≤ 0, for all t ≥ 0. This implies that the processes

Θk(·) = −
∫ ·

0
Υ0,k(t)dA(t), k ∈ N,

are non-decreasing. Similar to Case 1, but now with l = m, Lemma 24 yields again that H(·)
is of finite variation.

Case 3.
Assume that (aii) and (bi) hold. By Lemma 21(v), the process (Υ0,k(·))k∈N is uniformly

bounded. As G is non-increasing in the v-th dimension of the first argument, so is Gk, for all
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v ∈ {1, · · · ,m}. Therefore, Υv,k(t) ≤ 0, for all t ≥ 0, as Λ(·) is non-decreasing in the v-th
dimension, for all v ∈ {1, · · · ,m}. This implies that the processes

Θk(·) = −
∫ ·

0

m∑
v=1

Υv,k(t)dΛv(t), k ∈ N,

are non-decreasing. Similar to above, Lemma 24 implies that H(·) is of finite variation.
Case 4.
Assume that (aii) and (bii) hold. With

Θk(·) = −
∫ ·

0
Υ0,k(t)dA(t)−

∫ ·
0

m∑
v=1

Υv,k(t)dΛv(t), k ∈ N,

Lemma 24 implies again that H(·) is of finite variation. It is clear that G is Lyapunov. �

A.3. Proof of Theorem 11.

Proof of Theorem 11. The following steps are partially inspired by the proof of Theorem 3.8 in
Karatzas and Ruf (2017). According to Theorem 2.3 in Banner and Ghomrasni (2008), for each
l ∈ {1, · · · , d}, one can find a measurable function hl : ∆d → (0, 1] and a finite variation process
Bl(·) with Bl(0) = 0 such that

µ(l)(·) = µ(l)(0) +

∫ ·
0

d∑
i=1

hl(µ(t))1{µ(l)(t)=µi(t)}dµi(t) +Bl(·). (A.10)

Since G is regular for Λ(·) and µ(·), by Definition 5, there exist a measurable function DG
and a finite variation process ΓG(·) such that

G(Λ(·),µ(·)) = G(Λ(0),µ(0)) +

∫ ·
0

d∑
l=1

DlG(Λ(t),µ(t))dµ(l)(t)− ΓG(·). (A.11)

By (A.10), we have

∫ ·
0

d∑
l=1

DlG(Λ(t),µ(t))dµ(l)(t) =

∫ ·
0

d∑
l=1

DlG(Λ(t),µ(t))hl(µ(t))1{µ(l)(t)=µi(t)}dµi(t)

+

∫ ·
0

d∑
l=1

DlG(Λ(t),µ(t))dBl(t).

(A.12)

Now consider the measurable function DG :W → Rd with components

DiG(λ, x) =
d∑
l=1

DlG(λ,R(x))hl(x)1x(l)=xi , i ∈ {1, · · · , d},

and the finite variation process

ΓG(·) = ΓG(·)−
∫ ·

0

d∑
l=1

DlG(Λ(t),µ(t))dBl(t).

Then (A.11) and (A.12), together with G(λ, x) = G(λ,R(x)), yield (3.2), i.e., G is regular for
Λ(·) and µ(·). �
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A.4. An alternative proof for a special case. The proof technique of Theorem VII.31 in
Dellacherie and Meyer (1982) suggests an alternative argument for the case that conditions (ai)
and (bii) in Theorem 8 hold. We summarise these ideas in the following result.

Theorem 25. If a function f : W → R is locally Lipschitz in the first argument and concave
in the second argument, then the process f(Λ(·), µ(·)) is a semimartingale.

Proof. Assume that the semimartingale µ(·) has the Doob-Meyer decomposition µ(·) = µ(0) +
M(·) + V (·), where M(·) is a d-dimensional continuous local martingale and V (·) is a d-
dimensional finite variation process with M(0) = V (0) = 0.

Let (Wn)n∈N be a non-decreasing sequence of open sets such that the closure of Wn is in W,
for all n ∈ N. For each κ ∈ N, we consider the stopping time τκ given in (A.7). Without loss of
generality, let us assume again that (Λ(·), µ(·)) = (Λ(· ∧ τκ), µ(· ∧ τκ)), for some κ ∈ N.

Since f is locally Lipschitz in both arguments (see Theorem 10.4 in Rockafellar (1970)), we
can find a Lipschitz constant L such that, for all s, t ≥ 0 with s ≤ t, we have

|f(Λ(t), µ(t))− f(Λ(s), µ(0) +M(t) + V (s))|

≤ L
(

m∑
v=1

|Λv(t)− Λv(s)|+
d∑
i=1

|Vi(t)− Vi(s)|
)

≤ L
(

m∑
v=1

∫ t

s
|dΛv(u)|+

d∑
i=1

∫ t

s
|dVi(u)|

)
.

(A.13)

Let

Z(·) = −f(Λ(·), µ(·)) + L

(
m∑
v=1

∫ ·
0
|dΛv(t)|+

d∑
i=1

∫ ·
0
|dVi(t)|

)
,

then Z(·) is bounded. Hence we have

E [Z(t)− Z(s)|F(s)] = E [f(Λ(s), µ(s))− f(Λ(s), µ(0) +M(t) + V (s))|F(s)]

+ E
[
f(Λ(s), µ(0) +M(t) + V (s))− f(Λ(t), µ(t))

+ L

(
m∑
v=1

∫ t

s
|dΛv(u)|+

d∑
i=1

∫ t

s
|dVi(u)|

) ∣∣∣∣F(s)

]
≥ E [f(Λ(s), µ(s))− f(Λ(s), µ(0) +M(t) + V (s))|F(s)] ≥ 0,

where the first inequality is by (A.13) and the second inequality holds by Jensen’s inequality.
Therefore, Z(·) is a submartingale, which makes f(Λ(·), µ(·)) a semimartingale. �
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