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Abstract. Nonparametric identification of the Mixed Hazard model is shown. The

setup allows for covariates that are random, time-varying, satisfy a rich path structure

and are censored by events. For each set of model parameters, an observed process is

constructed. The process corresponding to the true model parameters is a martingale,

the ones corresponding to incorrect model parameters are not. The unique martingale

structure yields a family of moment conditions that only the true parameters can sat-

isfy. These moments identify the model and suggest a GMM estimation approach. The

moments do not require use of the hazard function.

JEL Classifications: C01, C14, C34, C41.

1. Introduction

An important aspect of economic durations is the influence of unobserved heterogeneity.

When relevant variables are unobserved, the result is survivorship bias. Failure to account

for this leads to biased estimates and faulty inference. This issue is well known and a

large econometric literature addresses it.

The archetype economic example is unemployment durations; see, for example, Cor-

nelißen and Hübler (2011), Caliendo et al. (2013) Hausman and Woutersen (2014), and
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Farber and Valletta (2015). All of these papers incorporate either unobserved hetero-

geneity, time-varying covariates or both. This matches the model features considered in

this paper. Kroft et al. (2013) analyses unemployment durations with an experimental

approach explicitly designed to avoid the problem of unobserved heterogeneity.

A large portion of the literature studying heterogeneity in economic durations considers

the Mixed Proportional Hazard (MPH) model. Initially proposed by Lancaster (1979), it

has been the topic of substantial econometric analysis. This includes both identification

results and estimation approaches. Lancaster (1979) proposed a parametric model. The

literature that followed questions this assumption. Many papers extend the MPH to

semiparametric or nonparametric cases with corresponding identification and estimation

results. See Hausman and Woutersen (2014) for a guide to the literature.

In this paper, we consider identification of the Mixed Hazard (MH) model and its

variants. The MH model removes the MPH’s proportionality assumption between the

baseline hazard and the covariates. The heterogeneity still acts multiplicatively on the

other components.

Heckman (1991) identifies part of the MH model, the hazard rate at t = 0. This is

done assuming time-constant covariates. McCall (1994) identifies the full model with

time-varying covariates by assuming the hazard rate is zero (or arbitrarily close to zero)

over an interval [0, t). This has to hold for some, but not all, realizations of the covariates.

Both of these approaches identify parameters by considering limits approaching portions

of the random events which are not influenced by the sorting phenomena. At time

t = 0 there is no sorting because no one has left the sample. When the hazard rate is

zero on [0, t) there is also no sorting for the same reason. In an important theoretical

advance, Brinch (2007) identifies the full MH model with time-varying covariates avoiding

arguments such as in Heckman (1991) and McCall (1994).

None of the above papers presents an estimation approach. Moreover, while McCall

(1994) and Brinch (2007) identify the full model, their results raise a number of issues.

First, the arguments are based on the survival probabilities past a given time t conditional

on a path of the covariates up to time t. When the covariates Z = (Zs) are random and
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time-varying, this object is only directly observed from the data if the random events

τ do not censor our observation of Z. If censoring is present, we cannot observe these

objects directly. Hence, previous results need to be modified for this case.

Second, the argument depends on the survival probabilities conditioning on a fixed path

z of the covariates. In realistic data scenarios, observations will have random covariate

paths which do not necessarily match across observations. Thus, applying previous results

requires that survival probabilities conditional on z can be constructed from the data.

Certain model specifications can be ruled out by particular paths z. An estimation

approach requires a way of systematically dealing with observed random paths to rule

out incorrect models. This would connect observed random paths with identification

based on fixed paths, the result being a consistency proof.

In this paper, we show nonparametric identification of the MH model when covari-

ates are time-varying and censored by events. This is done avoiding the use of hazard

functions. Moments which identify the model are constructed based on the conditional

survival probability form. These are adjusted for censoring so that only observables are

required. The moments also show how to identify the model allowing for random covari-

ate paths. This connects identification with fixed paths to a data based approach that

can be used in realistic finite sample estimation.

It is first shown that rich enough (random) time-variation in the covariates leads to

identification of the conditional survival processes. These objects are only partially ob-

served because events censor observation of the covariates. This initial result is then

used to define a class of fully observed processes indexed by the potential parameters

of the model. We then argue that only the parameters generating the data make their

corresponding process a martingale. This unique martingale property is used to find cer-

tain moment conditions that only the true parameters can satisfy. This set of moment

conditions suggests a GMM estimation approach.

The proposed identification approach is general and applicable to a large class of MH

models. This includes models where events can happen with positive probability at

specific times. For example, at known fixed times the event can happen with positive



4 JOHANNES RUF AND JAMES WOLTER

probability. Alternatively, the event can happen with positive probability when other

random times occur. In addition to identifying the standard MH model, we also show

identification of these more complicated models using this paper’s approach. As a result,

the same moment conditions give identification.

The remainder of the paper is organized as follows. Section 2 presents the basic Mixed

Hazard setup and assumptions and provides preliminary results on conditional survival

probabilities. Section 3 shows the general identification approach and identification for

a standard Mixed Hazard model. The appendices1 present several proofs and technical

results. They also contain counterexamples showing the importance of our assumptions.

The notation in this article follows standard notation for continuous-time stochastic

processes. For an excellent treatment, see Jacod and Shiryaev (2003).

2. Heterogeneous Hazard Setup and Preliminary Results on Conditional

Survival Probabilities

We focus on the single-spell case throughout.

All random variables are defined on a fixed completed probability space (Ω,H ,P).

This probability space supports a stochastic d–dimensional covariate process2 Z, where

d ∈ N. It also supports a family V of scalar nonnegative random variables, all independent

of Z. To avoid trivialities, we assume that the deterministic random variable V = 0 is

not in V . The probability space also supports a random time τ with support [0,∞].

For a random variable V ∈ V , we denote its Laplace transform by

LV (t) =
∫

e−vtdPV (v), t ≥ 0.

2.1. Mixed Hazard Setup. The following statement is the usual definition of a (mixed)

hazard model with time-varying covariates Z. There exists an appropriate function α such

1Appendices B, C, and D can be found in an online appendix.
2The notation Z is used to represent the stochastic process (Zt)t∈[0,∞). We use Z regardless of whether or
not Z varies through time. This is in keeping with standard notation in the stochastic process literature.
This notational convention is used for all stochastic processes throughout the sequel.
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that

lim
∆t↓0

1

∆t
P[t < τ ≤ t+ ∆t | {τ > t}, V, Zs : s ∈ [0, t]] = V α(t, Zt). (2.1)

The setup of (2.1) is a special case of the more general model described in Subsection 2.2.

More precisely, we shall formulate conditions on Z and α (but no further conditions on

V) which allow for identification. We start by stating the following condition concerning

the covariate process Z.

Assumption (P). The covariate process Z takes values in some open set Z ⊂ Rd.

Moreover, one of the following three conditions holds.

(1) The covariate process Z is piecewise constant with update times described by

positive Poisson arrival rates, uniformly bounded away from zero. At each event

a new value is drawn from a distribution with support Z.

(2) The process Z is a diffusion; that is,

dZt = µ(t, Zt)dt+ σ(t, Zt)dWt, t ≥ 0,

where W is d–dimensional Brownian motion, the drift µ : [0,∞) × Z → Rd and

the dispersion matrix σ : [0,∞)×Z → Rd×d are locally Lipschitz-continuous, and

σ(t, z) is invertible for all (t, z) ∈ [0,∞)×Z.

(3) We have d = 1 and the process Z is a continuous, regular strong Markov process.

�

The covariate structure in Assumption (P) is assumed mostly for convenience. Any

covariates with a similarly rich path structure will also lead to identification. Next, we

state the condition on the process α.

Assumption (A). With Z ⊂ Rd denoting the range of Z as in Assumption (P), assume

that the function α : [0,∞)×Z → [0,∞) is continuous and satisfies

sup
z∈Z

∫ t

0
α(s, z)ds <∞, t ≥ 0.
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Moreover, assume that there exist t1, t2 > 0 with t1 < t2 such that α(t, z) > 0 for all

(t, z) ∈ [t1, t2]×Z, and that α(t1, ·) is not constant.

Let A denote all these processes that satisfy the condition of Assumption (A).

We now make the representation in (2.1) more precise. To this end, we define a filtration

(Ft) by

Ft = σ{Zs : s ∈ [0, t]}.

In the Mixed Hazard setup, we shall then work under the assumption that there exists a

pair (V ◦, α◦) ∈ V ×A such that the random time τ satisfies

P[τ > t | Ft ∨ σ(V ◦)] = e−V
◦
∫ t

0
α◦(s,Zs)ds, t ≥ 0, (2.2)

where Ft ∨ σ(V ◦) is the smallest sigma algebra that contains Ft and makes V ◦ measur-

able.3 The representation in (2.2) forces the hazard rates to have multiplicative unob-

servables V ◦, an almost universal assumption in the literature.

As can be seen from (2.2), there are two components which determine the random

times τ . These are the unobserved factor V ∈ V and the function α ∈ A. A general

statement of the identification problem is: if (V ◦, α◦) ∈ V×A, can we tell which members

generated the observed data? Identification is of functions α ∈ A and distributions for

V ∈ V .

From (2.2), it is clear that it usually is impossible to completely identify V and α from

the data. Indeed, multiplying V by a constant and α by its reciprocal yields exactly

the same distribution of the data. Hence, we can only expect identification up to a

constant. To emphasize this point we shall write that (V, F ) equals to (W,G) modolo

3Assume, for example, that there exists a pair (V ◦, α◦) ∈ V×A and an exponentially distributed random
variable ζ, independent of F∞ ∨ σ(V ◦) such that the representation

τ = inf

®
t ≥ 0 : V ◦

∫ t

0

α◦(s, Zs)ds ≥ ζ
´

holds. We then have

P[τ > t|Ft ∨ σ(V ◦)] = P

ñ
V ◦
∫ t

0

α◦(s, Zs)ds < ζ

∣∣∣∣∣Ft ∨ σ(V ◦)

ô
= e
−V ◦

∫ t

0
α◦(s,Zs)ds, t ≥ 0;

hence, (2.2) follows.
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“trivial normalization” if there exists a constant κ > 0 such that

(LV , α) =

Ç
LκW ,

1

κ
β

å
.

Corollary 2.1. Suppose Assumptions (P) and (A) hold. Let (V, α), (W,β) ∈ V × A.

Then we have the equivalence

(LV , α) =

Ç
LκW ,

1

κ
β

å
for some κ > 0

if and only if

P

ñ
LV
Ç∫ t

0
α(s, Zs)ds

å
= LW

Ç∫ t

0
β(s, Zs)ds

åô
= 1.

The corollary follows from Theorem 2.2 in Subsection 2.2 below; for details see Propo-

sition 2.3 and the discussion that follows.

This result says that, if the pairs (LV , α) and (LW , β) are not equal modolo trivial

normalization, then the conditional survival processes LV (F ) and LW (G) are not equal

(in a pathwise sense with positive probability).

2.2. A More General Setup. Note that each α ∈ A defines an (Ft)–predictable pro-

cess

Ft(α) =
∫ t

0
α(s, Zs)ds, t ≥ 0.

and that (2.2) can be written as

P[τ > t | Ft ∨ σ(V ◦)] = e−V
◦Ft(α◦), t ≥ 0. (2.3)

It turns out that identification can occur not only in the family {F (α) : α ∈ A} but among

a much larger family of processes. Those processes serve as the integrated observed part

of the hazard rate. They do not need to be absolutely continuous and can even be

discontinuous.

To describe the general model, we let F be an arbitrary family of stochastic processes

F satisfying the following conditions:
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(1) F is (Ft)–predictable;

(2) F is nondecreasing;

(3) F is right-continuous;

(4) F0 = 0.

For example, we could use

F = {F (α) : α ∈ A}. (2.4)

Then the general setup corresponds exactly to the Mixed Hazard setup of Subsection 2.1.

In general, the class F can contain many other processes. In particular, F can allow

for discontinuities in F . This creates times where τ will happen with positive probability.

For example, at a known fixed time there can be a positive probability of an event. The

more general setup also allows for a positive probability of τ happening when another

random time happens. See Subsection 2.3 for an example.

Similarly to (2.2) and (2.3), in this generalized setup, we assume the existence of a pair

(V ◦, F ◦) ∈ V × F such that the random time τ satisfies

P[τ > t | Ft ∨ σ(V ◦)] = e−V
◦F ◦t , t ≥ 0. (2.5)

There is no hope to get a general identification result without further assumptions

on F . Indeed, Appendix A contains a specific counterexample. In the following, we

formulate an assumption that will yield identification. It is stated in generality to allow

for several different applications.

To give intuition, we provide some interpretation of the following necessary notation.

Fix two right-continuous finite-valued paths f, g : [0,∞) → R. These paths can be

interpreted as realizations of elements in F . Next, fix t, ε ∈ [0,∞]. The functions f and

g will be paired with realizations of elements in F over the interval [t, t + ε). To this

end, fix c, c′ ∈ R. These two constants describe how different the realizations of F and

G need to be compared with f and g, respectively. Finally, fix n ∈ N. We are now ready
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to define the set

Of,g,t,c,c′,ε,n =
ß
ω̃ ∈ Ω : sup

s∈[t,t+ε)

Ä
|c+ fs − Fs|+ |c′ + gs −Gs|

ä
<

1

n

™
.

This notation allows us to introduce the core assumption of this paper.

Assumption (R). For each pair (F,G) ∈ F × F there exist a [0,∞]–valued random

variable ρ, a (0,∞)–valued random variable E , and an R2\{(0, 0)}–valued random vector

(C,C ′) such that the intersection of the following two events has positive probability:

A1 = {Fρ < Fs, for each s ∈ (ρ, ρ+ E)};

A2 =
⋂
n∈N

¶
P [Of,g,t,c,c′,ε,n]|f=F,g=G,t=ρ,c=C,c′=C′,ε=E > 0

©
. (2.6)

That is, we have P[A1 ∩ A2] > 0.4 �

Let us provide an interpretation of Assumption (R). To this end, fix a pair (F,G) ∈

F × F . For each n ∈ N, any ω ∈ Ω can be matched to the event

OF (ω),G(ω),ρ(ω),C(ω),C′(ω),E(ω),n.

This is the set of all ω̃ ∈ Ω such that Fs(ω̃) and Gs(ω̃) do not differ too much (measured

in terms of n) on the interval s ∈ [ρ(ω), ρ(ω) + E(ω)) from (C(ω) + Fs(ω)) and (C ′(ω) +

Gs(ω)), respectively. If the probability of the matched event Of,g,t,c,c′,ε,n is greater than

zero for all choices of n, we include ω in A2. Observe that (C,C ′) is assumed to be

R2 \ {(0, 0)}–valued. Thus, for sufficiently large n ∈ N, a state ω ∈ Ω cannot be matched

to an event that contains ω itself.

For two pairs

(V, F ), (W,G) ∈ V × F ,

write (LV , F ) = (LW , G) if LV = LW and P[F = G] > 0. We are now ready to state the

general identification result.

4Several measurability results are required for this assumption to be well stated. The details are provided
in Appendix C.
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Theorem 2.2. Suppose Assumption (R) holds.5 Let (V, F ), (W,G) ∈ V × F . Then we

have the equivalence

(LV , F ) =

Ç
LκW ,

1

κ
G

å
for some κ > 0

if and only if

P[LV (F ) = LW (G)] = 1.

The proof of Theorem 2.2 is contained in Subsection 2.2.

This result says that the pairs (LV , F ) and (LW , G) are equal modulo trivial normal-

ization if the conditional survival processes LV (F ) and LW (G) are equal (in a pathwise

sense with positive probability). In Appendix A, a counterexample is presented where

the conclusion of Theorem 2.2 fails if Assumption (R) fails. It may be possible to simplify

or relax assumption (R), but it is also possible to lose the desired result when doing so.

The following proposition yields Corollary 2.1, provided we show that Theorem 2.2

holds.

Proposition 2.3. If Assumptions (P) and (A) hold along with (2.5); i.e., if we are in

the Mixed Hazard setup, then Assumption (R) is satisfied.

The proof of this proposition can be found in Appendix B. This proposition, in con-

junction with Thereom 2.2, then yields Corollary 2.1. To see this, note that under As-

sumption (P), any two functions α1, α2 ∈ A with α1 6= α2 yield corresponding processes

F (α1) and F (α2) that have different paths with positive probability. This can be argued

in the same way as Proposition 2.3 itself. Hence identification of the process F yields

also identification of the function α.

Before finishing this subsection, let us give some intuition how Theorem 2.2 is proven,

in the spirit of Brinch (2007). Suppose that we are given four right-continuous functions

5Assumption (R) could be weakened and the results below would still be correct. For example, we
could allow that the matching happens at different times. That is, given a pair (F,G) ∈ F × F and
ω ∈ Ω, another state ω̃ ∈ Ω could be paired to it if the shifted paths (Fh+·(ω̃), Gh+·(ω̃)) are “similar”
to (F·(ω), G·(ω)), for some (possibly random) h ≥ 0. However, the current version of Assumption (R) is
already challenging and covers all applications we have in mind.
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f, f̃ , g, g̃, defined on [0,∞) and taking values in [0,∞). Assume furthermore that there

exist some t ≥ 0 and ε > 0 such that

ft 6= f̃t;

ft < fs for all s ∈ (t, t+ ε);

fs − ft = f̃s − f̃t for all s ∈ (t, t+ ε);

gs − gt = g̃s − g̃t for all s ∈ (t, t+ ε).

We are given, moreover, two scalar nonnegative random variables V,W ∈ V . Provided

that (V, f, f̃) does not equal (W, g, g̃) modulo trivial normalization we then first argue

that LV (f) 6= LW (g) and/or LV (f̃) 6= LW (g̃).

So far, the argument is purely analytic as it does not include any probabilistic state-

ment. We now consider two processes F,G ∈ F and make use of Assumption (R). This

allows us to pair sufficiently many ω ∈ Ω with some ω̃ ∈ Ω such that the functions

fs = Fs(ω); f̃s = Fs(ω̃); gs = Gs(ω); g̃s = Gs(ω̃), s ≥ 0

satisfy the conditions above, at least approximately. Hence, for two realizations, the

corresponding paths are different at time t but increase at the same rate for some period

after t.

2.3. Example: Positive Default Probability at Certain Times. We provide now

a generalization of the Mixed Hazard setup of Subsection 2.1, for which Theorem 2.2 can

also be applied.

For simplicity, assume in this subsection that the covariate process Z has left-hand

limits. We now let τ † be an (Ft)–predictable time. By this we mean that τ † is an

(Ft)–stopping time that is announced.6 For example, if τ † is a nonnegative deterministic

constant, it is automatically an (Ft)–predictable time. Many other cases are possible.

Importantly, τ † is adapted to (Ft) and therefore is contained in this information.

6This means τ † can be written as the limit of a strictly increasing sequence of (Ft)–stopping times.
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We again work under Assumptions (P) and (A), but now consider, for any continuous

function γ : Z 7→ [0,∞), the process

Ft(α, γ) =


∫ t

0 α(s, Zs)ds, if t < τ †;∫ t
0 α(s, Zs)ds+ γ(Zτ†−), if t ≥ τ †,

t ≥ 0.

All possible choices of α and γ then yield the family

F † = {F (α, γ) : α ∈ A, γ : Z 7→ [0,∞) (continuous)}.

Whereas standard hazard models have probability zero that an event happens at any

given time, this setup allows for a positive probability of events at observable times.

Indeed, when a separate random time τ † happens, there is positive probability that τ

happens immediately. The unobservable factor V and the observed covariates Z partially

determine the probability of τ happening at τ †. There is no need to restrict the number

of times τ † to be one. We assume one stopping time τ † here for simplicity.

Exactly as in Proposition 2.3 we may now argue that Assumption (R) holds. If we

additionally assume that the support of Zτ†− equals Z, then we obtain identification

modulo trivial normalization. That is, for all (V, F (α, γ)), (W,F (β, υ)) ∈ V ×F † we then

have the equivalence

(LV , α, γ) =

Ç
LκW ,

1

κ
α,

1

κ
υ

å
for some κ > 0

if and only if

P[LV (F (α, γ) = LW (F (β, υ)] = 1.

3. Martingale Properties and Identifying Moments

3.1. Censoring and Observation Filtration. It is important to emphasize that the

processes LV (F ) are usually not observed in data. For any given observation, τ can

happen before time t. As we do not observe Zt after τ , we do not know LV (Ft). This is

true for any possible pair (V, F ) ∈ V ×F regardless of what the true parameters (V ◦, F ◦)

are.
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The same issue can be seen in a different way by considering the problem of estimating

LV ◦(F ◦t ) = P[τ > t | Zs = zs : s ∈ [0, t]] from observed data. In the case where there

is no censoring of Z, there exists a simple estimator: count the number of observations

with realized path Z = z for s ∈ [0, t] with τ > t and divide by the total number

of observations with this path. In the case where there is censoring, this estimator is

impossible. For some observations, Z will follow the path z up until τ , but τ will happen

before t. When τ occurs, it censors Z. For these cases, it is not known if Zs = zs for all

s ∈ [0, t], only that Zs = zs for all s ∈ [0, τ ]. Therefore, we cannot construct an estimator

of P[τ > t | Zs = zs : s ∈ [0, t]] directly in the censoring case. We can infer these objects

from the conditional hazard rate at time t. An estimation approach based on this would

require recovering the conditional survival probabilities from estimated hazard rates. Our

approach will avoid this and use a censored version of LV (Ft) directly.

To make headway, let (Gt) denote the filtration given by

Gt = σ{Zs∧τ ,1{τ≤s} : s ∈ [0, t]}, t ≥ 0.

This filtration contains the information whether or not the event τ has happened. It also

contains the observed covariates censored by the event.7 The filtration (Gt) corresponds to

the observed information in the censoring case. Identification results should only depend

on this.

3.2. Martingale Moments. Mostly for convenience, in the following we will assume

that

F∞ = lim
t↑∞

Ft <∞. (3.1)

7 It is possible to work with the filtration which observes Z up until just before time τ and derive the
same identification results in the sequel. This is needed if the event τ prevents observation of Z. To this
end, let us write

Zτ−t = Zt1{t<τ} + lim inf
s↑τ

Zs1{s≥τ}, t ≥ 0.

That is, Zτ− corresponds to the process Z up to the time just before τ occurs, and afterwards just stays
constant. Let us define the corresponding filtration (G ∗t ) by

G ∗t = σ{Zτ−s ,1{τ≤s} : s ∈ [0, t]}, t ≥ 0..

Therefore, (G ∗t ) contains all information that (Ft) contains before time τ . We have G ∗t ⊂ Gt. The
identification results below would all remain true if we replaced (Gt) by (G ∗t ).
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In the context of the Mixed Hazard setup, this means that

∫ T

0
α(s, z)ds <∞

for some T > 0 and α(s, z) is zero for larger times. This corresponds to an upper bound

on the duration lengths considered.

In the following, we consider processes of the form M = 1/LW (G)1[[0,τ [[ where (W,G) ∈

V × F . Notice that the process M = 1/LW (G)1[[0,τ [[ is observable, that is, (Gt)–adapted.

When τ happens, M jumps to zero. Hence, the fact that τ censors Z does not prevent us

from constructing M from (Gt). The process also does not depend directly on the hazard

rate. The following corollary shows that M is only a (Gt)–martingale if (LW , G) equals

(LV ◦ , F ◦) modulo trivial normalization.

Corollary 3.1. Suppose that Assumption (R) and (3.1) hold, fix a pair (W,G) ∈ V ×F ,

and define the process M = 1/LW (G)1[[0,τ [[. Then the following conditions are equivalent:

(i) (LκW , G/κ) = (LV ◦ , F ◦) for some κ > 0.

(ii) M is a uniformly integrable (Gt)–martingale.

Proof. This is a direct consequence of Theorems 2.2 and D.1 below. �

In the sequel, the moment conditions that identify the model depend on the fact that

only if (LW , G) is a trivial normalization of (LV ◦ , F ◦), then M is a uniformly integrable

(Gt)–martingale. An essential role for this result is played by the filtration (Gt). Indeed,

the result fails if the filtration generated by M is used instead of (Gt), as Example D.2 in

the online appendix illustrates.

The martingale structure in Corollary 3.1 leads to a set of moment conditions which

only the true hazard parameters (V ◦, F ◦) can satisfy. This identifies the model. In order

to derive these moment conditions, we introduce the filtration (Ot) given by

Ot = σ{Zs∧τ : s ∈ [0, t]}, t ≥ 0.
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Note that Ot ⊂ Gt and therefore we observe the information in (Ot).
8 The identifying

moment conditions are based on a set of Ot–stopping times. These stopping times take the

following form: for t ≥ 0 and A ∈ Ot, we consider ηt,A = t1A +∞1Ω\A. For nonnegative

processes M we set M∞ = lim inft↑∞Mt. The family of nonnegative dyadic numbers

D = (k2−j)k,j∈N will be needed in the sequel.

Theorem 3.2. Suppose Assumption (R) and (3.1) hold, let (W,G) ∈ V ×F , and define

the process M = 1/LW (G)1[[0,τ [[. Then the following statements are equivalent:

(i) (LκW , G/κ) 6= (LV ◦ , F ◦) for all κ > 0.

(ii) There exist t ∈ D and A ∈ Ot such that

E[Mηt,A ] 6= 1.

Proof. If (ii) holds, M cannot be a uniformly integrable (Gt)–martingale. An application

of Corollary 3.1 yields (i). Now, assume (i) holds. Then, by Corollary 3.1, M is not a

uniformly integrable (Gt)–martingale. Indeed, by stopping the processes G and F ◦ we

get that M is not even a (Gt)–martingale. This in conjunction with the right-continuity

of M then guarantees the existence of s, u ∈ D with s < u and B ∈ Gs such that

E[Ms1B] 6= E[Mu1B]. Thanks to the special structure of the sigma algebra Gs, this also

yields the existence of A ∈ Os ⊂ Ou such that E[Ms1A] 6= E[Mu1A]. In particular, one of

the two quantities cannot equal E[M∞1Ω\A], yielding (ii). �

The previous theorem shows that for any pair (LW , G), different from (LV ◦ , F ◦) modulo

trivial normalization, one of the moment conditions must be violated. However, the

number of moments is large. We have to consider ηt,A for all t ∈ D and A ∈ Ot. It is not

obvious how to systematically choose A ∈ Ot in an estimation strategy. In the following

corollary, we reduce the number of moments needed to identify the model. This leads to

a tractable set of moment conditions for estimation.

8As in Footnote 7, we could also consider the slightly smaller filtration (O∗t ), given by

O∗t = σ{Zτ−s , s ∈ [0, t]), t ≥ 0.

All results below would remain true if we replaced (Ot) by (O∗t ).
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Corollary 3.3. With the assumptions and notation of Theorem 3.2, suppose that for

each t ∈ D there is a π-system St generating Ot. Then (i) and (ii) in Theorem 3.2 are

equivalent to the following condition:

(iii) There exist t ∈ D and A ∈ St ∪ {∅,Ω} such that

E[Mηt,A ] 6= 1.

Proof. It suffices to argue that a failure of (iii) implies a failure of Theorem 3.2(ii). Thus,

let us assume that

E[M∞] = 1 and E[Mt] = 1 and E[Mηt,A ] = 1

for all t ∈ D and A ∈ St. Then a standard application of Dynkin’s π-λ-argument

concludes. �

This corollary states that identification follows from the smaller set of moment con-

ditions defined by t ∈ D and A ∈ St ∪ {∅,Ω}. If the π-systems St are defined in an

appropriate way, it is possible to find a convenient set of moment conditions for estima-

tion. We now give an example of such a π-system St.

Consider the event

B(s, x, j) =
¶
‖x− Zs∧τ‖1 ≤ d2−j

©
,

where s ≥ 0, x ∈ Rd, and j ∈ N. Here, ‖ · ‖1 denotes the L1–metric. Hence, B(s, x, j) is

the event that, at time s, the stopped covariate process Zτ is within d2−j of the point x

in L1–distance. We call B(s, x, j) a “checkpoint” and say the realization of the process

Zτ (ω) passes the checkpoint if ω ∈ B(s, x, j).

Next, define the event

A(k, j) =
2j⋂
`=0

B
Ä
2−j`t, 2−jk(`), j

ä
,

where k = (k(0), · · · , k(2j)) ∈ (Zd)2j+1, and j ∈ N. In words, A(k, j) is the event

where the stopped covariate process Zτ (ω) passes a sequence of checkpoints. If the
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process fails to pass any B
Ä
2−j`t, 2−jk(`), j

ä
then ω /∈ A(k, j). These checkpoints are at

times 0, 2−jt, 2× 2−jt, · · · , t and are centered at Rd–valued vectors; the `-th center being

2−jk(`−1). Therefore, at time 2−j`t the process Zτ (ω) must be within d2−j of the point

2−jk(`).

We can now define

Sjt =
⋃

k∈{−j2j ,··· ,j2j}d×(2j+1)

A(k, j),

and

St =
⋃
j∈N

Sjt .

It is relatively simple to show that St is indeed a π-system. Moreover, if we assume

that the covariate process is either left- or right-continuous, then its paths are fully

determined by their values at dyadic numbers. Hence, under such a weak additional

continuity assumption, St also generates the sigma algebra Ot.

Corollary 3.3 shows that the correct hazard parameters (LV ◦ , F ◦) can be identified

with moment conditions derived from the π-systems St described above. Any incorrect

specification will violate E[Mηt,A ] = 1 for some t ∈ D and A ∈ St.9 If a moment condition

from Sjt is violated, and j′ > j, then a moment condition from Sj
′

t must also be violated.

This is because for any A ∈ Sjt , there exist disjoint sets in Sj
′

t whose union is A. It follows

that if E[Mηt,A ] 6= 1 then for one of the sets A′ ∈ Sj
′

t we have E[Mηt,A′
] 6= 1.

For a given set of incorrect parameters (W,G) ∈ V×F there exist t ∈ D and j ∈ N such

that E[Mηt,A(k,j)
] 6= 1 for some A(k, j) ∈ Sjt . Therefore, for each incorrect specification,

only a finite set of moment conditions Sjt is needed to rule it out. However, for a given

(W,G) ∈ V × F the number j is unknown.

In the case where Z = Rd, the covariates can satisfy all possible sets of checkpoints.

When Z ⊂ Rd, some of the sets A(k, j) defined above will be empty. This simply makes

9Here and in the sequel, when we write St or Sjt referring to moment conditions it is implicitly assumed
that we include {∅,Ω} in these sets. This is done to ease notation.
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the corresponding stopping times ηA(k,j) equal to ∞ with probability one. All of the

stated results are still true.

Corollary 3.3 and the observations afterwards suggest a GMM estimation strategy

based on a set of moment conditions which grows with the amount of observed data. A

fixed set of moments corresponding to Sjt , t ≥ 0 may not rule out an individual incorrect

model (W,G) ∈ V ×F for a given j, but as j tends to∞ they will eventually rule out all

incorrect models. An estimation approach based on this idea would require considering

each of the moment conditions (or a subset of them) corresponding to Sjt , t ≥ 0 for a

given amount of data. The set of moments is increased by increasing j as the number of

observations gets larger. In the limit, it may be possible to achieve a consistent estimator.

This could use a sieve estimation approach where the relevant functions are estimated

with an increasingly large number of basis functions. Specifics of this estimation strategy

are beyond the scope of the paper and left to future research.

3.3. Additional Random Censoring. In practice, there might be additional random

censoring. That is, if C denotes an exogenous censoring time, then the stopped process

ZC would be observed and replace Z in the arguments above. All the results in this

section will still go through with mild assumptions on C. In particular, this would

require that the stopped process FC satisfies Assumption (R). In the special setup of

the Mixed Hazard model, this would imply that C > t2 with positive probability (in the

notation of Assumption (A)).
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Appendix A. An Example for Non-Identification

First, let us illustrate that the statement of Theorem 2.2 would be wrong, in general,

if one did not make Assumption (R).
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Example A.1. In this example we construct three random variables V a, V b, V c ∈ V ,

satisfying E[V a] = E[V b] = E[V c] = 1, and three non-deterministic processes F a, F b, F c ∈

F such that LV a(F a) = LV b(F b) = LV c(F c), but (LV i , F i) 6= (LV j , F j) for all i, j ∈

{a, b, c} with i 6= j.

To start, set V a to a constant; to wit, P[V a = 1] = 1. Next, V b is assumed to be

exponentially distributed; to wit, P[V b ∈ dv] = 1v≥0e−vdv. Moreover, assume that V c be

distributed as a mixture with P[V c ∈ dv] = 1/2dδ0+1/41v≥0e−v/2dv, where δ0 denotes the

Dirac measure at zero. That is, V c can be generated by a fair coin toss X ∈ {0, 1} and an

exponentially distributed random variable Y with expectation 2; to wit, P[V c = XY ] = 1.

In particular, we then have E[V i] = 1, thus V i ∈ V , for each i ∈ {a, b, c}, and also the

following equalities:

LV a(s) = E[e−sV
a

] = e−s, s ≥ 0;

LV b(s) = E[e−sV
b

] =
1

1 + s
, s ≥ 0;

LV c(s) = E[e−sV
c

] =
1 + s

1 + 2s
, s ≥ 0.

Next, introduce the (deterministic) functions

fa(t) = log

Ç
2− 1

1 + t

å
∧ log

Ç
3

2

å
, t ≥ 0;

f b(t) =
t

1 + t
∧ 1

2
, t ≥ 0;

f c(t) = t ∧ 1, t ≥ 0.

It is easy to check that now LV a ◦ fa = LV b ◦ f b = LV c ◦ f c. Introduce also the functions

fa′(t) = log (1 + t) ∧ log

Ç
3

2

å
, t ≥ 0;

f b
′
(t) = t ∧ 1

2
, t ≥ 0;

f c′(t) =
t

1− t
∧ 1, t ≥ 0.

Then again LV a ◦ fa′ = LV b ◦ f b′ = LV c ◦ f c′.
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We now assume that there exists a (measurable) partition (D,D′) of Ω such that D

is independent of V a, V b, V c and such that P[D] ∈ (0, 1). We then introduce the process

F i = f i1D + f i
′
1D′ for each i ∈ {a, b, c}. Then we have LV a ◦ F a = LV b ◦ F b = LV c ◦ F c.

Thus, the conclusion of Theorem 2.2 does not hold.

Let us now argue that Assumption (R) fails so that this example does not give a

contradiction to Theorem 2.2. To this end, set F = F a, G = F b, and fix any [0,∞]–

valued random variable ρ such that P[ρ < ∞] > 0. Fix also a (0,∞)–valued random

variable E and an R2 \{(0, 0)}–valued random vector (C,C ′). It is now sufficient to argue

that for each ω ∈ {ρ <∞} there exists some n ∈ N such that

P [Of,g,t,c,c′,ε,n]|f=F,g=G,t=ρ,c=C,c′=C′,ε=E = 0. (A.1)

To make headway, fix ω ∈ {ρ <∞}. Let us assume that ω ∈ D and C(ω) 6= 0. Indeed, if

ω ∈ D′ or if C(ω) = 0 (but C ′(ω) 6= 0), the argument follows in exactly the same manner.

Next, let us observe that F (ω) = fa and G(ω) = f b and let us set t = ρ(ω), c = C(ω),

c′ = C ′(ω), and ε = E(ω). We then have, for each n ∈ N,

Ofa,fb,t,c,c′,ε,n ⊂
ß
ω ∈ Ω : sup

s∈[t,t+ε)
|c+ f b(s)−Gs| <

1

n

™
,

=
ß
ω ∈ D : |c| < 1

n

™
∪
ß
ω ∈ D′ : sup

s∈[t,t+ε)
|c+ f b(s)− f b′(s)| < 1

n

™
.

(A.2)

Clearly, for n > 1/|c|, the first event in (A.2) is the empty set. Since ε > 0 is fixed and

f b− f b′ non-constant on [0, 1] and equal to zero on [1,∞), also the second event in (A.2)

is the empty set for sufficiently large n ∈ N. Hence, we have Ofa,fb,t,c,c′,ε,n = ∅, which

then yields (A.1) for sufficiently large n ∈ N. �
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