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Abstract
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recovery rates. It is well known that allowing a sudden default by a jump
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1 Introduction

The pricing of corporate bonds, being exposed to default and recovery risk, requires

a model for the time and severity of default. The first structural default models

were published in the seminal papers of Black and Scholes (1973), Merton (1974),

and Black and Cox (1976). These approaches rely on geometric Brownian motion

as a model for the value process of the firm. Following Black and Cox (1976), most

of today’s structural default models define the time of default as the first-passage

time of the firm-value process below some threshold level.

A shortcoming of several model specifications is a predictable default time, which

turns out to imply vanishing credit spreads for bonds with a short time to maturity,

see for example the discussion in Jarrow and Protter (2004). This contradicts the

empirical observation of credit spreads having a positive limit at the short end of the

term structure. To overcome this problem, Zhou (2001) suggested modelling the

logarithm of the firm-value process as the superposition of a diffusion and a jump

component with normally distributed jumps. Additionally, Zhou (2001) provides

an algorithm for pricing bonds within this framework. However, this algorithm is

computationally expensive and implies a systematic bias.

To improve the situation, we interpret bond prices as options on the value of the

firm and apply an elegant Monte-Carlo engine, originally developed by Metwally

and Atiya (2002) for the pricing of barrier options in a jump-diffusion setting. One

aim of this paper is to further improve Metwally and Atiya’s (2002) algorithm and

to adapt it to the pricing of corporate bonds. First of all, we include the option

of allowing stochastic recovery rates. Secondly, we enhance the precision of an

approximation to an integral which has to be evaluated as part of the algorithm.

Due to the close relation of barrier options and structural default models, our

improved approximation could easily be adapted for the pricing of barrier options.

Being able to work with an arbitrary jump-size distribution, we observe that the

limit of credit spreads at time zero merely depends on the Lévy measure of the

logarithm of the firm-value process, the recovery rate, and the distance to default.

This observation is theoretically justified and an explicit formula for the limit of

credit spreads is obtained.

Zhou’s (2001) model and related structural default models with jumps have re-

cently been discussed, extended, and empirically analyzed. The interested reader

is referred to the following papers and references therein. Wong and Hodges (2002)

incorporate a systematic risk component while relying on a framework close to that

one of Zhou (2001). Joro and Na (2002) include a second jump component to model

catastrophic events. An empirical analysis of structural default models is presented
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in Cremers et al. (2006) and Cserna and Imbierowicz (2008).

This paper is organized as follows. We introduce the model in Section 2. In

Section 3, we compute the local default rate of a jump-diffusion process and derive

the limit of credit spreads at the short end of the term structure. We discuss

the Brownian-bridge pricing technique in Section 4 and a useful approximation in

Section 5. We conclude with several numerical experiments concerning the runtime

and accuracy of the algorithms in Section 6. The Appendix contains an outline of

the proof of the approximation from Section 5.

2 Model description

Structural default models rely on a value based interpretation of default. Default

occurs when the considered company cannot meet its financial obligations, to wit,

when the firm value falls below a certain threshold. The company’s liabilities are

often used as the threshold level. Other interpretations are weighted averages of

short- and long-term liabilities (Crosbie and Bohn (2003)), a minimum firm value

required to operate the company (Black and Cox (1976)), or a default threshold

tactically set by the equity owners (Leland (1994), Leland and Toft (1996)). Based

on this model, default probabilities, bond and equity prices, and prices for credit

derivatives are derived.

In our framework, we model the value of the respective company as a stochas-

tic process V = {Vt}t≥0 on the filtered probability space (Ω,F , F, IP) , where

Vt = V0 exp(Xt) with V0 > 0 . Throughout this paper we work under the pricing

measure IP . We denote by F = {Ft}t≥0 the natural filtration of the firm-value

process, that is, Ft = σ(Vs : 0 ≤ s ≤ t) , augmented to satisfy the usual conditions

of completeness and right continuity. The process X = {Xt}t≥0 is a jump-diffusion

process given by

Xt = γt + σWt +
Nt∑
i=1

Yi,

with W = {Wt}t≥0 a Brownian motion. For simplicity, we assume a non-degenerate

diffusion component, that is, σ > 0 . The counting process N = {Nt}t≥0 is a Pois-

son process with intensity λ ≥ 0 . The sequence of jump sizes {Yi}i≥1 is i.i.d. with

distribution IPY . Jump sizes {Yi}i≥1 , the Poisson process N , and the Brownian

motion W are mutually independent. We assume the company to default when

its value process falls below the threshold d , that is, the default time is defined by

τ := inf{t > 0 : Vt ≤ d}.

Allowing the firm-value process to jump motivates a natural model of the default
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severity, which is therefore endogenously specified through the model. If a company

defaults by a jump, its value process falls below the threshold d . This random

undershoot might be used to specify the default severity, and, hence, the recovery

rate. Therefore, we model the recovery rate w as a function of the firm-value

to debt-level ratio at the default time. The bond holder receives the fraction

w(Vτ/d) ∈ [0; 1] of the face value in case of a default, where w is a positive, non-

decreasing, and measurable function, defined on the unit interval [0; 1] . Choosing

a suitable w may, for instance, help consider default costs.

3 Pricing formula and credit spreads

In what follows, we focus w.l.o.g. on the pricing of zero-coupon bonds. Note that

coupon bonds can be replicated through an appropriate portfolio of zero-coupon

bonds and CDS contracts can be priced similarly. We denote the risk-free interest

rate by r . The fair price φ(t, T ) , at time t < τ , of a defaultable zero-coupon bond

with maturity T and unit principal is given as the expectation of its discounted

payoff with respect to the pricing measure IP . Thus, we have the pricing formula

φ(t, T ) = e−r(T−t)IP(τ > T |Ft) + IE
[
e−r(τ−t)w (Vτ/d)1{t<τ≤T}

∣∣Ft

]
. (1)

The credit spread which corresponds to φ(0, T ) is denoted by ηT . It is implicitly

defined as the real number that solves the equation φ(0, T ) = exp(−(r+ηT )T ). As

stated before, credit spreads for short-maturity bonds in a traditional pure diffusion

model are smaller than the observed credit spreads on the market. However, we

show that including negative jumps results in credit spreads which depend on the

local default rate, defined as LDRτ := limh↓0 IP(τ ≤ h)/h , and do not vanish as

maturity decreases to zero.

We start by explicitly computing the local default rate. The next theorem shows

that for absolutely continuous jump-size distributions, the local default rate is

determined by the Lévy measure of the logarithm of the firm-value process and

the distance to default, defined as x0 := log (V0/d) . For the remainder of this

paper, we assume x0 > 0 , that is, the company has not yet defaulted.

Theorem 3.1 (Local default rate).

The local default rate LDRτ satisfies

LDRτ = λIP(Y < −x0) + λ
1

2
IP(Y = −x0).

If the jump-size distribution is absolutely continuous, this simplifies to

LDRτ = ν([−∞;−x0]),

where ν denotes the Lévy measure of the jump diffusion process X .
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Proof. We condition on the number Nh of jumps occurring in [0; h] and denote

the first jump time by τ(h) . We obtain

lim
h↓0

1

h
IP(τ ≤ h)

= lim
h↓0

1

h

∞∑
n=0

IP(Nh = n)IP

(
inf

0≤s≤h
Xs ≤ −x0

∣∣∣Nh = n

)
= lim

h↓0

e−λh

h
IP

(
inf

0≤s≤h
(γs + σWs) ≤ −x0

)
+

lim
h↓0

λe−λhIP

(
inf

0≤s≤h

(
γs + σWs + 1{s≥τ(h)}Y1

)
≤ −x0

)
+

lim
h↓0

1

h

∞∑
n=2

e−λh(λh)n

n!
IP

(
inf

0≤s≤h

(
γs + σWs +

Ns∑
j=1

Yj

)
≤ −x0

∣∣∣Nh = n

)
.

The first limit, representing a pure diffusion setup, is zero by l’Hospital’s rule. The

probabilities in the last limit are bounded by one, such that the limit also equals

zero by the representation of an exponential function as a Taylor series.

We now examine the second limit, the case of exactly one jump. Writing Bs :=

γs + σWs , At(x) := {ω ∈ Ω : inf0≤s<t Bs(ω) ≤ x} , and AC
t (x) := Ω \ At(x) , we

obtain by conditioning

IP

(
inf

0≤s≤h

(
Bs + 1{s≥τ(h)}Y1

)
≤ −x0

)
= IP

(
Aτ(h)(−x0)

)
+ IE

[
IE
[
1AC

τ(h)
(−x0)∩Ãh−τ(h)(−x0−Y1−Bτ(h))

∣∣∣Bτ(h), Y1

]]
,

where Ãt(x) is defined as At(x) with B being replaced by the Brownian motion

B̃s := Bτ(h)+s − Bτ(h) . Since τ(h) ≤ h holds, the limit of the first term tends

to zero with h . If Y1 > −x0 , the conditional expectation tends to zero, since

IP(Bτ(h) ≤ −x0 − y) decreases to zero for all y > −x0 and h tending to zero, due

to the continuity of the diffusion part. If Y1 < −x0 , the conditional expectation

tends to one, since so does IP(Bτ(h) ≤ −x0 − y) for all y < −x0 and h tending

to zero. If Y1 = −x0 then the conditional expectation tends to zero if Bτ(h) > 0 ,

and to one if Bτ(h) ≤ 0 , with h tending to zero.

This result might be interpreted from an economic point of view. If a negative jump

of the firm-value process exceeds the distance to default with a positive probability,

that is, IP(Y1 ≤ −x0) > 0 , the local default rate LDRτ is positive, resembling

a positive default intensity. Next, we derive the exact limit of credit spreads, as

maturity decreases to zero, and show how the local default rate LDRτ is involved

therein.
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Theorem 3.2 (Credit spreads at time zero).

We assume the function w , specifying the recovery rate, to be continuous. Fur-

thermore we assume that either IP(Y1 = −x0) = 0 or w is constant. Then, the

limit of credit spreads at time zero is given by

lim
h↓0

ηh =

(
1− IE

[
w

(
V0 exp(Y1)

d

)∣∣∣∣Y1 ≤ −x0

])
LDRτ . (2)

Proof. We observe from the proof of Theorem 3.1 that an immediate default of a

solvent company only happens through a jump, to wit, for sufficiently small h > 0 ,

IP(τ ≤ h) = IP({Nh = 1} ∩ {Y1 ≤ −x0}) + o(h),

assuming IP(Y1 = −x0) = 0 . Thus, we obtain, with Bs := γs + σWs ,

lim
h↓0

IE

[
e−rτw

(
Vτ

d

)∣∣∣∣ τ ≤ h

]
= lim

h↓0
IE

[
e−rτw

(
V0 exp(Bτ + Y1)

d

)∣∣∣∣ {Nh = 1} ∩ {Y1 ≤ −x0}
]

≤ lim
h↓0

IE

[
sup

0≤t≤h
w

(
V0 exp(Bt + Y1)

d

)∣∣∣∣Y1 ≤ −x0

]
= IE

[
w

(
V0 exp(Y1)

d

)∣∣∣∣Y1 ≤ −x0

]
due to the independence of the Poisson process N , the continuity of w , and domi-

nated convergence. We have formally set w(x) = w(1) for x > 1 . A lower estimate

with exp(−rh) replacing 1 and an infimum replacing the supremum yields the

same bound, so that equality follows. For constant w , similar computations hold.

Using the definition of credit spreads and the pricing formula of Equation (1), we

obtain

ηh = −1

h
log (φ(0, h))− r

= −1

h
log

(
e−rh

(
1− IP(τ ≤ h) + IP(τ ≤ h)erhIE

[
e−rτw

(
Vτ

d

)∣∣∣∣ τ ≤ h

]))
− r

= −1

h
log

(
1− IP(τ ≤ h)

(
1− erhIE

[
e−rτw

(
Vτ

d

)∣∣∣∣ τ ≤ h

])
.

Applying the inequalities log(x) ≤ x − 1 and log(x) ≥ (x − 1)/x yields a lower

and an upper bound, which both have the expression of Equation (2) as their limit.

This concludes the proof.

Theorem 3.2 establishes that the limit of credit spreads at the short end of the term

structure is the product of the local default rate and the expected loss given default.

This is reasonable from an economic point of view since the local default rate
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approximates the probability of a default within a small time interval. Therefore,

credit spreads of bonds with a small maturity merely depend on the probability of

a sudden default, in other words, credit spreads are increasing in the local default

rate.

4 Brownian-bridge pricing technique

Zhou (2001) presents an algorithm based on a Monte-Carlo simulation for estimat-

ing bond prices in a jump-diffusion framework. His idea is to discretize the time to

maturity and to sample trajectories of the firm-value process on this grid. Then,

on each grid point, it is checked whether the company defaults or not. However, we

show that this algorithm produces biased bond prices and is very time-consuming.

Metwally and Atiya (2002) suggest another algorithm, which is again based on a

Monte-Carlo simulation. This algorithm is designed for pricing barrier options in

a jump-diffusion model for the respective underlying. In contrast to Zhou’s (2001)

algorithm, it not only produces unbiased results, but is also significantly faster.

The principal idea of this ansatz is to condition on the number of jumps, the jump

times, and the values of the jump-diffusion process at these times.

Below, we provide an algorithm which allows us to include stochastic recovery rates

depending on the value of the company at the default time. First, we generate the

number and locations of the jumps. Then, we generate the value of X immediately

before and after each jump. More precisely, if (τ1, τ2, . . .) denotes the sequence of

jump times, the value of X immediately before the first jump is a sample drawn

from a Gaussian distribution with mean γτ1 and variance σ2τ1 . The value at the

first jump time is obtained by adding a realization of the jump-size distribution

to this number. For the value immediately before the second jump time, we add

another sample drawn from a Gaussian distribution with mean γ(τ2 − τ1) and

variance σ2(τ2− τ1), and so on. We can then check whether the company defaults

at one of these jump times. The probability of the company defaulting between two

jumps is given by the probability of a Brownian bridge not crossing a certain barrier

b . This probability is calculated by Metwally and Atiya (2002). We simplify it for

the readers’ convenience. For that, let X denote a Brownian bridge over [t0; t1]

with volatility σ , pinned at Xt0 and Xt1 . Let b ∈ R denote an arbitrary barrier

and Sb the first passage time of b by X . Then, we have for the density g of the

passage time Sb for all t ∈ (t0; t1]

g(t)dt := IP(Sb ∈ dt|Xt0 , Xt1) (3)

= 1{Xt0>b}
Xt0 − b

2yπσ2(t− t0)3/2(t1 − t)1/2
exp

(
− (Xt1 − b)2

2(t1 − t)σ2
− (Xt0 − b)2

2(t− t0)σ2

)
dt,
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where

y =
1√

2πσ2(t1 − t0)
exp

(
−(Xt1 −Xt0)

2

2σ2(t1 − t0)

)
. (4)

By integration, we obtain the probability of X falling below the barrier b :

Φ̃BB
b (Xt0 , Xt1 , t1 − t0) := IP

(
min

t0≤s≤t1
Xs ≤ b

∣∣∣Xt0 , Xt1

)
= 1{Xt0≤b or Xt1≤b} +

1{Xt0>b and Xt1>b} exp

(
−2(Xt0 − b)(Xt1 − b)

(t1 − t0)σ2

)
.

Theorem 4.1 constitutes the theoretical justification of the Monte-Carlo simulation

which we introduce below. The theorem is a direct consequence of Equation (1).

Theorem 4.1 (Price of a zero-coupon bond).

The zero-coupon bond price of Equation (1) can be expressed as

φ(0, T ) = IE
[
IE
[
1{τ>T}e

−rT + w(Vτ/d)1{τ≤T}e
−rτ
∣∣F∗]] (5)

=
∞∑

k=0

∫
(τ1,...,τk)

∈[0;T ]k

∫
(x1,...,xk+1)

∈(−∞;∞)k+1

∫
(y1,...,yk)

∈(−∞;∞)k

IE
[
1{τ>T}e

−rT + w(Vτ/d)1{τ≤T}e
−rτ
∣∣F∗] ·

k∏
j=1

IPY (dyj) ·
k+1∏
j=1

ϕγ∆τj ,σ2∆τj
(xj)dxj ·

1{0<τ1<...<τk<T}
k!

T k
d(τ1, . . . , τk) ·

(λT )k

k!
e−λT ,

where

F∗ := σ {NT ; 0 < τ1 < . . . < τNT
< T ; Xτ1−, Xτ1 , . . . , Xτi−, Xτi

, . . . , XT}

is the σ -algebra representing the information from the number of jumps, their

location, and the values of X immediately before the jump times, at the jump

times, and at maturity. The function ϕγ∆τj ,σ2∆τj
represents the probability-density

function of the normal distribution with mean γ(τj − τj−1) and variance σ2(τj −
τj−1) , where τ0 = 0 and τNT +1 = T .

For b = log(d/V0) , the conditional expectation satisfies

IE
[
1{τ>T}e

−rT + w(Vτ/d)1{τ≤T}e
−rτ
∣∣F∗]

= w(1)
U∑

i=1

i−1∏
j=1

ΦBB
b (j)

∫ τi

τi−1

e−rsgi(s)ds +

w(VτI
/d)1{I 6=0}e

−rτI

I∏
j=1

ΦBB
b (j) + 1{I=0}e

−rT

NT +1∏
j=1

ΦBB
b (j), (6)
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where

I := min {i ∈ {1, . . . , NT} : Xτi
≤ b} , min ∅ := 0,

denotes the index of the first jump time such that XτI
crosses the barrier,

U :=

{
I if I 6= 0,

NT + 1 if I = 0,

ΦBB
b (j) := 1−Φ̃BB

b (Xτj−1
, Xτj−, τj−τj−1) represents the probability of the company

not defaulting within the interval (τj−1; τj) , and gi(t)dt = IP(Sb ∈ dt|Xτi−1
, Xτi−)

is defined, as in Equation (3), as the density of the company defaulting at time t

for t ∈ (τi−1; τi) .

We remark that the approach outlined in the last theorem can be interpreted as

the variance-reduction technique Conditional Monte Carlo, see Boyle et al. (1997),

Section 2.8. It allows us to replace several simulation steps by analytic formulas.

Based on the last theorem, we now formally introduce our Brownian-bridge pricing

algorithm.

Algorithm 4.1 (Brownian-bridge pricing algorithm).

Choose the number of simulation runs K and approximate φ(0, T ) by

φ(0, T ) ≈ 1

K

K∑
j=1

φj(0, T ),

where φj(0, T ) is calculated in simulation run j by these steps:

1. Simulate the number of jumps NT from a Poi (λT ) distribution.

2. Simulate the jump times τ1 < τ2 < . . . < τNT
. Conditional on NT , these

jumps are distributed as order statistics on [0; T ] , see Sato (1999), p. 17.

3. Generate two series of mutually independent random variables x1, . . . , xNT +1

and y1, . . . , yNT
, independent from NT , with

xi ∼ N
(
γ(τi − τi−1), σ

2(τi − τi−1)
)

and

yi ∼ IPY .

4. Calculate inductively X0, Xτ1−, Xτ1 , Xτ2−, . . . , XτNT
, XτNT +1− = XτNT +1

by

Xτ0 = 0,

Xτi− = Xτi−1
+ xi, ∀ i ∈ {1, . . . , NT + 1},

Xτi
= Xτi− + yi, ∀ i ∈ {1, . . . , NT}.
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5. Determine I , U , and b as in Theorem 4.1.

6. Calculate

φj(0, T ) = IE
[
1{τ>T}e

−rT + w(Vτ/d)1{τ≤T}e
−rτ
∣∣F∗]

as in Equation (6) of Theorem 4.1.

The expected runtime of this algorithm depends about linearly on the expected

number of jumps, that is λT . The larger the jump intensity, the more samples

have to be drawn and the more integrals have to be calculated. We illustrate this

relation in Section 6.1, where we compare the runtime of the algorithm for different

parameter sets.

5 Accelerating the algorithm

The most time-consuming step of Algorithm 4.1 is the computation of the integrals∫ τi

τi−1
exp(−rs)gi(s)ds . Metwally and Atiya (2002) suggest an approximation of

these integrals, which we improve below. The core idea is to calculate the Laplace

transform of the integral, which admits a representation as the convolution of two

functions. Then, this Laplace transform is expanded into a Taylor series in r . In

the next step, the Laplace inverse of the second-order approximation is obtained.

Our calculations yield a different result from that in the original paper of Metwally

and Atiya (2002). However, numerical experiments which we present in Section 6.2

indicate that our approximation might be closer to the correct value. An outline

of the proof of the next theorem is given in the appendix.

Theorem 5.1 (Approximation of the integral).

We assume that Xτi−1
> b . The integral in Equation (6) can be approximated by∫ τi

τi−1

e−rsgi(s)ds = e−rτi−1

(
exp

(
−

2(Xτi−1
− b)(Xτi− − b)

∆τiσ2

)
+ (7)

r(Xτi−1
− b)

4σ
(A1 + C1B)

)
+ O(r3)

if Xτi− > b and by∫ τi

τi−1

e−rsgi(s)ds = e−rτi−1

(
1 +

r(Xτi−1
− b)

4σ
(A2 + C2B)

)
+ O(r3) (8)
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if Xτi− ≤ b , where ∆τi = τi − τi−1 , ∆Xi = Xτi− −Xτi−1
,

A1 = − r

σ
∆τi∆Xi exp

(
−

2(Xτi−1
− b)(Xτi− − b)

∆τiσ2

)
,

C1 = −
√

2π∆τi exp

(
(∆Xi)

2

2∆τiσ2

)
Φ

(
2b−Xτi− −Xτi−1√

∆τiσ2

)
,

B = 4− r∆τi −
r

σ2
∆Xi

(
Xτi− + Xτi−1

− 2b
)
,

A2 =
r

σ
∆τi

(
Xτi− + Xτi−1

− 2b
)
,

C2 = −
√

2π∆τi exp

(
(∆Xi)

2

2∆τiσ2

)
Φ

(
∆Xi√
∆τiσ2

)
with Φ denoting the cumulative normal distribution function.

It is important to note that using this approximation in Step 6 of Algorithm 4.1 in-

troduces a small bias. While, in contrast to Zhou’s (2001) algorithm, the Brownian-

bridge pricing technique of the last section is unbiased, this approximation method

relies on a Taylor series expansion. More precisely, the error terms in Equations (7)

and (8) can be shown to be negative, which causes the approximated bond prices

to be slightly larger and the corresponding credit spreads to be slightly lower.

We remark that the approximation of Theorem 5.1 can also be used when pricing

barrier options with continuously monitored barriers. The same integrals appear

in this case, see Metwally and Atiya (2002).

6 Numerical experiments

Section 6.1 contains the results of a numerical comparison of Zhou’s (2001) algo-

rithm and the Brownian-Bridge pricing technique. Section 6.2 compares Metwally

and Atiya’s (2002) approximation with ours of the integral
∫ τi

τi−1
exp(−rs)gi(s)ds

appearing in Equation (6). We implemented all algorithms in C, using the NAG-

software library, see www.nag.co.uk, to generate the required samples and to eval-

uate the required integrals. We worked on a Sun computer equipped with an

UltraSPARC-III+ processor (900MHz). To provide a benchmark of the runtime,

the output user time of the Unix command timex was chosen.

6.1 Runtime and precision

In this section, we provide a numerical comparison of all aforementioned algo-

rithms. Concerning Zhou’s (2001) algorithm, we use two different discretizations.
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The number of grid points is set to 12T and 250T , respectively, where T denotes

the bond’s maturity in years. This corresponds to checking whether the bond de-

faulted once per month and once per trading day, respectively. As parameters, we

set r = 0.04, γ = 0.045, σ = 0.05 , and T = 5 . Jump sizes are assumed to be

two-sided exponentially distributed, that is,

IPY (dx) = pλ⊕e−λ⊕x1{x≥0}dx + (1− p)λ	eλ	x1{x<0}dx

with p = 0.5 . This jump structure has been theoretically analyzed by Kou and

Wang (2003). The ratio d/V0 is set to 80% . We run all simulations in four

different scenarios. In the first three scenarios, the recovery rate is constant with

w(x) ≡ 40% . In the scenario titled “Low”, we expect only λ = 0.5 jumps per

year but they are typically large, that is, λ	 = λ⊕ = 10 . The scenario “Middle”

corresponds to λ = 2 and λ	 = λ⊕ = 20 . In the scenario “High”, λ = 8 jumps

per year are expected with λ	 = λ⊕ = 40 . The scenario “Stochastic” has the

same jump structure as the scenario ”Middle”, but the recovery rate is stochastic

with w(x) = 0.5x . It can be shown that the volatility and expectation of the

underlying Lévy process X remain the same in all scenarios. For each algorithm

and scenario, we estimate bond prices using one million simulation runs. Since the

Brownian-bridge pricing technique generates an unbiased estimate of the price, we

additionally run this method using ten million simulation runs and interpret the

respective results as the correct price in the different scenarios.

Each algorithm is started twice. In the first round, we measure the required run-

time. In the second round, we use the same generated samples for the algorithms

presented in Sections 4 and 5 in order to compare the approximation of the in-

tegrals. We present the obtained credit spreads (in bps) of the second round in

Table 1, which also includes the relative error of the credit spread which we define

as (spread − generated spread)/spread . More precisely, while “spread” denotes

the credit spread obtained from the Brownian-bridge simulation with ten million

simulation runs, “generated spread” represents the credit spread from the corre-

sponding algorithm.

The results show that Zhou’s (2001) algorithm produces a significant bias. When

simulating with only 12 grid points per year, the relative error exceeds 7%. Even

with 250 grid points per year, the relative error is at least 2.8%, which is still

above typically observed bid-ask spreads. However, using Brownian-bridge based

techniques brings the relative error down to less than 1%. The lowest errors are

about 0.1% to 0.2% percent and are obtained by using the Brownian-bridge tech-

nique of Section 4 and the approximation of Section 5. Bond prices are roughly

between 0.76 and 0.78 in all scenarios. The sample standard deviations of the bond

price samples are approximately 0.13, 0.14, 0.15, and 0.12 for the scenarios “Low”,

“Middle”, “High”, and “Stochastic”, respectively. They are almost identical for

all methods. These numbers can be used to approximate standard deviations of
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derived credit spreads by means of the so-called Delta method, see Van der Vaart

(1998), Chapter 3. These computed standard deviations do not depend much on

the method used, either. Divided by the square root of one million to adjust for

the sample size, they are approximately 0.34, 0.36, 0.39, and 0.30 bps. The spread

computed by Zhou’s (2001) algorithm with one million simulation runs is therefore

at least nine standard deviations off its true value.

As the discretization gets finer, the runtime of Zhou’s (2001) algorithm increases

dramatically but does not depend on the expected number of jumps. In contrast,

the runtime of the methods based on the Brownian-bridge technique increase ap-

proximately linearly in the expected number of jumps. The reason therefore is the

dependence of the number of random variables that have to be drawn and the num-

ber of integrals which have to be calculated on the number of jumps. However, even

in the scenario “High” with eight expected jumps per year, the Brownian-bridge

pricing algorithm, which does not use any approximations to improve runtime, is

more than twice as fast as Zhou’s (2001) approximation with daily discretization.

We also observe that the approximation of the integrals significantly reduces the

runtime by a factor of approximately 6.

6.2 A comparison with Metwally and Atiya (2002)

Our approximation of the integral
∫ τi

τi−1
exp(−rs)gi(s)ds differs from the approxi-

mation in Metwally and Atiya (2002). They multiply the second term in the sum

of Equations (7) and (8) by the factor exp(∆τi) , which does not appear in our

formulas, and they evaluate Φ at a different position. More precisely, in Met-

wally and Atiya (2002) Φ is evaluated at (2b − Xτi− − Xτi−1
)/(
√

2∆τiσ2) (resp.

(∆Xi)/(
√

2∆τiσ2) ) in C1 (resp. C2 ). We perform two kinds of simulations to

compare both approximations. Firstly, we compare the approximations for ran-

domly generated parameters. Secondly, we compare bond prices obtained by both

approximations.

Step 1: We generate 500,000 random numbers for r, σ, τ1, b, and Xτ1 − b . More

precisely, in each simulation run we draw a uniformly distributed random vari-

able on [0; 0.1] (resp. [0.1; 0.5], [0.5; 2.0], [−0.2;−0.01], [−0.2; 0.2] ) for r (resp.

σ, τ1, b, Xτ1 − b ). For every such parameter set, we calculate the relative error

of the approximation to
∫ τ1

0
exp(−rs)g1(s)ds suggested by Metwally and Atiya

(2002) and of our approximation. After 500,000 simulation runs, the average rela-

tive error of the original (resp. our) approximation was found to be 1.553% (resp.

0.001%).

Step 2: To test the effect of the improved approximation on estimated bond prices,
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Low Middle High Stochastic

Spread in bps 104.5 117.0 125.1 97.1

Zhou (12) Rel. error in % 7.35 9.81 11.10 9.54

Runtime in h 0:07:32 0:07:57 0:10:17 0:08:11

Spread in bps 109.6 125.8 136.2 103.0

Zhou (250) Rel. error in % 2.85 3.04 3.25 4.01

Runtime in h 2:33:09 2:31:48 2:34:49 2:32:48

Spread in bps 112.7 129.8 141.0 107.4

Brown. bridge Rel. error in % 0.14 -0.07 -0.14 -0.04

Runtime in h 0:06:39 0:19:05 0:58:47 0:19:08

Spread in bps 113.5 130.3 141.1 108.0

Taylor (orig.) Rel. error in % -0.59 -0.45 -0.23 -0.62

Runtime in h 0:00:44 0:02:28 0:09:24 0:02:28

Spread in bps 112.5 129.7 140.9 107.2

Taylor (our) Rel. error in % 0.24 0.02 -0.06 0.08

Runtime in h 0:00:45 0:02:25 0:09:17 0:02:25

Brown. bridge (10 Mil.) Spread in bps 112.8 129.7 140.8 107.3

Table 1: This table compares Zhou’s (2001) algorithm using a monthly and

daily discretization, the Brownian-bridge pricing algorithm, Metwally and Atiya’s

(2002), and our approximation. All results are based on one million simulation

runs. We interpret as true spread the results of an unbiased Brownian-bridge pric-

ing technique relying on ten million simulation runs, summarized in the last row.

The table lists computed credit spreads, the relative error, and runtime for each

algorithm and four different sets of parameters.

we implement both algorithms in the context of the aforementioned Monte-Carlo

simulation and estimate bond prices for different parameter sets and interest rates.

We use the first three scenarios of Table 1 with parameters γ = 0.025 , σ = 0.05 ,

and two-sided exponentially distributed jumps with p = 0.5 . The recovery rate

is set to w(x) ≡ 40% , the maturity to T = 5 . The interest rate r is varied

between 2.5% and 25%. We are aware of the fact that r = 25% is not a realistic

assumption. Nevertheless, simulations with high interest rates illustrate how the

original approximation becomes inaccurate. For each scenario, approximation, and

interest rate, we run Algorithm 4.1 with ten million simulation runs. Based on the

estimated bond prices, we compute the relative pricing error (pu − pa)/pu , where

pu (resp. pa ) represents the unbiased (resp. approximated) bond price. Table 2

exhibits the results. Our simulations show that the approximation of Section 5

implies a lower relative pricing error than the one of Metwally and Atiya (2002)

almost always, except for the scenario “High” when r equals 2.5% and the relative

pricing errors are 0.0085% and -0.0086%, respectively.



15

Since both approximations rely on a Taylor series expansion around r we expect

the approximation error to increase as r increases. This is confirmed by the

numerical results listed in Table 2. The approximation performs best for low

interest rates. For very high interest-rate scenarios, Metwally and Atiya’s (2002)

approximation can be outperformed by a factor between approximately 20 and

120, depending on the expected number of jumps. But already for r = 5% ,

their approximation can be outperformed by a factor of 3 or more, without any

additional computational needs.

Low Middle High

r in % Original Our Original Our Original Our

2.5 0.0726 -0.0065 0.0356 -0.0082 0.0085 -0.0086

5.0 0.1836 -0.0072 0.0893 -0.0087 0.0276 -0.0092

10.0 0.5505 -0.0091 0.2392 -0.0104 0.0745 -0.0106

15.0 1.2287 -0.0128 0.4624 -0.0121 0.1391 -0.0110

20.0 2.4000 -0.0214 0.7884 -0.0143 0.2212 -0.0138

25.0 4.4144 -0.0361 1.2532 -0.0176 0.3305 -0.0150

Table 2: This table summarizes the relative pricing errors of bonds (in percentage

points) using the approximations of Metwally and Atiya (2002) (“Original”) and

the approximation of Section 5 (“Our”). The scenarios are as in Table 1. The first

column contains the assumed interest rates.

7 Conclusion

In this paper, we discussed a structural default model based on a jump-diffusion

process as a model for the value of the respective company. We explained how

stochastic recovery rates are generated through the model. Then, we showed

that credit spreads remain positive for bonds with small maturity, a property

that matches empirical observations and overcomes a major shortfall of most pure

diffusion models. Moreover, we calculated the exact limit of credit spreads as

maturity tends to zero. In order to price defaultable bonds and more complex

credit derivatives within our framework, the distribution of the first-passage time

of the jump-diffusion process which models the value of the firm is required. For

discontinuous processes, this distribution is not known in general. Therefore, sev-

eral Monte-Carlo pricing algorithms have been suggested. Our algorithm allows

stochastic recovery rates and an arbitrary jump-size distribution. We also showed

that our algorithm is unbiased and noticeably faster than algorithms which rely on

simulations of complete trajectories of the firm-value process. To further accelerate
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the algorithm, we presented an improved approximation technique of Metwally and

Atiya (2002), which was originally introduced for the pricing of barrier options.

Appendix: Proof of Theorem 5.1

Note that the following computations for the proof of Theorem 5.1 are related to

the derivation in Metwally and Atiya (2002).

Proof. A substitution and some calculations show that the integral can be written

as the convolution of two functions. We find∫ τi

τi−1

e−rxgi(x)dx = e−rτi−1

∫ ∆τi

0

f(x)h(∆τi − x)dx,

where

f(x) =
e−rx∆0√

2πσ2
x−

3
2 exp

(
− ∆2

0

2xσ2

)
and

h(x) =
1√

2πσ2y
x−

1
2 exp

(
− ∆2

1

2xσ2

)
with y as in Equation (4), ∆0 := Xτi−1

− b , and ∆1 := Xτi− − b . For later use,

we define

α :=
1√
2σy

=
√

π∆τi exp

(
(∆Xi)

2

2σ2∆τi

)
,

β := 1− Φ

(
∆0 + |∆1|
σ
√

∆τi

)
.

We now calculate the Laplace transform of the integral. Being a convolution, its

Laplace transform is the product of the Laplace transforms of f and h . Formu-

las 5.28 and 5.30 of Oberhettinger and Badii (1973), Chapter 1.5, yield for the

Laplace transform

lr(s) :=

(
L
(∫ t

0

f(x)h(t− x)dx

))
(s)

=
exp

(
−
√

2|∆1|
σ

√
s
)

σy
√

2s
exp

(
−
√

2∆0

σ

(√
s + r

))
.

The second-order Taylor expansion of lr(s) around zero is given by

lr(s) = l0(s) + r

(
δ

δr
lr(s)

)∣∣∣∣
r=0

+
r2

2

(
δ2

δr2
lr(s)

)∣∣∣∣
r=0

+
r3

6

(
δ3

δr3
lr(s)

)∣∣∣∣
r=r∗s

, (9)



where r∗s ∈ (0; r) depends on s . We use Formulas 5.87, 5.89, 5.92, and 5.94 of

Oberhettinger and Badii (1973), Chapter 2.5, to calculate the Laplace inverses of

the derivatives:(
L−1 (l0)

)
(∆τi) = exp

(
(∆Xi)

2

2σ2∆τi

)
· exp

(
−(∆0 + |∆1|)2

2σ2∆τi

)

=

{
1, Xτi− ≤ b,

exp
(
−2(Xτi−1−b)(Xτi−−b)

σ2∆τi

)
, Xτi− > b,(

L−1

(
δ

δr
lr|r=0

))
(∆τi) = −

√
2
∆0

σ
αβ,

(
L−1

(
δ2

δr2
lr|r=0

))
(∆τi) =

2
√

∆τi exp
(
− (∆0+|∆1|)2

2σ2∆τi

)
√

π

(
∆2

0α

2σ2
− ∆0 + |∆1|√

2σ

∆0α

2
3
2 σ

)
+

2β

(
∆0α

2
3
2 σ

(
∆τi +

(∆0 + |∆1|)2

σ2

)
− ∆2

0α

2σ2

√
2(∆0 + |∆1|)

σ

)

=

√
∆τi exp

(
− (∆0+|∆1|)2

2σ2∆τi

)
α∆0(∆0 − |∆1|)

2
√

πσ2
+

β
∆0α√

2σ
∆τi + β

∆0α√
2σ3

(∆2
1 −∆2

0).

By combining these equations with the representation of lr(s) in Equation (9) we

obtain the approximation of the integral. See Ruf (2006) for the proof that the

error is of order O(r3) .
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