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Breaking time structure leads to overestimating model performance, even if
the model concerns only a single time period.

1. Motivation

Backtesting is concerned with studying the performance of a model on historical data. The data
usually are subject to a time series structure. Handling such data incorrectly can introduce a strong
bias in the evaluation of a model’s performance. This is true even if the model of interest concerns
only one period and hence is a priori not exposed to the time series’ auto correlation.

Information leakage is introduced if the in- and out-of-sample set split does not take into account
the intrinsic time series structure, for example, if the dataset is randomly split. In this case, the in-
sample set may contain some information from the out-of-sample set that would not be available if
the data split was done in pseudo real-time, which puts the earlier part of the data into the in-sample
and the later part into the out-of-sample set. A random data split can lead to an overestimated
model performance on the out-of-sample set, as its samples are not anymore independent from the
in-sample set, and even more so for complex models. This issue is often obscured when studying
complex models without a relevant time structure (e.g., studying models concerned with only a
single time period).

We decided to write this short comment after noticing a few published papers that split time
series data randomly. An extended version of this comment with more details and pointers to the
relevant literature is available on SSRN (Wang and Ruf (2022))1.

We believe the wrong split into in-sample and out-of-sample sets is usually done with the best
intentions, sometimes with statistical cross validation in mind and sometimes by carelessly using
standard software. It is known that improper cross-validation potentially leads to overfitted models
(Opsomer et al. (2001), Bergmeir and Beńıtez (2012)). In several research works, blocked forms of
cross-validation are argued to perform favourably in out-of-sample testing that preserves pseudo
real-time (Burman et al. (1994), Racine (2000), Hall et al. (2004), Bergmeir et al. (2014), Bergmeir
et al. (2018)). In this brief comment, we do not discuss block cross-validation but rather illustrate
the information leakage of random data splits with real and simulated panel data.

∗Corresponding author. Email: j.ruf@lse.ac.uk
1The code to reproduce the results in this paper can be found at https://github.com/weiguanwang/Information_Leakage_

in_Backtesting.git.
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2. Experimental setup

2.1. Backtesting the hedging of options

To illustrate how information may leak into the out-of-sample set we consider the following setup.
The goal is to find the best one-period hedging strategy δ from a large class of functions by
backtesting. This strategy is supposed to minimise the squared hedging error(
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)
(C0 − δS0)− C1
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This corresponds to the squared end-of-day wealth of an institution that sold a call, bought δ
shares of the underlying on the previous trading day, and used the money market account for the
remainder. In our survey paper Ruf and Wang (2020), we point to the large research body on this
statistical hedging problem.

We shall compare two statistical models (function classes for the hedging strategy δ). These two
models are among the best performing models studied in Ruf and Wang (2021). The first model
assumes that the hedging strategy δ is a linear function (LR, for ‘linear regression’) of option
characteristics, while the second one represents δ as an artificial neural network (ANN):

δLR = fLR(δBS,VBS,VannaBS); δANN = fANN(δBS,VBS, σimpl

√
τ).

Here, δBS, VBS, and VannaBS represent the Black-Scholes (BS) greeks Delta, Vega, and Vanna,
respectively, calculated under the BS model with the option’s implied volatility, and σimpl

√
τ rep-

resents the square root of total implied variance.

2.2. The data

The experiment below is repeated on simulated and real-world data. The simulated data are gen-
erated from the BS model (according to the CBOE rules). The real-world data are end-of-day S&P
500 option data (SPX) obtained from OptionMetrics (2010-2019). Each of these datasets constitute
panel data, i.e. cross sections of time series. There exist, at any point of time, several options that
are different in strike and/or maturity.

Let us next describe a specific data point. Each point describes one out-of-the-money option
over one period (1 day). The data point contains the option price at the beginning and end of the
period and the underlying’s price at the end of the period. Moreover, the data point includes a flag
indicating whether the option is a call or a put, the risk-free rate, the strike and time-to-maturity
of the option, its implied volatility, and its BS sensitivities.

We shall see that information leakage caused by the wrong data split becomes even more signif-
icant if the data are additionally ‘tagged.’ To explain what we mean, consider the situation that
on any trading day we have an additional observation, say the daily value of the VIX (Volatility
Index). We will argue that such additional features might lead to spurious model performance
under random data splits. For the sake of this experiment, we want to ensure that this additional
feature has nothing to do with the rest of the data. Hence, for both the simulated and real datasets,
we shall use an independently (from all other data) sampled Ornstein-Uhlenbeck process as the
additional feature. We call this feature ‘fake VIX’ to remind ourselves that it has nothing to do
with any real-world observations.

2.3. Separation into in-sample and out-of-sample sets

For panel data as used here, different kinds of splits can be employed, e.g. chronological or random,
as shown in Figure 1. When performing a chronological split (‘pseudo real-time’), first a critical date
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is determined. Samples from days before this point constitute the in-sample set and the remaining
ones the out-of-sample set. Alternatively, the data could be split at random into in-sample and out-
of-sample sets. In this approach, the in-sample and out-of-sample sets are also disjoint. However, we
shall argue that such an approach introduces significant information leakage. Indeed, on each day
several options are traded. Hence samples from the same day might show up in both the in-sample
and out-of-sample sets simultaneously.

Figure 1.: Illustration of the random (left) and chronological (right) data splits. Each day in this
illustration has two one-period samples.

2.4. Four experimental configurations

Each dataset will be pre-processed in four different ways (‘configurations’) as follows. The first two
configurations involve a chronological split. The remaining two rely on a random split.

(i) The ‘Baseline’ configuration corresponds to the standard setup. The dataset is separated
chronologically into an in-sample and an out-of-sample set.

(ii) The ‘VIX ’ configuration takes the ‘Baseline’ configuration, but adds the simulated ‘fake VIX’
variable as an additional feature in the linear regression and the ANN.

(iii) The ‘Permute’ configuration corresponds to the random split into in-sample and out-of-
sample sets.

(iv) The ‘Permute + VIX ’ configuration is as the ‘Permute’ configuration, but now with the
‘fake VIX’ variable as an additional feature.

3. Presence of information leakage

We now present and interpret the out-of-sample performance of the two models under the four
configurations. For δ = δLR and δ = δANN we compute the average of the values in (1) across all
out-of-sample data points. We focus on the reduction in out-of-sample mean-squared hedging error
relative to the hedging error when using the BS delta δBS. The two panels in Figure 2 summarise
the results on the BS and the S&P 500 datasets, respectively.

For the simulation data, in the ‘Baseline’ configuration, neither of the statistical models has a
better mean-squared hedging error than the BS delta. For the S&P 500 options, both statistical
models lead to a hedging performance improvement of about 19% relative to using the BS delta.
The following points summarise the outcomes of the experiment for the three other configurations.
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Figure 2.: Illustration of information leakage when failing to take into account the time series
structure of a simulated dataset.

Comment 1: Adding an additional noisy feature leads to a worse out-of-sample
performance when time structure is preserved.

In the ‘VIX’ configuration, both the linear regression and the ANN perform worse than in the
‘Baseline’ configuration, with the change for the ANN more pronounced. Indeed, the additional
feature is simulated completely independently from the rest of the data. Hence, it has no predictive
power for the hedging ratio at all.
Comment 2: A random data split leads to an improved performance of the statistical

models, and more so for the more complex model.
This is also true when the data are generated by a time-homogeneous BS model. Since the discrete

time steps are small, we know, a priori, that BS hedging is close to optimal. Nevertheless, instead of
underperforming by about 0.2% for the linear regression and 2% for the ANN, the linear regression
and ANN reduce the BS Delta benchmark in the BS data by about 3% after data permutation,
with a larger relative improvement for the ANN. For the S&P 500 dataset, permuting samples
allows the linear regression and ANN to reduce the BS Delta benchmark by about 23%, instead of
about 19% in the ‘Baseline’ configuration.
Comment 3: Noisy features may increase information leakage if data are randomly

split
If including ‘fake VIX’ as an additional feature when permuting samples, both statistical models

improve, but most dramatically the ANN, which now outperforms the BS Delta benchmark by
about 7% in the BS simulated data and by about 29% in the S&P 500 data. What is going on? By
construction, each day has several options (corresponding to different strikes) but only one ‘fake
VIX’ value. The random permutation now allows samples from the same day to appear both in the
in-sample and out-of-sample sets. The presence of the additional feature makes it possible for the
ANN (and partially also for the linear regression model) to understand from which day a sample
is. In other words, the ‘fake VIX’ tags the different days and the models are able to pick up on it.
This is relevant since on any specific day the underlying’s price goes up or down (or, in case of the
S&P 500 data, there is a certain shift in the implied volatility surface). This leaked information
improves the models’ hedging performance in backtesting but of course would not be available in
real time.

4. Conclusion

Even for a linear regression model with few parameters, a faulty data split may lead to remarkably
overconfident estimates of the model’s performance. In addition, a more complex model (such as
an ANN) may be more prone to information leakage. This might lead to the wrong conclusion that
such a model outperforms the simpler one in a direct comparison.

Information leakage is further reinforced when data are ‘tagged’ by the presence of an additional
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feature that takes the same value for different samples from the same date. Then random permu-
tations make this feature informative (despite it having nothing to do with the data-generating
mechanism). This yields a further seemingly important improvement for a model’s performance,
not achievable when applying the model in real time.
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