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Abstract

We provide a composite version of Ville’s theorem that an event has zero measure if
and only if there exists a nonnegative martingale which explodes to infinity when that
event occurs. This is a classic result connecting measure-theoretic probability to the
sequence-by-sequence game-theoretic probability, recently developed by Shafer and
Vovk. Our extension of Ville’s result involves appropriate composite generalizations of
nonnegative martingales and measure-zero events: these are respectively provided
by “e-processes”, and a new inverse capital outer measure. We then develop a novel
line-crossing inequality for sums of random variables which are only required to have
a finite first moment, which we use to prove a composite version of the strong law of
large numbers (SLLN). This allows us to show that violation of the SLLN is an event of
outer measure zero and that our e-process explodes to infinity on every such violating
sequence, while this is provably not achievable with a nonnegative (super)martingale.
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1 Introduction

In his PhD thesis, Ville [26] obtained a martingale characterization of the zero
probability events on the filtered probability space generated by an infinite sequence of
independent unbiased coin flips. Informally, Ville proved that

an event A has probability P(A) = 0 if and only if there exists a nonnegative
P-martingale M = (Mt)t∈N0

which starts at one and diverges to infinity on A.
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Here, P is the probability measure under which the coins are independent and unbiased.
In game-theoretic terms, Ville proved that for any event A having probability zero,

one can construct an explicit betting strategy, which starts at unit wealth and never
risks more wealth than it has, such that the wealth increases to infinity if that event A
occurs. Via this seminal result, applied specifically to the law of the iterated logarithm
(LIL), Ville was instrumental in bringing martingales into the forefront of probability
theory. Ville’s result is also central to the philosophy of probability theory, because it
gives an actionable and concrete interpretation to the relatively abstract concept of a
measure-zero event. Different measure-zero events — for example, sequences violating
the strong law of large numbers (SLLN) and those violating the LIL — obviously have
the same probability, but they result in different betting strategies.

Although Ville proved his theorem for binary sequences, his result turns out to be far
more general, holding true in general filtered spaces. There is also a version for events
of positive measure: an event A has P-measure at most a if and only if there exists a
P-martingale which starts at one and exceeds any level below 1/a if the event A occurs.
See Chapter 8.5 in the book by Shafer and Vovk [23] for a detailed treatment and proof.

Ville’s result has implications for sequential hypothesis testing: the nonnegative
P-martingale M can be used to construct a sequential test for the null hypothesis that
the data sequence was generated according to P. For any α ∈ (0, 1), the test which
rejects the null the first time that Mt ≥ 1/α has type-I error at most α:

P

(
Mt ≥

1

α
for some t ∈ N

)
≤ α. (1.1)

This inequality, which was proved in the same thesis, is commonly referred to as Ville’s
inequality. Doob, who read Ville’s thesis, realized the importance of martingales and
credited this particular inequality to Ville; see Doob [4].

We briefly mention how this work connects to modern developments in sequential
statistics. The idea of constructing nonnegative test statistics that are martingales
under the null hypothesis, but increase under relevant alternative hypotheses, has long
(implicitly or explicitly) been a cornerstone of sequential statistics; indeed, the sequential
probability ratio test by Wald [27] is based on the same principle (sequential likelihood
ratios are easily checked to be nonnegative martingales). Following initial work by
Robbins [19], this idea has been extended to many different nonparametric settings
in recent years [9, 10]; here, nonnegative supermartingales provide a natural and
powerful generalization of likelihood ratios. There are yet other problems for which even
nonnegative supermartingales do not suffice, and one encounters a new concept called
an e-process [7, 17, 18]. We revisit this notion very soon since it plays a fundamental
role in the current paper. The aforementioned discoveries underpin a “game-theoretic”
approach to statistics, which in particular yields hypothesis tests and confidence sets
that can be continuously monitored and adaptively stopped; see the recent survey [16]
and references therein for an elaboration on such “safe anytime-valid inference.”

Our contributions. In this paper we develop a composite version of Ville’s theorem,
where the single probability measure P is replaced by an entire family P of probability
measures (and the space of coin flips is replaced by a general filtered measurable space).
In this extended setting, two issues must be addressed:

1. First, one needs an appropriate analog of a zero probability event.

2. Second, one needs an appropriate analog of a martingale.

A natural replacement for the notion of a P-nullset would be that of a P-polar set,
which is an event A such that P(A) = 0 for all P ∈ P. However, this turns out to be too
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weak. The appropriate replacement relies on a certain outer measure ν ≡ νP introduced
in Section 2. We call this the inverse capital measure, because for any set A, the inverse
of ν(A) specifies an asymptotic lower bound on the limiting capital achievable by a
gambler (in a particular set of games) starting with an initial capital of one and betting
against P, whenever A occurs.

Next, one may attempt to work with processes that are P-martingales for every P ∈ P.
However, this requirement turns out to be too strong, and the appropriate replacement is
the notion of an e-process [7, 17, 18]. An e-process for a family P of probability measures,
called a P-e-process for brevity, is a nonnegative process E = (Et)t∈N0

, adapted to some
filtration (Ft)t∈N0

, such that

EP[Eτ ] ≤ 1 for every P ∈ P and every stopping time τ , (1.2)

where E∞ = lim supt→∞ Et by convention. (The stopping times above are also defined
with respect to (Ft)t∈N0

.)

This is a much weaker property than being a nonnegative P-martingale starting
at one for every P ∈ P. In particular, the martingale property implies the e-process
property thanks to the optional stopping theorem. An equivalent definition [17] is: an
e-process is any nonnegative process that is upper bounded, for every P ∈ P, by a
P-martingale starting at one (a different one for each P). This style of definition was pre-
viously used by Howard et al. [9], but without using the term e-process, which is a very
recent christening of this property. As a consequence of this alternative characterization,
e-processes also satisfy Ville’s inequality (1.1), making their magnitude interpretable
and actionable as a measure of evidence.

Using the above two notions — that is, e-processes and the inverse capital measure —
we derive a composite version of Ville’s theorem. Specifically, we prove that

an event A has inverse capital measure zero if and only if there exists an
e-process that grows to infinity whenever A occurs.

We also prove an analogous statement for events with positive inverse capital measure.

E-processes have recently been used to solve a number of problem in sequential
statistics, because there exist problems in which there are no nontrivial P-martingales
(other than constants), there are no nontrivial P-supermartingales (other than decreasing
processes), but there do exist nontrivial P-e-processes which grow to infinity when
evaluated on data that is sufficiently incompatible with P. A particularly interesting
and fundamental problem where the preceding observations arise, is to test whether a
sequence is exchangeable or not [18]. A game-theoretic interpretation for e-processes
can be found in the aforementioned work, and applications to meta-analysis of medical
studies were described in Grünwald et al. [7]. A thorough treatment of game-theoretic
probability can be found in the book by Shafer and Vovk [24], and a recent case for its
use in scientific communication was made in the discussion paper by Shafer [22].

Our composite version of Ville’s theorem generalizes his original result. Moreover,
unpacking the proof of the theorem we see that it constructs relatively explicit gambling
strategies for arbitrary inverse capital measure-zero events that gain infinite wealth
when the purportedly rare events actually do occur. In order to demonstrate a nontrivial
example of its applicability, we prove a new composite strong law of large numbers.
Here the inverse capital measure-zero event A is the set of sequences whose empirical
averages do not converge to a limit. In other words, it is possible to test whether
such a composite SLLN holds, with the evidence (e-process) growing to infinity when-
ever the SLLN fails. Moreover, we prove that there is no nonnegative martingale or
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supermartingale that achieves this; the concept of an e-process is necessary for this
example.

Proving such a composite strong law is itself nontrivial. Along the way, we develop a
new L1-variant of the celebrated L2-type Dubins-Savage inequality. Such inequalities
have been extended to settings with finite p-th moments for 1 < p < 2 by Khan [11],
and also to higher moments [9], but the L1-type inequality appears to be new and of
independent interest.

To summarize, our main contributions are the following:

• Constructing a composite generalization of Ville’s theorem which informally reads
as: for every event of inverse capital measure equal to a ∈ [0, 1], we can construct
an e-process that reaches arbitrarily close to 1/a if that event occurs.

• Deriving a new, L1-type line-crossing inequality, which is an analog of the L2-type
Dubins–Savage deviation inequality.

• Developing a new composite strong law of large numbers, for which there is no
martingale or supermartingale that can detect its failure, but there exists an explicit
e-process that can.

To conclude, it is worth remarking the following. Gambling strategies were called
martingales in the 19th century, but Ville switched the term’s use to characterize the
wealth of the gambler, rather than the gambling strategy itself [14]. In some sense,
martingales were thrust into the limelight by Ville’s result, giving them a central role
in modern “measure-theoretic” probability theory, and also demystifying measure zero
events to some extent. In a similar sense, our generalization gives an independent
justification for the claim that the e-process is an equally fundamental concept for
dealing with composite nulls (as martingales are for point nulls): the e-process arises
organically when one tries to generalize Ville’s seminal result to the composite setting.

2 The inverse capital measure

Consider a filtered measurable space (Ω,F , (Ft)t∈N) where F = σ(
⋃

t∈N Ft), and let
T denote the set of all stopping times with respect to this filtration. Fix an arbitrary set
P of probability measures on F and define a [0, 1]-valued set function ν by

ν(A) = inf
τ∈T : A⊆{τ<∞}

sup
P∈P

P(τ < ∞), (2.1)

for any subset A ⊆ Ω. We call this the inverse capital measure in anticipation of its later
role in the composite generalization of Ville’s theorem. Note that ν depends both on the
filtration (Ft)t∈N and the set P.

To interpret ν(A) one should think of A as a failure event. An example that we study
in detail below is the event that a certain adapted process (Xt)t∈N fails to converge
as t tends to ∞. One then looks for stopping times τ that detect failure in finite time,
meaning that A ⊆ {τ < ∞}. Among all such stopping times one searches for those that
are efficient, uniformly across P, in the sense that supP∈P P(τ < ∞) is minimal. This can
be thought of as minimizing the probability of false alarms.

There is also an interpretation in terms of type-I error control for sequential tests.
Indeed, the definition of ν(A) says that for any α > ν(A) there exists a level-α sequential
test τ for the null hypothesis P, with the additional property that the null is guaranteed to
be rejected if A occurs. Here a stopping time τ is identified with the test that rejects the
null when τ occurs, and the level-α property means that the null, if true, will be rejected
with probability at most α; that is, supP∈P P(τ < ∞) ≤ α. A further interpretation in
terms of e-processes arises from Theorem 3.7 below.
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There is another natural outer measure, which we call the maximum likelihood (outer)
measure, namely

µ(A) = sup
P∈P

P(A). (2.2)

Note that µ(A) ≤ ν(A) for every A ∈ F . The inequality can be strict, a fact which is
demonstrated and discussed further in Subsection 2.2 below.

2.1 The inverse capital measure is an outer measure

The following lemma gathers some properties of ν.

Lemma 2.1. The set function ν satisfies the following properties.

1. Monotonicity: if A ⊆ B then ν(A) ≤ ν(B).

2. Countable subadditivity: for any sequence of sets An ⊆ Ω, n ∈ N, one has

ν
( ⋃

n∈N
An

)
≤
∑
n∈N

ν(An).

3. Singletons: if P = {P} consists of a single element, then ν(A) = P(A) for all A ∈ F .

In particular, since clearly ν(∅) = 0, the set function ν is an outer measure on Ω.

Proof. Property 1 is immediate from the definition of ν. Let us next prove the remaining
two assertions.

Property 2: Consider sets An ⊆ Ω, n ∈ N, and fix any ε > 0. For each n, let τn be a
stopping time such that An ⊆ {τn < ∞} and supP∈P P(τn < ∞) ≤ ν(An) + ε2−n. Then
τ = infn∈N τn is a stopping time which satisfies

⋃
n∈NAn ⊆ {τ < ∞} and, for each P ∈ P,

P(τ < ∞) = P
( ⋃

n∈N
{τn < ∞}

)
≤
∑
n∈N

P(τn < ∞) ≤ ε+
∑
n∈N

ν(An).

Taking supremum over P ∈ P and using that ε > 0 was arbitrary, the result follows.
Property 3: Let A ∈ F , as assumed. The definition of ν gives P(A) ≤ ν(A). For

the reverse inequality, fix any ε > 0. Since F is generated by
⋃

t∈N Ft, the standard
Carathéodory construction [1, Section 3] that extends P to F shows that we can cover A

by a union B =
⋃

t∈NAt of disjoint events At ∈ Ft such that B ⊇ A and P(B) ≤ P(A) + ε.
This ensures that the random variable τ =

∑
t∈N t1At

+∞1Bc (meaning that τ equals
infinity on Bc) is a stopping time with {τ < ∞} = B. Thus by definition, ν(A) ≤ P(τ <

∞) ≤ P(A) + ε. Since ϵ > 0 was arbitrary, we conclude that ν(A) ≤ P(A).

2.2 The inverse capital measure versus the maximum likelihood measure

We begin by noting that the maximum likelihood measure µ defined in (2.2) also
satisfies properties 1–3 of Lemma 2.1. As mentioned before, it follows from the definitions
that µ(A) ≤ ν(A) for every A ∈ F . In the singleton case P = {P} the inequality is actually
an equality since µ(A) = ν(A) = P(A) by Lemma 2.1(3). This implies, in particular, that
the maximum likelihood measure can be expressed as

µ(A) = sup
P∈P

inf
τ∈T : A⊆{τ<∞}

P(τ < ∞),

which provides a direct comparison to (2.1). Moreover, for general P, we have ν(A) =

µ(A) for any “finite-time” event A of the form A = {τ < ∞}. However, the inequality can
be strict in general. In fact, we show in Example 2.5 that it is possible to have µ(A) = 0

but ν(A) = 1. In particular, the collection of ν-nullsets can be strictly smaller than the
collection of P-polar sets, which we recall are sets A such that P(A) = 0 for all P ∈ P. A
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key message of Theorem 3.7, and indeed of this paper, is that in the context of sequential
testing and composite versions of Ville’s results, ν turns out to be the more relevant
object, and not µ.

Example 2.2. Consider the sample space Ω = {0, 1}N, the space of all binary sequences.
Let X = (Xt)t∈N denote the canonical process and set Ft = σ(Xs, s ≤ t), t ∈ N. Let Pn

assign probability 1/2 to the sequence 0N (all zeros) and to the sequence 0n · 1 · 0N (a
single one occurs after n zeros). We consider P = {Pn}n∈N0 . Let A = {0N}. Clearly
Pn(A) = 1/2 for all n ∈ N0, and hence µ(A) = 1/2.

However, we have ν(A) = 1. To see why, observe that any stopping time τ that stops
on A must stop after some finite number of zeros, say m. But then for n ≥ m, we have
Pn(τ < ∞) = 1. Since this holds for any τ such that A ⊆ {τ < ∞}, we conclude ν(A) = 1.

Curiously, on the complementary event Ac (there is a one somewhere), ν(Ac) = 1/2.
This claim is witnessed by the stopping time that stops when it encounters a one.

Remark 2.3. In the singleton case of P = {P}, which is what Ville considered, the outer
measure ν of any measurable set A equals its probability P(A), which does not depend on
the filtration. In the general composite case, however, the underlying filtration matters
in the definition of ν because the filtration determines the set of stopping times. In
particular, the set of ν nullsets depends on the filtration. This can be seen by considering
the extreme case where the filtration (Ft)t∈N0

is replaced by the constant filtration
(Gt)t∈N0

where Gt = F for all t. In this case ν becomes equal to the maximum likelihood
measure µ in (2.2). In general, a larger filtration leads to smaller values of ν (but, of
course, it cannot decrease below µ) and to a larger family of increasing e-processes. In
this way, more information can lead to more powerful tests.

One may ask for conditions under which ν and µ are equal on F . An abstract condition
of this kind can be extracted directly from the definition of ν. Indeed, the definition
yields

µ(A) ≤ ν(A) ≤ µ(A) + inf
τ∈T : A⊆{τ<∞}

µ({τ < ∞} \A).

Thus ν and µ coincide on F provided that any A ∈ F admits a uniform outer ap-
proximation by sets of the form {τ < ∞}, τ ∈ T , in the sense that there is a non-
decreasing sequence of stopping times τn such that A ⊂ {τn < ∞} for all n and
supP∈P P({τn < ∞} \A) ↓ 0 as n → ∞.

Remark 2.4. For certain choices of P, the set function µ is submodular, meaning that

µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B)

for all A,B ∈ F . In this case, submodularity is inherited by ν. Indeed, suppose A ⊂ {τ <

∞} and B ⊂ {σ < ∞} for some τ, σ ∈ T . Then, because {τ < ∞}∪{σ < ∞} = {τ∧σ < ∞}
and {τ < ∞} ∩ {σ < ∞} = {τ ∨ σ < ∞}, the definition of ν and submodularity of µ yield

ν(A ∪B) + ν(A ∩B) ≤ µ(τ ∧ σ < ∞) + µ(τ ∨ σ < ∞)

≤ µ(τ < ∞) + µ(σ < ∞).

Taking the infimum of the right-hand side over all such stopping time τ, σ yields submod-
ularity of ν, namely

ν(A ∪B) + ν(A ∩B) ≤ ν(A) + ν(B).

However, µ is not always submodular. For example, consider the four-point space
Ω = {a, b, c, d} along with P = {P1,P2} where

P1 =

(
1

3
,
1

3
,
1

3
, 0

)
, P2 =

(
0,

2

3
, 0,

1

3

)
.
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In this case we have for A = {a, b} and B = {b, c} that µ(A ∪ B) + µ(A ∩ B) = 5
3 but

µ(A) + µ(B) = 4
3 . This violates submodularity. As a consequence, since ν may coincide

with µ (for instance if the filtration is constant), ν may fail to be submodular as well.
Submodularity of ν, when it holds, implies that the Choquet integral

∫
fdν with respect

to ν of any bounded F -measurable real-valued function f on Ω admits the representation∫
fdν = max

P∈P∗
EP[f ],

where P∗ is the set of all finitely additive probability measures P on F such that P(A) ≤
ν(A) for all A ∈ F . The Choquet integral is then both subadditive and comonotonically
additive. See [6] for more details, in particular Theorem 4.88 and Corollary 4.89. It is
an interesting open question what can be said about the relation between P∗, P, and
the filtration (Ft)t∈N0

. We would like to thank an anonymous referee for bringing the
question of submodularity to our attention.

2.3 The law of large numbers for truncated Cauchy distributions

We now present a more sophisticated example that is of relevance later in the paper.
A key added feature compared to Example 2.2 is that we now consider i.i.d. sequences.

Example 2.5. Consider the sample space Ω = RN, the space of all infinite real-valued
sequences. Let X = (Xt)t∈N denote the canonical process and set Ft = σ(Xs, s ≤ t),
t ∈ N. We will consider a collection P of laws under which X is i.i.d. with Cauchy
distributions that are truncated at higher and higher levels. This will lead to a situation
where µ(A) = 0, ν(A) = 1, and ν(Ac) = 1 hold simultaneously for the same event A = Adiv

given by

Adiv =

{
lim
t→∞

1

t

t∑
s=1

Xs does not exist

}
. (2.3)

Specifically, let Q denote the law under which X is i.i.d. Cauchy (centered at the origin).
For each a ∈ (0,∞) we define the truncation of X at magnitude a by

Xa
t = Xt1{|Xt|<a} + a1{Xt≥a} − a1{Xt≤−a}, t ∈ N.

Then, under Q, the process Xa = (Xa
t )t∈N is i.i.d. with a truncated Cauchy distribution.

More precisely, the marginal distribution coincides with the Cauchy on (−a, a) and
collects the remaining mass symmetrically at ±a. We let Pa denote the law of (Xa

t )t∈N
under Q, and consider the family

P = {Pa : a ∈ (0,∞)}.

Proposition 2.6. For the class P of truncated Cauchy distributions defined above, we
have

µ(A) = 0, but ν(Adiv) = 1 = ν(Ac
div). (2.4)

Proof. For each a ∈ (0,∞) we have EPa [|X1|] = EQ[|Xa
1 |] ≤ a and EPa [X1] = EQ[X

a
1 ] = 0.

Thus the strong law of large numbers yields

Pa(Adiv) = 0,

for any a > 0. Thus, supP∈P P(A) = µ(A) = 0, as claimed.
In order to reason about ν, consider any stopping time τ such that Adiv ⊆ {τ < ∞}.

We write τ = τ(X) to emphasize that τ is a function of the trajectory X = (Xt)t∈N. We
have

Pa(τ(X) < ∞) ≥ Pa(τ(X) < ∞ and |Xt| < a for all t ≤ τ(X))

= Q(τ(Xa) < ∞ and |Xa
t | < a for all t ≤ τ(Xa))

= Q(τ(X) < ∞ and |Xt| < a for all t ≤ τ(X)),

(2.5)
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where in the last equality we used that Xa
t = Xt whenever either value belongs to (−a, a),

and that τ(X) only depends on the values of Xt for t ≤ τ(X). Next, since X is i.i.d.
Cauchy under Q, and hence the sample averages almost surely fail to converge, we have
Q(τ(X) < ∞) ≥ Q(Adiv) = 1. Thus

Q(τ(X) < ∞ and |Xt| < a for all t ≤ τ(X))

= Q(|Xt| < a for all t ≤ τ(X))

≥ Q(|Xt| < a for all t ≤ T )−Q(τ(X) > T )

(2.6)

for any T ∈ N. Fix any ε > 0 and choose T large enough that Q(τ(X) > T ) ≤ ε, which is
possible because Q(τ(X) < ∞) = 1. Combining (2.5) and (2.6) we then deduce that

Pa(τ(X) < ∞) ≥ Q(|Xt| < a for all t ≤ T )− ε.

Sending a to ∞ we find that supa∈(0,∞)Pa(τ(X) < ∞) ≥ 1− ε. Since τ was an arbitrary
stopping time with Adiv ⊆ {τ < ∞} it follows that ν(Adiv) ≥ 1 − ε. Since this holds for
every ε > 0, we obtain the first equality in (2.4).

Despite the fact that (2.4) holds, we also have ν(Aconv) = 1 where

Aconv = Ac
div =

{
lim
t→∞

1

t

t∑
s=1

Xs exists

}
.

Indeed, ν(Aconv) ≥ µ(Aconv) = supP∈P P(Aconv) = 1 by the strong law of large numbers.

Note that (2.4) is not a contradiction, since ν is an outer measure, and not a probability
measure.

Much intuition from the above example will be necessary when we prove a composite
version of the strong law of large numbers in Section 4, where we impose a uniform
integrability condition on the class, in order for Adiv to be a ν-nullset (as one may expect),
as opposed to a full outer-measure set in the above example.

3 A composite generalization of Ville’s theorem

3.1 Statement and proof of the composite version

We now have the necessary technical instruments in place to present our first main
result, which is a composite version of Ville’s theorem in terms of e-processes (recall
their defining property in (1.2)).

Theorem 3.1. Let (Ω,F , (Ft)t∈N0
) be a filtered measurable space with F = σ(

⋃
t∈N0

Ft),
let P be a family of probability measures on F , let ν be the inverse capital outer measure
from (2.1), and let A ⊆ Ω be arbitrary. Then,

ν(A) = 0 if and only if there exists a P-e-process (Et)t∈N0
such that lim

t→∞
Et = ∞ on A.

In the context of the above theorem, any P-e-process that explodes to infinity on A

will be called a “witness e-process for A”. The proof below explicitly constructs such a
witness e-process, and we give even more concrete witness e-processes in special cases
later.

Proof. If ν(A) = 0, then for each n ∈ N there exists a stopping time τn such that
A ⊆ {τn < ∞} and supP∈P P(τn < ∞) ≤ 2−n. Define

Et =
∑
n∈N

1{τn≤t}, t ∈ N0. (3.1)
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This process is nondecreasing and satisfies E∞ = limt→∞ Et =
∑

n∈N 1{τn<∞}. In
particular, E∞ = ∞ on A. Moreover, (Et)t∈N0

is an e-process because for any stopping
time τ and P ∈ P,

EP[Eτ ] ≤ EP[E∞] =
∑
n∈N

P(τn < ∞) ≤ 1.

Conversely, suppose there is an e-process (Et)t∈N0
such that limt→∞ Et = ∞ on A. Pick

any a ∈ (0,∞) and let τ = inf{t ≥ 0: Et ≥ a}. Then A ⊆ {τ < ∞}, and the definition of
an e-process yields

P(τ < ∞) ≤ 1

a
EP[1{τ<∞}Eτ ] ≤

1

a

for all P ∈ P. Thus ν(A) ≤ 1/a and hence, since a ∈ (0,∞) was arbitrary, ν(A) = 0.

Several remarks are in order.

Remark 3.2 (The singleton case). In the singleton case P = {P}, this result does not
quite recover the original theorem of Ville, because our e-process does not reduce to
being a P-martingale. This is easily remedied by modifying (3.1) to Et =

∑
n∈NP(τn <

∞ | Ft), which is a P-martingale. To be precise, we must choose versions of the
conditional probabilities P(τn < ∞ | Ft) that are identically equal to one on {τn ≤ t} (not
just almost surely equal to one, which is automatic), in order to obtain limt→∞ Et = ∞
everywhere on A (not just almost everywhere). The original proof by Ville, or the version
in Chapter 8.5 of [23], carefully accounts for this subtlety.

Remark 3.3 (µ(A) = 0 does not suffice). We clarify here that a version of the theorem
with ν(A) = 0 being replaced by µ(A) = 0 is incorrect. Indeed, Section 2.3 demonstrated
an explicit event (for truncated Cauchy distributions) with µ(A) = 0 but ν(A) = 1. If
µ(A) = 0 had sufficed for producing a witness P-e-process (or supermartingale, or
martingale) for A, then the converse direction of Theorem 3.1 could be invoked to then
further conclude that ν(A) = 0, which yields a contradiction.

Remark 3.4 (Nonnegative P-supermartingales do not suffice). In the general non-
singleton case, one cannot expect an e-process to be a martingale under every P ∈ P.
(We demonstrate an example in Subsection 4.3 for which no P-supermartingale can
increase to infinity, but an e-process can.) However, in the special case that all elements
of P are mutually locally absolutely continuous and P satisfies a certain geometric
condition known as “fork-convexity”, then it is possible to construct the e-process to be a
nonnegative P-supermartingale. This requires technical machinery involving composite
Snell envelopes, that we do not develop further in this paper; see [18, Section 3].

Remark 3.5 (Countable unions of events). If one considers a countable number of events
{An}n∈N such that ν(An) = 0 for each of them, Lemma 2.1 implies that their union
also satisfies ν(

⋃
n An) = 0. This fact is witnessed by simply taking any mixture of the

underlying e-processes. To clarify, if En is the e-process from the above theorem which
witnesses the fact that ν(An) = 0, then for any positive sequence {wn}n∈N that sums
to one, we see that

∑
n∈N wnE

n is an e-process that witnesses ν(
⋃

n An) = 0. Indeed,∑
n∈N wnE

n is infinite if and only if at least one of its constituent e-processes is also
infinite. (This remark is a direct parallel of Lemma 3.2 in [23], except the remark is
stated more generally in terms of e-processes.)

Remark 3.6 (An unbounded sup suffices). We claim that if there exists a P-e-process
E such that supt≥0 Et = ∞ on an event A, then there also exists a possibly different
P-e-process E′ such that limt→∞ E′

t = ∞. The proof is simple. Let τn = inf{t : Et ≥ 2n}
be the first time that E crosses level 2n. Since E crosses every finite level on A, we know
that A ⊆ {τn < ∞}. Now define E′

t =
∑∞

n=1 1{τn≤t}, exactly as in (3.1), and note that on
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A, we have limt→∞ E′
t = ∞. Since E′ is adapted, nondecreasing, and

EP

[
lim
t↑∞

E′
t

]
= EP

[ ∞∑
n=1

1{τn<∞}

]
=

∞∑
n=1

P(τn < ∞) ≤
∞∑

n=1

1

2n
= 1

for all P ∈ P, E′ is indeed an e-process. In summary, if one can exhibit an e-process E

that is unbounded on A, then one can conclude that ν(A) = 0. (This remark is a direct
parallel of Lemma 3.1 in [23], except the remark is stated more generally in terms of
e-processes.)

3.2 SubGaussian supermartingales and e-processes as witnesses

We now provide two simple examples where a nonnegative P-supermartingale does
bear witness to our main theorem, and a third example where a P-e-process emerges.

We first recall a standard definition: a zero-mean random variable X is called σ-
subGaussian, for some known σ > 0, if E[eλX ] ≤ eλ

2σ2/2 for every λ ∈ R. A centered
Gaussian with variance at most σ2 is σ-subGaussian, but [8] proved that centered
bounded random variables are also subGaussian (for an appropriate σ). Thus, the class
of subGaussian random variables is very richly nonparametric, containing discrete and
continuous distributions, both bounded and unbounded.

Case 1: zero mean. Now, define P0 to consist of all distributions over real-valued
sequences (Xt)t∈N such that for every t ∈ N, Xt is mean-zero and σ-subGaussian when
conditioned on X1, . . . , Xt−1. Recalling (2.3), define the event

A0
div =

{
lim
t→∞

1

t

t∑
s=1

Xs does not converge to zero

}
, (3.2)

and note that P(A0
div) = 0 for every P ∈ P0. We claim that ν(A0

div) = 0. It is pos-
sible to argue this directly, but we will instead do so by exhibiting a nonnegative
P0-supermartingale whose lim sup is unbounded on A0

div. We treat the case σ = 1 with-
out loss of generality. First note that it is an immediate consequence of conditional
subGaussianity that for any λ ∈ R, the process

Lt(λ) = exp

(
λ

t∑
i=1

Xi − λ2t/2

)
(3.3)

is a nonnegative P0-supermartingale with respect to the natural filtration generated
by the data. By mixing this supermartingale over all λ ∈ R using a standard Gaussian
distribution over λ, [20] derived the “normal mixture” P0-supermartingale

Mt =
exp

(
t2X

2
t

2(t+1)

)
√
t+ 1

,

where Xt =
∑t

i=1 Xi/t is the empirical mean.

Now, we claim that (Mt)t∈N0
is unbounded on A0

div. Indeed, if Xt does not converge to

zero, then, along a subsequence, X
2

t remains above a strictly positive constant c. Along
this subsequence, we have Mt ≥ exp(t2c2/(2(t+ 1)))/

√
t+ 1, which converges to infinity.

By Remark 3.6, it suffices to treat (Mt)t∈N0
as the witness P0-supermartingale (and thus

P0-e-process) to conclude that ν(A0
div) = 0.
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Case 2: nonpositive mean. Next, consider the event

A>0 =

{
lim sup
t→∞

1

t

t∑
s=1

Xs > 0

}
,

and the set of distributions

P≤0 = {P : at ≤ 0 and Xt − at is conditionally 1-subGaussian, for all t ∈ N} ,

where at = EP[Xt | X1, . . . , Xt−1] exists, is finite, and can itself be predictable.
In this case, the process Lt(λ) from (3.3) is still a P≤0-supermartingale, but only for

λ ≥ 0. Then, mixing over λ using only the positive half of a standard Gaussian, we get
the “one-sided normal mixture” P≤0-supermartingale, for which there is no closed form
expression [20, 10]. Luckily, a suitable closed-form lower bound is given by

Nt = 2
exp

(
2t2X

2
t

t+1

)
√
t+ 1

Φ

(
2tXt√
t+ 1

)
,

where Φ is the standard Gaussian cumulative distribution function. Since (Nt)t∈N0

is not itself a supermartingale, but is upper bounded by one, it is a P≤0-e-process.
Now, a similar argument as before proves that (Nt)t∈N0 is unbounded on A>0, that is,
lim supt→∞ Nt = ∞ on any sequence of observations such that lim supt→∞ Xt > 0.

Case 3: nonpositive running mean. Finally, consider the class of distributions

P† =

P :
∑
s≤t

as ≤ 0 and Xt − at is conditionally 1-subGaussian, for all t ∈ N

 ,

where, as before, at = EP[Xt | X1, . . . , Xt−1] exists, is finite, and can itself be predictable.
We have P† ⊋ P≤0 since the definition of P† allows for a sequence of conditional

means like −1,−1, 2, 0,−2, 2, . . . , whose individual elements could be positive as long as
the cumulative sums are nonpositive. In this case, the process Lt(λ) from (3.3) is no
longer a P†-supermartingale, but it is a P†-e-process for all λ ≥ 0. (To see this, simply
note that for each P ∈ P†, the process Lt(λ) is upper bounded by a different nonnegative
P-supermartingale, namely exp(λ

∑t
s=1(Xs−as)−λ2t/2).) Thus Nt is also a P†-e-process,

and since we already know that it is unbounded on A>0 we can conclude that ν(A>0) = 0

even for P†.
We end this subsection by noting that there was nothing particularly special about

the above subGaussian example. Howard et al. [9, 10] describe large classes of com-
posite supermartingales and e-processes under different types of assumptions on the
underlying random variable (like subexponential, sub-gamma, sub-Poisson, etc.), for
which analogous sets of events and distributions could have been defined, and similar
arguments could have been made.

3.3 E-process characterization for events with positive measure

One might wonder if there is a version of Theorem 3.1 that is valid for ν(A) > 0. The
following result and subsequent discussion and example show what is possible.

Theorem 3.7. Let (Ω,F , (Ft)t∈N0
) be a filtered measurable space with F = σ(

⋃
t∈N0

Ft),
let P be a family of probability measures on F , let ν be the inverse capital outer measure
from (2.1), and let A ⊆ Ω be arbitrary. Then, the following claims are true:
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1. For each ε > 0 there exists an e-process (Et)t∈N0
such that limt→∞ Et = 1/(ν(A)+ε)

on A.

2. For any c ∈ [1,∞], if there exists an e-process (Et)t∈N0
such that supt∈N0

Et ≥ c on
A, then ν(A) ≤ 1/c.

Proof. 1: Let τε be a stopping time with A ⊆ {τε < ∞} and supP∈P P(τε < ∞) ≤ ν(A)+ ε,
and define the one-jump process

Et =
1

ν(A) + ε
1{τε≤t}, t ∈ N0.

Then E∞ = 1{τε<∞}/(ν(A) + ε), which equals 1/(ν(A) + ε) on A. Moreover, (Et)t∈N0 is
an e-process because for any stopping time τ and P ∈ P,

EP[Eτ ] ≤ EP[E∞] =
1

ν(A) + ε
P(τε < ∞) ≤ 1.

2: This is proved exactly as the converse implication of Theorem 3.1, except that the
constant a is chosen from (0, c). One obtains ν(A) ≤ 1/a and hence, since a ∈ (0, c) was
arbitrary, ν(A) ≤ 1/c.

Remark 3.8. Let P be the family of i.i.d. truncated Cauchy distributions constructed
in Example 2.5. As shown there, ν(Adiv) = 1 which, in view of Theorem 3.72, makes it
impossible to refute convergence with uniform power for this family P. On the other
hand, we also saw that ν(Aconv) = 1 so refuting divergence is also impossible for P.

3.4 A counterexample to a natural conjecture

The e-processes constructed in part 1 of Theorem 3.7 depend on ε, and it is natural
to ask whether one can find a single e-process (Et)t∈N0 that satisfies

sup
t∈N0

Et ≥
1

ν(A)
on A (3.4)

when ν(A) ∈ (0, 1). In the singleton case P = {P} this can be done, at least if A is
measurable and P-nullsets are ignored, using the Doob martingale Et = P(A | Ft)/P(A).
Indeed, Lévy’s zero-one law states that limt→∞ Et = 1A/P(A) almost surely, and this
equals 1/ν(A) on A due to Lemma 2.13. However, if P is not a singleton, it is in general
impossible to find a single e-process that satisfies (3.4). The following example shows
that this phenomenon can occur even if P contains just two elements.

Example 3.9. Consider the space Ω = {0, 1}N of binary sequences (coin flips), let
X = (Xt)t∈N denote the canonical process, and set Ft = σ(Xs, s ≤ t), t ∈ N. We define
two probability measures P1 and P2 as follows. The first coin flip is unbiased,

Pi(X1 = 1) =
1

2
, i = 1, 2.

Conditionally on X1, the remaining coin flips X2, X3, . . . are independent under both P1

and P2 with success probabilities

P1(Xt = 1 | X1 = 1) = P2(Xt = 1 | X1 = 0) =
1

2
;

P1(Xt = 1 | X1 = 0) = P2(Xt = 1 | X1 = 1) = 2−t

for t ≥ 2. Thus under P1, if X1 = 1 the remaining coin flips are i.i.d. Bernoulli-(1/2),
while if X1 = 0 they are independent Bernoulli with exponentially decaying (hence
summable) success probabilities. Under P2 the situation is symmetric.
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Consider now the event

A = {Xt = 1 for infinitely many t ∈ N}.

The Borel–Cantelli lemma yields Pi(A) = 1/2 for i = 1, 2. Moreover, if τn is the first time
that n ones have been observed, then A ⊂ {τn < ∞} and Pi(τn < ∞) converges to 1/2

as n tends to infinity, for i = 1, 2. It follows that ν(A) = 1/2.
However, we claim that no e-process for P = {P1,P2} can satisfy (3.4). To show

this, consider any e-process (Et)t∈N0 and suppose that supt∈N0
Et ≥ c on A for some

constant c ∈ [1,∞). We must show that c < 2. To do so, fix T ∈ N and ε ∈ (0, c/2) such
that {ET ≥ ε} ≠ ∅. Define B = {ET ≥ ε} ∩ {X1 = 0} and consider the case B ̸= ∅
(the complementary case {ET ≥ ε} ∩ {X1 = 1} ̸= ∅ is argued symmetrically). Denote
δ = P1(B) ∈ (0, 1/2]. (Indeed δ > 0 since B ∈ FT and B ̸= ∅ by assumption.) Next, define
the stopping time

τ = inf{t : Et ≥ c− δε} ∧ TB ,

where TB = T1B +∞1Bc (meaning TB takes the value infinity on the complement of B).
Note that both A and B are subsets of {τ < ∞}. Moreover, the Borel–Cantelli lemma
yields A = {X1 = 1} up to a P1-nullset, and hence P1(A ∩B) = 0. We conclude that

EP1 [Eτ1{τ<∞}] ≥ EP1 [Eτ1A] + EP1 [Eτ1B ] ≥
1

2
(c− δε) + δmin{c− δε, ε} >

c

2
.

On the other hand, the left-hand side is bounded by one since (Et)t∈N0 is an e-process.
This shows that c < 2, as required.

3.5 Gambling interpretations of the inverse capital measure

Nonnegative martingales have a straightforward game-theoretic interpretation: they
are the wealth of a gambler playing a fair game. Nonnegative supermartingales are
similar: they are the wealth of a gambler playing a game whose odds are stacked
against them (or playing a fair game, and throwing away some money in each round).
P-e-processes admit a slightly more sophisticated game-theoretic interpretation: at the
very beginning, the gambler agrees to play (in parallel) a separate fair game against
each P ∈ P (or one with odds stacked against them), and their wealth at any time is
given by their minimum wealth across all these games. For more on this interpretation,
see Section 5.4 in Ramdas et al. [18]. Thus it is natural to ask: does ν also admit a
game-theoretic interpretation?

In this subsection, we rewrite Theorem 3.7 to bring to the fore its pricing interpre-
tation of ν. The following corollary is a composite analog of Proposition 8.13 in Shafer
and Vovk [23]. It shows that 1/ν(A) is the maximum level that can be reached by an
e-process started at 1, whenever the event A occurs.

Corollary 3.10. Let P be a family of probability measures on Ω and let ν be the associ-
ated inverse capital measure (2.1). Then

ν(A) = inf
{
c ∈ (0, 1] : lim inf

t→∞
cEt ≥ 1A

}
= inf

{
c ∈ (0, 1] : sup

t∈N0

cEt ≥ 1A

}
, (3.5)

where (Et)t∈N0
ranges over the set of all e-processes for P.

Proof. Let Vlim inf and Vsup denote the value of the first and second infimum respectively
in (3.5). As lim inft→∞ cEt ≤ supt∈N0

cEt, the inf defining Vsup is over a larger set, and
hence Vsup ≤ Vlim inf . To then prove the claimed equalities (3.5), it suffices to show the
sandwich Vlim inf ≤ ν(A) ≤ Vsup. In order to prove the first inequality, Theorem 3.7(1)
yields an e-process showing that c = ν(A) + ϵ is feasible for Vlim inf for any ϵ > 0,
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which implies the first inequality by letting ϵ → 0. Moving on to the second inequality,
Theorem 3.7(2) shows that for Vsup every feasible pair of c and e-process must have
c ≥ ν(A), proving the second inequality. This completes the proof.

The following rewrite brings out yet another aspect related to betting. For a process
(Mt)t∈N0

, thought of as payoffs, we can say it has fair price supρ∈T EP[Mρ] under P.
The following result shows that the inverse capital measure of an event A is also the
infimum of all initial capitals that suffice to super-replicate the payoff 1A. Due to this
interpretation we could also have plausibly called the inverse capital measure the “initial
capital measure”.

Lemma 3.11. The following dual representation for ν holds:

ν(A) = inf
τ∈T :A⊆{τ<∞}

sup
P∈P

P(τ < ∞) = inf
(Mt)t ≥ 0 s.t.

supt∈N0
Mt≥1A

sup
P∈P

sup
ρ∈T

EP[Mρ]. (3.6)

Proof. The first expression is simply the definition of ν(A), and is included for conve-
nience of comparison to the second expression. We prove both directions in turn.

• For ≥, fix any feasible τ on the left. Then Mt = 1τ<∞ is feasible on the right, by
monotonicity in time it is best to take ρ = ∞, upon which EP[Mρ] = P(τ < ∞).

• For ≤, fix any feasible (Mt)t on the right. For any ϵ ∈ (0, 1), consider the stopping
time τ = inf{t : Mt ≥ 1 − ϵ}, so that A ⊆ {τ < ∞} and hence τ is feasible on the
left. Moreover, P(τ < ∞)(1− ϵ) ≤ EP[Mτ ] ≤ supρEP[Mρ]. Taking ϵ → 0 proves the
claim.

This completes the proof.

4 Line-crossing inequalities and a composite SLLN

Before we introduce our composite strong law of large numbers (SLLN), we present
an important technical tool that may be of independent interest.

4.1 An L1-type line-crossing inequality

Recall the following famous inequality due to Dubins and Savage [5]: for any square
integrable martingale (Mt)t∈N with M0 = 0, having predictable quadratic variation
Vt =

∑t
s=1E[(Ms −Ms−1)

2|Fs−1], we have for any constants γ, ϵ > 0,

P

(
sup
t∈N

Mt

γ + Vt
≥ ϵ

)
≤ 1

γϵ2 + 1
.

The following theorem can be understood as an L1-type Dubins–Savage inequality.
Namely, it gives a probability bound on the likelihood that a random walk starting at zero
with i.i.d. centered increments (that are only required to be in L1), ever crosses a line
with positive slope and intercept. To the best of our knowledge, such inequalities have
only been proven in the presence of higher moments for the random walk increments;
see, for example, Khan [11] for Lp variants for 1 < p ≤ 2, and Howard et al. [9] for other
variants under two, three, and infinite moments. It might be of interest to improve the
constants in the statement, although this is not needed for our purposes.

Theorem 4.1. Suppose that (Xt)t∈N is i.i.d. with E[|X1|] < ∞ and E[X1] = 0 and define
the tail function

r(K) = E
[
|X1|1{|X1|>K}

]
, K ≥ 0. (4.1)
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Then for any positive numbers ε, γ, and any K ≥ 1 one has

P

(
sup
t∈N

1

γ + t

∣∣∣∣∣
t∑

s=1

Xs

∣∣∣∣∣ > ε+ r(K)

)
≤ 8K2

γε2
+

(
16

ε2
+ 2

)
r(K).

Proof. We use the triangle inequality to bound

1

γ + t

∣∣∣∣∣
t∑

s=1

Xs

∣∣∣∣∣ ≤ 1

γ + t

∣∣∣∣∣
t∑

s=1

Ys

∣∣∣∣∣+ 1

t

∣∣∣∣∣
t∑

s=1

Zs

∣∣∣∣∣+ 1

t

∣∣∣∣∣
t∑

s=1

Rs

∣∣∣∣∣ , (4.2)

where

Ys = Xs1{|Xs|≤K} − E[Xs1{|Xs|≤K}],

Zs = Xs1{K<|Xs|≤s−1} − E[Xs1{K<|Xs|≤s−1}],

Rs = Xs1{|Xs|>K∨(s−1)} − E[Xs1{|Xs|>K∨(s−1)}].

We handle the three terms on the right-hand side of (4.2) one by one.
Step 1: Since the Ys are centered i.i.d. with variance bounded by K2, the classical

Dubins–Savage line-crossing inequality [5] implies that

P

(
∃t ∈ N with

t∑
s=1

Ys > β + αK2t

)
≤ 1

1 + αβ
≤ 1

αβ
(4.3)

for any positive numbers α, β. We apply this with α = ε/K2 and β = εγ to get the
following tail bound for the first term on the right-hand side of (4.2):

P

(
sup
t∈N

1

γ + t

∣∣∣∣∣
t∑

s=1

Ys

∣∣∣∣∣ > ε

)
≤ 2P

(
∃t ∈ N with

t∑
s=1

Ys > εγ + εt

)
≤ 2K2

γε2
. (4.4)

Step 2: Summation by parts yields the identity

1

t

t∑
s=1

Zs =

t∑
s=1

Zs

s
− 1

t

t∑
j=2

j−1∑
s=1

Zs

s
. (4.5)

Writing S = supt∈N |
∑t

s=1 Zs/s| we deduce
∣∣∣∑t

s=1 Zs

∣∣∣ /t ≤ S +
∑t

j=1 S/t = 2S for all

t ∈ N. Noting that
∑t

s=1 Zs/s is a martingale with independent increments, we may use
Kolmogorov’s maximal inequality and monotone convergence to get

P

(
sup
t∈N

1

t

∣∣∣∣∣
t∑

s=1

Zs

∣∣∣∣∣ > ε

)
≤ P

(
sup
t∈N

∣∣∣∣∣
t∑

s=1

Zs

s

∣∣∣∣∣ > ε

2

)
≤ 4

ε2
E

[ ∞∑
s=1

Z2
s

s2

]
. (4.6)

Since E[Z2
s ] ≤ E[X2

11{K<|X1|≤s−1}], the expectation on the right-hand side can be
bounded as follows:

E

[ ∞∑
s=1

Z2
s

s2

]
≤ E

[
X2

11{|X1|>K}

∞∑
s=1

1{|X1|≤s−1}
1

s2

]
≤ E[|X1|1{|X1|>K}],

using in the last step the inequality
∑∞

s=1 1{x≤s−1}1/s
2 ≤

∫∞
x

1/s2ds = 1/x, x ∈ (0,∞).
This establishes the tail bound

P

(
sup
t∈N

1

t

∣∣∣∣∣
t∑

i=1

Zs

∣∣∣∣∣ > ε

)
≤ 4

ε2
r(K), (4.7)
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where r(K) is the tail function (4.1).

Step 3: Write Rs = Xs1{|Xs|>K∨(s−1)} − cs with cs = E[Xs1{|Xs|>K∨(s−1)}]. On the
event where |Xs|1{|Xs|>K} ≤ s − 1 for all s ∈ N, one has Rs = −cs for all s ∈ N, and
hence

1

t

∣∣∣∣∣
t∑

s=1

Rs

∣∣∣∣∣ = 1

t

∣∣∣∣∣
t∑

s=1

cs

∣∣∣∣∣ ≤ 1

t

t∑
s=1

E[|Xs|1{|Xs|>K}] = E[|X1|1{|X1|>K}] = r(K)

for all t ∈ N. Therefore,

P
(
|Xs|1{|Xs|>K} ≤ s− 1 for all s ∈ N

)
≤ P

(
sup
t∈N

1

t

∣∣∣∣∣
t∑

s=1

Rs

∣∣∣∣∣ ≤ r(K)

)
.

We now take complements, apply the union bound, and use that
∑

n∈NP(ξ > n− 1) ≤
P(ξ > 0) + E[ξ] for any nonnegative random variable ξ to get

P

(
sup
t∈N

1

t

∣∣∣∣∣
t∑

s=1

Rs

∣∣∣∣∣ > r(K)

)
≤
∑
s∈N

P
(
|X1|1{|X1|>K} > s− 1

)
≤ P(|X1| > K) + E[|X1|1{|X1|>K}]

≤ 2E[|X1|1{|X1|>K}] = 2r(K).

(4.8)

Here the third inequality follows because K ≥ 1.

Step 4: Combining (4.2), (4.4), (4.7), and (4.8) yields

P

(
sup
t∈N

1

γ + t

∣∣∣∣∣
t∑

s=1

Xs

∣∣∣∣∣ > 2ε+ r(K)

)
≤ 2K2

γε2
+

(
4

ε2
+ 2

)
r(K).

Replacing ε by ε/2 completes the proof.

By choosing K = γ1/3 one obtains the following corollary. In particular, this makes it
clear that the left-hand side converges to 0 as γ tends to ∞, and that this occurs at a
rate that only depends on the tail function r(K). Recall that r(K) decreases to 0 as K

tends to ∞.

Corollary 4.2. In the setting of Theorem 4.1 one has

P

(
sup
t∈N

1

γ + t

∣∣∣∣∣
t∑

s=1

Xs

∣∣∣∣∣ > 2ε

)
≤ 8

ε2
γ−1/3 +

(
16

ε2
+ 2

)
r(γ1/3) (4.9)

for any positive ε > 0 and any large enough γ ≥ 0 such that r(γ1/3) ≤ ε. Since

1

k

∣∣∣ k∑
s=1

Xs

∣∣∣ ≤ 2 sup
t∈N

1

k + t

∣∣∣ t∑
s=1

Xs

∣∣∣,
we further conclude that

P

(
1

k

∣∣∣∣∣
k∑

s=1

Xs

∣∣∣∣∣ > ε

)
≤ 128

ε2
k−1/3 +

(
256

ε2
+ 2

)
r(k1/3) (4.10)

for any positive ε and any k ∈ N such that r(k1/3) ≤ ε.
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4.2 A composite strong law of large numbers

The line-crossing inequality of Theorem 4.1 implies a composite strong law of large
numbers. Specifically, if ν is induced by a family P of i.i.d. laws that satisfy a certain
uniform integrability condition, then the event that the time averages of (Xt)t∈N diverge,

Adiv =

{
the limit lim

t→∞

1

t

t∑
i=1

Xi does not exist

}
,

will be a ν-nullset.

Theorem 4.3. Let P be a family of probability measures P under which (Xt)t∈N is i.i.d.
with EP[|X1|] < ∞. Assume also that P satisfies the centered uniform integrability
condition

lim
K→∞

sup
P∈P

EP
[
|X1 − EP[X1]|1{|X1−EP[X1]|>K}

]
= 0. (4.11)

Then ν(Adiv) = 0.

Let us contrast this composite SLLN result with classical SLLNs. The latter assume
some condition (e.g. i.i.d. with finite variance) and prove that Adiv has measure zero.
That is, they show that for any set of distributions P satisfying the assumed condition,
the maximum likelihood measure is zero, that is µ(Adiv) = 0. This in turn implies that
P(Adiv) = 0 for every P ∈ P, providing a strong argument for why Adiv will not happen.
Our composite SLLN instead strengthens this to ν(Adiv) = 0. This implies that there is a
P-e-process (Et)t∈N0

that explodes when Adiv occurs. Equivalently, for every confidence
level δ ∈ (0, 1), there is a stopping time τ that detects (by stopping at some finite time)
that Adiv is occurring, with a type-I error bounded by δ for all P ∈ P. In words, µ(Adiv) = 0

means that convergence occurs, while ν(Adiv) = 0 means that we can in addition detect
divergence in finite time.

An example of P that satisfies condition (4.11) is a location family created by trans-
lating a distribution with finite mean. To elaborate, let ϕ(x) be a density such that∫
|x|ϕ(x)dx < ∞. Abusing notation to use ϕ(x) to also denote the distribution with that

density, define Pϕ = {ϕ(x − a)∞}a∈R as distributions yielding i.i.d. draws from some
shifted version of ϕ. Then Pϕ satisfies (4.11). In fact, more can be said. For any given
set of i.i.d. product distributions P, let P0 be the family of distributions obtained by cen-
tering each of the distributions in P, so that every P ∈ P0 yields zero-mean i.i.d. draws.
Then P satisfies (4.11) if and only if P0 satisfies the more standard uniform integrability
condition, which we know (from the de la Vallée-Poussin theorem) holds if and only if
there exists a nonnegative increasing function G such that limx→∞ G(x)/x = ∞ and
supP∈P0 E[G(|X1|)] < ∞.

An example of P that fails condition (4.11) is the set of all truncated zero-centered
Cauchy distributions encountered in Example 2.5. This example, and especially Proposi-
tion 2.6, reminds us that if uniform integrability conditions are dropped entirely, then
ν(Adiv) will not be zero, but could even be equal one. Thus, condition (4.11) is not only
sufficient for concluding ν(Adiv) = 0, but also that some condition like (4.11) is necessary
to restrict P. However, we leave the exact characterization of the necessary condition
for future work.

Proof of Theorem 4.3. We use the notation Xt =
∑t

s=1 Xs/t. For each n ∈ N, define the
event

An =

{
lim sup
t→∞

Xt − lim inf
t→∞

Xt >
2

n

}
. (4.12)
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Then Adiv ⊆
⋃

n∈NAn, so we wish to bound ν(An). To this end, observe that for any
k, n ∈ N one has An ⊆ {τk,n < ∞}, where

τk,n = inf

{
t ≥ 0: |Xk+t −Xk| >

1

n

}
. (4.13)

(Indeed, if τk,n = ∞, Xk+t stays within 1/n of Xk for all t ≥ 0. But then so do both
lim supt→∞ Xt and lim inft→∞ Xt. This shows that {τk,n = ∞} ⊆ Ac

n.) We conclude that

ν(An) ≤ sup
P∈P

P(τk,n < ∞).

It is shown below that the right-hand side tends to 0 as k tends to ∞, for each n ∈ N.
Thus ν(An) = 0 for all n ∈ N, and hence ν(Adiv) ≤

∑
n∈N ν(An) = 0 as required.

It remains to show, for any fixed n ∈ N, that supP∈P P(τk,n < ∞) tends to 0 as k tends
to ∞. Observe that for any k ∈ N and c ∈ R,

|Xk+t −Xk| ≤
1

k + t

∣∣∣∣∣
t∑

i=1

(Xk+i − c)

∣∣∣∣∣+ 2|Xk − c|. (4.14)

Thus for any P ∈ P and k ∈ N we may take c = EP[X1] to obtain

P(τk,n < ∞) ≤ P

(
sup
t∈N

1

k + t

∣∣∣∣∣
t∑

i=1

(Xk+i − EP[X1])

∣∣∣∣∣ ≥ 1

2n

)
+ P

(
|Xk − EP[X1]| ≥

1

4n

)
.

The line-crossing inequality (4.9) and the inequality (4.10) in Corollary 4.2 now show
that for k large enough the right-hand side is bounded by

C
(
k−1/3 + EP

[
|X1 − EP[X1]|1{|X1−EP[X1]|>k1/3}

])
for a constant C which, for instance, can be taken to be C = 4352n2 + 4. Thanks to the
assumption (4.11), it follows that supP∈P P(τk,n < ∞) tends to 0 as k tends to ∞. This
completes the proof of the theorem.

Remark 4.4. With P as in Theorem 4.3, this result together with the composite Ville’s
theorem, Theorem 3.1, shows that there exists an e-process for P which converges to
infinity on Adiv. An inspection of the proofs shows that this e-process can be chosen as

Et =
∑
n∈N

1{τkn,n≤t}, t ∈ N0,

where τkn,n is given by (4.13) with k = kn, and kn ≫ n623n is chosen large enough that

(4352n2 + 4)

(
k−1/3
n + sup

P∈P
EP

[
|X1 − EP[X1]|1{|X1−EP[X1]|>k

1/3
n }

])
≤ 2−n.

This yields a game-theoretic composite SLLN for unbounded observations without
requiring any moment beyond the first. It may be contrasted with other game-theoretic
SLLNs, for example by [23] and [13], which are pointwise claims and hold for bounded
observations.

Remark 4.5. Chung [2] proved a uniform strong law of large numbers that can be
used instead of our line-crossing inequality to prove Theorem 4.3. Here, we summarize
the statement from Shorack’s textbook [25, Theorem 10.12.1], which also has a self-
contained proof: suppose (Xt)t∈N is i.i.d. for each P ∈ P, where P satisfies the uniform
integrability condition

lim
K→∞

sup
P∈P

EP[|X1|1{|X1|≥K}] = 0. (4.15)
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Then, for any ε > 0,

lim
n→∞

sup
P∈P

P

(
sup
m≥n

|Xm − EP[X1]| ≥ ε

)
= 0. (4.16)

Interestingly, our slightly weaker assumption (4.11) is already sufficient to yield Chung’s
conclusion (4.16): given a family P satisfying (4.11), define P ′ = {P− EP[X1] : P ∈ P},
where we write “P−EP[X1]” as shorthand for the law under P of the centered sequence
(Xt−EP[X1])t∈N. Then P ′ satisfies (4.15), and applying Chung’s result to P ′ yields (4.16),
first with P ′ in place of P, but then also for P itself. Once this has been done, a proof
of Theorem 4.3 can be obtained as follows. Up until (4.14) the proof is unchanged, but
then, instead of (4.14), one uses the triangle inequality to get

|Xk+t −Xk| ≤ |Xk+t − c|+ |Xk − c|

for any constant c. For each P ∈ P one then takes c = EP[X1] to get

P(τk,n < ∞) ≤ 2P

(
sup
t∈N

|Xk+t − EP[X1]| ≥
1

2n

)
.

Applying (4.16) now yields limk→∞ supP∈P P(τk,n < ∞) = 0, as required.

4.3 The insufficiency of test (super)martingales for the composite strong law

Consider any P that satisfies the conditions of Theorem 4.3: it contains distributions
having a finite mean and satisfying the uniform integrability condition (4.11). The
composite strong law states that ν(Adiv) = 0, meaning that the “erratic” sequences —
those on which the empirical averages do not converge to a limit — form a ν-nullset.
Theorem 3.7 in turn constructs an explicit e-process (Et)t∈N0

— a nonnegative process
such that EP[Eτ ] ≤ 1 for any P ∈ P and stopping time τ — that grows to infinity on any
erratic sequence. Further, (1{Et>1/α})t∈N0

yields a level-α sequential test for the null
hypothesis that the empirical average of the observations converges to some limit.

One important question is whether an e-process was necessary for this purpose, or if
a nonnegative martingale (with respect to P) beginning at one would have sufficed. In
Ville’s original result, P was a singleton, and hence such martingales do exist and were
explicitly constructed. However, in our setting, the question is whether a composite
P-martingale exists, which would satisfy the martingale property for every P ∈ P.

The answer is an emphatic no: for any sufficiently rich P, there is no nonnegative
P-martingale that can grow to infinity on ν-nullsets. In fact, it is possible that the only
nonnegative P-martingales are constants (and if we fix their initial value to one, then
it must simply remain at one). This fact is not obvious. Ramdas et al. [18] prove that
for P01 = {Ber(p)∞ : p ∈ [0, 1]} on the space Ω = {0, 1}N, meaning the set of all possible
i.i.d. Bernoulli sequences, the only nonnegative P01-martingales are constants.

If (for example) Ω = RN, then as long as P01 ⊂ P, there can still be no nonnegative
P-martingale that can grow to infinity on Adiv. Indeed, Adiv contains many binary
sequences; on these, no P-martingale can grow, since no P01-martingale can grow.

If the constraint of being a martingale for every P ∈ P is too hard to meet, one could
ask if it can be relaxed to a nonnegative P-supermartingale. The answer again is no. The
aforementioned paper also proves that the only nonnegative P01-supermartingales are
decreasing sequences, and thus the same conclusion holds in our setting.

However, in that paper, the authors show that it is possible to construct a nontrivial
e-process that tests P01 (equivalently, since the e-process property is unaffected by
taking convex combinations of distributions, it tests whether the distribution of the data
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is exchangeable), and that such an e-process is not condemned to stay small: it increases
to infinity under a variety of alternatives, such as Markovian ones.

Unlike nonnegative P-(super)martingales, the P-e-process constructed by Theo-
rem 3.7 is also not condemned to stay small, it increases to infinity on any erratic
sequence. The above paragraphs demonstrate that e-processes are not only sufficient,
but also (in some sense) necessary, in the sense that existing standard martingale
concepts are not satisfactory in such richly composite settings.

5 Summary

This paper derived a composite generalization of Ville’s fundamental martingale
theorem that relates measure-theoretic and game-theoretic probability for single distri-
butions. This required the development of an inverse price outer measure of any event,
which is the appropriate generalization of the probability of that event in the singleton
case. It also required the concept of an e-process, which generalizes an optional stop-
ping property of martingales and supermartingales, and appropriately extends those
fundamental concepts to the composite setting. Then, we proved that for any event of
inverse price measure zero, there exists an e-process which increases to infinity if that
event occurs. Said differently, our results give a rigorous way to find a fair price for
indicators of events in a composite setting.

There exist composite sets P for which a nonnegative (super)martingale could have
sufficed, and e-processes are not required. Examining interesting special classes P,
and understanding when supermartingales do or do not suffice, has been the subject
of much intense research recently [9, 10, 7, 17, 18, 12]. In this paper, we show that
the composite strong law of large numbers provided a setting where e-processes were
necessary and sufficient. Future work could extend game-theoretic constructions for the
law of the iterated logarithm [15, 21] to composite settings.

We end with a quote by Ville himself in an interview from the 1980s [3], reflecting on
his seminal work:

My goal, given the Xn and a set to which the sequence of Xn belongs with
probability zero, was to define (martingales) sn so that they tend to infinity
on that set. I insist on the point because it took me so long to make this way
of proceeding understood.

Our work extends Ville’s research program to the realm of composite, nonparametric
sets of distributions, and expands the deep connections between measure-theoretic and
game-theoretic probability, as developed by [23, 24].

References

[1] Patrick Billingsley, Probability and Measure, Wiley Series in Probability and Mathematical
Statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR534323

[2] Kai Lai Chung, The strong law of large numbers, Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability, 1950, University of California Press,
Berkeley-Los Angeles, Calif., 1951, pp. 341–352. MR0045328

[3] Pierre Crépel, Jean Ville’s recollections, in 1984 and 1985, concerning his work on martin-
gales, Electronic Journal for History of Probability and Statistics 5 (2009), no. 1.

[4] J. L. Doob, Regularity properties of certain families of chance variables, Trans. Amer. Math.
Soc. 47 (1940), 455–486. MR2052

[5] Lester E. Dubins and Leonard J. Savage, A Tchebycheff-like inequality for stochastic processes,
Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 274–275. MR182042

EJP 0 (2023), paper 0.
Page 20/21

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=534323
https://mathscinet.ams.org/mathscinet-getitem?mr=0045328
https://mathscinet.ams.org/mathscinet-getitem?mr=2052
https://mathscinet.ams.org/mathscinet-getitem?mr=182042
https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A composite generalization of Ville’s martingale theorem using e-processes

[6] Hans Föllmer and Alexander Schied, Stochastic finance, De Gruyter Graduate, De Gruyter,
Berlin, 2016, An introduction in discrete time, Fourth revised and extended edition of [
MR1925197]. MR3859905

[7] Peter Grünwald, Rianne de Heide, and Wouter M. Koolen, Safe testing, Journal of the Royal
Statistical Society, Series B (to appear) (2023).

[8] Wassily Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer.
Statist. Assoc. 58 (1963), 13–30. MR144363

[9] Steven R. Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon, Time-uniform
Chernoff bounds via nonnegative supermartingales, Probab. Surv. 17 (2020), 257–317.
MR4100718

[10] , Time-uniform, nonparametric, nonasymptotic confidence sequences, Ann. Statist. 49
(2021), no. 2, 1055–1080. MR4255119

[11] Rasul A. Khan, Lp-version of the Dubins-Savage inequality and some exponential inequalities,
J. Theoret. Probab. 22 (2009), no. 2, 348–364. MR2501324

[12] Wouter M. Koolen and Peter Grünwald, Log-optimal anytime-valid E-values, Internat. J.
Approx. Reason. 141 (2022), 69–82. MR4364896

[13] Masayuki Kumon and Akimichi Takemura, On a simple strategy weakly forcing the strong
law of large numbers in the bounded forecasting game, Ann. Inst. Statist. Math. 60 (2008),
no. 4, 801–812. MR2453572

[14] Laurent Mazliak and Glenn Shafer (eds.), The Splendors and Miseries of Martingales—
Their History from the Casino to Mathematics, Trends in the History of Science,
Birkhäuser/Springer, Cham, [2022] ©2022. MR4516531

[15] Kenshi Miyabe and Akimichi Takemura, The law of the iterated logarithm in game-theoretic
probability with quadratic and stronger hedges, Stochastic Process. Appl. 123 (2013), no. 8,
3132–3152. MR3062440

[16] Aaditya Ramdas, Peter Grünwald, Vladimir Vovk, and Glenn Shafer, Game-theoretic statistics
and safe anytime-valid inference, arXiv:2210.01948 (2022).

[17] Aaditya Ramdas, Johannes Ruf, Martin Larsson, and Wouter M. Koolen, Admissible anytime-
valid sequential inference must rely on nonnegative martingales, arXiv:2009.03167 (2020).

[18] Aaditya Ramdas, Johannes Ruf, Martin Larsson, and Wouter M. Koolen, Testing exchange-
ability: fork-convexity, supermartingales and e-processes, Internat. J. Approx. Reason. 141
(2022), 83–109. MR4364897

[19] Herbert Robbins, Statistical methods related to the law of the iterated logarithm, The Annals
of Mathematical Statistics 41 (1970), no. 5, 1397–1409 (EN). MRMR277063

[20] Herbert Robbins and David Siegmund, Boundary crossing probabilities for the Wiener process
and sample sums, The Annals of Mathematical Statistics 41 (1970), no. 5, 1410–1429 (EN).
MRMR277059

[21] Takeyuki Sasai, Kenshi Miyabe, and Akimichi Takemura, Erdos-Feller-Kolmogorov-Petrowsky
law of the iterated logarithm for self-normalized martingales: a game-theoretic approach,
Ann. Probab. 47 (2019), no. 2, 1136–1161. MR3916944

[22] Glenn Shafer, Testing by betting: a strategy for statistical and scientific communication, J.
Roy. Statist. Soc. Ser. A 184 (2021), no. 2, 407–478. MR4255905

[23] Glenn Shafer and Vladimir Vovk, Probability and Finance, Wiley Series in Probability and
Statistics. Financial Engineering Section, Wiley-Interscience, New York, 2001, It’s only a
game! MR1852450

[24] , Game-Theoretic Foundations for Probability and Finance, vol. 455, John Wiley & Sons,
2019.

[25] Galen R. Shorack, Probability for Statisticians, Springer Texts in Statistics, Springer-Verlag,
New York, 2000. MR1762415

[26] J Ville, Étude Critique de la Notion de Collectif., Gauthier-Villars, Paris, 1939.

[27] A. Wald, Sequential tests of statistical hypotheses, Ann. Math. Statistics 16 (1945), 117–186.
MR13275

EJP 0 (2023), paper 0.
Page 21/21

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3859905
https://mathscinet.ams.org/mathscinet-getitem?mr=144363
https://mathscinet.ams.org/mathscinet-getitem?mr=4100718
https://mathscinet.ams.org/mathscinet-getitem?mr=4255119
https://mathscinet.ams.org/mathscinet-getitem?mr=2501324
https://mathscinet.ams.org/mathscinet-getitem?mr=4364896
https://mathscinet.ams.org/mathscinet-getitem?mr=2453572
https://mathscinet.ams.org/mathscinet-getitem?mr=4516531
https://mathscinet.ams.org/mathscinet-getitem?mr=3062440
https://mathscinet.ams.org/mathscinet-getitem?mr=4364897
https://mathscinet.ams.org/mathscinet-getitem?mr=MR277063
https://mathscinet.ams.org/mathscinet-getitem?mr=MR277059
https://mathscinet.ams.org/mathscinet-getitem?mr=3916944
https://mathscinet.ams.org/mathscinet-getitem?mr=4255905
https://mathscinet.ams.org/mathscinet-getitem?mr=1852450
https://mathscinet.ams.org/mathscinet-getitem?mr=1762415
https://mathscinet.ams.org/mathscinet-getitem?mr=13275
https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	The inverse capital measure
	The inverse capital measure is an outer measure
	The inverse capital measure versus the maximum likelihood measure
	The law of large numbers for truncated Cauchy distributions

	A composite generalization of Ville's theorem
	Statement and proof of the composite version
	SubGaussian supermartingales and e-processes as witnesses
	E-process characterization for events with positive measure
	A counterexample to a natural conjecture
	Gambling interpretations of the inverse capital measure

	Line-crossing inequalities and a composite SLLN
	An L1-type line-crossing inequality
	A composite strong law of large numbers
	The insufficiency of test (super)martingales for the composite strong law

	Summary
	References

