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Abstract

It is shown that delta hedging provides the optimal trading strategy in terms of minimal re-
quired initial capital to replicate a given terminal payoff in a continuous-time Markovian con-
text. This holds true in market models in which no equivalent local martingale measure exists
but only a square-integrable market price of risk. A new probability measure is constructed,
which takes the place of an equivalent local martingale measure. In order to ensure the ex-
istence of the delta hedge, sufficient conditions are derived for the necessary differentiability
of expectations indexed over the initial market configuration. The phenomenon of “bubbles,”
which has recently been frequently discussed in the academic literature, is a special case of
the setting in this paper. Several examples at the end illustrate the techniques described in this
work.
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1 INTRODUCTION

In a financial market, an investor usually has several trading strategies at her disposal to obtain
a given wealth at a specified point in time. For example, if the investor wanted to cover a short-
position in a given stock tomorrow at the cheapest cost today, buying the stock today is generally
not optimal, as there may be a trading strategy requiring less initial capital that still replicates the
exact stock price tomorrow. In this paper, we show that optimal trading strategies, in the sense of
minimal required initial capital, can be represented as delta hedges.
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This paper has been motivated by the problem of finding trading strategies to exploit relative ar-
bitrage opportunities, which arise naturally in the framework of Stochastic Portfolio Theory (SPT).
For that, we generalize the results of Fernholz and Karatzas (2010)’s paper “On optimal arbitrage,”
in which specifically the market portfolio is examined, to a wide class of terminal wealths which
can be optimally replicated by delta hedges. For an overview of SPT and a discussion of rela-
tive arbitrage opportunities, we recommend the reader consult the monograph by Fernholz (2002)
and the survey paper by Fernholz and Karatzas (2009). The problem investigated here is directly
linked to the question of computing hedges of contingent claims, which has been studied within the
Benchmark Approach (BA), developed by Eckhard Platen and co-authors. Indeed, we generalize
some of the results in the BA here and provide tools to compute the so-called “real-world prices”
of contingent claims under that approach. The monograph by Platen and Heath (2006) provides an
excellent overview of the BA.

We shall not restrict ourselves only to markets satisfying the the “No free lunch with vanishing
risk” (NFLVR) or, more precisely, the “No arbitrage for general admissible integrands” (NA) con-
dition.! Thus, we cannot rely on the existence of an equivalent local martingale measure (ELMM),
which we otherwise would have done. However, we shall construct another probability measure
to take the place of the “risk-neutral” measure. We do not assume an ELMM a priori for several
reasons. First, we cannot always assume the existence of a statistical test that relies upon stock
price observations to determine whether an ELMM exists, as illustrated in Karatzas and Kardaras
(2007), Example 3.7. Second, examining arbitrage opportunities, rather than excluding them a pri-
ori, is of interest in itself. Further arguments and empirical evidence supporting the consideration
of models without an ELMM are discussed in Kardaras (2008), Section 0.1 and Platen and Hulley
(2008), Section 1. A model of economic equilibrium for such models is provided in Loewenstein
and Willard (2000a). In the spirit of these papers, we shall impose some restrictions on the ar-
bitrage opportunities and exclude a priori models which imply “unbounded profit with bounded
risk,” which can be recognized by a typical agent.

There have been several recent papers treating the subject of “bubbles” within models guaran-
teeing NFLVR; a very incomplete list consists of the work by Loewenstein and Willard (2000b),
Cox and Hobson (2005), Heston et al. (2007), Jarrow et al. (2007, 2010), Pal and Protter (2010),
and Ekstrom and Tysk (2009). A bubble is usually defined as the difference between the market
price of a tradeable asset and its smallest hedging price. The analysis here includes the case of
bubbles, but is more general, as it also allows for models without an ELMM. To wit, while the
bubbles literature concentrates on a single stock whose price process is modeled as a strict local
martingale, we consider markets with several assets with the stochastic discount factor itself being
represented by a (possibly strict) local martingale. In the case of an asset with a bubble, our contri-
bution is limited to the explicit representation of the optimal replicating strategy as a delta hedge.
We shall also discuss in this context the reciprocal of the three-dimensional Bessel process as the
standard example for a bubble.

We set up our analysis in a continuous-time Markovian context; to wit, we focus on stock
price processes whose mean rates of return and volatility coefficients only depend on time and on
the current market configuration. Since we do not rely on a martingale representation theorem,

"We refer the reader to the monograph by Delbaen and Schachermayer (2006) for a thorough introduction to NA,
NFLVR and other notions of arbitrage. Since we shall assume the existence of a square-integrable market price of
risk, we implicitly impose the condition that NFLVR fails if and only if NA fails; see Karatzas and Kardaras (2007),
Proposition 3.2.



we can allow for a larger number of driving Brownian motions than the number of stocks, which
generalizes the ideas of Fernholz and Karatzas (2010) to not only a larger set of payoffs, but also to
a broader set of models for the specific case of the market portfolio. We shall prove that a classical
delta hedge yields the cheapest hedging strategy for European contingent claims. This is of course
well-known in the case where an ELMM exists and is extended here to models which allow for
arbitrage opportunities and that are not necessarily complete. In this context, we provide sufficient
conditions to ensure the differentiability of the hedging price, generalizing results by Heath and
Schweizer (2000), Janson and Tysk (2006), and Ekstrom and Tysk (2009). This set of conditions
is also applicable to models satisfying the NFLVR assumption. Because the computations for
the optimal trading strategy under the “real-world” measure are often too involved and because
we cannot always rely on an ELMM, we derive a non-equivalent change of measure including a
generalized Bayes’ rule.

The next section introduces the market model and trading strategies. Section 3 provides a
discussion about the market price of risk. Section 4 contains the precise representation of an
optimal strategy to hedge a non path-dependent European claim and sufficient conditions for the
differentiability of the hedging price. A modified put-call parity follows directly. We suggest
in Section 5 a change to some non-equivalent probability measure that simplifies computations.
Section 6 then provides several examples and Section 7 draws the conclusions.

2 MARKET MODEL AND TRADING STRATEGIES

In this section, we introduce the market model and trading strategies. We assume the perspective
of a small investor who takes positions in a frictionless financial market with finite time horizon
T. We shall use the notation R% := {s = (s1,...,s4)T € R%,s; > 0, foralli = 1,...,d} and
assume a market in which the stock price processes are modeled as positive continuous Markovian
semimartingales. That is, we consider a financial market S(-) = (S1(+),...,Sa(:))" of the form

K
dsi(t) = Si(t) (Mu SE)dt+ 3 ot s<t>>dwk<t>> @.1)
k=1
foralli = 1,...,dand t € [0,7] starting at S(0) € R? and a money market B(-). Here 1 :
0,7] x RT — R denotes the mean rate of return and o : [0,7] x RY — R™¥X denotes the
volatility. We assume that both functions are measurable.

For the sake of convenience we only consider discounted (forward) prices and set the interest
rate constant to zero; that is, B(-) = 1. The flow of information is modeled as a right-continuous
filtration F = {F () }o<s< such that W(-) = (W1(-),..., Wg(-))" is a K-dimensional Brownian
motion with independent components. In Section 5, we impose more conditions on the filtration
F and the underlying probability space 2. The underlying measure and its expectation will be
denoted by PP and E, respectively.

We only consider those mean rates of return p and volatilities o that imply the stock prices
S1(+), -+, Sq(+) exist and are unique and strictly positive. More precisely, denoting the covariance
process of the stocks by a(-,-) = o(+,-)a " (-, ), we impose the almost sure integrability condition

d o7
Z/O (|:ui(t7 S(t))| + Clm‘(t, S(t))) dt < oo.
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Next, we introduce the notion of trading strategies and associated wealth processes to be able
to describe formally delta hedging below. We denote the number of shares held by an investor at
time ¢ by n(t) = (n.(t),...,na(t))" and call 7(-) a trading strategy or in short, a strategy. We
assume that 7)(-) is progressively measurable with respect to IF and self-financing. This yields for
the corresponding wealth process V() of an investor with initial capital v > 0 the dynamics

AV (¢t Zm £)dS;(t

forall t € [0,7] and V*"(0) = v. To ensure that V*"(-) is well-defined and to exclude doubling
strategies we restrict ourselves to trading strategies which satisfy V" (¢) > 0 for a given initial
wealth v > 0, and the almost sure integrability condition

Z [ (S @nante, SO+ S0 @atr, S07) e < o

3 MARKET PRICE OF RISK AND STOCHASTIC DISCOUNT
FACTOR

This section discusses two important components of the market model. We assume that the market
model of (2.1) implies a market price of risk (MPR), which generalizes the concept of the Sharpe
ratio to several dimensions. More precisely, an MPR is a progressively measurable process 6(-),
which maps the volatility structure o onto the mean rate of return p. That is,

u(t, S(t)) = o(t,5(1))0(t) (3.1)
for all t € [0, 7] holds almost surely. We further assume that 6(-) is square-integrable, to wit,

T
/ 16()]1%dt < oo (3.2)
0

almost surely. An MPR does not have to be uniquely determined. Uniqueness is intrinsically
connected to completeness, which we need not assume. In general, infinitely many MPRs may
exist. An example for non-uniqueness is given following Proposition 1 below.

The existence of an MPR is a central assumption in both the BA (see Platen and Heath, 2006,
Chapter 10) and SPT (see Fernholz and Karatzas, 2009, Section 6). This assumption enables us
to discuss hedging prices, as we do throughout this paper, since it excludes scalable arbitrage op-
portunities by guaranteeing ‘no unbounded profit with bounded risk” (NUPBR) as demonstrated
in Karatzas and Kardaras (2007). Similar assumptions have been discussed in the economic lit-
erature. For example, in the terminology of Loewenstein and Willard (2000a), the existence of a
square-integrable MPR excludes “cheap thrills” but not necessarily “free snacks.” Theorem 2 of
Loewenstein and Willard (2000a) shows that a market with a square-integrable MPR 1is consistent
with an equilibrium where agents prefer more to less.

Based upon the MPR, we can now define the stochastic discount factor (SDF) as

Z0(t) = exp (- /0 0T ()W () — % /0 t ||9(u)|y2du) (33)
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for all t € [0, T). In classical no-arbitrage theory, Z(-) represents the Radon-Nikodym derivative
which translates the “real-world” measure into the generic “risk-neutral” measure with the money
market as the underlying. Since we do not want to impose NFLVR a priori in this work, but are
rather interested in situations in which NFLVR does not necessarily hold, we shall not assume that
the SDF Z?(-) is a true martingale. Cases where Z%(-) is only a local martingale have, for example,
been discussed by Karatzas et al. (1991), Schweizer (1992), in the BA starting with Platen (2002)
and Heath and Platen (2002a,b) and in SPT; see, for example, Fernholz et al. (2005) and especially,
Fernholz and Karatzas (2010).

In this context, it is important to remind ourselves that Z%(-) is a true martingale if and only
if there exists an ELMM @, under which the stock price processes are local martingales. The
question of whether (Q is a martingale measure or only a local martingale measure is not connected
to whether Z°(-) is a strict local or a true martingale. A bubble is usually defined within a model in
which Z%(-) is a true martingale. Then, a wealth process is said to have a bubble if it is a strict local
martingale under an ELMM.? Jarrow et al. (2007, 2010) suggest replacing the NFLVR condition
by the stronger condition of “no dominance” first proposed by Merton (1973) to exclude bubbles.
Here, we take the opposite approach. Instead of imposing a new condition, the goal of this analysis
is to investigate a general class of models and study how much can be said in this more general
framework without having the tool of an ELMM.

We observe that the existence of a square-integrable MPR implies the existence of a Markovian
square-integrable MPR. To see this, we define 0(-,-) := o' (-,-)(a(-,-)a"(-,-)) u(-,-), where f
denotes the Moore-Penrose pseudo-inverse of a matrix. Given the existence of any MPR, we
know from the theory of least-squares estimation that 6(-, -) is also a MPR. Furthermore, we have
16(t, S(t)|I> < ||lv(t)||? for all ¢t € [0, T] almost surely for any MPR v(-), which yields the square-
integrability of (-, -). This observation has been pointed out to us by a referee.

The next proposition shows that any square-integrable Markovian MPR maximizes the random
variable which will later be a candidate for a hedging price. We denote by F°(-) the augmented
filtration generated by the stock price process. We emphasize that the next result only holds so
long as the “terminal payoff” M is F°(T)-measurable.

Proposition 1 (Role of Markovian MPR). Let M > 0 be a random variable measurable with
respect to F°(T) C F(T). Let v(-) denote any square-integrable MPR and 0(-, -) any Markovian
square-integrable MPR. Then, with

Z¥(T)
Zv(t)

Z'(T)
Z0(0)

M¥(t) = E { M‘ ft} and M°(t) :=E { M‘ ]-"t}

fort € [0, T), where we take the right-continuous modification® for each process, we have M (-)
M?O(-) almost surely. Furthermore, if both Z"(-) and Z°(-) are F°(T)-measurable, then Z"(T)
Z%(T) almost surely.

<
<

Proof. Due to the right-continuity of M"(-) and M?(-) it suffices to show for all ¢ € [0, T that
MY (t) < MY(t) almost surely. We define c(+) := v(-) — (-, S(-)). For the sequence of stopping

’In the bubbles literature, there has been an alternative definition, based upon the characterization of the pricing
operator as a finitely additive measure. It can be shown that this characterization is equivalent to the one here; see
Jarrow et al. (2010), Section 8 for the proof and literature which relies on this alternative characterization.

3See Karatzas and Shreve (1991), Theorem 1.3.13.



times

t
Tp := T A inf {t €[0,7]: / c*(s)ds > n} :
0
where n € N, we set ¢"(-) := ¢(-)1¢,>. and observe that

Z4(T) _ 2%(T)
Ze(ty  ze(r) P (_

[ s@)@v + o) 5 [ 160 50) P

t t

: ch (T> g T n 1 g 2
= lim ————=-exp|— [ 0" (u,S(w))(dW(u)+ "(u)du) — = 110(u, S(u))||*du
n—oo /¢ (t) t 2 t
with Z¢(-) and Z¢"(-) defined as in (3.3). The limit holds almost surely since both v(-) and (-, -)
are square-integrable, which again yields the square-integrability of ¢(-). Since fOT ¢ (H)dt < n,
Novikov’s Condition (see Karatzas and Shreve, 1991, Proposition 3.5.12) yields that Z<"(-) is a

martingale. Now, Fatou’s lemma, Girsanov’s theorem and Bayes’ rule (see Karatzas and Shreve,
1991, Chapter 3.5) yield

T T
M (1) < liminf %' {exp (- / 67 (u, (1)) dW™ (u) — % / 16(u, S(u))]|2du> M’ ft} |

t t (3.4)
where dQ"(+) := Z¢"(T)dP(-) is a probability measure, E®" its expectation operator, and W"(-) :=
W(-) + [, ¢*(u)du a K-dimensional Q"-Brownian motion. Since o (-, S(-))c"(-) = 0 we can re-
place W(-) by W"(-) in (2.1). This yields that the process S(-) has the same dynamics under Q"
as under P. Furthermore, both (-, S(-)) and M have, as functionals of S(-), the same distribution
under Q" as under P. Therefore, we can replace the expectation operator E?” by E and the Brow-
nian motion W"(-) by W(-) in (3.4) and obtain the first part of the statement. The last inequality
of the statement follows from setting M = 1(zv (1) zo(1)) and observing that M must equal zero
almost surely. [

We remark that the inequality M"(-) < M?(-) can be strict. For an example, choose M = 1
and a market with one stock and two Brownian motions, to wit, d = 1 and K = 2. We set
p(--) = 0, o(,-) = (1,0) and observe that (-, S(-)) = (0,0)T is a Markovian MPR. An-
other MPR v(-) = (v1(-),2(-))T is defined via v;(-) = 0, the stochastic differential equation
dvo(t) = —v3(t)dWy(t) for all t € [0,7] and v5(0) = 1. That is, 5(-) is the reciprocal of a
three-dimensional Bessel process starting at one. Since Z”(-) also satisfies the stochastic differ-
ential equation dZ”(t) = —Z"(t)va(t)dWs(t) we have from Jacod and Shiryaev (2003), Theo-
rem 1.4.61 that Z¥(-) = v,(-), which is a strict local martingale (see Karatzas and Shreve, 1991,
Exercise 3.3.36), and thus M”(0) = E[Z*(T)] < 1 = E[Z%(T)] = M*(0).

Under the assumption that an ELMM exists, Jacka (1992), Theorem 12, Ansel and Stricker
(1993), Theorem 3.2 or Delbaen and Schachermayer (1995c), Theorem 16 show that a contingent
claim can be hedged if and only if the supremum over all expectations of the terminal value of
the contingent claim under all ELMMs is a maximum. In our setup, we also observe that the
supremum over all M7(0) in the last proposition is a maximum, attained by any Markovian MPR.
Indeed, we will prove in Theorem 4.1 that, under weak analytic assumptions, claims of the form
M = p(S(T)) can be hedged. The general theory lets us conjecture that all claims measurable
with respect to F°(T) can be hedged.



As pointed out by Ioannis Karatzas in a personal communication (2010), Proposition 1 might
be related to the “Markovian selection results,” as in Krylov (1973), Ethier and Kurtz (1986),
Section 4.5, and Stroock and Varadhan (2006), Chapter 12. There, the existence of a Markovian
solution for a martingale problem is studied. It is observed that a supremum over a set of ex-
pectations indexed by a family of distributions is attained and the maximizing distribution is a
Markovian solution of the martingale problem. This potential connection needs to be worked out
in a future research project.

From this point forward, we shall always assume the MPR to be Markovian. As we shall see,
this choice will lead directly to the optimal trading strategy.

4 OPTIMAL STRATEGIES

In this section, we show that delta hedging provides the optimal trading strategy in terms of mini-
mal required initial capital to replicate a given terminal payoff. Next, we prove a modified put-call
parity. In order to ensure the existence of the delta hedge, we derive sufficient conditions for the
differentiability of expectations indexed over the initial market configuration.

We will rely on the following notation. If Y is a nonnegative F(7")-measurable random variable
such that E[Y'|F(¢)] is a function of ¢ and S(t) for all ¢t € [0, T'|, we use the Markovian structure of
S(-) to denote conditioning on the event {S(¢) = s} by E-*[Y]. Outside of the expectation operator
we denote by (S*(u))ucr,r) @ stock price process with the dynamics of (2.1) and S(t) = s, in
particular, S%%(©)(.) = S(-). We observe that Z?(u)/Z?(t) depends for u € (¢,7] on F(t) only
through S(t) and we write similarly (Z%%*(u))uerz) for (Z°(uw)/Z°(t))uepem With Z002(t) = 1
on the event {S(¢) = s}. When we want to stress the dependence of a process on the state w € §2
we will write, for example, S(t,w).

Let us denote by supp(S(-)) the support of S(-), that is, the smallest closed set in [0, 7] x R"
such that

P((t,S(t)) € supp(S(+)) forall t € [0,T]) = 1.
We call i-supp(S(+)) the union of (0, S(0)) and the interior of supp(.S(-)) and assume that
P((t,S(t)) € i-supp(S(-)) forall t € [0,T")) = 1.

This assumption is made to exclude degenerate cases, where S(-) can hit the boundary of its
support with positive probability. We shall call any (¢, s) € i-supp(S(-)) a point of support for S(+)
and we remark that each such point (¢, s) satisfies ¢ < 7T'. For example, if S(-) is a one-dimensional
geometric Brownian motion then the set of points of support for S(-) is exactly (0, 5(0))U{(t, s) €
(0,7) x R4 }.

We define for any measurable function p : RZ — [0, co0) a candidate h? : [0, T] x R% — [0, oc)
for the hedging price of the corresponding European option:

RP(t,s) == Bb* | Z055(T)p(S(T))| . (4.1)

Since S(-) is Markovian, h? is well-defined. Proposition 1 yields that h” does not depend on
the choice of the (Markovian) MPR 6(-). Equation (4.1) has appeared as the “real-world pricing
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formula” in the BA; compare Platen and Heath (2006), Equation (9.1.30). Simple examples for
payoffs could be the market portfolio (5(s) = S, ), the money market (p°(s) = 1), a stock
(p'(s) = s1), oracall (p©(s) = (s; — L)T for some L € R). We can now prove the first main
result, which in particular provides a mechanism for pricing and hedging contingent claims under
the BA. We denote by D;, D ; the partial derivatives with respect to the variable s.

Theorem 4.1 (Markovian representation for non path-dependent European claims). Assume that
we have a contingent claim of the form p(S(T')) > 0 and that the function h? of (4.1) is sufficiently
differentiable or, more precisely, that for all points of support (t, s) for S(-) we have h? € C**(U, ;)
for some neighborhood U, 5 of (t, s). Then, with

nt(t,s) := D;hP(t, s)
foralli=1,...,dand (t,s) € [0,T] x R%, and with v* := h*(0, 5(0)), we get
V() = BP(t, S(1))

forallt € [0, T). The strategy n? is optimal in the sense that for any v > 0 and for any strategy
i) whose associated wealth process is nonnegative and satisfies V> (T) > p(S(T)) almost surely,
we have v > vP. Furthermore, h? solves the PDE

) 1 n o
ah” (t,s +§ZZS sja; j(t, s Dijhp(t,s) =0 4.2)

=1 j5=1
at all points of support (t, s) for S(-).
Proof. Let us start by defining the martingale N?(-) as
NP(t) = E[Z*(T)p(S(T))IF ()] = Z° ()hF (¢, S(1))

for all t € [0,T]. Although h? is not assumed to be in C2([0,7) x R?) but only to be locally
smooth, we can apply a localized version of 1t0’s formula (see for example Revuz and Yor, 1999,
Section IV.3) to it. Then, the product rule of stochastic calculus can be used to obtain the dynamics
of NP(-). Since N?(-) is a martingale, the corresponding d¢ term must disappear. This observation,
in connection with (3.1) and the positivity of Z?(-), yields PDE (4.2). 1td’s formula, now applied
to h”(-,S(+)), and PDE (4.2) imply

dhP(t, S(t ZD hP(t, S(t))dS;(t) = AV (t)

for all ¢ € [0, T]. This yields directly VV"7(-) = hP(-, S(+)).

Next, we prove optimality. Assume we have some initial wealth v > 0 and some strategy
7 with nonnegative associated wealth process such that V(T) > p(S(T)) is satisfied almost
surely. Then, Z%(-)V?7(.) is bounded from below by zero, thus a supermartingale. This implies

0 > E[Z(T)V*(T)] > E[2°(T)p(S(T))] = E[Z°(T)V*""(T)] = <7,

which concludes the proof. [



The last result generalizes Platen and Hulley (2008), Proposition 3, where the same statement
has been shown for a one-dimensional, complete market with a time-transformed squared Bessel
process of dimension four modeling the stock price process. There are usually several strategies
to obtain the same payoff. For example, if the first stock has a bubble, that is, if E[Z%(T)S,(T)] <
S1(0), then one could either delta hedge with initial capital E[Z%(T)S;(T)] as the last theorem
describes, or hold the stock with initial capital S;(0). The last result shows that the delta hedge
is optimal in the sense of minimal required initial capital. Platen (2008) has suggested calling the
fact that an optimal strategy exists the “Law of the Minimal Price” to contrast it to the classical
“Law of the One Price,” which appears if there is an equivalent martingale measure.

We would like to emphasize that we have not shown that 7” is unique. Indeed, since we have
not excluded the case that two stock prices have identical dynamics this is not necessarily true.
The next remark discusses the fact that we have not assumed the completeness of the market.

Remark 4.1 (Completeness of the market). One remarkable feature of the last theorem is that it
does not require the market to be complete. In particular, at no point have we assumed invertibility
or full rank of the volatility matrix o(-,-). In contrast to Fernholz and Karatzas (2010), we do
not rely on the martingale representation theorem here but instead directly derive a representation
for the conditional expectation process of the final wealth p(S(7")). The explanation for this phe-
nomenon is that all relevant sources of risk for hedging are completely captured by the tradeable
stocks. However, we remind the reader that we live here in a setting in which the mean rates of
return and volatilities do not depend on an extra stochastic factor. In a “more incomplete” model,
with jumps or additional risk factors in mean rates of return or volatilities, this result can no longer
be expected to hold. Furthermore, there is no hope to be able to hedge all contingent claims of the
Brownian motion W (7). However, W (T') appears in the model only as a nuisance parameter and
it is of no economic interest to trade in it directly.

In the next remark we discuss PDE (4.2).

Remark 4.2 (Non-uniqueness of PDE (4.2)). Parabolic PDEs generally do not have unique so-
lutions. The hedging price for the stock of Example 6.3 in (6.5), for instance, is one of many
solutions of polynomial growth for the corresponding Black-Scholes type PDE with terminal con-
dition p(s) = s and boundary condition f(¢f) = 0. Another solution is of course h(t,s) = s.
The reason for non-uniqueness in this case is the fact that the second-order coefficient has super-
quadratic growth preventing standard theory cannot from being applied; see, for example, Karatzas
and Shreve (1991), Section 5.7.B. However, one can show easily that, given that A” is sufficiently
differentiable, hA” can be characterized as the minimal nonnegative classical solution of PDE (4.2)
with terminal condition h?(T,s) = p(s); compare the proof of Fernholz and Karatzas (2010),
Theorem 1.

Fernholz et al. (2005), Example 9.2.2 illustrates that the classical put-call parity can fail. How-
ever, a modified version holds. An equivalent version for the situation of an ELMM with possible
bubbles has already been found in Jarrow et al. (2007), Lemma 7.

Corollary 4.1 (Modified put-call parity). For any L. € R we have the modified put-call parity for
the call- and put-options (S1(T) — L) and (L — S1(T'))™, respectively, with strike price L:

E"* [ZW(T)(L -5 (T))+] + P (t,s) = B | Z905(T)(Sy(T) — L)+] + LI (L,s5), (4.3)



where p°(-) = 1 denotes the payoff of one monetary unit and p'(s) = s, the price of the first stock
forall s € R‘i.

Proof. The statement follows from the linearity of expectation. [

Due to Theorem 4.1, there exist, under weak differentiability assumptions, optimal strategies
for the money market, the stock S;(7"), the call and the put. Thus, the left-hand side of (4.3) corre-
sponds to the sum of the hedging prices of a put and the stock, and the right-hand side corresponds
to the sum of the hedging prices of a call and L monetary units. The difference between this and
the classical put-call parity is that the current stock price and the strike L are replaced by their
hedging prices. Bayraktar et al. (2010), Section 2.2 have recently observed another version. In-
stead of replacing the current stock price by its hedging price, they replace the European call price
by the American call price and restore the put-call parity this way.

Next, we will provide sufficient conditions under which the function A? is sufficiently smooth.
We shall call a function f : [0,7] x RY — R locally Lipschitz and locally bounded on R if for
all s € RY the function ¢ — f(¢, s) is right-continuous with left limits and for all M > 0 there
exists some C'(M) < oo such that

[f(ty) = [t 2)]

sup T + sup |f(t,y)| < C(M)
ﬁguyn;énznw y—= Z<lyll<M
Y#£z

for all t € [0,T]. In particular, if f has continuous partial derivatives, it is locally Lipschitz and
locally bounded. We require several assumptions in order to show the differentiability of h? in
Theorem 4.2 below.

(A1) The functions 0y and o0, are forall< = 1,...,dand £ = 1,..., K locally Lipschitz and
locally bounded.
(A2) For all points of support (¢, s) for S(-) there exist some C' > 0 and some neighborhood ¢/ of

(t,s) such that
d d

DY ani(uy)&g > Clgl? (4.4)
i=1 j=1
for all ¢ € R? and (u,y) € U.
(A3) The payoff function p is chosen so that for all points of support (¢, s) for S(-) there exist
some C' > 0 and some neighborhood U of (¢, s) such that h?(u,y) < C for all (u,y) € U.

If h? is constant for d < d coordinates, say the last ones, Assumption (A2) can be weakened to
requesting the uniform ellipticity only in the remaining d —d—1 coordinates; that is, the sum in (4.4)
goes only tod—d—1and £ € R“9! Assumption (A3) holds in particular if p is of linear growth;
that is, if p(s) < C' 37, s; for some C' > 0 and all s € R%, since Z%%(-)S/*(-) is a nonnegative
supermartingale for all © = 1,...,d. We emphasize that the conditions here are weaker than the
ones by Fernholz and Karatzas (2010), Section 9 for the case of the market portfolio which can be
represented as p(s) = Z?zl s;. In particular, the stochastic integral component in Z(-) does not
present any technical difficulty in our approach.

We proceed in two steps. In the first step we use the theory of stochastic flows to derive
continuity of S**(T") and Z#"*(T') in t and s. This theory relies on Kolmogorov’s lemma, see, for
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example, Protter (2003), Theorem IV.73, and studies continuity of stochastic processes as functions
of their initial conditions. We refer the reader to Protter (2003), Chapter V for an introduction to
and further references for stochastic flows. We will prove continuity of S%*(-) and Z#**(-) at once
and introduce for that the d + 1-dimensional process X% (-) 1= (S%57(.), 2255 ()T,

Lemma 4.1 (Stochastic flow). We fix a point (t,s) € [0,T] x R% so that X"*(-) is strictly
positive and an Riﬂ-valued process. Then under Assumption (Al) we have for all sequences
(tk, Sk)kEN C [O, T} X Ri with hmkﬂoo(tk, Sk) = (t, S) that

lim sup || X" (u) — X5 (u)]] =0

k=00 yet,T]

almost surely, where we set X' (u) := (s],1)T for u < ty. In particular, for K (w) sufficiently
large we have that X" (u,w) is strictly positive and R -valued for all k > K(w) and u €
£, T].

Proof. Since the class of locally Lipschitz and locally bounded functions is closed under summa-
tion and multiplication, Assumption (A1) yields that the drift and diffusion coefficients of X *¥*(-)
are locally Lipschitz for all (u, y, z) € [0,T] x R% x R, . We start by assuming ¢, > ¢ forall k € N
and obtain

sup || X" () = XU (w)l| < sup [|(s5, )T = XP )]+ osup [JX () = X (u)]|

u€lt,T] u€lt,ty] u€lty, T
sup X () - XSO )| (4.5)
u€[ty,T]

for all £ € N. The first term on the right-hand side of the last inequality goes to zero as k increases
by the continuity of the sample paths of X**!(-). The arguments in the proof of Protter (2003),
Theorem V.38 yield that

lim sup || X5 (u) — X551 (u)|| = 0

k—oo u€lt,T]

for all £ € {t,t;,t,,...} and any sequence ((y), z) ren C RE with (g, 2)7 — (s7,1)7 as
k — oo almost surely. An analysis of the arguments in Protter (2003), Theorems V.37 and 1V.73
yields that the convergence is uniformly in ¢ € {¢,#;,t,,...}, see also Ruf (2011), Lemma 1. We
now choose for (y], z,)T the sequences (s],1)T and (S (ty, w), Z%(ty, w))T for all w € €.
This proves the statement if ¢, > ¢ for all £ € N. In the case of the reversed inequality ¢, < ¢, a
small modification of the inequality in (4.5) yields the lemma. U

In the second step, we use techniques from the theory of PDEs to conclude the necessary
smoothness of h”. The following result has been used by Ekstrom, Janson and Tysk. We present it
here on its own to underscore the analytic component of our argument.

Lemma 4.2 (Schauder estimates and smoothness). Fix a point (t,s) € [0,T) x R% and a neigh-
borhood U of (t, s). Suppose Assumption (Al) holds in conjunction with Inequality (4.4) for all
¢ € Rand (u,y) € U and some C > 0. Let (fi)ren denote a sequence of solutions of PDE (4.2)
on U, uniformly bounded under the supremum norm on U. If limy_ fi(t,s) = f(t,s) on U
for some function f : U — R, then f solves PDE (4.2) on some neighborhood U of (t,s). In
particular, f € CY2(U).

11



Proof. We refer the reader to the arguments and references provided in Janson and Tysk (2006),
Section 2 and Ekstrom and Tysk (2009), Theorem 3.2. The central idea is to use the interior
Schauder estimates by Knerr (1980) along with Arzela-Ascoli type of arguments to prove the
existence of first- and second-order derivatives of f. 0

We can now prove the smoothness of the hedging price h”.

Theorem 4.2. Under Assumptions (Al)-(A3) there exists for all points of support (t, s) for S(-)
some neighborhood U of (t, s) such that the function h? defined in (4.1) is in C**(U).

Pl"OOf We define ]5 : Ri—i_l - R"r by ]5(517 -5 84, Z) = Zp(317 .. Sd) and pM Rd+1 — R-i-

by pM () := p(-)1¢z()<my for some M > 0 and approximate p™ by a sequence of continuous
functions p™ (compare for example Evans, 1998, Appendix C.4) such that lim,,, ., pM™ = pM

pointwise and p*™ < 2M for all m € N. The corresponding expectations are defined as
WM (u,y) = B (S)(T), ... Su(T), Z2°¥(T))]

for all (u,y) € U for some neighborhood U of (t, s) and equivalently h? ™.
We start by proving continuity of h?*™ for large m. For any sequence (ty, sx)ren C [0, 7] X
Ri with limy_,« (tx, Sx) = (¢, s), Lemma 4.1, in connection with Assumption (A1), yields

Jim (5% (T), Z0MH(T)) = M (SY(T), 2°°(T)).
The continuity of 27" follows then from the bounded convergence theorem.
Now, Janson and Tysk (2006), Lemma 2.6, in connection with Assumption (A2), guarantees
that h?M-™ is a solution of PDE (4.2). Lemma 4.2 then yields that firstly, hP"M and secondly, in

connection with Assumption (A3), h? also solve PDE (4.2) on some neighborhood U of (¢, s). In
particular, i is in C*2(U). O

The last theorem is a generalization of the results in Ekstrom and Tysk (2009) to several dimen-
sions and to non-continuous payoff functions p. Friedman (1976), Chapters 6 and 15 and Janson
and Tysk (2006) have related results, but they impose linear growth conditions on a(-,-) so that
PDE (4.2) has a unique solution of polynomial growth. We are especially interested in the situa-
tion in which multiple solutions may exist. Heath and Schweizer (2000) present results in the case
when the process corresponding to PDE (4.2) does not leave the positive orthant. As Fernholz and
Karatzas (2010) observe, this condition does not necessarily hold if there is no ELMM. In the case
of Z%(-) being a martingale, our assumptions are only weakly more general than the ones in Heath
and Schweizer (2000) by not requiring a(-, -) to be continuous in the time dimension. However, in
all these research articles the authors show that the function ~? indeed solves PDE (4.2) not only
locally but globally and satisfies the corresponding boundary conditions. We have here abstained
from imposing the stronger assumptions these papers rely on and concentrate on the local proper-
ties of h?. For our application it is sufficient to observe that h?(t, S(t)) converges to p(S(T)) as ¢
goes to T'; compare the proof of Theorem 4.1.

The next section provides an interpretation of our approach to prove the differentiability of
h?; all problems on the spatial boundary, arising for example from a discontinuity of a(-, -) on the
boundary of the positive orthant, have been “conditioned away,” so that S(-) can get close to but
never actually attains the boundary.
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5 CHANGE OF MEASURE

In order to compute optimal strategies we need to compute the “deltas” of expectations. To simplify
the computations we suggest in this section a change of measure under which the dynamics of the
stock price process simplify.

Delbaen and Schachermayer (1995b), Theorem 1.4 show that NA implies the existence of a
local martingale measure absolutely continuous with respect to P. On the other side, a conse-
quence of this section is the existence of a local martingale measure under NUPBR, such that PP
is absolutely continuous with respect to it. Indeed, NA and NUPBR together yield NFLVR (com-
pare Delbaen and Schachermayer, 1994; Karatzas and Kardaras, 2007, Proposition 3.2), which
again yields an ELMM corresponding exactly to the one discussed in this section. Another point
of view, which we do not take here, is the recent insight by Kardaras (2010) on the equivalence
of NUPBR and the existence of a finitely additive probability measure which is, in some sense,
weakly equivalent to P and under which S(-) has some notion of weak local martingale property.

Our approach via a “generalized change of measure” is in the spirit of the work by Follmer
(1972), Meyer (1972), Delbaen and Schachermayer (1995a), Section 2, and Fernholz and Karatzas
(2010), Section 7. They show that for the strictly positive P-local martingale Z%(-) a proba-
bility measure QQ exists such that P is absolutely continuous with respect to Q and dP/dQ =
1/Z%(T A 77), where 79 is the first hitting time of zero by the process 1/Z%(-). Their analysis has
been built upon by several authors, for example by Pal and Protter (2010), Section 2. We comple-
ment this research direction by determining the dynamics of the P-Brownian motion W (-) under
the new measure Q. These dynamics do not follow directly from an application of a Girsanov-
type argument since Q need not be absolutely continuous with respect to P. Similar results for
the dynamics have been obtained in Sin (1998), Lemma 4.2 and Delbaen and Shirakawa (2002),
Section 2. However, they rely on additional assumptions on the existence of solutions for some
stochastic differential equations. Wong and Heyde (2004) prove the existence of a measure Q sat-
isfying E¥[Z?(T)] = Q(7? > T'), where W (-) has the same Q-dynamics as we derive, but PP is not
necessarily absolutely continuous with respect to Q.

For the results in this section, we make the technical assumption that the probability space
(2 is the space of right-continuous paths w : [0,7] — R™ U {A} for some m € N with left
limits at ¢t € [0,7] if w(t) # A and with an absorbing “cemetery” point A. By that we mean
that w(t) = A for some ¢ € [0,7] implies w(u) = A for all u € [¢t,T] and for all w € Q.
This point A will represent explosions of Z%(-), which do not occur under PP, but may occur
under a new probability measure Q constructed below. We further assume that the filtration F
is the right-continuous modification of the filtration generated by the paths w or, more precisely,
by the projections & (w) := w(t). Concerning the original probability measure we assume that
P(w : w(T) = A) = 0 and that for all t+ € [0,7], oo is an absorbing state for Z%(-); that is,
Z9(t) = oo implies Z%(u) = oo for all u € [t, T]. This assumption specifies Z%(-) only on a set of
measure zero and is made for notational convenience.

We emphasize that we have not assumed completeness of the filtration FF. Indeed, we shall
construct a new probability measure (Q which is not necessarily equivalent to the original measure
[P and can assign positive probability to nullsets of P. If we had assumed completeness of I, we
could not guarantee that Q could be consistently defined on all subsets of these nullsets, which
had been included in [ during the completion process. The fact that we need the cemetery point
A and cannot restrict ourselves to the original canonical space is also not surprising. The point A
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represents events which have under P probability zero, but under Q have positive probability.

All these assumptions are needed to prove the existence of a measure Q with dP/dQ =
1/Z°(T A7%). After having ensured its existence, one then can take the route suggested by Delbaen
and Schachermayer (1995a), Theorem 5 and start from any probability space satisfying the usual
conditions, construct a canonical probability space satisfying the technical assumptions mentioned
above, doing all necessary computations on this space, and then going back to the original space.

For now, the goal is to construct a measure (Q under which the computation of h” simplifies.
For that, we define the sequence of stopping times

0 =inf{t € [0,T]: Z2°(t) > i}

with inf ) := oo and the sequence of o-algebras F* := F(rf A T) for all i € N. We observe
that the definition of F* is independent of the probability measure and define the stopping time
7% := lim; ., 77 with corresponding o-algebra > := F (7% A T') generated by U, F*?,
Within this framework, Meyer (1972) and Follmer (1972), Example 6.2.2 rely on an exten-
sion theorem (compare Parthasarathy, 1967, Chapter 5) to show the existence of a measure (Q on
(Q, F(T)) satisfying
Q(A) =E" [Z°(7) ANT)14] (5.1
for all A € F*%, where we now write EF for the expectation under the original measure. We

summarize these insights in the following theorem, which also generalizes the well-known Bayes’
rule for classical changes of measures (compare Karatzas and Shreve, 1991, Lemma 3.5.3).

Theorem 5.1 (Generalized change of measure, Bayes’ rule). There exists a measure Q such that
P is absolutely continuous with respect to Q and such that for all F (T)-measurable random
variables Y > 0 we have

E® Y1y, /ZQ(T»O}‘f(t)} — EF [2°(T) Y |F(t)] (5.2)

1
70 (t) 1{1/Z9(t)>0}
Q-almost surely (and thus, P-almost surely) for all t € [0, T), where EQ denotes the expectation
N N N T

with respect to the new measure Q. Under this measure Q, the process W (-) = <W1 (), ... WK()>
with

__ tnr?

Wit AT%) = Wit A7) +/ O (u, S(u))du (5.3)

0

forallk=1,...,K andt € [0,T) is a K-dimensional Brownian motion stopped at time 7°.

Proof. The existence of a measure QQ satisfying (5.1) follows as in the discussion above. We fix an
arbitrary set B € F(t). It is sufficient to show the statement for Y = 1, where A € F (7). We
have -
A= (Aﬂ{7'9 <T}) UU(AQ{T?_I <T§Tf}).
i=1
From the fact that 7% < T holds if and only if 1/Z%(T) = 0 holds, from the identity in (5.1),
and from the observation that P (7 < T') = 0, we obtain

Q(AO{Z%(T)M)}OB) :§Q(Am{rf_l<T§rf}mB)
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= Z EP [Ze(ff A T)1AO{T571<TS75}QB}

zlé; [Z2°(T) 1ans]

_EP [29 (1) EF [ 29 (T) 14| F(1)] Z%(t)lB]

1

—E© {EP [Z°(T) 14| F(1)] Ze—(t)l ( /Ze(t)>0}13] :

Here, the last equality follows as the first ones with 1 4 replaced by the random variable inside the
last expression and 7' replaced by ¢. This yields (5.2). The fact that P is absolutely continuous with
respect to Q follows from setting ¢ = 0 in (5.2). From Girsan(i\i’s theorem (compare Revuz and
Yor, 1999, Theorem 8.1.4) we obtain that on F*? the process W (-) is under Q a K-dimensional
Brownian motion stopped at 7/ A T. Since U, F*? generates F°>¢ and forms a 7-system, we get
the dynamics of (5.3). L]

Thus, an ELMM exists if and only if Q(1/Z°(T) > 0) = 1. A further consequence of The-
orem 5.1 is the fact that the dynamics of the stock price process and the reciprocal of the SDF
simplify under QQ as the next corollary shows.

Corollary 5.1 (Evolution of important processes under Q). The stock price process S(-) and the
reciprocal 1/7°(-) of the SDF evolve until the stopping time T° under Q according to

dS;(t) = Si(t) Z oii(t, S(£)) AW (t),

1 R —
d < » (t)) = ) 2 Oelts S0

k=1

foralli = 1,...,dandt € [0,T]. Furthermore, for any process N(-), N(-)1{1/z00y50} is a
Q-martingale if and only if N(-)Z%(-) is a P-martingale. In particular, the process 1/7°(-) is a
Q-martingale.

Proof. The dynamics are a direct consequence of the representation of W() in (5.3) and the def-
inition of the MPR. The other statements follow from choosing Y = N(T) and Y = 1/Z%(T) in
(5.2). ]

The results of the last corollary play an essential role when we do computations, since the
first hitting time of the reciprocal of the SDF can in most cases be easily represented as a first
hitting time of the stock price. This now usually follows some more tractable dynamics, as we
shall see in Section 6. For the case of strict local martingales the equivalence of the last corollary
is generally not true. Take as an example N(-) = 1 and Z%(-) a strict local martingale under P.
Then, Z°(-)N(-) = Z°(-) is a local P-martingale but N (-)1(1,76(y50y = L{1/70(.)>0y is clearly not
a local Q-martingale. The reason for this lack of symmetry is that a sequence of stopping times
which converges P-almost surely to 7" need not necessarily converge (Q-almost surely to 7.
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6 EXAMPLES

In this section, we discuss several examples for markets which imply arbitrage opportunities. Ex-
amples 6.1 and 6.2 treat the case of a three-dimensional Bessel process with drift for various
payoffs. Example 6.3 concentrates on the reciprocal of the three-dimensional Bessel, a standard
example in the bubbles literature.

Example 6.1 (Three-dimensional Bessel process with drift - money market). One of the best known
examples for markets without an ELMM is the three-dimensional Bessel process, as discussed
in Karatzas and Shreve (1991), Section 3.3.C. We study here a class of models which contain
the Bessel process as special case and generalize the example for arbitrage of A.V. Skorohod in
Karatzas and Shreve (1998), Section 1.4. For that, we begin with defining an auxiliary stochastic
process X (-) as a Bessel process with drift —c, that is,

AX (1) = (ﬁ - c) dt + AW (¢) ©.1)

for all t € [0, 7] with TW(-) denoting a Brownian motion on its natural filtration F = F" and
¢ € [0,00) a constant. The process X (-) is strictly positive, since it is a Bessel process, thus
strictly positive under the equivalent measure where {W (¢) — ct}o<;<7 is a Brownian motion. The
stock price process is now defined via the stochastic differential equation

1
_m

for all ¢ € [0, 7. Both processes X (-) and S(-) are assumed to start at the same point S(0) > 0.
From (6.1) and (6.2) we obtain directly S(t) = X(t) + ¢t > O forallt € [0,7]. If ¢ = 0
then S(-) = X(-) and the stock price process is a Bessel process. Of course, the MPR is exactly
0(t,s) = 1/(s — ct) for all (t,s) € [0,T] x R, with s > ct. Thus, the reciprocal 1/Z°(-) of the
SDF hits zero exactly when S(t) hits ct. This follows directly from the Q-dynamics of 1/2°()
derived in Corollary 5.1 and a strong law of large numbers as in Kardaras (2008), Lemma A.2.

Let us start by looking at a general, for the moment not-specified payoff function p. For all
(t,s) € [0,T] x Ry with s > ct, by relying on Theorem 5.1, using the density of a Brownian
motion absorbed at zero (compare Karatzas and Shreve, 1991, Problem 2.8.6) and some simple
computations, we obtain

W(t, ) =B [ 2 (1)p(S(T))|
= B2 [p(S(T) fming <o (50001 | F )] | g1,

& 1 22
= exp | —— 2NVT —t+ s)dz
. Vi p ( 5 ) p(zv )

=

oo 1 2
— exp(2cs — 2¢%t) / exp (—Z—) p(zVT —t — s+ 2ct)dz. (6.3)
cT\;%Jrs \/% 2

Let us consider the investment in the money market only, to wit, p(s) = p°(s) = 1 for all
s > 0. The expression in (6.3) yields the hedging price of one monetary unit

ds(t) dt + dW (t) (6.2)

—cT —s—cl'+ 2ct
W (t,s) = ® <\S/T—it> — exp(2cs — 2¢%t)® ( i ;_—: ¢ ) , (6.4)
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where ® denotes the cumulative standard normal distribution function. It can be easily checked
that h?° solves PDE (4.2) for all (t,s) € [0,T] x Ry with s > ct. Thus, by Theorem 4.1 the
optimal hedging strategy 7° of one monetary unit is

2 s—cT —s —cT' + 2ct
Ot,s) = ( )—2CGX 203—202t<b< ),
1 (t,s) =\ = p( ) T

where ¢ denotes the standard normal density.

It is well-known that a Bessel process allows for arbitrage. Compare for example Karatzas and
Kardaras (2007), Example 3.6 for an ad-hoc strategy which corresponds to a hedging price of ®(1)
for a monetary unit if ¢ = 0 and S(0) = 7" = 1. We have improved here the existing strategies
and found the optimal one, which corresponds in this setup to a hedging price of hpo(O7 1) =
20(1) — 1 < @(1).

Remark 6.1 (Multiple solutions for PDE (4.2)). We observe that the hedging price h? in (6.4)
depends on the drift c. Also, h?" is sufficiently differentiable, thus by Remark 4.2 uniquely char-
acterized as the minimal nonnegative solution of PDE (4.2), which does not depend on the drift
c. The uniqueness of v’ by Remark 4.2 and the dependence of h*° on ¢ do not contradict each
other, since the nonnegativity of h¥" has only to hold at the points of support for S(-). For a given
time ¢ € [0, T, these are only the points s > ct. Thus, as ¢ increases, the nonnegativity condition
weakens since it has to hold for fewer points, and thus h” can become smaller and smaller. Indeed,
plugging in (6.4) the point s = ct yields h*(t,ct) = 0. In summary, while the PDE itself does
only depend on the (more easily observable) volatility structure of the stock price dynamics, the
mean rate of return determines where the PDE has to hold.

In the next example we price and hedge a European call within the same class of models as in
the last example.

Example 6.2 (Three-dimensional Bessel process with drift - stock and European call). Plugging in
(6.3) the payoff p(s) = p“(s) = (y— L)* for some L > 0 and writing L := max{cT, L}, a simple
computation yields

W (L, s) = TQ; ! exp <—%) +(s—L)® (\j%) — exp(2cs — 2c%t)

T—t (L — 2ct + )2 —L+42ct—s
. < 5 OXP (—w> + (2ct —s—L)P (T))

If L < T, in particular if L = 0, the last expression simplifies to

s—cTl 2ct — s — T

VT —t VT —t

where 77” denotes the hedging price of one monetary unit given in (6.4). It is simply the difference
between the hedging price of the stock and L monetary units since if L < ¢T', the call is always
exercised. Using L = 0 we get the value of the stock. We could now proceed by computing the
derivative of h? in s to get the hedge. Furthermore, the modified put-call parity of Corollary 4.1
provides us directly with the hedging price for a put.

W (L, s) = sP ( ) + exp(2cs — 2¢%)® ( ) (s — 2ct) — Lh™ (t, s),
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If L = ¢ = 0, we write p' = p” and the last equality yields h?' (t,s) = s for all (t,s) €
[0,7] x R, and holding the stock is optimal. There are two other ways to see this result right
away. Simple computations show directly that Z%%(T') = s/S(T) if ¢ = 0, thus h?' (t,s) = s
for all (t,s) € [0,T] x R,. Alternatively, using the representation of h”’ (¢, s) implied by (5.2) we
see that the hedging price is just the expectation of a Brownian motion stopped at zero, thus the
expectation of a martingale started at s.

Two notable observations can be made. First, in this model both the money market and the
stock simultaneously have a hedging price cheaper than their current price, as long as ¢ > 0.
Second, in contrast to classical theory, the mean rate of return under the “real-world” measure
does matter in determining the hedging price of calls (or other derivatives).

Pal and Protter (2010) compute call prices for the reciprocal Bessel process model. We discuss
next how the results of the last examples relate to this model.

Example 6.3 (Reciprocal of the three-dimensional Bessel process). Let the stock price S () have
the dynamics 3 .
dS(t) = —S?(t)dW (t)

for all ¢ € [0, 7] with T (-) denoting a Brownian motion on its natural filtration F = F". The
process S(-) is exactly the reciprocal of the process S(-) of Examples 6.1 and 6.2 with ¢ = 0, thus
strictly positive. We observe that P is already a martingale measure. However, if one wants to hold
the stock at time 7', one should not buy the stock at time zero, but use the strategy 1! below for a
hedging price smaller than S (0) along with the suboptimal strategy 7(-,-) = 1. That is, the stock
has a bubble.

We have already observed that S(7) = 1/S(T’), which is exactly the SDF in Example 6.1 for
¢ = 0 multiplied by S(t). Thus, as in (6.4) with ¢ = 0, the hedging price for the stock is

R (L, s) = 2sP < (6.5)

1
— ] —s5<s
sVT—t)

along with the optimal strategy

n(t s) =20 (s\/%) w sﬂ% = (Sﬂ{ N t)

for all (¢, s) € [0,T) x R,. For pricing calls, we observe

- + 1 1 \" L Sk [1 *
st -1) =~ am (- - ) < S0 ()
( (T) (T) L S(T) S(t) S(T) \L (T)
for L > 0. Thus, the price at time ¢ of a call with strike L in the reciprocal Bessel model is the
price of LS(t) puts with strike 1/L in the Bessel model and can be computed from Example 6.2

and Corollary 4.1. For S(0) = 1, simple computations will lead directly to Equation (6) of Pal and
Protter (2010). The optimal strategy could now be derived with Theorem 4.1.

7 CONCLUSION

It has been proven that, under weak technical assumptions, there is no equivalent local martingale
measure needed to find an optimal hedging strategy based upon the familiar delta hedge. To ensure
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its existence, weak sufficient conditions have been introduced which guarantee the differentiabil-
ity of an expectation parameterized over time and over the original market configuration. The
dynamics of stochastic processes simplify after a non-equivalent change of measure and a gener-
alized Bayes’ rule has been derived. With this newly developed machinery, some optimal trading
strategies have been computed addressing standard examples for which so far only ad-hoc and not
necessarily optimal strategies have been known.
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