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Abstract

We consider testing a composite null hypothesis P against a point alternative Q
using e-variables, which are nonnegative random variables X such that EP[X] ≤ 1
for every P ∈ P. This paper establishes a fundamental result: under no conditions
whatsoever on P or Q, there exists a special e-variable X∗ that we call the numeraire,
which is strictly positive and satisfies EQ[X/X∗] ≤ 1 for every other e-variable X. In
particular, X∗ is log-optimal in the sense that EQ[log(X/X∗)] ≤ 0. Moreover, X∗

identifies a particular sub-probability measure P∗ via the density dP∗/dQ = 1/X∗.
As a result, X∗ can be seen as a generalized likelihood ratio of Q against P. We
show that P∗ coincides with the reverse information projection (RIPr) when additional
assumptions are made that are required for the latter to exist. Thus P∗ is a natural
definition of the RIPr in the absence of any assumptions on P or Q. In addition
to the abstract theory, we provide several tools for finding the numeraire and RIPr
in concrete cases. We discuss several nonparametric examples where we can indeed
identify the numeraire and RIPr, despite not having a reference measure. Our results
have interpretations outside of testing in that they yield the optimal Kelly bet against
P if we believe reality follows Q. We end with a more general optimality theory that
goes beyond the ubiquitous logarithmic utility. We focus on certain power utilities,
leading to reverse Rényi projections in place of the RIPr, which also always exist.

1 Introduction

Suppose we observe data from an unknown distribution on a measurable space (Ω,F). This
paper is concerned with testing the composite null hypothesis H0 that the data distribution
belongs to a given set P of distributions on this space, against the point alternative H1 that
the data was generated by a given distribution Q. Here P and Q are completely arbitrary,
and our general theory will not require any further assumptions whatsoever.
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We approach the testing problem by designing e-variables: a [0,∞]-valued random
variable X is called an e-variable for P if EP[X] ≤ 1 for all P ∈ P. Specifically, we will look
for ‘optimal’ e-variables, in senses to be formalized later, that tend to be large under Q.

E-variables measure evidence against the null: the larger its realized value, the stronger
the evidence. One can also use e-variables to make hard accept/reject decisions. In par-
ticular, Markov’s inequality implies that we can reject H0 at level α if an e-variable X
exceeds 1/α, since P(X ≥ 1/α) ≤ α for each P ∈ P. This paper will not be concerned
with such hard decisions, but just in the measure of evidence X itself, which requires no
prespecification of any level α.

E-variables have been employed since at least Robbins (1970). More recently, in 2018–
2020, a number of papers appeared considering new applications and constructions of e-
variables (Wasserman et al., 2020; Howard et al., 2020, 2021; Shafer, 2021; Vovk and Wang,
2021; Waudby-Smith and Ramdas, 2023; Grünwald et al., 2024), but all using different (or
no) terminology. In 2020, these authors agreed to use the term ‘e-variable’ (and ‘e-value’
for its realization). See Ramdas et al. (2023) for a recent survey.

Our main result establishes that under absolutely no restrictions or conditions on P
or Q, there exists a special Q-almost surely unique and strictly positive e-variable X∗

that we call the numeraire e-variable, or just the numeraire. It is characterized by the
property that EQ[X/X∗] ≤ 1 for every other e-variable X. This in turn implies two other
interpretable properties EQ[X

∗/X] ≥ 1 and EQ[log(X/X∗)] ≤ 0, the second of which is log-
optimality. In fact, X∗ is the numeraire if and only if it is log-optimal in this sense. The
terminology derives from mathematical finance, where the numeraire portfolio is a central
object analogous to the numeraire e-variable.

Although no assumptions on P or Q are needed in general, the theory simplifies if the
alternative Q does not assign positive probability to any event that is null under every
P ∈ P. In this case we say that Q is absolutely continuous with respect to P, written
Q ≪ P. This natural generalization of absolute continuity for pairs of measures goes back
to Halmos and Savage (1949) and is satisfied in most statistically relevant settings, while
being significantly weaker than requiring a common dominating reference measure.

The condition Q ≪ P has several consequences: (a) the numeraire is Q-almost surely
finite; (b) every e-variable is Q-almost surely finite; and (c) the set of all e-variables for P
is bounded in probability under Q, meaning that lima→∞ supX Q(X > a) = 0 where the
supremum extends over all e-variables for P. In fact, we show that the above properties
are equivalent in that they imply each other, and they also imply that Q ≪ P.

Next, we associate to the numeraire a special sub-probability measure P∗ ≪ Q defined
via its density dP∗/dQ = 1/X∗. This measure belongs to the bipolar of P, denoted by P◦◦.
The bipolar can be interpreted as the effective null hypothesis: it is the largest family of sub-
probability measures that has the same set of e-variables as P. These are the distributions
against which e-variables for P do not provide any evidence.

We show that P∗ can be characterized in terms of properties normally associated with
the reverse information projection (RIPr), first used by Csiszár and Tusnády (1984). Earlier
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work on the RIPr involve assumptions related to absolute continuity and/or finiteness of the
minimum relative entropy between Q and P, and in such settings the above P∗ coincides
with the RIPr. This includes, in particular, work by Grünwald et al. (2024) and Lardy
et al. (2023), which in turn build on results in Li (1999). This leads us to argue that P∗ is
the natural definition of the RIPr in the absence of any assumptions on P or Q.

One of our main contributions is to significantly relax the conditions required for a
log-optimality theory of e-variables to be built, and for a RIPr to exist. Furthermore, in
addition to the abstract theory, we develop tools to aid in the computation of the numeraire
and the RIPr in concrete examples. We establish several sufficient conditions to verify
that an e-variable at hand is indeed the numeraire, and we provide several examples of
nonparametric nulls P (such as bounded distributions, symmetric distributions and sub-
Gaussian distributions) that illustrate how these sufficient conditions can be used. These
examples are out of the reach of previous works due to their lack of a reference measure on
which the aforementioned works centrally rely.

An important message of our work is that in concrete examples, the duality between
the set of e-variables and the null hypothesis can be exploited in different ways depending
on the nature of the null. For parametric nulls, the simplest approach is usually to first
find the RIPr (and then the numeraire). For non-parametric nulls, it is often easier to first
find the numeraire (and then the RIPr).

We end the paper with a more general optimality theory that goes beyond the ubiquitous
logarithmic utility, by studying other concave utilities and associated divergences. Without
aiming for full generality, we focus on certain power utilities in place of the logarithm, which
leads to reverse Rényi projections in place of the RIPr. These developments, again, take
place under absolutely no conditions on P or Q.

Finally, we note that if P = {P} is a singleton and Q ≪ P, we obtain as a consequence
that the numeraire is the likelihood ratio dQ/dP, which is well known to be log-optimal
(Shafer, 2021). Thus, our work can be viewed as deriving certain generalized likelihood
ratios for composite null hypotheses, and extending the corresponding optimality theory.

Paper outline. Section 2 defines the numeraire, establishes existence and uniqueness un-
der no assumptions, characterizes the absolute continuity property Q ≪ P, and establishes
various other useful facts such as log-optimality of the numeraire. Section 3 introduces
the RIPr and characterizes it via various optimality properties dual to the properties and
log-optimality of the numeraire. Section 4 establishes a number of tools for finding the
numeraire and the RIPr in practice. These tools are then applied to specific examples
in Section 5. Section 6 goes beyond log-optimality by considering certain power utilities
and the associated reverse Rényi projections. Section 7 outlines implications for composite
alternative hypotheses and draws comparison with universal inference. Section 8 concludes.
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Notation. Given the measurable space (Ω,F), we let F+, M+, and M1 denote the set of
all [0,∞]-valued measurable functions, nonnegative measures, and probability measures on
Ω, respectively. Given a null hypothesis P, which is an arbitrary nonempty subset of M1,
we write E for the associated set of e-variables, i.e., the family of all X ∈ F+ that satisfy
EP[X] ≤ 1 for all P ∈ P. Infinite quantities play a key role in this paper. We generally
rely on standard measure theoretic conventions such as 0 · x = 0 for x ∈ [−∞,∞] and
x · ∞ = ∞ for x ∈ (0,∞], as well as log(0) = −∞ and log(∞) = ∞. When evaluating
ratios of [0,∞]-valued random variables we often use the following convention, the last part
of which is somewhat unusual but simplifies notation:

x/∞ = 0 and ∞/x = ∞ for x ∈ [0,∞), and ∞/∞ = 1. (1.1)

Clarifying explanations are given in potentially ambiguous cases. Finally, we write conv(· · · )
for convex hull, that is, the set of (finite) convex combinations of the indicated objects.

2 The numeraire e-variable

Here is the key definition of this paper. The convention (1.1) is used to evaluate the ratio
inside the expectation.

Definition 2.1. A numeraire e-variable (or just numeraire for short) is a Q-almost surely
strictly positive e-variable X∗ such that EQ[X/X∗] ≤ 1 for every e-variable X.

Our choice of terminology is inspired by the numeraire portfolio in the mathematical
finance literature; see e.g. Long (1990); Becherer (2001); Karatzas and Kardaras (2007). In
that literature, the defining property of the numeraire portfolio is that any positive wealth
process divided by the numeraire becomes a supermartingale. In view of the gambling inter-
pretation of e-variables (Shafer, 2021), this is precisely what is expressed by Definition 2.1.
A subtle distinction is that we allow the numeraire to take the value infinity, whereas this
is excluded in the finance literature.

Numeraires are unique up to Q-nullsets. Indeed, if X∗
1 and X∗

2 are numeraires, then the
ratio Y = X∗

2/X
∗
1 satisfies 1 ≤ 1/EQ[Y ] ≤ EQ[1/Y ] ≤ 1 thanks to the numeraire property

of X∗
1 , Jensen’s inequality, and the numeraire property of X∗

2 . Thus Jensen’s inequality
holds with equality, so Y is Q-almost surely equal to a constant which must be one. It
follows that X∗

1 and X∗
2 are Q-almost surely equal. In view of this uniqueness, we often

speak of ‘the’ numeraire.

Example 2.2. In the case of a simple null P = {P0} with Q absolutely continuous with
respect to P0, the numeraire is just the likelihood ratio X∗ = dQ/dP0. Indeed, X∗ is
Q-almost surely strictly positive, it is an e-variable, and for any other e-variable X we
have EQ[X/X∗] = EP0 [X] ≤ 1. In particular settings, such as when a reference measure
exists and certain additional assumptions are satisfied, we will show that the numeraire is a
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likelihood ratio involving the ‘reverse information projection’ (Grünwald et al., 2024; Lardy
et al., 2023). Even without these restrictions, X∗ can still be interpreted as a likelihood
ratio. One of our goals is to establish this in full generality. This is the subject of Section 3.

The following general property of the numeraire can sometimes be useful.

Lemma 2.3. Let X∗ denote the numeraire for P, and consider a larger null hypothesis
P ′ ⊃ P. If X∗ is still an e-variable for P ′, then it is also the numeraire for P ′.

Proof. If X is an e-variable for P ′, it is also an e-variable for P and one has EQ[X/X∗] ≤ 1
by assumption. This proves the lemma.

A numeraire X∗ is also log-optimal in the sense that

EQ

[
log

X

X∗

]
≤ 0 for every e-variable X, (2.1)

where the left-hand side may be −∞. This follows directly from Jensen’s inequality and
the numeraire property. The converse is also true, and we record the equivalence in the
following proposition; see also Cover and Thomas (2006, Theorem 16.2.2). The proof shows
that the numeraire property is really the first-order condition for log-optimality. Note also
that a numeraire X∗ is the Q-almost surely unique log-optimal e-variable in the sense of
(2.1) even if EQ[logX

∗] happens to be infinite.

Proposition 2.4. Let X∗ be a Q-almost surely strictly positive e-variable. Then X∗ is a
numeraire if and only if it is log-optimal. In particular, a log-optimal e-variable is unique
up to Q-nullsets.

Proof. The forward direction was argued above. To prove the converse we assume X∗ is
log-optimal. For any e-variable X and t ∈ (0, 1), X(t) = (1 − t)X∗ + tX is an e-variable.
Thus by log-optimality, EQ[t

−1 log(X(t)/X∗)] ≤ 0. The expression inside the expectation
equals t−1 log(1 − t + tX/X∗), which converges to X/X∗ − 1 as t tends to zero and is
bounded below by t−1 log(1 − t), hence by −2 log 2 for t ∈ (0, 1/2). Fatou’s lemma thus
yields EQ[X/X∗−1] ≤ 0, showing that X∗ is a numeraire. Finally, the uniqueness statement
follows from the equivalence just proved together with uniqueness of the numeraire up to
Q-nullsets.

The following theorem shows that a numeraire always exists without any assumptions
whatsoever on P or Q. The theorem is related to an important family of results in the
mathematical finance literature, known collectively as the Fundamental Theorem of Asset
Pricing, which are versions of the statement that a numeraire portfolio with finite wealth
exists if and only if unbounded profits must come with unbounded downside risk. The
following theorem contains the corresponding statement in the context of e-variables.

Theorem 2.5. A numeraire exists. Moreover, the following conditions are equivalent:
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(i) The numeraire is Q-almost surely finite.

(ii) Every e-variable is Q-almost surely finite.

(iii) Q is absolutely continuous with respect to P.

(iv) The set of e-variables E is bounded in probability under Q.

Proof. The existence of a numeraire is Lemma 2.9 below, which relies on the preceding
Lemmas 2.7 and 2.8. Here we focus on the equivalence of the four conditions. Clearly (ii)
implies (i). To see that (i) implies (ii), let X∗ be a Q-almost surely finite numeraire and note
that the numeraire property implies that any e-variable X must be Q-almost surely finite
too. Next, we claim that (ii) is equivalent to (iii). Suppose (iii) fails. Then there is an event
A with Q(A) > 0 and P(A) = 0 for all P ∈ P, in which case X = ∞1A is an e-variable that
is not Q-almost surely finite. Thus (ii) fails also. The converse follows by noting that every
e-variable is finite P-almost surely for all P ∈ P. Further, (iv) implies (ii) because under the
former condition we have for any e-variable X that Q(X = ∞) = lima→∞Q(X > a) = 0.
It remains to prove that (ii) implies (iv). This more involved implication is the content of
Lemma 2.6 below.

Conditions (ii) and (iv) of the theorem describe the existence of a finite numeraire
in financial terms. Condition (ii) simply states that infinite profits are impossible. Condi-
tion (iv) is a ‘pre-limiting’ expression of the same fact, in the sense that it excludes sequences
of bets that achieve unbounded profits with a fixed positive probability. Condition (iii) has
statistical rather than financial meaning. If it were violated, the alternative would assign
positive probability to some event that has zero probability under every element of the null;
if such an event occurs, the null can be immediately rejected at any level, meaning that
any e-variable could be set to equal infinity on that event, violating the other statements.

The rest of this section contains the remaining parts of the proof of Theorem 2.5. This
material can be skipped without compromising the understanding of Sections 3, 4, or 5.

Lemma 2.6. If every e-variable is Q-almost surely finite then E is bounded in probability
under Q.

Proof. Consider the space L0
+(Q) consisting of all nonnegative real-valued random variables

modulo Q-almost sure equivalence. Let C ⊂ L0
+(Q) be the set of (equivalence classes of)

random variables that are Q-almost surely equal to a finite e-variable. The set C is convex,
solid, and closed in probability. Suppose now that E is not bounded in probability under Q.
Then C is not bounded in probability. The decomposition result in Lemma 2.3 of Brannath
and Schachermayer (1999) then shows that there is an event A with Q(A) > 0 such that
n1A belongs to C for all n ∈ N. By definition of C, for each n there is a finite e-variable
Xn that is Q-almost surely equal to n1A, say on an event Bn with Q(Bn) = 1. By Fatou’s
lemma, X = lim infn→∞Xn is again an e-variable. Moreover, X = ∞ on A ∩ (

⋂
n∈NBn),
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which coincides with A up to a Q-nullset and thus has positive probability under Q. In
other words, X is an e-variable that is not Q-almost surely finite.

The following result, usually referred to as a ‘Komlós-type’ lemma, is the basis of the
proof that a numeraire exists. For a proof, see Lemma A1.1 and the subsequent Remark 1
in Delbaen and Schachermayer (1994).

Lemma 2.7. Let (Xn)n∈N be any sequence of [0,∞]-valued random variables. One can
choose X̃n ∈ conv(Xn, Xn+1, . . .) such that X̃n converges Q-almost surely to a [0,∞]-valued
random variable.

Next, we consider a certain concave maximization problem. This involves a utility
function, by which we mean a function U : (0,∞) → R that is continuous, nondecreasing,
concave, and differentiable. By convention we extend the domain of U to [0,∞] by setting
U(0) = limx→0 U(x) and U(∞) = limx→∞ U(x), and we define U ′(0) and U ′(∞) similarly.
These limits exist by monotonicity and concavity of U , and could be ±∞. The following
result assumes in addition that U is bounded above, which forces U ′(∞) = 0.

Lemma 2.8. Let U be a utility function that is bounded from above. There exists an e-
variable X∗ that attains supX∈E EQ[U(X)] and has the property that every e-variable is
Q-almost surely finite on {X∗ < ∞}. If EQ[U

′(X∗)X∗] < ∞, one has the first-order
condition

EQ

[
U ′(X∗)(X −X∗)

]
≤ 0, X ∈ E . (2.2)

Here U ′(X∗)X∗ and U ′(X∗)(X −X∗) are understood as zero on {X∗ = ∞}.

Proof. Let Xn ∈ E form a sequence such that EQ[U(Xn)] increases to the supremum.
Lemma 2.7 yields a Q-almost surely convergent sequence of random variables of the form
X̃n =

∑mn
i=n λ

n
i Xi for convex weights λn

n, . . . , λ
n
mn

. Define X∗ = lim infn→∞ X̃n and note
that while this may be a proper limit inferior for some ω ∈ Ω, we have Q-almost surely
that X∗ = limn→∞ X̃n. Each X̃n belongs to E since this set is convex, and Fatou’s lemma
then implies that X∗ belongs to E as well. Next, since U is concave and E[U(Xn)] is an
increasing sequence,

EQ[U(X̃n)] ≥
mn∑
i=n

λn
i EQ[U(Xi)] ≥ EQ[U(Xn)]. (2.3)

Since U is bounded above and X∗ = limn→∞ X̃n Q-almost surely, we may use Fatou’s
lemma together with (2.3) to get

EQ[U(X∗)] ≥ lim sup
n→∞

EQ[U(X̃n)] ≥ lim sup
n→∞

EQ[U(Xn)] = sup
X∈E

EQ[U(X)].

This shows that X∗ attains the supremum.
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We next show that X∗ can be chosen so that every e-variable is Q-almost surely finite on
{X∗ < ∞}. This uses Lemma A.1, which in particular states that there is an event N that
is P-negligible, meaning that P(N) = 0 for all P ∈ P, and satisfies Q(N ′ \N) = 0 for any
other P-negligible event N ′. Define X∗∗ = X∗1Nc+∞1N . This is still an e-variable since N
is P-negligible, and it attains the supremum since it is at least as large as X∗. Furthermore,
since N ′ = {X = ∞} is P-negligible for any X ∈ E , we have Q({X = ∞}\{X∗∗ = ∞}) = 0.
Equivalently, by taking complements, X is Q-almost surely finite on {X∗∗ < ∞}. Replacing
X∗ by X∗∗ thus ensures the claimed property.

We now verify the first-order condition (2.2). Pick X ∈ E such that X ≥ δ for some
δ > 0; this restriction will be removed later. Define X(t) = tX + (1 − t)X∗ for t ∈ [0, 1]
and use the optimality of X∗ = X(0) to get

EQ

[
U(X(t))− U(X(0))

t

]
≤ 0, t ∈ (0, 1].

By concavity of t 7→ U(X(t)), as t tends to zero the difference quotient increases to
d
dt |t=0U(X(t)) = U ′(X∗)(X −X∗), understood to be zero on {X∗ = ∞}, and is bounded
below by U(X(1)) − U(X(0)) ≥ U(δ) − supx>0 U(x). Monotone convergence then yields
(2.2) for all X bounded below by δ. We now remove this restriction and consider an arbi-
trary X ∈ E . For each δ ∈ (0, 1) the random variable δ + (1− δ)X still belongs to E and is
bounded below by δ. By what we just proved,

EQ

[
U ′(X∗)(δ + (1− δ)X −X∗)

]
≤ 0.

The expression inside the expectation is bounded below by −U ′(X∗)X∗, understood to be
zero on {X∗ = ∞}, and this is integrable by assumption. We may then send δ to zero and
use Fatou’s lemma to deduce (2.2).

Lemma 2.9. A numeraire exists.

Proof. If we could have taken U(x) = log(x) in Lemma 2.8, the first-order condition (2.2)
would have been the numeraire property. We cannot do this directly, because the logarithm
is not bounded above. Instead we consider bounded approximations of the logarithm, each
giving an associated optimal e-variable and first-order condition. We then pass to the limit
in the first-order conditions using the Komlós-type lemma. We now turn to the details.

For each n ∈ N we define Un(x) by letting Un(1) = 0 and setting the derivative to

U ′
n(x) =


x−1, x ≤ n,

2n−1 − xn−2, n < x ≤ 2n,

0, x > 2n.

Then Un satisfies the properties required in Lemma 2.8, and we record for later use that
U ′
n is convex and that

U ′
n(x) ≤ U ′

i(x) for n ≤ i and x ∈ (0,∞]. (2.4)
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Applying Lemma 2.8 with U = Un gives an optimal e-variable X∗
n for each n. These have

the additional property that the sets {X∗
n < ∞} all coincide up to Q-nullsets, say with a

fixed set A. Because U ′
n(x)x ≤ 1 for all x ∈ (0,∞], we may use the first-order condition

(2.2) to deduce
EQ

[
U ′
n(X

∗
n)X1A

]
≤ Q(A), X ∈ E . (2.5)

Next, Lemma 2.7 yields a Q-almost surely convergent sequence of random variables X̃∗
n =∑mn

i=n λ
n
i X

∗
i for some convex weights λn

n, . . . , λ
n
mn

. We define X∗ = lim infn→∞ X̃∗
n, which

belongs to E and is Q-almost surely the limit of X̃∗
n. Note that A then coincides Q-almost

surely with the sets where X∗ and the X̃∗
n are finite. Using first (2.5), then (2.4), and finally

the convexity of U ′
n we get

Q(A) ≥ EQ

[
mn∑
i=n

λn
i U

′
i(X

∗
i )X1A

]
≥ EQ

[
mn∑
i=n

λn
i U

′
n(X

∗
i )X1A

]
≥ EQ

[
U ′
n(X̃

∗
n)X1A

]
.

The expression inside the last expectation is nonnegative and converges Q-almost surely to
X1A/X

∗. In particular, X∗ is Q-almost surely strictly positive on A. Fatou’s lemma now
yields EQ[X1A/X

∗] ≤ Q(A). On Ac, where X∗ = ∞, we have X/X∗ ≤ 1 thanks to the
convention (1.1). Hence EQ[X/X∗] ≤ EQ[X1A/X

∗] + Q(Ac) ≤ 1. This shows that X∗ is a
numeraire.

3 Duality and reverse information projection

We continue to consider an arbitrary nonempty composite null hypothesis P and a simple
alternative Q on a measurable space (Ω,F). There is a duality relationship between P and
its set of e-variables. To develop this perspective, recall that F+ and M+ denote the set of
all [0,∞]-valued measurable functions and nonnegative measures on Ω, respectively. The
polar of P is defined by

P◦ = {X ∈ F+ : EP[X] ≤ 1 for all P ∈ P}.

This is precisely the set of e-variables, i.e., P◦ = E . The bipolar of P is

P◦◦ = {P ∈ M+ : EP[X] ≤ 1 for all X ∈ P◦}.1

The bipolar can be interpreted as the effective null hypothesis: it is the largest family of
distributions whose set of e-variables is exactly E . Thus it consists of those distributions
against which e-variables in E do not provide any evidence. In particular, a ‘nontrivial’
e-variable X, in the sense that EQ[X] > 1, exists if and only if Q /∈ P◦◦. Because the

1These definitions are nonstandard in that F+ is not a subset of a locally convex topological vector
space, whereas the standard theory of dual pairs works with such spaces. There are however exceptions,
for example the bipolar theorems of Brannath and Schachermayer (1999) and Bartl and Kupper (2019).
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constant X = 1 is always an e-variable, elements of P◦◦ have total mass at most one, and
sometimes strictly less than one. For example, if P belongs to P◦◦, then so does any P′ in
M+ that is dominated by P in the sense that P′(A) ≤ P(A) for all A. In Section 4 we discuss
more explicit descriptions of the bipolar; see Example 4.4, Lemma 4.5, and Corollary 4.6. A
special case of the latter is Example 3.7 below, where the bipolar is computed for a simple
null.

Lemma 3.1. The numeraire e-variable X∗ gives rise to an element P∗ ∈ P◦◦ defined by
dP∗/dQ = 1/X∗, understood as zero on {X∗ = ∞}. Note that P∗ ≪ Q by definition.

Proof. Since X∗ is Q-almost surely unique and strictly positive, P∗ is well-defined. It
belongs to P◦◦ because EP∗ [X] = EQ[1{X∗<∞}X/X∗] ≤ EQ[X/X∗] ≤ 1 for all X ∈ E = P◦

thanks to the numeraire property.

Our results show that P∗ can be interpreted as a reverse information projection, as we
explain after Theorem 3.4 below. This concept first appeared in Csiszár and Tusnády (1984)
and later in the PhD thesis of Li (1999, Chapter 4). It was used centrally in the context
of e-variables in Grünwald et al. (2024), and was developed further in a recent preprint
by Lardy et al. (2023). This earlier work assumes the existence of a reference measure, an
assumption we are able to dispense with but nonetheless examine further in Section 4.

Definition 3.2. We refer to the measure P∗ in Lemma 3.1 as the reverse information
projection (RIPr) of Q on P◦◦.

Our use of the RIPr terminology for P∗ above is justified by what follows. Recall that
the entropy of Q relative to P is defined by

H(Q | P) =

EQ

[
log

dQ

dP

]
if Q ≪ P,

+∞ otherwise.

We will show that P∗ minimizes the relative entropy H(Q | P) over P◦◦. For this it will be
convenient to use a slightly different expression for the relative entropy. For any P ∈ M+

we let Pa denote its absolutely continuous part with respect to Q. One then has

H(Q | P) = EQ

[
− log

dPa

dQ

]
. (3.1)

To see this, suppose first dPa/dQ is strictly positive Q-almost surely. Then Q ≪ Pa ≪ P
and dQ/dP = dQ/dPa = 1/(dPa/dQ) Q-almost surely, so (3.1) holds. If instead dPa/dQ is
zero with positive Q-probability, then the right-hand side of (3.1) is infinite (the expectation
is always well-defined by Jensen’s inequality), and so is the relative entropy because Q ̸≪ P.
Thus (3.1) holds in this case, too.
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Remark 3.3. In the above, P can be any element of M+. We do not adjust the definition
of relative entropy for the possibility that its total mass is not one.

We now make the trivial observation that

EQ

[
X

dPa

dQ

]
≤ 1 for all X ∈ E and P ∈ P◦◦. (3.2)

Indeed, the left-hand side equals EPa [X] which is dominated by EP[X], hence by one. This
leads to the following theorem, which expresses the duality between the null hypothesis
and its set of e-variables and justifies calling P∗ the RIPr. We first treat the notationally
simpler and statistically more relevant case where Q ≪ P and, hence, the numeraire X∗ is
finite. The general case is in Theorem 3.8.

Theorem 3.4. Assume Q ≪ P, let X∗ be the numeraire e-variable, and let P∗ be an
element of P◦◦ equivalent to Q. The following statements are equivalent, where as above we
write Pa for the absolutely continuous part of P with respect to Q (and hence P∗).

(i) P∗ is the RIPr.

(ii) EQ

[
dPa

dP∗

]
≤ 1 for all P ∈ P◦◦.

(iii) EQ

[
log

dPa

dP∗

]
≤ 0 for all P ∈ P◦◦.

If any of these hold, one has the strong duality relation

EQ[logX
∗] = sup

X∈E
EQ[logX] = inf

P∈P◦◦
H(Q | P) = H(Q | P∗), (3.3)

where some, and then all, of these quantities may be +∞. Here EQ[logX] is understood as
−∞ whenever EQ[(logX)−] = ∞.

Property (ii) satisfied by the RIPr can be viewed as dual to the numeraire property
and generalizes Property 2 in Li (1999, Theorem 4.3). The equivalence of (ii) and (iii)
is analogous to the equivalence between the numeraire property and log-optimality of the
numeraire established in Proposition 2.4. Finally, (3.3) states that strong duality holds
between the problem of maximizing the expected logarithm over e-variables and the problem
of minimizing relative entropy over the effective null. Note that EQ[logX

∗] is well-defined
and nonnegative, possibly infinite, thanks to the numeraire property and the fact that
logX∗ ≥ −1/X∗ + 1.

The minimum relative entropy property of P∗ justifies calling it the RIPr of Q on P◦◦

as in Definition 3.2. In the terminology of Lardy et al. (2023), property (ii) implies that the
description gain of switching from P∗ to any other element of P◦◦ is nonpositive, so that
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P∗ is their universal reverse information projection of Q on P◦◦. Existing literature on the
(universal) RIPr assumes the existence of a reference measure along with much stronger
versions of the condition that Q ≪ P. As we show in Section 4, in such settings our P∗

coincides with existing notions of the (universal) RIPr of Q on P; see Theorem 4.7 and its
corollaries. However, our measure P∗ exists in complete generality and satisfies properties
normally associated with the RIPr; see Theorem 3.8 below for the fully general case. This
leads us to Definition 3.2, which we argue is the natural definition of the RIPr in the absence
of any assumptions.

Proof of Theorem 3.4. (i) ⇔ (ii): Suppose P∗ is the RIPr. Because P∗ and Q are equivalent
we have dPa/dP∗ = (dPa/dQ)/(dP∗/dQ) = X∗dPa/dQ up to Q-nullsets for any P ∈ P◦◦.
Thus we obtain (ii) by taking X = X∗ in (3.2). This proves the forward direction. To prove
the converse, we show that the RIPr is the unique element of P◦◦ that is equivalent to Q
and satisfies (ii). This is argued exactly as uniqueness of the numeraire: if P∗

1,P
∗
2 ∈ P◦◦ are

both equivalent to Q and satisfy EQ[dP
a/dP∗

i ] ≤ 1 for all P ∈ P◦◦, then with Y = dP∗
2/dP

∗
1

we have 1 ≤ 1/EQ[Y ] ≤ EQ[1/Y ] ≤ 1. Thus Y is Q-almost surely equal to one and P∗
1 = P∗

2.
(ii) ⇔ (iii): The forward implication follows from Jensen’s inequality, and the converse

uses the same argument as the proof of Proposition 2.4. Specifically, P(t) = (1− t)P∗ + tP
is in P◦◦ for all t ∈ (0, 1), so EQ[t

−1 log(dP(t)a/dP∗)] ≤ 0. Sending t to zero yields (ii).
Finally, we argue (3.3) assuming that P∗ is the RIPr. Jensen’s inequality and (3.2) give

EQ

[
log

(
X

dPa

dQ

)]
≤ 0 (3.4)

for all X ∈ E and P ∈ P◦◦. This implies the ‘weak duality’ inequality

EQ [logX] ≤ EQ

[
− log

dPa

dQ

]
= H(Q | P). (3.5)

Indeed, if (logX)− has infinite expectation, (3.5) is trivially true. Otherwise we first replace
X by X∧n, in which case (3.4) can be rearranged to (3.5) with X∧n in place of X. Sending
n to infinity and using monotone convergence then gives (3.5). Since equality is achieved
by X = X∗ and P = P∗, we deduce (3.3).

Remark 3.5. The strong duality in (3.3) implies that there exists an e-variable with posi-
tive expected logarithm under Q if and only if Q /∈ P◦◦. Therefore, thanks to Corollary 4.6
below, Theorem 3.4 extends a result by Zhang et al. (2023) showing that if P is finite, then
such an e-variable exists if and only if Q is not in the convex hull of P.

Remark 3.6. The RIPr P∗ is not a probability measure in general. Equivalently, it may
happen that EQ[1/X

∗] < 1. We will see this phenomenon in Sections 5.1 and 5.4, and other
examples are given by Lardy et al. (2023). It is also worth noting that there may exist
elements P̃ ∈ P◦◦ that are different from P∗, but whose absolutely continuous part P̃a is
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equal to P∗. We will see this in Section 5.4 with P̃ being the symmetrization of Q. Other
examples are obtained from Example 3.7 below.

Example 3.7 (Example 2.2 continued). Consider a simple null hypothesis P = {P0} with
Q ≪ P0 so that the numeraire X∗ is finite. In this case P∗ = Pa

0 and X∗ = 1/(dP∗/dQ) =
dQ/dP0 up to Q-nullsets. Here one can easily check that P◦◦ consists of all sub-probability
measures P such that P(A) ≤ P0(A) for all A. Indeed, any such P must belong to P◦◦

since EP[X] ≤ EP0 [X] ≤ 1 for all e-variables X. Conversely, if P is not of this form,
then P(A) > P0(A) for some A, and X = 1A/P0(A) is an e-variable such that EP[X] > 1,
showing that P /∈ P◦◦. If P0(A) = 0 we set X = ∞1A in the previous sentence.

We end this section with the general version of Theorem 3.4. The proof reduces the
general case to the one treated in Theorem 3.4 by introducing the conditional probability
measure Q∗(A) = Q(A | X∗ < ∞) if the quantity λ∗ = Q(X∗ < ∞) is positive, where X∗

is the numeraire. The fully degenerate case λ∗ = 0 is treated separately. It is evident from
Definition 3.2 that the RIPr P∗ is absolutely continuous with respect to Q, and we know
from Lemma 3.1 that it belongs to P◦◦. As shown below, one actually has more precise
information, namely that

P∗ is equivalent to Q on {X∗ < ∞} and belongs to λ∗ · P◦◦, (3.6)

where we write λ∗ · P◦◦ for the set {λ∗P : P ∈ P◦◦} ⊂ P◦◦. We continue to write Pa for the
absolutely continuous part of P with respect to Q.

Theorem 3.8. Let X∗ be the numeraire e-variable and define λ∗ = Q(X∗ < ∞). The
RIPr P∗ satisfies (3.6). Furthermore, for any sub-probability measure P∗ that is absolutely
continuous with respect to Q and satisfies (3.6), the following statements are equivalent.

(i) P∗ is the RIPr.

(ii) EQ

[
dPa

dP∗1{X∗<∞}

]
≤ 1 for all P ∈ P◦◦.

(iii) EQ

[
log

(
λ∗dP

a

dP∗

)
1{X∗<∞}

]
≤ 0 for all P ∈ P◦◦.

If any of these hold, one has the strong duality relation (3.3). Finally, suppose λ∗ ∈ (0, 1),
let P∗ be the RIPr, and define Q∗ = Q(· | X∗ < ∞). Then the numeraire and RIPr
associated with Q∗ are X∗ and P∗∗ = P∗/λ∗, and one has the ‘conditional’ strong duality

EQ∗ [logX∗] = sup
X∈E

EQ∗ [logX] = inf
P∈P◦◦

H(Q∗ | P) = H(Q∗ | P∗∗). (3.7)

Proof. We first let P∗ be the RIPr and check (3.6). Equivalence with Q on {X∗ < ∞} is
evident from Definition 3.2. To show that P∗ belongs to λ∗ · P◦◦ we refine the calculation
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in the proof of Lemma 3.1. Consider any X ∈ E and set X ′ = X1{X∗<∞} + ∞1{X∗=∞}.
This still belongs to E since it is P-almost surely equal to X for all P ∈ P. Thanks to the
convention (1.1) we have X ′/X∗ = 1{X∗<∞}X

′/X∗ + 1{X∗=∞} and hence

EP∗ [X] = EP∗ [X ′] = EQ

[
1{X∗<∞}

X ′

X∗

]
= EQ

[
X ′

X∗

]
− Q(X∗ = ∞) ≤ Q(X∗ < ∞),

using the numeraire property in the last step. It follows that P∗ ∈ λ∗ · P◦◦.
We now let P∗ be any sub-probability measure that is absolutely continuous with respect

to Q and satisfies (3.6), and prove the claimed equivalences and the strong duality statement.
First, in the fully degenerate case λ∗ = 0, (3.6) just states that P∗ = 0. This is also the
RIPr, so (i) is true. Moreover, (ii) and (iii) reduce to the statements that 0 ≤ 1 and 0 ≤ 0.
Thus all three statements are true and and hence trivially equivalent. The strong duality
(3.3) holds because all four terms are infinite. Second, in the ‘fully non-degenerate’ case
λ∗ = 1, the theorem simply reduces to Theorem 3.4, which we have already proved.

Consider now the case λ∗ ∈ (0, 1) and define Q∗ = Q(· | X∗ < ∞). Taking Q∗ as
our new alternative hypothesis, X∗ is still the numeraire. Indeed, it is a Q∗-almost surely
strictly positive e-variable, and for any other e-variable X we define X ′ as above and get

EQ∗

[
X

X∗

]
=

1

λ∗EQ

[
1{X∗<∞}

X

X∗

]
=

1

λ∗

(
EQ

[
X ′

X∗

]
− Q(X∗ = ∞)

)
≤ 1.

Since Q∗(X∗ < ∞) = 1 by construction, we have from Theorem 2.5 that Q∗ ≪ P. We
also define P∗∗ = P∗/λ∗ which, thanks to (3.6), is an element of P◦◦ equivalent to Q∗.
Now, the statement (i) that P∗ is the RIPr of Q is equivalent to P∗∗ being the RIPr of Q∗.
Furthermore, (ii) and (iii) can be equivalently expressed in terms of Q∗ and P∗∗ as

EQ∗

[
dPa

dP∗∗

]
≤ 1 for all P ∈ P◦◦ and EQ∗

[
log

dPa

dP∗∗

]
≤ 0 for all P ∈ P◦◦,

respectively. We may thus simply apply Theorem 3.4 with Q∗ and P∗∗ in place of Q and P∗

to deduce that the three statements are indeed equivalent and that the ‘conditional’ strong
duality (3.7) holds. The ‘unconditional’ strong duality (3.3) holds because all four terms
are infinite.

Following up on Example 3.7, the following corollary records the RIPr and numeraire
for a point null, generalizing a well known result that the likelihood ratio is the optimal
e-variable if the two distributions are equivalent; see for example Shafer (2021).

Corollary 3.9. Consider an arbitrary point null P = {P0}. The RIPr is the absolutely
continuous part P∗ = Pa

0 with respect to Q, and the numeraire is

X∗ = ∞1N +
dQ∗

dP0
1Nc , (3.8)

where N is a set such that P0(N) = 0 and Q restricted to N c is absolutely continuous with
respect to P0, and Q∗ = Q(· | N c) whenever Q(N c) > 0.
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Proof. If P0 and Q are singular we have P∗ = 0 and X∗ = ∞ which are indeed the RIPr
and numeraire, so we focus on the non-singular case. We first compute the numeraire.
Thanks to Example 3.7, the numeraire for Q∗ is dQ∗/dP0 up to Q∗-nullsets. The numeraire
for Q should be infinite on N , which leads to (3.8). We note that X∗ is Q-almost surely
strictly positive, it is an e-variable because EP0 [X

∗] = 1, and for any other e-variable X
we have EQ[X/X∗] ≤ Q(N) + Q(N c)EQ∗ [X/(dQ∗/dP0)] ≤ 1. This confirms that X∗ is the
numeraire, and since 1/X∗ = dPa

0/dQ up to Q-nullsets the RIPr is P∗ = Pa
0 as claimed.

4 Finding the numeraire

So far we have studied the abstract existence, uniqueness, and duality theory of the nu-
meraire, but we have not yet said much about how to actually compute it. In this section
we develop tools for doing so, which we then apply to several examples in Section 5. We
focus on the statistically most relevant situation where Q ≪ P. In this case the numeraire
X∗, and indeed every e-variable, is Q-almost surely finite and the RIPr P∗ is equivalent
to Q. The general case can be reduced to this case by replacing Q with the conditional
measure Q∗ in Theorem 3.8 (except in the fully degenerate situation where the numeraire
is infinity and the RIPr zero.)

Proposition 2.4 suggests that X∗ can be found by solving an optimization problem.
Unfortunately this may not be straightforward because the optimization is over the set
of all e-variables, which can be difficult to characterize. For the same reason, even if
a candidate X∗ has been found it may not be clear how to check that it does, in fact,
satisfy the numeraire property. Alternatively, the strong duality of Theorem 3.4 suggests
minimizing relative entropy to find P∗. However, the optimization is again over a set that
can be difficult to describe explicitly, in this case the effective null P◦◦. Moreover, checking
that a candidate P∗ is optimal involves comparing it to all elements of P◦◦.

We first present a verification theorem which simplifies the task of checking that candi-
dates X∗ and P∗ are in fact optimal. Despite the simple proof, the result turns out to be
remarkably useful.

Theorem 4.1. Assume that Q ≪ P. Let X∗ be an e-variable that is Q-almost surely strictly
positive and let P∗ be given by dP∗/dQ = 1/X∗. Then X∗ is a numeraire if and only if P∗

belongs to the effective null P◦◦. Thus the numeraire is the only e-variable that is also a
likelihood ratio between Q and some equivalent element of P◦◦. Finally, EP∗ [X∗] = 1 and
P∗ is maximal in the sense that no other P ∈ P◦◦ equivalent to Q can satisfy P(A) ≥ P∗(A)
for all A with strict inequality for some A.

Proof. Recall that all e-variables are Q-almost surely finite thanks to Theorem 2.5 and the
assumption that Q ≪ P; in particular, P∗ is equivalent to Q. Now, if X∗ is a numeraire,
then Lemma 3.1 yields that P∗ ∈ P◦◦. For the converse, the definition of P∗ and the fact
that it belongs to P◦◦ yield EQ[X/X∗] = EP∗ [X] ≤ 1 for any e-variable X. This is the
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numeraire property. Finally, the definition of P∗ immediately gives EP∗ [X∗] = 1, and P∗

must be maximal because if a ‘dominating’ equivalent P ∈ P◦◦ existed we would get the
contradiction 1 = EP∗ [X∗] < EP[X

∗] ≤ 1.

The following corollary applies in settings where the null hypothesis is ‘generated’, in the
sense of (4.1) below, by a subset E0 of e-variables. Null hypotheses of this kind were studied
by Casgrain et al. (2024) in a sequential setting. The corollary shows that once a candidate
X∗ has been found, it is enough to check the numeraire property for the generating family
E0, provided that it holds with equality for the e-variable which is identically one. The
latter condition means that the RIPr P∗ is a probability measure.

Corollary 4.2. Assume that Q ≪ P. Let E0 be a family of [0,∞]-valued random variables
that generates the null hypothesis in the sense that

P = {P ∈ M1 : EP[X] ≤ 1 for all X ∈ E0}. (4.1)

Let X∗ be a Q-almost surely strictly positive e-variable such that

EQ

[
1

X∗

]
= 1 and EQ

[
X

X∗

]
≤ 1 for all X ∈ E0. (4.2)

Then X∗ is the numeraire and the RIPr belongs to P.

Proof. Let P∗ be given by dP∗/dQ = 1/X∗. Then (4.2) says that P∗ is a probability measure
such that EP∗ [X] ≤ 1 for all X ∈ E0. Thus by (4.1), P∗ belongs to P, hence to P◦◦. The
result now follows from Theorem 4.1.

Thanks to Lemma 2.3, Corollary 4.2 also holds if one has ‘⊃’ instead of ‘=’ in (4.1).
This is intuitive: if one enlarges the generating set E0 beyond what is necessary to specify
P, then the right hand side of (4.1) can become smaller than P. In that case, (4.2) only
gets harder to satisfy, and if we find an e-variable X∗ satisfying it, it surely must still be
the numeraire.

One may wonder if the equality in (4.2) could be replaced by an inequality; this would
amount to a significant strengthening of the corollary. The following example shows that
this is unfortunately not possible.

Example 4.3. Consider the single coin toss space Ω = {0, 1} and the random variable X0

given by X0(0) = 2 and X0(1) = 1/2. Let the singleton set E0 = {X0} generate the null
hypothesis P, which then consists of all probability measures P with P(0) ≤ 1/3. Next, let
the alternative Q be given by Q(0) = 1, Q(1) = 0. We then have EQ[1/X0] = 1/2 < 1
and, trivially, EQ[X/X0] ≤ 1 for X ∈ E0. If Corollary 4.2 were to remain true with an
inequality instead of an equality in (4.2), we would conclude that X0 is the numeraire.
However, this is not so. Indeed, for the e-variable X∗ given by X∗(0) = 3, X∗(1) = 0, we
have EQ[X

∗/X0] = 3/2 > 1. As suggested by the notation, X∗ is in fact the numeraire in
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this example. To see this, just note that every e-variable X must satisfy X(0) ≤ 3 since P
contains the probability measure P with P(0) = 1/3, and hence EQ[X/X∗] = X(0)/3 ≤ 1. It
is also worth noting that EQ[1/X

∗] = 1/3 < 1, which means that we cannot use Corollary 4.2
to detect the numeraire property of X∗. The corollary is not a universal tool, but nonetheless
a useful one as we will see in Section 5.

Next, we consider the dual approach of finding P∗ directly, either by minimizing relative
entropy or, if a candidate is available, checking that (ii) or (iii) of Theorem 3.4 are satisfied.
The difficulty is that the domain is all of P◦◦, which can be hard to describe explicitly.
Matters would become simpler if one could instead work with P. We first show that this is
not possible in general.

Example 4.4. This example shows that Theorem 3.4(ii) may no longer characterize the
RIPr P∗ uniquely if P◦◦ is replaced by P. Let Ω = [0, 1] with its Borel σ-algebra, and let
P = {δω : ω ∈ [0, 1]} be the set of all Dirac point masses. In this case the set of e-variables
is trivial in the sense that a random variable X is an e-variable if and only if 0 ≤ X(ω) ≤ 1
for all ω ∈ [0, 1]. It follows that P◦◦ contains all sub-probabilities on Ω. Now, let the
alternative hypothesis Q be the uniform distribution on the unit interval. We then have
the extreme situation that P does not contain any distribution absolutely continuous with
respect to Q, whereas P◦◦ contains all such distributions. In particular, Theorem 3.4(ii)
would be vacuously true for any candidate P∗ if P◦◦ were replaced by P. In contrast, as
currently stated, Theorem 3.4(ii) will only hold for P∗ = Q, which is the correct answer.

The situation improves in the presence of a reference measure µ with respect to which
Q and all P ∈ P are absolutely continuous. In this setting, if Pn,P are measures with
densities pn = dPn/dµ and p = dP/dµ we say that Pn µ-converges to P if pn converges to
p in probability under µ. A set C of absolutely continuous measures is called µ-closed if it
is closed with respect to µ-convergence. It is called solid if it contains every (nonnegative)
measure P′ that is dominated by some P ∈ C in the sense that P′(A) ≤ P(A) for all A. The
following result characterizes P◦◦ in terms of these concepts.

Lemma 4.5. Suppose all P ∈ P are absolutely continuous with respect to a probability
measure µ. Then all elements of P◦◦ are also absolutely continuous with respect to µ, and
P◦◦ is the smallest µ-closed convex solid set that contains P.

Proof. We identify P with its set of densities C = {p ∈ L0
+(µ) : p = dP/dµ, P ∈ P}. The

polar of C in L0
+(µ) is C◦ = {f ∈ L0

+(µ) : Eµ[pf ] ≤ 1 for all p ∈ C}, which is the set of
(equivalence classes of) random variables that are µ-almost surely equal to a finite e-variable.
We claim that all elements of P◦◦ are absolutely continuous with respect to µ, and that
its set of densities is precisely the bipolar C◦◦ = {p ∈ L0

+(µ) : Eµ[pf ] ≤ 1 for all f ∈ C◦}.
To check absolute continuity, let P ∈ P◦◦ and consider any event A such that µ(A) = 0.
Then ∞1A is an e-variable, hence EP[∞1A] ≤ 1, and thus P(A) = 0. This shows absolute
continuity and lets us identify P◦◦ with its set of densities, namely, the set of p ∈ L0

+(µ)

17



such that Eµ[pX] ≤ 1 for all finite e-variables X. Here we may restrict to finite e-variables
because Eµ[pX] ≤ 1 if and only if Eµ[p(X ∧n)] ≤ 1 for all n ∈ N. The finite e-variables are,
up to µ-nullsets, precisely the elements of C◦, so we deduce that P◦◦ is indeed identified
with C◦◦. Finally, the bipolar theorem of Brannath and Schachermayer (1999, Theorem 1.3)
states that C◦◦ is the smallest µ-closed convex solid set that contains C. This completes
the proof.

Corollary 4.6. If P is finite, then P◦◦ consists of all sub-probabilities that are set-wise
dominated by an element of conv(P). In particular, P◦◦ ∩M1 = conv(P).

Proof. For finite P = {P1, . . . ,Pn} we may take µ = (P1+ · · ·+Pn)/n as reference measure.
In this case conv(P) is already µ-closed and the form of P◦◦ follows from Lemma 4.5.

Lemma 4.5 is powerful because it characterizes all elements of P◦◦. The following
theorem makes use of this to simplify the conditions of Theorem 3.4. Lemma 4.5 also
provides a way of checking that a particular measure belongs to P◦◦. For example, it shows
that limits in probability of (densities of) measures in the convex hull of P must belong
to P◦◦. The latter is however also easy to check directly from the definition of P◦◦ and
Fatou’s lemma, and does not require the bipolar theorem used in the proof of Lemma 4.5.

If a reference measure µ is given, we identify any P ∈ P with its density p = dP/dµ.
Thanks to Lemma 4.5, we may similarly identify P◦◦ with its set of densities. For the sake of
brevity we abuse notation and write, for example, p ∈ P even though, strictly speaking, P
is a set of measures, not densities. Next, given Q with density q, the absolutely continuous
part of any p ∈ P◦◦ has density pa = p1{q>0}, and this is Q-almost surely equal to p itself.
In view of these observations, the conditions (ii) and (iii) of Theorem 3.4 characterizing
the RIPr state, respectively, that EQ[p/p

∗] ≤ 1 and EQ[log(p/p
∗)] ≤ 0, for all p ∈ P◦◦.

Here p∗ = dP∗/dµ. The following theorem simplifies these conditions by showing that,
essentially, it is enough to check them for elements of P rather than P◦◦.

Theorem 4.7. Assume that Q ≪ P and that Q and all elements of P are absolutely
continuous with respect to a probability measure µ. Let p∗ ∈ P◦◦ be equivalent to Q. Then
each of the conditions (i), (ii), and (iii) of Theorem 3.4 is equivalent to

EQ

[
p

p∗

]
≤ 1 for all p ∈ P, (4.3)

as well as to
EQ

[
log

(1− t)p∗ + tp

p∗

]
≤ 0 for all t ∈ (0, 1) and p ∈ P. (4.4)

In either case, p∗ is (the density of) the RIPr.

Remark 4.8. The reason for the asymmetry between Theorem 3.4(iii) and (4.4) is that
the latter only involves p from P, not P◦◦. Since P may not contain p∗, nor be convex, we
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need to explicitly include convex combinations with p∗ in the numerator on the left-hand
side of (4.4). Let us also emphasize that t = 1 is excluded in (4.4). This sometimes makes
the condition easier to check, for instance in the proof of Corollary 4.9 below.

Proof of Theorem 4.7. We know that (i), (ii), and (iii) of Theorem 3.4 are equivalent for
elements of P◦◦ that are equivalent to Q. To prove the theorem it is therefore enough to
show that that Theorem 3.4(ii), (4.3), and (4.4) are equivalent.

We first show that Theorem 3.4(ii) is equivalent to (4.3). The former is clearly a stronger
condition because it states that (4.3) holds with the larger set P◦◦ in place of P. For the
converse, suppose (4.3) holds. Let P ′ be the set of all sub-probability densities dominated
by some element of the convex hull of P, and let P ′′ be the closure in µ-probability of
P ′. It is clear that (4.3) holds for all p ∈ P ′ and then, by Fatou’s lemma, also for all
p ∈ P ′′. We claim that P ′′ is a closed convex solid set that contains P; it must then also
contain P◦◦ since this is the smallest such set by Lemma 4.5. From this we conclude that
Theorem 3.4(ii) holds. To see that P ′′ is closed, convex, and solid, note that by definition,
every p′′ ∈ P ′′ is the limit in probability of some p′n ∈ P ′, meaning that p′n ≤ pn for some
pn in the convex hull of P. From this description convexity follows directly, closedness is
obtained from a diagonal argument, and solidity follows by noting that any p̃ ≤ p′′ is the
limit of p̃ ∧ p′n, which is still dominated by pn and thus belongs to P ′.

The equivalence of (4.3) and (4.4) is argued as the equivalence of (ii) and (iii) of The-
orem 3.4, or the equivalence of the numeraire property and log-optimality in Proposi-
tion 2.4. Specifically, the forward implication uses Jensen’s inequality and (4.3) to get
EQ[log(1− t+ tp/p∗)] ≤ log(1− t+ tEQ[p/p

∗]) ≤ 0, whereas for the reverse implication one
divides (4.4) by t, which is then sent to zero to yield (4.3).

We continue to identify measures with their µ-densities. Theorem 4.7 can be used to
recover the following result of Lardy et al. (2023), who define the maximum description
gain of switching from a particular p ∈ P to some other element of P by

H(Q | p⇝ P) = sup
p′∈P

EQ

[
log

p′

p

]
if Q is absolutely continuous with respect to p, and +∞ otherwise. The following two
corollaries confirm, in particular, that the definition of the RIPr used in this paper, Defini-
tion 3.2, is consistent with existing definitions in the literature.

Corollary 4.9. If P is convex and (pn)n∈N is a sequence in P with H(Q | pn ⇝ P) → 0,
then log pn converges to log p∗ in L1(Q), where p∗ is the RIPr.

Proof. The key observation of Lardy et al. (2023) is that the description gain controls the
L1(Q) distance between the log-densities log pn, showing that they form a Cauchy sequence.
We give a self-contained version of their argument. We claim that for any t > 0 one has

1

9

(
| log t| ∧ | log t|2

)
≤ log

(
2 + t+ t−1

4

)
= log

(
1 + t−1

2

)
+ log

(
t+ 1

2

)
. (4.5)
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To verify the inequality, note that it is equivalent to f(x) ≥ 0 for x > 0, where f(x) =
log((2 + ex + e−x)/4)− (x∧ x2)/9. Since f ′′(x) = 2/(2 + ex + e−x)− (2/9)1(0,1)(x) > 0 for
x ̸= 1, and since f(0) = f ′(0) = 0, we deduce that f(x) > 0 for x > 0.

Setting t = pm/pn in (4.5), taking expectation under Q, and using that P is convex and
hence contains (pm + pn)/2, we get

1

9
EQ

[∣∣∣∣log pm
pn

∣∣∣∣ ∧ ∣∣∣∣log pm
pn

∣∣∣∣2
]
≤ EQ

[
log

(
pm + pn
2pm

)]
+ EQ

[
log

(
pm + pn
2pn

)]
≤ Hm +Hn,

where we use the shorthand notation Hn = H(Q | pn ⇝ P). From the general inequality
E[Y ] ≤ E[Y ∧ Y 2] +

√
E[Y ∧ Y 2] for nonnegative random variables Y we then deduce

EQ [| log pm − log pn|] ≤ 9(Hm +Hn) + 3
√

Hm +Hn.

This shows that log pn, n ∈ N, is a Cauchy sequence in L1(Q) and converges to some limit
which we may write as log p∗ for some Q-almost surely positive random variable p∗. To
ensure that p∗ is the density of a measure that is equivalent to Q we choose it to be zero
on the Q-nullset {q = 0}, where q = dQ/dµ. This is easily achieved by replacing p∗ with
p∗1{q>0} if necessary. Now, convergence in L1 implies convergence in probability, which is
preserved under continuous transformations, so pn converges to p∗ in probability under Q.
Furthermore, for any t ∈ (0, 1) and p ∈ P we have log (1−t)pn+tp

pn
≥ log(1 − t) > −∞, so

Fatou’s lemma yields

EQ

[
log

(1− t)p∗ + tp

p∗

]
≤ lim inf

n→∞
EQ

[
log

(1− t)pn + tp

pn

]
≤ lim

n→∞
Hn = 0 for all p ∈ P.

Theorem 4.7 now shows that p∗ is the RIPr, provided we can argue that p∗ belongs to P◦◦.
This will use that p∗ = 0 on {q = 0}. Specifically, note that P◦◦ contains pn and hence,
being solid, also the smaller random variable pn1{q>0}. Convergence in Q-probability of pn
to p∗ implies convergence in µ-probability of pn1{q>0} to p∗1{q>0} = p∗. Since P◦◦ is closed
in µ-probability, it must contain p∗. This completes the proof.

The maximum description gain is useful in situations where the relative entropy H(Q | p)
is infinite for all p ∈ P. On the other hand, in many cases the relative entropies are finite
and one recovers the original result of Li (1999) on existence of the reverse information
projection, as was also observed by Lardy et al. (2023).

Corollary 4.10. If P is convex, H(Q | p) < ∞ for some p ∈ P, and (pn)n∈N is an
entropy minimizing sequence in P, meaning that H(Q | pn) → infp∈P H(Q | p), then log pn
converges to log p∗ in L1(Q), where p∗ is the RIPr.

Proof. Since the quantities involved are finite for n large enough, limn→∞H(Q | pn ⇝ P) =
limn→∞H(Q | pn)− infp∈P H(Q | p) = 0, and the result follows from Corollary 4.9.
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5 Examples

We now turn to examples. In these examples we consider a single random observation Z
in a measurable space Z. For concreteness we take (Ω,F) to be Z with its σ-algebra, and
Z the canonical random variable. We will always have Q ≪ P. We start with a simple
parametric example, before moving on to more sophisticated nonparametric examples where
there exists no reference measure, in order to display the power and generality of our theory.
We end with another parametric example. Except for the first and the last example, past
work like Wasserman et al. (2020); Grünwald et al. (2024); Lardy et al. (2023) cannot
handle the situations discussed here.

5.1 A parametric null

We start with a simple parametric example from Lardy et al. (2023) involving a real-valued
observation Z in Z = R, and then generalize our observations at the end of this subsection.
The null hypothesis P consists of two unit-variance Gaussians P1 and P2 with mean +1
and −1, and the alternative hypothesis Q is the standard Cauchy distribution. We claim
that the RIPr is P∗ = (P1+P2)/2. This probability measure is equivalent to Q and belongs
to P◦◦, which always contains the convex hull of P. Furthermore, writing p1, p2, p

∗, q for
the Lebesgue densities, we have p2(z) = p1(−z) and q(z) = q(−z) and hence

EQ

[
p1(Z)

p∗(Z)

]
=

∫ ∞

−∞

2p1(z)q(z)

p1(z) + p2(z)
dz = EQ

[
p2(Z)

p∗(Z)

]
.

Since p1 + p2 = 2p∗ we also have EQ[p1(Z)/p∗(Z)] + EQ[p2(Z)/p∗(Z)] = 2, and conclude
that

EQ

[
pi(Z)

p∗(Z)

]
= 1, i = 1, 2.

Thus (4.3) of Theorem 4.7 is satisfied, and P∗ is the RIPr. The numeraire is

X∗ =
2q(Z)

p1(Z) + p2(Z)
. (5.1)

It is worth remarking that the universal inference e-variable (Wasserman et al., 2020) would
be given by q(Z)/max{p1(Z), p2(Z)}, which is clearly smaller than X∗. Note also that we
could have taken Q to be any symmetric distribution with a strictly positive density. More
generally, we could let Q be symmetric with a density q that is not necessarily strictly
positive. In this case the RIPr would be a sub-probability measure with density p∗ =
1
2(p1 + p2)1{q>0}, and the numeraire would still be given by (5.1).

5.2 Bounded mean

This example is a variant of one studied in Waudby-Smith and Ramdas (2023), with the
corresponding duality theory derived explicitly in Honda and Takemura (2010), and gener-
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alized to other classes of distributions in Agrawal et al. (2020). Let Z = [0, 1] so that the
random variable Z takes values in the unit interval. Fix µ ∈ (0, 12) and consider the null
hypothesis that the mean of Z is at most µ,

P = {P ∈ M1 : EP[Z] ≤ µ}.

There is no single dominating measure for P since it contains the uncountable non-dominated
family {δz : z ∈ [0, µ]}. However, P is generated by E0 = {Z/µ} in the sense of Corollary 4.2,
so our strategy will be to locate a candidate numeraire and then apply the corollary to verify
that the candidate is, in fact, the numeraire. The alternative hypothesis Q is the uniform
distribution on [0, 1], and we have Q ≪ P for the simple reason that P(A) = 0 for all P ∈ P
implies that A must actually be empty.

To find a candidate numeraire, we observe that two natural e-variables are Z/µ and the
constant one. All convex combinations of these are also e-variables; equivalently, 1+λ(Z−µ)
is an e-variable for each λ ∈ [0, µ−1]. We now look for a log-optimal e-variable in this class by
directly maximizing f(λ) = EQ[log(1+λ(Z−µ))] over λ ∈ [0, µ−1]. This is a strictly concave
function whose derivative f ′(λ) = EQ[(Z−µ)/(1+λ(Z−µ))] satisfies f ′(0) = 1

2−µ > 0 and
f ′(µ−1) = EQ[µ − µ2/Z] = −∞. Thus there is a unique interior maximizer λ∗ ∈ (0, µ−1)
which is characterized by the first-order condition

EQ

[
Z − µ

1 + λ∗(Z − µ)

]
= 0. (5.2)

Since Q is the standard uniform distribution we can be more explicit. Nothing changes if
we first multiply both sides by λ∗, and then the left-hand side becomes∫ 1

0

λ∗(z − µ)

1 + λ∗(z − µ)
dz = 1−

∫ 1

0

1

1 + λ∗(z − µ)
dz = 1− 1

λ∗ log

(
1 + λ∗(1− µ)

1− λ∗µ

)
.

Thus (5.2) for λ∗ ∈ (0, µ−1) is equivalent to

1 + λ∗(1− µ)

1− λ∗µ
= eλ

∗
,

which is easily solved numerically. This leads us to the candidate numeraire

X∗ = 1 + λ∗(Z − µ),

which is strictly positive and finite. To verify that this is indeed the numeraire, we use (5.2)
to get, for any e-variable of the form X = 1 + λ(Z − µ) = X∗ + (λ− λ∗)(Z − µ), that

EQ

[
X

X∗

]
= 1 + (λ− λ∗)EQ

[
Z − µ

1 + λ∗(Z − µ)

]
= 1. (5.3)

Taking λ = 0 and λ = 1/µ we see that (4.2) of Corollary 4.2 is satisfied and, hence, that
X∗ is the numeraire.
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Remark 5.1. For the null hypothesis considered here, we conjecture that the set of all
e-variables is given by

E = {X ∈ F+ : X ≤ 1 + λ(Z − µ) for some λ ∈ [0, µ−1]}.

It is clear that every such X is an e-variable, but it is less obvious that every e-variable
is of this form. Nonetheless, equipped with this knowledge the calculation in (5.3) would
directly yield the numeraire property of X∗. The usefulness of Corollary 4.2 is that a
complete description of E is not required; it is enough to check (5.3) for X = 1 and for X
in the generating set E0.

5.3 Sub-Gaussian with nonpositive mean

Now take Z = R and consider the null hypothesis that the observation Z has a 1-sub-
Gaussian distribution with nonpositive mean. That is, we set

P =
{
P ∈ M1 : EP[e

λZ−λ2/2] ≤ 1 for all λ ∈ [0,∞)
}
.

The ‘one-sided’ restriction λ ∈ [0,∞) implies that Z has nonpositive (potentially nonzero
and even infinite) mean under any P ∈ P. Indeed, monotone convergence and the definition
of P yield EP[Z] = limλ↓0 EP[(e

λZ − 1)/λ] ≤ limλ↓0(e
λ2/2 − 1)/λ = 0. As in the previous

example, P does not admit any dominating measure. It is generated by the family E0 =
{eλZ−λ2/2 : λ ∈ [0,∞)}, so we will again look for a candidate numeraire and verify it using
Corollary 4.2. We let the alternative hypothesis Q be normal with mean µ > 0 and unit
variance. As in the previous example, and for the same reason, we have Q ≪ P.

To find a candidate numeraire we maximize EQ[logX] over X ∈ E0. That is, we maxi-
mize EQ[λZ − λ2/2] = λµ − λ2/2 over λ ∈ [0,∞). The maximizer is λ∗ = µ, which yields
the candidate

X∗ = eµZ−µ2/2.

This is finite and strictly positive. Moreover, (4.2) of Corollary 4.2 is satisfied because

EQ

[
eλZ−λ2/2

eµZ−µ2/2

]
= EQ

[
e(λ−µ)(Z−µ)−(λ−µ)2/2

]
= 1. (5.4)

We conclude that X∗ is the numeraire and, consequently, that the RIPr P∗ is the standard
normal distribution. This example can be easily generalized to σ-sub-Gaussian distributions
for σ ̸= 1, but we omit this for brevity.

Remark 5.2. We conjecture that the set of all e-variables is given by

E =

{
X ∈ F+ : X ≤

∫
[0,∞)

eλZ−λ2/2π(dλ) for some probability measure π on [0,∞)

}
.

23



Although it is clear that every such X is an e-variable, showing that this really includes all
e-variables seems to require sophisticated functional analytic methods that are beyond the
scope of this paper. Fortunately, Corollary 4.2 sidesteps this issue. Nonetheless, taking the
description of E for granted the numeraire property can be checked directly. Indeed, for a
general e-variable X ≤

∫
[0,∞) e

λZ−λ2/2π(dλ), where π is a probability measure on [0,∞),
Tonelli’s theorem and (5.4) give

EQ

[
X

X∗

]
≤

∫
[0,∞)

EQ

[
eλZ−λ2/2

eµZ−µ2/2

]
π(dλ) = 1.

Finally, let us mention that Ramdas et al. (2020) prove that eλZ−λ2/2 is not just an e-
variable, but an admissible one for every λ ≥ 0.

5.4 Symmetric distributions

Continue to take Z = R. We now consider the null hypothesis that Z is symmetric,

P = {P ∈ M1 : Z and − Z have the same distribution under P} ,

which is again a non-dominated family. We also fix an alternative hypothesis Q that
admits a Lebesgue density q. It is natural to conjecture that the RIPr is given by the
symmetrization P̃ of Q, whose density is p̃(z) = (q(z) + q(−z))/2. However, this cannot
quite be true in general because P̃ need not be equivalent to Q. Instead, we claim that the
RIPr is the measure P∗ with density

p∗(z) =
1

2
(q(z) + q(−z))1{q(z)>0}.

This is the absolutely continuous part of P̃ with respect to Q. It is a probability measure
if Q has symmetric support, and otherwise a proper sub-probability measure. Note that P̃
belongs to P, which in particular shows that Q ≪ P since Q ≪ P̃. (Alternatively, we again
have that P(A) = 0 for all P ∈ P implies that A is empty, which also yields Q ≪ P.)

To check that P∗ is the RIPr we will show that the implied candidate numeraire is, in
fact, the numeraire. It is given by

X∗ =
dQ

dP∗ =
2q(Z)

q(Z) + q(−Z)
.

We claim that the set of all e-variables is

E = {X ∈ F+ : X ≤ 1 + ϕ(Z) for some odd function ϕ} ,

where we recall that a function ϕ is odd if ϕ(z)+ϕ(−z) = 0 for all z ∈ R. Indeed, any X of
this form satisfies EP[X] ≤ 1+EP[ϕ(Z)] = 1, where the symmetry of Z and the oddness of ϕ
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were used to get EP[ϕ(Z)] = EP[ϕ(−Z)] = −EP[ϕ(Z)] and hence EP[ϕ(Z)] = 0. Conversely,
for any e-variable X = f(Z) we may write X = 1

2(f(Z) + f(−Z)) + ϕ(Z) where ϕ(z) =
1
2(f(z)− f(−z)) is the odd part of f(z). For any z ∈ R we use the symmetric distribution
P = 1

2(δz+δ−z) and the fact that X is an e-variable to get 1
2(f(z)+f(−z)) = EP[f(Z)] ≤ 1.

Hence X ≤ 1+ϕ(Z) as required. We could also have reached this conclusion by using that
every admissible e-variable is of the form 1 + ϕ(Z) for some odd function ϕ as shown by
Ramdas et al. (2020).

We can now verify the numeraire property. First, X∗ is Q-almost surely strictly positive
and finite, and it is an e-variable because it can be written as X∗ = 1 + ϕ∗(Z) where

ϕ∗(z) =
q(z)− q(−z)

q(z) + q(−z)

is odd. Next, for any e-variable X ≤ 1 + ϕ(Z) where ϕ is odd we get

EQ

[
X

X∗

]
≤ EQ

[
(1 + ϕ(Z))

q(Z) + q(−Z)

2q(Z)

]
= E

P̃

[
(1 + ϕ(Z))1{q(Z)>0}

]
≤ E

P̃
[1+ϕ(Z)] = 1.

This confirms the numeraire property. Finally, let us remark that it is not really necessary
that Q admit a density. The symmetrization of Q is still well-defined as P̃ = 1

2(Q + Q̃)

where Q̃ is the distribution of −Z under Q, or equivalently, the pushforward of Q under the
reflection map z 7→ −z. The RIPr is then the absolutely continuous part P∗ = P̃a, and the
numeraire is any nonnegative version of the Radon–Nikodym derivative dQ/dP∗ such that
dQ/dP∗ − 1 is odd.

5.5 Exponential family with one-dimensional sufficient statistic

Here Z can be general and is equipped with a reference measure µ. Consider an exponential
family of densities

pθ(z) = eθT (z)−A(θ)

with respect to µ, where A is convex and differentiable, the sufficient statistic T (z) is
one-dimensional, and the natural parameter θ ranges in some interval Θ ⊂ R. The null
hypothesis is P = {pθ : θ ∈ Θ0} for some closed subset Θ0 ⊂ Θ, and the alternative is
q = pθ1 for some θ1 ∈ Θ. We suppose that Θ0 has a smallest element θ∗ and that θ1 < θ∗.
It is natural to conjecture that pθ∗ is the RIPr. To confirm this, it suffices to verify (4.3).
Using the standard formula for the moment generating function of the sufficient statistic
we get

EQ

[
pθ
pθ∗

]
= EQ

[
e(θ−θ∗)T (Z)−A(θ)+A(θ∗)

]
= eA(θ1+θ−θ∗)−A(θ1)−A(θ)+A(θ∗)
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for all θ ∈ Θ0. Since A is convex, its derivative A′ is increasing. Together with the
fundamental theorem of calculus, as well as θ1 < θ∗ and θ − θ∗ ≥ 0 for θ ∈ Θ0, this gives

A(θ1 + θ − θ∗)−A(θ1) =

∫ 1

0
(θ − θ∗)A′(θ1 + t(θ − θ∗))dt

≤
∫ 1

0
(θ − θ∗)A′(θ∗ + t(θ − θ∗))dt

= A(θ)−A(θ∗).

We conclude that EQ[pθ/pθ∗ ] ≤ 1 for all θ ∈ Θ0 so that (4.3) holds and pθ∗ is indeed the
RIPr. As a result the numeraire is the likelihood ratio

X∗ =
pθ1(Z)

pθ∗(Z)
= e(θ1−θ∗)T (Z)−A(θ1)+A(θ∗).

We refer to Csiszar and Matus (2003) for an extensive study of information projections
involving exponential families.

Remark 5.3. When P is a parametric family of distributions it is often easier to first find
the RIPr and then use it to find the numeraire. Here we used Theorem 4.7 to confirm that
the candidate pθ∗ was indeed the RIPr. We could also have minimized relative entropy
and used Corollary 4.10. Since the corollary assumes that P is convex, which fails here, we
would have had to apply it with the convex hull of P and perform the minimization over
this set.

6 Beyond the logarithm: reverse Rényi projection

The duality between log-utility and relative entropy can be extended to other utilities and
divergences. One case where this can be done rigorously using the results presented so far
is the power utility

U(x) =
x1−γ

1− γ

for γ > 1. In this section we outline the resulting theory using a well-known method from
mathematical finance pioneered by Karatzas et al. (1991) and Kramkov and Schachermayer
(1999). However, in contrast to that literature we work as in Sections 2 and 3 with com-
pletely arbitrary P and Q.

The utility function U is continuous, increasing, concave, differentiable, and bounded
from above by zero. Lemma 2.8 is therefore applicable and yields an optimal e-variable for
the maximization problem

sup
X∈E

EQ[U(X)].
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We denote the maximizer by X∗
γ and call it the U -optimal e-variable. Observe that

EQ[U
′(X∗

γ)X
∗
γ ] = EQ

[
(X∗

γ)
1−γ

]
= (1− γ)EQ[U(X∗

γ)] ≤ (1− γ)U(1) = 1,

where we use the convention U ′(∞)∞ = 0 and where the inequality relies on the fact that
the constant e-variable X = 1 is suboptimal and that γ > 1. Thus Lemma 2.8 further
implies the first-order condition

EQ

[
(X∗

γ)
−γX

]
≤ EQ

[
(X∗

γ)
1−γ

]
, X ∈ E , (6.1)

where (X∗
γ)

−γX is understood as zero on {X∗
γ = ∞}. This will allow us to identify an

analog of the RIPr which we denote by P∗
γ . In the fully degenerate case where X∗

γ = ∞,
Q-almost surely, we simply set P∗

γ = 0. In the more interesting case where X∗
γ is finite with

positive Q-probability, we let P∗
γ be the measure whose density with respect to Q is

dP∗
γ

dQ
=

(X∗
γ)

−γ

EQ

[
(X∗

γ)
1−γ

] . (6.2)

Thanks to (6.1), P∗
γ belongs to P◦◦. In analogy with (3.3) we expect P∗

γ to minimize a suit-
able dual objective function. To discover its form, we look for a weak duality inequality and
introduce the Legendre transform V (y) = supx>0{U(x) − xy}. Evaluating the supremum
shows that

V (y) = − y1−1/γ

1− 1/γ
.

Now, for any e-variable X, any P ∈ P◦◦, and any y ≥ 0, we have

EQ[U(X)] ≤ EQ[U(X)] + y(1− EP[X])

≤ EQ

[
U(X)− y

dPa

dQ
X

]
+ y

≤ EQ

[
V

(
y
dPa

dQ

)]
+ y

= − y1−1/γ

1− 1/γ
EQ

[(
dPa

dQ

)1−1/γ
]
+ y.

To obtain a tight bound we minimize the right-hand side over y. A computation shows that
the minimizer is y = EQ[(dP

a/dQ)1−1/γ ]γ , which is finite, possibly zero, thanks to Jensen’s
inequality. With this choice we get, for any e-variable X and any P ∈ P◦◦, the weak duality
inequality

EQ[U(X)] ≤ 1

1− γ
EQ

[(
dPa

dQ

)1−1/γ
]γ

.
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Equality is achieved by taking X = X∗
γ and P = P∗

γ , so we conclude that P∗
γ solves the

minimization problem

inf
P∈P◦◦

1

1− γ
EQ

[(
dPa

dQ

)1−1/γ
]γ

with optimal value equal to EQ[U(X∗
γ)]. Observe that the quantity being minimized is an

increasing function of the Rényi divergence of order 1/γ of Q from P,

R1/γ(Q | P) = 1

1/γ − 1
logEQ

[(
dPa

dQ

)1−1/γ
]
.

Thus P∗
γ also minimizes the Rényi divergence, and as such it is known as the reverse Rényi

projection of order 1/γ of Q on P◦◦. In particular, we see that the reverse Rényi projection
always exists if the order 1/γ is in (0, 1). We summarize the above observations, along with
a few others, in the following theorem.

Theorem 6.1. Let γ > 1 and U(x) = x1−γ/(1− γ). Then

sup
X∈E

EQ[U(X)] =
1

1− γ
exp

(
(1− γ) inf

P∈P◦◦
R1/γ(Q | P)

)
, (6.3)

and the supremum and infimum are attained by X∗
γ ∈ E and P∗

γ ∈ P◦◦ related by (6.2).
Furthermore, X∗

γ is the Q-almost surely unique maximizer, and P∗
γ is the unique minimizer

among the elements of P◦◦ that are absolutely continuous with respect to Q. Finally, X∗
γ

can be expressed in terms of P∗
γ by

X∗
γ =

(
dP∗

γ

dQ

)−1/γ /
EQ

[(
dP∗

γ

dQ

)1−1/γ
]
, (6.4)

which is understood as +∞ on the set where dP∗
γ/dQ = 0.

Proof. The equality in (6.3) and the form of the solutions were shown above. The Q-almost
sure uniqueness of X∗

γ follows from strict concavity of the function f(X) = EQ[U(X)]
on E . Since γ > 1, the Rényi divergence is a decreasing transformation of the function
g(P) = EQ[(dP

a/dQ)1−1/γ ], which is thus maximized by P∗
γ . The function g(P) is strictly

concave on the set of elements of P◦◦ that are absolutely continuous with respect to Q.
Thus P∗

γ is the unique maximizer of g(P), and the unique minimizer of the Rényi divergence.
Finally, (6.4) is obtained by noting that

EQ

[
(X∗

γ)
1−γ

]
= EQ

[(
dP∗

γ

dQ

)1−1/γ
]γ

and then inverting (6.2).
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Remark 6.2. Lardy et al. (2023, Section V) mention the e-variable (dP∗
γ/dQ)

−1/γ con-
structed using the reverse Rényi projection. This e-variable is strictly smaller than X∗

γ ,
because the denominator in (6.4) is strictly smaller than one by Jensen’s inequality.

Remark 6.3. The method described above can be applied to more general utility functions,
resulting in projections associated with more general divergences. An interesting question
is whether all f -divergences can be covered, at least under suitable technical assumptions.

7 Composite alternatives and universal inference

We now briefly discuss implications of our work for composite alternatives, as well as its
relation to universal inference (Wasserman et al., 2020). We purposefully keep the discussion
informal.

Method of mixtures and plug-in method. Despite our focus on point alternatives,
there are two natural ways in which this theory has immediate implications for composite
alternatives Q. When testing P against Q for i.i.d. data (Zt)t∈N, one sensible goal is to
derive e-variables Xt depending on the sample Z1, . . . , Zt that are ‘asymptotically optimal’
in the sense that for all Q ∈ Q, we would have EQ⊗t [t−1 logXt] → H(Q | P∗(Q)) as
the sample size t increases to infinity, where we use P∗(Q) to denote the RIPr of Q onto
P◦◦. Because H(Q | P∗(Q)) is the highest achievable growth rate if the data is generated
according to Q, the above says that this optimal growth rate is achieved asymptotically no
matter which Q ∈ Q is the true data generating distribution. This is clearly a desirable
feature whenever the data comes from an unknown element of Q.

The literature deals with composite alternatives in two ways (Ramdas et al., 2023).
The first is called the method of mixtures: using a distribution π over Q and assuming for
simplicity that the elements of Q are mutually equivalent, one takes the mixture likelihood
ratio Xt =

∫
Q
∏

i≤t
dQ

dP∗(Q)(Zi)π(dQ). The second method is called the plug-in method :

using part of the sample Z1, . . . , Zt one chooses a particular representative element Q̂t of
Q and uses this to obtain the corresponding numeraire as a function of the remaining
part of the sample. This method is an instance of sample-splitting, used for instance in
universal inference (Wasserman et al., 2020). In either case we get valid e-variables, and
under relatively weak conditions on π or Q̂t one can prove that the resulting e-variable is
indeed asymptotically optimal. Establishing tight necessary and sufficient conditions for
such asymptotic optimality is left to future work.

Comparison to universal inference. We assume that there exists a common reference
measure µ, and follow the notational conventions introduced before Theorem 4.7 to identify
distributions with their respective densities, written in lowercase. For a point alternative
q over the data Z, the method of universal inference (Wasserman et al., 2020) boils down
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to constructing the e-variable XUI = q(Z)/pmax(Z) where pmax(Z) = supp∈P p(Z) is the
maximum likelihood. (Strictly speaking, the supremum here should be understood as an
essential supremum under the reference measure.) To check that this is indeed an e-variable,
simply note that for any P ∈ P with density p we have

EP

[
q(Z)

pmax(Z)

]
≤ EP

[
q(Z)

p(Z)

]
= 1.

To compare the universal inference e-variable with the numeraire X∗ = q(Z)/p∗(Z), we
first claim that the RIPr satisfies p∗(Z) ≤ pmax(Z) up to µ-nullsets. This is obvious if the
RIPr belongs to P, but in general it only belongs to P◦◦. In this case the claim follows by
applying the following lemma with f = pmax.

Lemma 7.1. Let f be a random variable such that f ≥ p, µ-almost surely, for all p ∈ P.
Then f ≥ p, µ-almost surely, for all p ∈ P◦◦.

Proof. It is clear that f ≥ p, µ-almost surely, for all sub-probability densities p dominated
by some element of the convex hull of P, and then also for all p in the µ-probability closure
of this set. This was called P ′′ in the proof of Theorem 4.7, where it was shown that P ′′ is
closed, convex, and solid. By Lemma 4.5, P ′′ contains P◦◦, completing the proof.

We thus see that p∗(Z) ≤ pmax(Z), and hence X∗ ≥ XUI, up to µ-nullsets. In non-
degenerate situations involving a composite null hypothesis, the inequality will be strict
with positive µ-probability. Thus, in such cases, the relatively general method of universal
inference is in fact inadmissible. We end by noting that our numeraire imposes weaker
assumptions than the universal inference work, which needs a reference measure to define
likelihoods.

8 Summary

We established that under no assumptions on the composite null P and point alternative Q,
there exists a unique special e-variable X∗, the numeraire, which satisfies EQ[X/X∗] ≤ 1 for
every other e-variable X, and is also log-optimal. Further, X∗ can be written as a likelihood
ratio dQ/dP∗ for a unique (sub-)probability distribution P∗, absolutely continuous with
respect to Q and belonging to the bipolar P◦◦ of P (the effective null hypothesis). The
numeraire is the only e-variable of this form. A strong duality theory establishes that
EQ[logX

∗] equals the minimum relative entropy of Q to P◦◦, achieved by P∗. This fully
generalizes (to composite nulls) the fact that the likelihood ratio is the log-optimal e-variable
for point nulls. We gave several sufficient conditions to identify and certify the numeraire,
and showed that these were easy to verify in several nonparametric examples without a
reference measure that were out of the reach of earlier methods. We also showed how
to generalize our theory beyond log-optimality. Our work has implications for composite
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alternatives and for sequential testing using nonnegative supermartingales and ‘e-processes’
(sequential generalizations of e-variables). The latter topic introduces additional subtleties
through dealing with filtrations and stopping times, a direction we are currently pursuing.

A A generalized Lebesgue decomposition

The following generalized Lebesgue decomposition into a ‘regular’ and ‘singular’ part is
used in the proof of Lemma 2.8. As always, we work on a given measurable space (Ω,F).
Given a nonempty subset P ⊂ M+, an event N ∈ F is called P-negligible if P(N) = 0 for
all P ∈ P.

Lemma A.1. For any Q ∈ M+ and nonempty P ⊂ M+ there is a unique decomposition
Q = Qr + Qs with Qr,Qs ∈ M+ such that Qr ≪ P and Qr,Qs are singular, meaning that
there exists a P-negligible event N ∈ F such that Qs(N c) = 0. The event N is essentially
unique, i.e., unique up to Q- and P-nullsets for all P ∈ P. In particular, any other P-
negligible event N ′ satisfies Q(N ′ \N) = 0.

Proof. Define α = supN∈N Q(N) where N = {N ∈ F : P(N) = 0 for all P ∈ P} is the
family of all P-negligible sets. Note that N is closed under countable unions. Pick a
maximizing sequence Nn and set N =

⋃
nNn. Then α ≥ Q(N) ≥ Q(Nn) → α, so Q(N) =

α. Now define Qs(A) = Q(A ∩ N) and Qr(A) = Q(A ∩ N c). To see that Qr ≪ P,
suppose this is not the case. Then there is some N ′ ∈ N with Qr(N ′) > 0, and hence
Q(N ∪N ′) ≥ Qs(N) +Qr(N ′) > α, a contradiction. To show uniqueness, suppose we have
two tuples Qr

i ,Q
s
i , Ni for i = 1, 2 with the stated properties. Set N = N1 ∪ N2 ∈ N and

note that Qs
i (N

c) ≤ Qs
i (N

c
i ) = 0. Then for any A, we have Q(A∩N) = Qs

i (A∩N) = Qs
i (A).

Thus Qs
1 = Qs

2, and then also Qr
1 = Qr

2. Furthermore, the symmetric difference N1∆N2 is
a Q-nullset because Q(N1 ∩ N c

2) = Qr
2(N1) = 0 and similarly Q(N2 ∩ N c

1) = 0. Since also
N1∆N2 belongs to N , the essential uniqueness statement follows. Finally, if N ′ ∈ N then
Q(N ′ \N) = Qr(N ′ \N) + Qs(N ′ \N) ≤ Qr(N ′) + Qs(N c) = 0.
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