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In this appendix, we apply the convergence results of Section 2 in Oyarzun and Ruf (2014) to a

framework that nests several models of individual and social learning.

B.1 General framework for learning applications

We consider a finite set W of individuals called the population. These individuals choose actions in some

finite set A that yield some payoff in the set [0, 1]. Formally, if individual i ∈ W chooses action a ∈ A

at time t ∈ N, she obtains a payoff, denoted by x
(i)
t (a) or simply x

(i)
t . We denote individual i’s chosen

action at time t by a
(i)
t . Individual i may only observe the payoff she obtained or she may observe both

the obtained and forgone payoffs, i.e., the whole profile {x(i)
t (a)}a∈A. In these cases it is said that the

individual has partial information or full information, respectively. We will consider these two possibilities

below when we analyze models of individual learning.

Since we consider applications to social learning as well, individuals may also be allowed to observe

the chosen action(s) and obtained payoff(s) of other individual(s) in the population. The set of individuals

that i ∈ W observes at time t ∈ N (including herself) is called the sample and is denoted by s
(i)
t . The

profile of actions chosen by the individuals in sample s at time t ∈ N is denoted by a
(s)
t for all (non-empty)

s ∈ P(W ), where P(W ) denotes the set of all subsets of W , and the corresponding profile of payoffs is

denoted by x
(s)
t (a

(s)
t ), or simply by x

(s)
t .1

We now specify the framework:

(a) Probability space. The set of states that may occur at time t ∈ N, corresponds to the set

Ωt =
(
[0, 1]|A| × P(W )

)|W | × [0, 1]|W |. The first two components of the state correspond to the obtained
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1In principle, the analysis here could allow for more possibilities. For instance, individuals could observe the forgone

payoffs of other individuals as well. Our choice of the level of generality of the analysis reflects our attempt to capture the

main elements that drive the results.
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and forgone payoffs {x(i)
t (a)}i∈W,a∈A and observed samples {s(i)

t }i∈W . The third component [0, 1]|W |

corresponds to all possible realizations of a randomization device that, as described below, determines

the actual choice of each individual, given her probabilistic rule of choice. We denote the corresponding

Borel sigma algebra by Ft.

Now, rewrite Ω as the product space of two spaces ΩE and ΩR (along with the corresponding sigma

algebras); more precisely, write

Ω = ΩE × ΩR :=
∞∏
t=1

(
[0, 1]|A| × P(W )

)|W |
×
∞∏
t=1

[0, 1]|W | =:
∞∏
t=1

ΩE
t ×

∞∏
t=1

ΩR
t =:

∞∏
t=1

Ωt,

with ΩE
t :=

(
[0, 1]|A| × P(W )

)|W |
, ΩR

t := [0, 1]|W |, and Ωt = ΩE
t × ΩR

t for all t ∈ N.

It remains to specify the probability distribution P over (Ω,⊗∞t=1Ft). We will always assume that P

is the product measure of two probability measures; to wit, P = PE × PR, with PE and PR defined over

the respective spaces. In particular, the two components corresponding to each state of the world, are

independent.

The first component PE of P specifies the environment in which individuals live, such as the distribution

of the payoffs. Individuals are not assumed to know PE . In particular, they do not know the distribution

over the payoff profile. We also assume that the distribution of x
(i)
t (a) does not depend on i ∈ W for all

a ∈ A and and t ∈ N. We denote by x
(s)
t = x

(s)
t (a(s), ω) the profile of payoffs obtained at time t ∈ N by a

sample of individuals s if they choose the actions a(s) and the state of the world is ω ∈ Ω.

The second component PR of P is a product measure (corresponding to different times) of product

measures (corresponding to different individuals) of |W | uniformly distributed random variables over [0, 1].

The realizations of these random devices determine individuals’ choices. Towards this end, we define the

configuration space S as the set that contains all possible profiles of vectors of probabilities of choosing

each action, i.e., S = (∆(A))|W |. That is, the component σ
(i)
t (a) of σt = (σ

(1)
t , . . . , σ

(|W |)
t ) ∈ S represents

the probability that individual i ∈ W chooses action a ∈ A at time t + 1 for all t ∈ N0. Formally, each

individual i partitions the interval [0, 1] in |A| subintervals assigned to each action and whose measures

are the elements of σ
(i)
t . The realization of the component of the randomization device corresponding to

individual i determines that action a is chosen if that realization is contained in the interval of action a.

(b) Behavioral rule. The initial probabilities of choosing each action, described by the configuration

σ0 ∈ S, are exogenously given. Upon observing the new information at time t ∈ N, e.g., obtained payoffs

or other individuals’ choices and payoffs, the probabilities of choosing each action are updated according

to a function called the behavioral rule, denoted by L
(i)
t−1. Hence, σ

(i)
t = L

(i)
t−1(·) for all i ∈ W and t ∈ N,

which defines a S–valued process {σt}t∈N0 . The specification of the behavioral rule L
(i)
t−1 varies across

the different learning models that we consider, as the information on actions and payoffs observed by

the individual at time t depends on whether we are studying a setup where forgone payoffs are observed
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(along with the obtained payoff), and whether we analyze individual or social learning. In all applications,

however, the “shape” of L
(i)
t−1 is assumed to be determined by the information available to individual i up

to time t− 1. Thus, at time t− 1, we already know how each possible realization of the random variables

that will be observed at time t will be mapped to updated probabilities of choosing each action.

(c) Aggregator and optimality. Given an optimality criterion O to determine the set of optimal

actions A∗,O, we are interested in the average probability of choosing an optimal action implied by any

given configuration σ ∈ S. Towards this end, we introduce an aggregator AO that maps S to [0, 1] defined

by

AO(σ) =
1

|W |
∑
i∈W

∑
a∈A∗,O

σ(i)(a) (B.1)

for all σ ∈ S. To avoid trivial cases, we shall assume that both A∗,O and A \A∗,O are non-empty.

Given ω ∈ Ω, the components of ω in ΩR
t in conjunction with σt−1(ω) ∈ S determine the profile of

choices {a(i)
t }i∈W = {a(i)

t (ω, σ
(i)
t−1(ω))}i∈W at each time t ∈ N. Convergence to optimality of a learning

model, with respect to the criterion O, is defined as the event that all individuals in the population

converge to choose an optimal action with probability one, i.e., the event {limt↑∞AO(σt) = 1}.

While many criteria could be considered, in the applications below we focus on expected value (O = E)

and first-order stochastic dominance (O = S). Accordingly, we define

A∗,E :=
{
a ∈ A : Et

[
x

(1)
t+1(a)

]
≥ Et

[
x

(1)
t+1(b)

]
almost surely for all b ∈ A and t ∈ N0

}
and

A∗,S :=
{
a ∈ A : Et

[
u
(
x

(1)
t+1(a)

)]
≥ Et

[
u
(
x

(1)
t+1(b)

)]
almost surely for all b ∈ A, t ∈ N0 and u ∈ U

}
,

where U denotes the set of all bounded, non-decreasing functions u : [0, 1]→ R. Note that both sets A∗,E

and A∗,S are determined by the environment, i.e., the underlying probability measure P.

B.2 Individual learning

In this section, we focus on individual learning, thus, |W | = 1. At each time t ∈ N, the individual observes

the payoff she would have obtained from any action if she had chosen such an action or some part of

this information. The behavioral rule, denoted by Lt−1,2 is a function mapping the current probabilities

of choosing each action at time t ∈ N and the observed part of the vector of actions and corresponding

payoffs to the probability of choosing each action at time t+ 1.

2For the analysis of individual learning we omit the superscript (i).
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First we consider the case of partial information (P), i.e., the individual only observes the payoff of

the action she chose. We focus on the class of monotone behavioral rules LP = {LPt }t∈N0 , where

LPt : A× [0, 1]×∆(A)→ ∆(A)

is given by

LPt (a, x, σ)a = σ(a) + (1− σ(a)) (Ct,a,a +Dt,a,ax) and (B.2)

LPt (b, x, σ)a = σ(a)− σ(a)(Ct,b,a +Dt,b,ax) (B.3)

for all t ∈ N0, a ∈ A, b ∈ A \ {a}, x ∈ [0, 1], and σ ∈ ∆(A). Here, {Ct,b,a}t∈N0,a,b∈A and {Dt,b,a}t∈N0,a,b∈A

are two sequences of deterministic matrixes satisfying

Ct,a,a =
∑
c∈A

σ(c)Ct,c,a, Dt,a,a =
∑
c∈A

σ(c)Dt,c,a, Ct,b,a ≥ 0, Dt,b,a > 0, and Ct,b,a +Dt,b,a ≤ 1

for all a, b ∈ A and t ∈ N0. Börgers et al. (2004) prove, in a one-period setup, that these behavioral rules

yield, in expectation, an increase in the probability of choosing an expected payoff maximizing action.3

The analysis also covers the case of full information (F), i.e., the individual observes the payoff

that she would have obtained with each action. We focus on pairwise symmetric-switch behavioral rules

LF = {LFt }t∈N0 , defined as

LFt : [0, 1]|A| ×∆(A)→ ∆(A),

with

LFt
(
(x(c))c∈A , σ

)
a

= σ(a) + σ(a)
∑
b∈A

σ(b)gt,b,a(x(b), x(a)) (B.4)

for all t ∈ N0, a ∈ A, x ∈ [0, 1]|A|, and σ ∈ ∆(A); here, {gt,b,a : [0, 1]2 → [−1, 1]}t∈N0,b,a∈A is a family of

symmetric-switch functions:

Definition B.1. We say that a function g : [0, 1]2 → [−1, 1] is symmetric-switch if

1. g(x1, x2) = −g(x2, x1) for all x1, x2 ∈ [0, 1],

2. g(x1, ·) is non-decreasing for all x1 ∈ [0, 1], and

3. g(x1, x2) ≥ 0 for all x1, x2 ∈ [0, 1] with x2 > x1.

3Corollaries B.1 and B.2 below would also hold in a more general setup. First, the strict positivity of {Dt,b,a}t∈N0,b,a∈A

is more than required (see, e.g., Börgers et al. (2004)). Second, {Ct,b,a}t∈N0,b,a∈A and {Dt,b,a}t∈N0,b,a∈A might depend on

the configuration σ ∈ S; in particular, the lower bound on {Ct,b,a}t∈N0,b,a∈A could be weakened, so that LP might have a

penalizing component, as well. Third, {Ct,b,a}t∈N0,b,a∈A and {Dt,b,a}t∈N0,b,a∈A do not need to be deterministic, but might

be {F[0,t]}t∈N0–adapted.
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Two simple examples of symmetric-switch functions are the functions g1(x1, x2) = 1x2>x1 − 1x1>x2

and g2(x1, x2) = xp2 − x
p
1 for some p ≥ 0.

We say that g is linear in the difference if g(x1, x2) = c(x2 − x1) for some scalar c ≥ 0 for all

x1, x2 ∈ [0, 1]. We say that LF is linear in the differences if gt,b,a is linear in the difference for some scalar

ct,b,a ≥ 0, for all t ∈ N0, a ∈ A, and b ∈ A \ {a}.

Pairwise symmetric-switch behavioral rules can be interpreted as if the individual was making pairwise

comparisons between all possible pairs of actions and moving probability from one action to the other.

The use of symmetric-switch functions guarantees that no probability is swapped when the individual

is comparing two actions that yielded the same payoff. Furthermore, when the payoff of one action is

greater than the payoff of another action, probability is moved toward the action that yielded the higher

payoff in the corresponding pairwise comparison.

As shown below, for any optimality criterion O, the expected relative hazard rates of the probability

of choosing an optimal action, in the partial and full information setup, are bounded from below by

δP,Ot := min
a∈A∗,O,b∈A\A∗,O

{Dt,b,a(Et[xt+1(a)]− Et[xt+1(b)])} and (B.5)

δF,Ot := min
a∈A∗,O,b∈A\A∗,O

{Et[gt,b,a(xt+1(b), xt+1(a))]} , (B.6)

respectively, for all t ∈ N0.

Regardless the optimality criterion O is expected value or first-order stochastic dominance, we have

δP,Ot ≥ 0 for all t ∈ N0. Similarly, we have δF,St ≥ 0; to see this, fix a ∈ A∗,S , b ∈ A \ {a}, t ∈ N0, and the

symmetric-switch function g(·, ·) ≡ gt,b,a(·, ·). By the rule of iterated expectations,

Et[g(xt+1(b), xt+1(a))] = Et[E[g(xt+1(b), xt+1(a))|F[0,t] ∨ σ(xt+1(b))]]

≥ Et[E[g(xt+1(b), x̃t+1(b))|F[0,t] ∨ σ(xt+1(b))]] = 0,

where σ(xt+1(b)) is the sigma algebra generated by xt+1(b) and x̃t+1(b) is an independent copy of xt+1(b).

The inequality follows from the fact that g is non-decreasing in the second component and that xt+1(a)

first-order stochastically dominates x̃t+1(b). The last equality follows from the anti-symmetry property of

g. This yields δF,St ≥ 0.4 Finally, the relative hazard rates in the full information setup with the expected

value criterion δF,Et are non-negative if LF is linear in the differences. Thus, we have proved the following

lemma:

Lemma B.1. Fix an optimality criterion O ∈ {E,S} and an information setup I ∈ {P, F}. If I = F

and O = E, then additionally assume that LF is linear in the differences. Then, δI,Ot ≥ 0 for all t ∈ N0.

4Lemma 3 in Oyarzun and Ruf (2009) states that, for fixed a, b ∈ A and t ∈ N0, if g is symmetric-switch with g(x1, x2) > 0

for all x1, x2 ∈ [0, 1] such that x2 > x1, and xt+1(a) strictly first-order stochastically dominates xt+1(b), then the strict

inequality Et[g(xt+1(b), xt+1(a))] > 0 holds. This result can be helpful to show that δF,S
t > 0 in specific applications.
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Now we are ready to provide statements on convergence to optimality of individual learning:

Corollary B.1. Fix an optimality criterion O ∈ {E,S} and an information setup I ∈ {P, F}. If O = E

and I = F , then additionally assume that LF is linear in the differences. Suppose that

∞∑
t=0

(δI,Ot )2 =∞ and AO(σ0) > 0.

For an arbitrary sequence θ = {θt}t∈N0 with θt ∈ [0, 1] consider the behavioral rule LP,θ defined as in

(B.2) and (B.3) with

Cθt,b,a := θtCt,b,a and Dθ
t,b,a := θtDt,b,a

and LF,θ defined as in (B.4) with

gθt,b,a := θtgt,b,a

for all t ∈ N0, a ∈ A, and b ∈ A\{a}. Then, for all ε > 0, there exists a sequence θ such that convergence

to optimality holds with probability at least 1− ε for the behavioral rule LP,θ or LF,θ, respectively.

The condition on the non square-summability of the relative hazard rates in Corollary B.1 is not stated

explicitly in terms of the primitives of the learning model. It is transparent, however, that this condition

holds in many cases. For instance, it holds if we assume that the payoffs are identical and independently

distributed over time, and the sequences {Dt,b,a}t∈N0,b,a∈A and {gt,b,a}t∈N0,b,a∈A are time-invariant, with

gt,b,a strictly increasing in its second argument.

The behavioral rule LP with parameter constellation Ct,b,a ≡ 0 and Dt,b,a ≡ 1 for all t ∈ N0 and

a, b ∈ A corresponds to the standard Cross (1973) model. Börgers and Sarin (1997) show that in the

Cross (1973) model with a constant but small step-size, the probabilities of choosing each action converge

to those in Taylor (1979) replicator dynamics as the step-size goes to zero. Van Huyck et al. (2007) study

this model with small step-size (e.g., θt = 0.05 or θt = 0.01 for all t ∈ N0) to replicate experimental data

from a coordination game. In this model, the small step-size may be interpreted as “cautious” learning

in the sense that a single observation of a payoff cannot lead to dramatic changes in the probability of

choosing each action.

The following result provides conditions for achieving convergence to optimality almost surely in

models of individual learning.

Corollary B.2. Fix an optimality criterion O ∈ {E,S} and an information setup I ∈ {P, F}. Suppose

payoffs are independent and identically distributed over time, and AO(σ0) > 0. For any c ∈ (0, 1], consider

the behavioral rules L̃P , defined as in (B.2) and (B.3) with

C̃t,b,a :=
1− c
t+ 2

and D̃t,b,a :=
c

t+ 2
,
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and L̃F , defined as in (B.4) with

g̃t,b,a(x1, x2) :=
c(xp2 − x

p
1)

t+ 2
,

such that p = 1 if O = E and p > 0 otherwise, for all t ∈ N0, a, b ∈ A, and x1, x2 ∈ [0, 1]. Then,

convergence to optimality holds almost surely for the behavioral rules L̃P and L̃F .5

The model with partial information in Corollary B.2 is a specific version of our multi-period extension

of Börgers et al. (2004). In this model, c is a parameter that determines the marginal effect of the

obtained payoff on the updated probability of choosing each action. This behavioral rule does not only

induce that the probability of choosing an optimal action is a submartingale, as implied by the results

in Börgers et al. (2004), but also yields convergence to choosing optimal actions with probability one.

The individual does not need to know the payoff distributions, but can be certain to choose an expected

payoff maximizing action in the long-run, as long as her behavior is determined by a behavioral rule with

step-size that shrinks arbitrarily over time. The shrinking step-size behavioral rule L̃P is considered, for

instance, by Sarin and Vahid (2004) in the analysis of experimental subjects’ behavior in games. The

decreasing step-size allows this learning model to exhibit the “power law of practice” (see, e.g., Erev and

Roth (1998)), and Corollary B.2 proves convergence to optimality for this model.

The proof of Corollaries B.1 and B.2 requires defining the updating rules of the general framework

corresponding to the behavioral rules of the learning models:

ΠP
t (ω, σ) = LPt−1 (at(ω, σ), xt(at(ω, σ), ω), σ) ; (B.7)

ΠF
t (ω, σ) = LFt−1

(
(xt(a, ω))a∈A , σ

)
(B.8)

for all t ∈ N, ω ∈ Ω, and σ ∈ S. We recall the generalized framework of updating rules in Remark 2.1 in

Subsection 2.4. Theorem 2.1 and Corollary 2.1, in conjunction with the following lemma, then directly

yield Corollaries B.1 and B.2.

Lemma B.2. Fix an optimality criterion O ∈ {E,S} and an information setup I ∈ {P, F}. If O = E

and I = F , then additionally assume that LF is linear in the differences. The system (ΠI ,AO) satisfies

WBERHR with lower bound sequences given in (B.5) for I = P and in (B.6) for I = F .

Proof. First consider the case I = P . As Börgers et al. (2004) show,

Et[σt+1(a)]− σt(a) = σt(a)
∑
b∈A

σt(b)Dt,b,a (Et [xt+1(a)]− Et [xt+1(b)]) (B.9)

5Stationarity or independence of the actions’ payoffs over time are not essential for the convergence result. If we drop

this assumption and instead impose any condition that yields

inf
t∈N0

min
a∈A∗,O,b∈A\A∗,O

{Et[xt+1(a)p − xt+1(b)p]} > 0

with the corresponding p, the result holds as well.
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for all a ∈ A and t ∈ N0. An application of Lemma B.1 and (B.9) yield the statement for I = P .

Next consider the case I = F and observe that Et[gt,b,a(xt+1(a), xt+1(b), σ)] = 0 if a, b ∈ A∗,O since

then xt+1(a) and xt+1(b) have either the same expectation (if O = E) or have the same distribution (if

O = S). Note that

Et
[
AO
(
ΠF
t+1 (σ)

)]
− AO (σ) =

∑
a∈A∗,O

σ(a)
∑

b∈A\A∗,O
σ(b)Et [gt,b,a(xt+1(b), xt+1(a))] (B.10)

for all σ ∈ ∆(A) and t ∈ N0. As above, an application of Lemma B.1 and (B.10) yield the statement for

I = F .

B.3 Social learning

In the model analyzed in this section, individuals can observe other individuals’ choices and obtained

payoffs, and learn by imitation. Learning is described by a behavioral rule {L(i)
t }t∈N0 that has two

components. The first, called the imitation component, describes how the observed choices and payoffs

affect individuals’ behavior. This component represents individuals’ drive to imitate what others do. The

second, called the inertial component, does not depend on the current observations and corresponds to

the probabilities of choosing each action in the previous period.

At time t = 1, each individual i ∈ W chooses an action according to some exogenously given prob-

abilities σ
(i)
0 ∈ ∆(A). In the following periods individuals can imitate other individuals. At time t + 1,

individuals make choices through imitation with probability λt−1 ∈ [0, 1] and make choices with the same

probability as in the last period with probability 1−λt−1 for all t ∈ N. We call λ := {λt}t∈N0
the imitation

rate and we assume λt is F[0,t]–measurable and the same for all individuals.

We first specify the imitation component L̂(i) of individual i’s behavioral rule, a function defined on

the observation space

O(i) :=

|W |⋃
k=1

(
kWi × [0, 1]k

)
for all i ∈ W , where kWi is the subset of P(W ) whose elements contain individual i and k − 1 other

individuals, for k ∈ {1, ..., |W |}. Therefore, O(i) represents the possible new information individual i may

receive at any time.6 The imitation component maps what is observed to the probability of imitating

any of the observed individuals, i.e., L̂(i) : O(i) → ∆(W ). Thus, the probability that i ∈ W imitates

at time t + 1 what j ∈ W did at time t ∈ N is λt−1L̂
(i)(·, ·)j . We say that L̂ := {L̂(i)}i∈W satisfies the

“must–see” condition if
∑

j∈s L̂
(i)(s, ·)j = 1 for all i ∈ W and s ∈

⋃|W |
k=1

kWi. This condition is standard

6The imitation component L̂(i) and the observation space O(i) could be generalized to depend on, for instance, past

observations, the observed actions, time, or the current probabilities of choosing each action.
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in the literature (see, e.g., Cubitt and Sugden (1998)); it states that individuals may only imitate the

individuals they observe.

The behavioral rule L
(i)
t−1 of individual i ∈W , representing her probability of choosing each action at

time t + 1, is defined in a two-step procedure. First, the range ∆(W ) of the imitation component L̂(i)

is mapped to ∆(A) by assigning, to each action a ∈ A, the sum of the probabilities of imitating each

individual who chose a at time t. Second, the inertial behavior is accounted for. Thus, for each individual

i ∈W , the behavioral rule L
(i)
t :

⋃|W |
k=1

(
kWi × [0, 1]k ×Ak

)
×∆(A)→ ∆(A) is given by

L
(i)
t

(
s, x(s), a(s), σ(i)

)
a

= λt
∑

j∈s:a(j)=a

L̂(i)(s, x(s))j + (1− λt)σ(i)(a) (B.11)

for all t ∈ N0, a ∈ A, (s, x(s), a(s)) ∈
⋃|W |
k=1

(
kWi × [0, 1]k ×Ak

)
, and σ(i) ∈ ∆(A).

The analysis allows for several possibilities regarding sampling. Let ρ(i)(s) be a constant corresponding

to the probability that individual i observes sample s for all i ∈W and s ∈ P(W ), and such that ρ(i)(s) = 0

for all s ⊆W \{i}. For all i ∈W and j ∈W \{i}, define S̄(i, j) := {s ∈ P(W ) : i, j ∈ s}, i.e., the set of all

samples that contain i and j. There are two conditions on sampling that seem hard to dispense with: (i)

We say that a sampling process is symmetric if ρ(i)(s) = ρ(j)(s) for all s ∈ S̄(i, j), i ∈W , and j ∈W \{i}.

Thus, symmetric sampling imposes that the probabilities of i and j observing any given sample s with

i, j ∈ s are equal. (ii) We say that a sampling process satisfies observability (with lower bound ξ) if the

probability that any individual observes any other individual is positive, to wit, if there exists a constant

ξ > 0 such that
∑

s∈S̄(i,j) ρ
(i)(s) > ξ for all i ∈ W and j ∈ W \ {i}. In the sequel, we shall assume that

sampling is symmetric and observable (with lower bound ξ > 0) and L̂ satisfies the must-see condition.7

Let

gj,i,s(x
(s)) := L̂(j)

(
s, x(s)

)
i
− L̂(i)

(
s, x(s)

)
j

for all i ∈W , j ∈W \ {i}, s ∈ S̄(i, j), and x(s) ∈ [0, 1]|s|. We also define the sequence δO = {δOt }t∈N0 by

δOt = λt(|W | − 1)ξ min
i∈W,j∈W\{i}

min
s∈S̄(i,j)

min
a(s)∈A|s|:a(i)∈A∗,O,a(j)∈A\A∗,O

{
Et
[
gj,i,s(x

(s)
t+1(a(s)))

]}
(B.12)

for all t ∈ N0 and O ∈ {E,S}.

These definitions enable us to provide a first convergence result:

Corollary B.3. Fix an optimality criterion O ∈ {E,S} and suppose that s
(j)
t+1 is conditionally indepen-

dent, given the information up to time t, of {x(i)
t+1}i∈W for all j ∈W and t ∈ N0. Assume, moreover, that

gj,i,s(x
(s\{i,j}), ·, ·) is symmetric-switch (non-decreasing in x(i)) for all i ∈ W , j ∈ W \ {i}, s ∈ S̄(i, j),

and x(s) ∈ [0, 1]|s|.

7The sampling process could also be assumed to be random; for instance all our results below will hold if we assume that

the probabilty that i observes s at time t+ 1 is F[0,t]−measurable for all i ∈W , s ∈
⋃|W |

k=1
kWi, and t ∈ N0.

9



(1) If O = E, assume that gj,i,s(x
(s\{i,j}), ·, ·) is linear in the difference for all i ∈ W , j ∈ W \ {i},

s ∈ S̄(i, j), and x(s) ∈ [0, 1]|s|.

(2) If O = S, assume that, given the information up to time t, {x(i)
t+1}i∈W are independent for all t ∈ N0.

Alternatively, suppose that gj,i,s can be written as a sum of functions that only depend on pairs of

payoffs
{

(x(i), x(j))
}
i,j∈s for all i ∈ W , j ∈ W \ {i}, and s ∈ S̄(i, j), in which case only pairwise

independence of {x(i)
t+1}i∈W is required.

If
∞∑
t=0

(δOt )2 =∞ and AO(σ0) > 0,

then, for all ε > 0, there exists a sequence θ = {θt}t∈N0 with θt ∈ [0, 1] such that convergence to optimality

holds with probability at least 1−ε for the behavioral rule in (B.11) with λt replaced by θtλt for all t ∈ N0.

An example of a behavioral rule that satisfies either Condition (1) or (2) in Corollary B.3 (along with

the standing assumptions of this section) is given by

L̂(i)
(
s, x(s)

)
j

=
x(j)

|s|
and L̂(i)

(
s, x(s)

)
i

= 1−
∑

k∈s\{i} x
(k)

|s|
(B.13)

for all i ∈ W , j ∈ W \ {i}, s ∈ S̄(i, j), and x(s) ∈ [0, 1]|s|. Another example that satisfies the conditions

in Corollary B.3 but does not impose linear dependence on the observed payoffs is given by

L̂(i)
(
s, x(s)

)
j

=
f
(
x(j)
)∑

k∈s f
(
x(k)

) with
0

0
:=

1

|s|
(B.14)

for all i, j ∈ W , s ∈ S̄(i, j), and x(s) ∈ [0, 1]|s|, where f : [0, 1] → [0,∞) is any non-negative and non-

decreasing function; e.g., f(x) = x. The specification of such an imitation component resembles that of

the Roth-Erev model of individual learning. In that model, the probability of choosing each action is

proportional to the cumulative reinforcement, determined by the payoffs the individual has received over

time with each action. Here, the probability of imitating each other sampled individual is proportional

to the payoff that such an individual received and hence, the probability of choosing the corresponding

action through imitation is proportional to the sum of payoffs it provided to the sampled individuals who

have chosen this action.

These examples allow us to provide a second convergence result:

Corollary B.4. Make the same assumptions as in Corollary B.3. Furthermore, suppose that AO(σ0) > 0

and

inf
t∈N0

min
a∈A∗,O,b∈A\A∗,O

{Et [f(xt+1(a))− f(xt+1(b))]} > 0 (B.15)

for either f(x) = x, in the case O = E, or any nonnegative, non-decreasing and bounded function f on

[0, 1], in the case O = S. Then, with λt = 1/(t+ 2) for all t ∈ N0, convergence to optimality holds almost

10



surely for the behavioral rule defined by (B.11) in combination with (B.13) if O = E or with (B.14) if

O = S.

In contrast with previous convergence results in the literature that rely on populations that are a

continuum, Corollary B.4 reveals that behavioral rules with an imitation component whose magnitude

decreases over time, as described in this corollary, yield convergence to optimality almost surely even

for finite populations. The condition in (B.15) is satisfied if the payoffs are independent and identically

distributed over time, either trivially if f(x) = x, or due to Lemma 3 in Oyarzun and Ruf (2009) if f is

additionally assumed to be strictly increasing (see Footnote 4).

When we impose that each individual only observes one other individual, i.e.,
∑

j∈W\{i} ρ
(i)({i, j}) = 1

for all i ∈W , the imitation component of the behavioral rules in this section correspond to the first-order

monotone behavioral rules in Oyarzun and Ruf (2009). When we further assume that the symmetric-

switch functions are linear, the class of imitation components of the behavioral rules contains Schlag

(1998) improving behavioral rules. When we impose that each individual observes two other individuals,

i.e.,
∑

j∈W\{i},k∈W\{i,j} ρ
(i)({i, j, k}) = 1 for all i ∈W , and the symmetric-switching functions are linear,

the imitation component satisfies the characterization of strictly improving rules in Schlag (1999). We

are not aware of any paper in the literature that provides implications for the relative hazard rates for

the other possibilities of sampling that we allow.

Models exhibiting small step-size as those in Corollary B.3 can be interpreted as exhibiting “cautious”

social learning, analogously to the models of individual learning analyzed in Corollary B.1. Similarly, the

decreasing imitation rates in Corollary B.4 allow these models to exhibit the “power law of practice,”

analogously to the models in Corollary B.2.

Analogously to the arguments in individual learning, we now associate an updating rule to the behav-

ioral rule in order to prove Corollaries B.3 and B.4. Formally, we set

Πt(ω, σ) =

{
L

(i)
t−1

(
s

(i)
t (ω), x

(s
(i)
t (ω))

t

(
a

(s
(i)
t (ω))

t (ω, σ), ω

)
, a

(s
(i)
t (ω))

t (ω, σ), σ(i)

)}
i∈W

(B.16)

for all t ∈ N, ω ∈ Ω, and σ ∈ S. Now we can apply Theorem 2.1 and Corollary 2.1, along with Remark 2.1.

Towards this end, fix O ∈ {E,S} and recall the sequence δO defined in (B.12). It is sufficient to show

that the conditions in Corollaries B.3 and B.4 yield (a) δOt ≥ 0 for all t ∈ N0, and (b) the system

(Π,AO) satisfies (W)BEHR with sequence δO. The argument that proves (a) is analogous to the one in

Section B.2 establishing that δF,Ot ≥ 0 for all t ∈ N0 and is omitted. Lemma B.3 below takes care of (b),

which completes the proof of Corollaries B.3 and B.4.

Lemma B.3. Fix an optimality criterion O ∈ {E,S} and suppose that s
(j)
t+1 is conditionally independent,

given the information up to time t, of {x(i)
t+1}i∈W for all j ∈ W and t ∈ N0. Provided that δOt ≥ 0 for all

11



t ∈ N0, the system (Π,AO), defined by (B.1), (B.11), and (B.16), satisfies WBERHR with lower bound

sequence δO.

The proof of this lemma is provided in Section B.5.

Thus, symmetric and observable sampling yield positive relative hazard rates. Symmetric sampling

imposes that for every pair of individuals, they are equally visible to each other in each sample that

contains both of them. Symmetric switch yields that, in expected value, an individual i observing other

individual j doing better to be more likely to switch to j’s action than j to switch to i’s action. As a

result, in expected value, the average probability of choosing optimal actions in the population increases

over time.

B.4 Roth-Erev learning model

In the previous sections we have used Theorem 2.1 and Corollary 2.1 to provide sufficient conditions for

achieving convergence to optimality either with high probability or almost surely. In this section, we

show that the almost-sure convergence to optimality of Roth and Erev’s behavioral rule can be derived

from the argument developed in Theorem 2.2. This learning model is widely used to describe individual

learning in experimental economics (see, e.g., Roth and Erev (1995)) and its convergence properties are

studied in several places in the literature (see, e.g., Beggs (2005) and Hopkins and Posch (2005), and the

references therein).

Roth and Erev’s behavioral rule can be interpreted in terms of a vector of current “attractions”

corresponding to each action. The probability of choosing each of them is proportional to its attraction

that formally is defined by Vt(a) = Vt−1(a) + 1{at=a}xt(a) for all t ∈ N and V0(a) > 0 exogenously given

for all a ∈ A. In other words, only the attraction of the chosen action is updated, and it is increased in

an amount equal to the obtained payoff.

Let Vt :=
∑

a∈A Vt(a) for all t ∈ N0 be the sum of attractions at time t ∈ N0. The behavioral rule of

Roth and Erev Lt : A× [0, 1]→ ∆(A) is then given by

Lt(a, x)a =
Vt(a) + x

Vt + x
and Lt(a, x)b =

Vt(b)

Vt + x

for all a ∈ A, b ∈ A \ {a}, x ∈ [0, 1], and t ∈ N0.

The set of optimal actions that we consider here is the set of expected payoff maximizing actions.

Instead of deriving the system associated to this behavioral rule, here we derive directly the process

P = {Pt}t∈N0 defining Pt = AE(Lt−1(at, xt)) for all t ∈ N and P0 = AE((V0(a))a∈A/V0).

Beggs (2005) provides a thorough analysis of the Roth and Erev (1995) model of individual learning

with partial information. Here we recover and slightly generalize his convergence result8 using a different

8E.g., Beggs (2005) shows his result under the additional assumption that payoffs are bounded away from zero.
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argument and hence, provide a different interpretation of the convergence properties of this learning

model. The proof we provide here follows from Theorem 2.2 and can be found in Section B.5. Hence, our

argument is based on the analysis of the properties of the expected relative hazard rates of this learning

model.

Corollary B.5. Suppose that there exists an almost surely strictly positive random variable ε such that

inf
t∈N0

min
a∈A∗,E ,b∈A\A∗,E

{Et[xt+1(a)− xt+1(b)]} ≥ ε. (B.17)

If an individual makes choices according to Roth-Erev’s behavioral rule, then P∞ = 1 almost surely; that

is, the individual will choose, in the limit, almost surely an optimal action.

Apart from (B.17), we have made no assumptions on either stationarity or independence of the actions’

payoffs. Finally, we remark that our proof of convergence to optimality is based on Theorem 2.2, so the

proof of Corollary B.5 is based only on the analysis of the performance measure, not the underlying

system.

B.5 Proofs of the online appendix

We first provide the proof of Lemma B.3:

Proof of Lemma B.3. Let Pt := AO(σt) and P
(i)
t :=

∑
a∈A∗,O σt

(i) for all i ∈ W and t ∈ N0. Fix t ∈ N0

and observe that

Et[Pt+1]− Pt =
1

|W |
∑
j∈W

(
Et
[
P

(j)
t+1

]
− P (j)

t

)
=

λt
|W |

∑
i,j∈W

Et
[
L̂(j)

(
s

(j)
t+1, x

(s
(j)
t+1)

t+1

)
i

(
1{a(i)t+1∈A∗,O}

− 1{a(j)t+1∈A∗,O}

)]

=
λt
|W |

∑
i,j∈W

∑
s∈S̄(i,j)

ρ(j)(s)Et
[
L̂(j)

(
s, x

(s)
t+1

)
i

(
1{a(i)t+1∈A∗,O}

− 1{a(j)t+1∈A∗,O}

)]

since
∑

i∈W L̂(j)(·, ·)i = 1, s
(j)
t+1 is assumed to be conditionally independent of {a(i)

t+1}i∈W and {x(i)
t+1}i∈W

for all j ∈ W , and L̂(j)(s, ·)i = 0 for all s /∈ S̄(i, j) and all i, j ∈ W by assumption. Observe now, by the

assumption (on the randomization device) of conditional independence of the choice of actions {a(i)
t+1}i∈W

and the payoffs {x(i)
t+1}i∈W , that

∑
i,j∈W

∑
s∈S̄(i,j)

ρ(j)(s)Et
[
L̂(j)

(
s, x

(s)
t+1,

)
i

(
1{a(i)t+1∈A∗,O}

− 1{a(j)t+1∈A∗,O}

)]

=
∑
i,j∈W

∑
s∈S̄(i,j)

ρ(j)(s)
∑

a(s)∈A|s|:a(i)∈A∗,O,a(j)∈A\A∗,O
Pt
(
a

(s)
t+1 = a(s)

)
Et
[
L̂(j)

(
s, x

(s)
t+1

)
i

]
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−
∑
i,j∈W

∑
s∈S̄(i,j)

ρ(j)(s)
∑

a(s)∈A|s|:a(i)∈A\A∗,O,a(j)∈A∗,O
Pt
(
a

(s)
t+1 = a(s)

)
Et
[
L̂(j)

(
s, x

(s)
t+1

)
i

]
≥ δ̃Ot

∑
i,j∈W

∑
s∈S̄(i,j)

ρ(j)(s)
∑

a(s)∈A|s|:a(i)∈A∗,O,a(j)∈A\A∗,O
Pt
(
a

(s)
t+1 = a(s)

)
,

with

δ̃Ot := min
i∈W,j∈W\{i}

min
s∈S̄(i,j)

min
a(s)∈A|s|:a(i)∈A∗,O,a(j)∈A\A∗,O

{
Et
[
gj,i,s(x

(s)
t+1(a(s)))

]}
(B.18)

for all t ∈ N0 and O ∈ {E,S}. In the last step we first exchanged i and j and used the assumption that

ρ(j)(s) = ρ(i)(s) for all s ∈ S̄(i, j). Due to the conditional independence of {a(i)
t+1}i∈W imposed by the

randomization device we have∑
a(s)∈A|s|:a(i)∈A∗,O,a(j)∈A\A∗,O

Pt
(
a

(s)
t+1 = a(s)

)
=

∑
a(i)∈A∗,O,a(j)∈A\A∗,O

Pt
(
a

(i)
t+1 = a(i)

)
· Pt

(
a

(j)
t+1 = a(j)

)
= P

(i)
t

(
1− P (j)

t

)
for all i ∈W and j ∈W \ {i}. This yields∑
i,j∈W

∑
s∈S̄(i,j)

ρ(j)(s)
∑

a(s)∈A|s|:a(i)∈A∗,O,a(j)∈A\A∗,O
Pt
(
a

(s)
t+1 = a(s)

)
=

∑
i∈W,j∈W\{i}

P
(i)
t

(
1− P (j)

t

) ∑
s∈S̄(i,j)

ρ(j)(s)

≥ ξ
∑

i∈W,j∈W\{i}

P
(i)
t

(
1− P (j)

t

)
= ξ

∑
i∈W

P
(i)
t

(
|W | − 1−

(
|W |Pt − P (i)

t

))
≥ ξ|W |(|W | − 1)Pt (1− Pt) ,

where the first inequality follows from the assumed observability and the second inequality from the

fact that
∑

i∈W (P
(i)
t )2 ≥ |W |P 2

t , which is implied by Jensen’s inequality. The statement then follows

directly.

The following simple observation, which is closely related to Lemma 2 in Beggs (2005), will be useful

in the proof of Corollary B.5:

Lemma B.4. In the setup of Section B.4, if for some a ∈ A, we have Et[xt+1(a)] > ε almost surely for

all t ∈ N0, for some almost surely strictly positive random variable ε, then limt↑∞ Vt(a) =∞.

Proof. We observe that the probability of choosing action a at time t is bounded from below by V0(a)/(V0+

t − 1). Thus, an application of the Borel-Cantelli lemma yields that action a is chosen infinitely often,

say at times τ1 < τ2 < . . .. Set τ0 := 0 and define the martingale M = {Mn}n∈N0 by Mn = Vτn(a) −∑n
i=1 Eτi−1 [xτi(a)] for all n ∈ N0. Then,

Vτn(a)

n
=
Mn

n
+

1

n

n∑
i=1

Eτi−1 [xτi(a)] ≥ Mn

n
+

1

n

n∑
i=1

ε→ 0 + ε = ε > 0
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as n ↑ ∞ due to the Strong Law of Large Numbers for martingales in Chow (1967) applied to the first

term. This yields limt↑∞ Vt(a) =∞.

We now provide the proof of Corollary B.5:

Proof of Corollary B.5. We assume, without loss of generality by Lemma B.4, that

V0 >
2

ε
∨ 1. (B.19)

Let σt(a) := Vt(a)/
∑

c∈A Vt(c) for all a ∈ A and t ∈ N0. Observe that

Lt(a, x)a = σt(a) + (1− σt(a))
x∑

c∈A Vt(c) + x
= σt(a) +

∑
b∈A\{a}

σt(b) ·
x∑

c∈A Vt(c) + x
,

Lt(b, x)a = σt(a)− σt(a)
x∑

c∈A Vt(c) + x

for all a ∈ A, b ∈ A \ {a}, x ∈ [0, 1], and t ∈ N0. Therefore,

Et[Pt+1]− Pt = Et

 ∑
a∈A∗,E

∑
b∈A

σt(b)Lt(b, xt+1(b))a

− ∑
a∈A∗,E

σt(a)

=
∑

a∈A∗,E
Et

σt(a)(1− σt(a))
xt+1(a)

Vt + xt+1(a)
−

∑
b∈A\{a}

σt(b)σt(a)
xt+1(b)

Vt + xt+1(b)


=

∑
a∈A∗,E

∑
b∈A\A∗,E

σt(a)σt(b) · Et
[

xt+1(a)

Vt + xt+1(a)
− xt+1(b)

Vt + xt+1(b)

]
≥ Pt(1− Pt)δt,

where δt is defined as

δt := min
a∈A∗,E ,b∈A\A∗,E

{δt(a, b)} := min
a∈A∗,E ,b∈A\A∗,E

{
Et
[
xt+1(a)

Vt + 1
− xt+1(b)

Vt

]}
for all t ∈ N0. We notice that

δt(a, b) =
1

Vt + 1

(
Et[xt+1(a)− xt+1(b)]− 1

Vt
Et[xt+1(b)]

)
≥ 1

Vt + 1

(
ε− 1

V0

)
≥ ε

2(V0 + t+ 1)
> 0

for all t ∈ N0, a ∈ A∗,E , and b ∈ A \A∗,E due to (B.19). This inequality also yields
∑∞

t=0 δt =∞.

We set θt := 1/Vt ∈ (0, 1) for all t ∈ N0 and observe that

δt
θt
≥ Vt
Vt + 1

·
(
ε− 1

V0

)
≥ 1

1 + 1
Vt

· ε
2
> δ̃

for some strictly positive random variable δ̃. Furthermore,

−Pt
1

Vt
≤ PtVt
Vt + 1

− Pt ≤ Pt+1 − Pt ≤
PtVt + xt+1(at+1)

Vt + xt+1(at+1)
− Pt =

xt+1(at+1)(1− Pt)
Vt + xt+1(at+1)

≤ 1

Vt
(1− Pt)

and thus, (2.5) holds for all t ∈ N0. Therefore, Theorem 2.2, in conjunction with Lemma B.4, yields the

result.
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