
Structural Default Models with Jumps

Diplomarbeit an der Universität Ulm
Fakultät für Mathematik und Wirtschaftwissenschaften

Johannes Karl Dominik Ruf
Juni 2006



Abteilung Finanzmathematik der Universität Ulm

Structural Default Models with Jumps

Abschlussarbeit zur Erlangung des akademischen Grades eines

Diplom-Wirtschaftsmathematikers

im Studiengang Wirtschaftsmathematik der Universität Ulm.

Vorgelegt von

Master of Science in Financial Mathematics

Johannes Karl Dominik Ruf

im Juni 2006

Matrikel-Nr. 440497

Gutachter:

Prof. Dr. Rüdiger Kiesel
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Introduction

Abstract

In this thesis, we introduce a structural default model with an arbitrary jump-

size distribution which is used to price corporate bonds. We model the value of a

company and a default threshold using two jump-diffusion processes. A default of

the company is triggered when the process representing the company’s value first

crosses the default threshold. Including jumps implies credit spreads which do not

vanish as maturity decreases, as we prove. In case of a default, the bond holder

receives a possibly stochastic fraction of the promised payments, the so called

recovery rate. We present and compare three methods to price a corporate bond

within this setup: Zhou’s algorithm, the Brownian-bridge pricing technique and

an approach using the Laplace transforms of the default probabilities. The first

two methods allow all jump-size distributions which can be simulated numerically.

Moreover, they allow a stochastic recovery rate. The third method is based on

two-sided exponentially distributed jump sizes and a constant recovery rate.

Economic motivation and modelling background

Bonds promise their investors fixed payments. However, the bond holder cannot

be sure to receive all payments, since the bond-issuing institution may default.

If this occurs, the bond holder receives only a fraction of his promised payments.

Therefore, it is not trivial to determine the fair price of a bond which includes a

default risk. A pricing model is needed.1

Two classes of models are mainly discussed to price corporate bonds: intensity-

based and structural models. In intensity-based models, a default is triggered

1Of course, bond prices can be observed on the capital markets. However, being able to
determine bond prices allows us to calibrate the model parameters, which then can be used to
price more complex credit derivatives.

1



Introduction 2

by the first jump of a Poisson process with stochastic intensity. In structural

models, a default is triggered by the event that a stochastic process representing

the value of the company crosses a default barrier. We concentrate on structural

models and compute the price of a defaultable bond on the basis of the default

probabilities, which are implied by the model.

The firm-value process and the default threshold in our thesis are represented by

jump-diffusion processes. There are several reasons for allowing jumps and not

restricting ourselves to a more tractable pure diffusion setup. Firstly, the value

of a company does not evolve continuously. Special events, such as a bulk order,

winning a lawsuit or a computer crash suddenly increase or decrease the value of a

company. Secondly, we observe credit spreads on the capital markets which do not

vanish as maturity decreases to zero. However, pure diffusion models are not able

to simulate sudden defaults, since the value process approaches the default barrier

continuously. Hence, credit spreads that are not close to zero for short maturities

cannot be obtained by pure diffusion models. In contrast, including the possibility

of large negative jumps produces credit spreads that are strictly positive even for

short maturities. Thirdly, jumps allow us to endogenously include a stochastic

recovery rate. This is the payment that a bond investor obtains if the bond-issuing

company defaults. In case of a default, in the pure diffusion setup, the value of

a company equals the value of the default barrier, which is often assumed to be

constant. This is, however, not true in the jump-diffusion setup. If the company

defaults due to a jump of the underlying firm-value process, the value of the

company at time of default is stochastic. This randomness allows us to model

the recovery rate based on the company’s value at time of default.

However, no analytical solution of the bond-pricing problem is known when the

value of a company is modelled using a jump-diffusion process. Therefore, we

have to perform simulations to obtain prices. We concentrate on three methods.

Zhou’s algorithm discretizes the time to maturity and checks at finitely many

time points whether a default occurred. The Brownian-bridge pricing technique

simulates the jumps and calculates the probability of a default based on the infor-

mation about the jumps. In the Laplace-transform approach, we make assump-

tions about the jump-size distribution and calculate the bond price by means of

the Laplace transform of the default probabilities. The three algorithms require

different prerequisites. Moreover, they have different implications concerning the

quality of the bond price and running time, which we discuss.
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Structure of this thesis

In the first chapter, we present most of the mathematical tools which are used in

the following chapters. The first section serves as a concise introduction to the

basics of probability theory and our notation. The next section gives an overview

of Lévy processes. We define a Wiener process and a compound Poisson process

as the components of a jump-diffusion process. Then, we discuss important

properties of these processes, such as the distribution of the running minimum

of a Brownian motion. Furthermore, to understand jump-diffusion processes in

the context of Lévy processes, important characteristics and properties of Lévy

processes, such as the Lévy-Khinchin representation, are briefly presented. In

the last section of this chapter, jump-diffusion processes are defined, their first

moments are calculated, and it is shown that the difference of two jump-diffusion

processes remains a jump-diffusion process. This statement allows a simplification

of the latter introduced default model.

In the first section of the second chapter, we discuss bonds in general and risks

associated with them. In the second section, we introduce a structural default

model with a stochastic default barrier, which is modelled as a jump-diffusion

process, and we show that this model can be simplified to a model with a constant

default barrier. In the third section, we give an overview of approaches other than

the structural one and compare those. In the fourth section, we prove that the

credit spreads do not vanish as maturity decreases to zero.

The third chapter contains three different methods to price a corporate zero-

coupon bond and a comparison of these methods. In the first section, Zhou’s

algorithm is presented and a justifying theorem is proven for all jump-size dis-

tributions. In the second section, Brownian bridges are defined and a Brownian-

bridge pricing technique which allows us to assume stochastic recovery rates is

introduced. Additionally, an approximation for an integral used in the Brownian-

bridge pricing technique is discussed. In the third section, a Laplace-transform

approach is briefly introduced. Finally, in the fourth section, the results and

running times of the different algorithms are compared and the bias generated

by Zhou’s algorithm is explained.

In Appendix A, we introduce the Laplace transform, some of its basic properties

and a Laplace inversion which we use to obtain the approximation of an integral

used in the Brownian-bridge pricing technique. Appendix B contains some details

about the implementations we have programmed to perform the simulations.



Chapter 1

Jump-diffusion processes

Later on, we model the value of a company by an exponential of a jump-diffusion

process, which is a stochastic process belonging to the class of Lévy processes.

The main purpose of this chapter is to present definitions and important mathe-

matical results about jump-diffusion processes, necessary to understand the mod-

els and valuation formulas which we discuss later. The structure of this chapter

is as follows: Firstly, we concisely introduce some standard notations and def-

initions to be used throughout this thesis. Secondly, we define Lévy processes

and discuss some of their basic properties. Thirdly, we introduce jump-diffusion

processes as the most important subclass of Lévy processes within this thesis.

Most of the time, we follow the notation of Cont and Tankov, presented in [CT].

For a further treatment of Lévy processes see [Be] and [Sa].

1.1 Preliminaries

All definitions and statements made in this section also hold for finite time hori-

zons. We use R (resp. R+ , R+
0 , R− ) for the set of all (resp. strictly positive,

positive including zero, strictly negative) real numbers. The natural numbers

without (resp. with) zero are denoted by N (resp. N0 ). Let (Ω,F , IP) be a

probability space, that is a triple of a non-empty set Ω , a σ -Algebra F on Ω

and a σ -additive function IP : F → [0; 1] , and let F = {Ft}0≤t<∞ be a filtration

(which is an increasing family of σ -algebras, that is, Fs ⊂ Ft for s < t ) with

F ⊃ F∞ := σ(
⋃

s≥0Fs) .

Definition 1.1 ( IP -complete, right-continuous)

A filtration F is called IP -complete and right-continuous if

4



1.1. Preliminaries 5

1. every IP-null set in F∞ belongs to F0 (and so to all Ft ) and

2. Ft =
⋂

s>tFs for all t > 0 .

From now on, we deal with a filtered prob space (Ω,F ,F, IP) , equipped with a

right-continuous, IP -complete filtration F . We use the abbreviation ”a.s.” if a

statement holds IP -almost surely, that is, there exists a set N of IP -measure zero

such that the statement holds for all ω ∈ Ω \ N . Furthermore, all results with

random objects hold almost surely in general. If this is obvious from the context

it is occasionally not pointed out explicitly. The Borel σ -algebra, which is the

σ -algebra generated by all open sets, is denoted by B(R) . A measurable function

from Ω into R equipped with the Borel σ -algebra is called a random variable.

All random variables in this thesis take values in R . If the random variable

Z has the distribution IPZ with
∫

A
IPZ(dz) = IPZ(A) := IP(Z−1(A)) for all

A ∈ B(R) , then we call FZ(x) :=
∫ x

−∞ IPZ(du) = IPZ((−∞; x]) the (cumulative)

distribution function of Z . We also use the notation FZ(x−) := lims↑x FZ(s) .

We denote by Φ the cumulative normal distribution:

Φ(x) :=
1√
2π

∫ x

−∞
exp

(
−y2

2

)
dy.

The expectation of a random variable Z , with respect to the probability measure

IP is denoted by IE(Z) , its variance by Var(Z) , and the covariance of the random

variables Z and Z̃ by Cov(Z, Z̃) .

Definition 1.2 (Characteristic function)

The characteristic function of a random variable Z is the function ΦZ : R→ C
defined by

ΦZ(z) := IE(exp(izZ)) =

∫

R
eizudIPZ(du), ∀z ∈ R.

A stochastic process X = {Xt}0≤t<∞ , that is a family of random variables in-

dexed over time, is said to be adapted if Xt is Ft -measurable for all t . We call

a stochastic process Y a modification of X if Xt
a.s.
= Yt for all t .

Definition 1.3 (Càdlàg property)

An adapted stochastic process X is called càdlàg2 if X has almost surely sample

paths which are right-continuous with left limits. We use the notations Xt− :=

lims↑t Xs and ∆Xt := Xt −Xt− .

2Continue à droite, limites à gauche in French. Sometimes it is also called RCLL or Sko-
rokhod. A well-known example for càdlàg functions are cumulative distribution functions.
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The time of default is modelled by a stopping time.

Definition 1.4 (Stopping time)

A random variable τ : Ω → [0;∞] is a stopping time if the event {ω ∈ Ω :

τ(ω) ≤ t} ∈ Ft for all t ∈ [0;∞) .

We use mainly stopping times of the following form:

Lemma 1.1 (First-passage times are stopping times)

Let X denote a càdlàg stochastic process and d ∈ R a real number. Then the

first time τd , when X passes the threshold d ,

τd := inf{t ≥ 0 : Xt ≤ d}

with inf ∅ := ∞ , is a stopping time.

Proof: For the proof we refer to [RW], Lemma II.73.10, page 182 and Theorem

II.76.1, page 186.3 ♦

For a further introduction to probability theory and as a reference, we refer to

[Fe], [Bi], and [RW].

1.2 Lévy processes

In this section, we give the definition of a Lévy process and briefly define a Wiener

process as the most important and well-known example of a Lévy process. In the

last paragraph of this section, we discuss some general properties, such as the

Lévy-Khinchin representation.

1.2.1 Definition and examples

In this paragraph, we define a Lévy process and present two main examples

of Lévy processes which are essential components of jump-diffusion processes:

Wiener process and compound Poisson process.

3This is an example where we need the right-continuity of the underlying filtration F .



1.2. Lévy processes 7

Definition 1.5 (Lévy process)

An adapted càdlàg4 stochastic process X = {Xt}0≤t<∞ on (Ω,F , IP) with values

in Rd , such that X0 = 0 , is called a Lévy process if it possesses the following

properties:

1. Independent increments: For every increasing sequence of times t0, . . . , tn ,

the random variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

2. Stationary increments: The law of Xt+h −Xt does not depend on t .

3. Stochastic continuity: ∀ε > 0 , lim
h→0

IP(|Xt+h −Xt| ≥ ε) = 0 .

We restrict ourselves to the one-dimensional case, that is, d = 1 . By having inde-

pendent and stationary increments, Lévy processes are the continuous equivalent

to random walks in discrete time. The sample paths of a Lévy process are not

continuous in general. The Lévy processes in the second example of this para-

graph even have discontinuous sample paths with probability one at an infinite

time horizon.5 However, the most famous example of a Lévy process, the Wiener

process, has almost surely continuous sample paths.

Definition 1.6 (Wiener process)

An adapted stochastic process W = {Wt}0≤t<∞ on (Ω,F , IP) with values in R ,

such that W0 = 0 , is called a Wiener process if

1. W has independent increments,

2. Wt+h −Wt ∼ N (0, h), ∀h > 0, t ≥ 0 , where N (0, h) denotes the Normal

distribution with mean 0 and variance h , that is, W is Gaussian, and

3. W has almost surely continuous sample paths, that is, t → Wt is contin-

uous with probability one.

Wiener processes and Brownian motions (Wiener processes with drift and mod-

ified standard deviation) are widely used and build the foundation for many

mathematical models in financial applications. For a thorough introduction to

the theory of Brownian motions we recommend [KS]. An overview of many for-

mulas connected to Brownian motions is given in [BoS].

4As pointed out in [CT], Footnote 1, page 68, càdlàg can be postulated, since every Lévy
process defined without this property has a unique modification which satisfies the càdlàg
conditions.

5There exist also Lévy processes, for instance the so called infinite-activity Lévy processes,
which have almost surely discontinuous sample paths on every finite time horizon. We do not
deal with them in this thesis. For further details see for example [CT], Chapter 3.4.
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Time t

W
(t

)

0.0 0.2 0.4 0.6 0.8 1.0

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

Figure 1.1: A sample path of a Wiener process W .

Lemma 1.2 (Wiener process is Lévy process)

A Wiener process is a Lévy process.

Proof: The statement follows directly from the definition. ♦

We use the next result about the running minimum of a Brownian motion several

times.

Lemma 1.3 (Minimum of a Brownian motion)

The running minimum of a Brownian motion is inverse Gaussian distributed.

More precisely, let W denote a Wiener process and Bt = x+γt+σWt represent

a Brownian motion with drift γ and volatility σ starting in B0 = x . The

probability of B being below the threshold b ∈ R sometimes until time t is given

by

Φ̃BM
b (x, t) := IP

(
min
0≤s≤t

Bs ≤ b

)

= 1{x≤b} + 1{x>b}

(
Φ

(
b− x− γt

σ
√

t

)
+ exp

(
2γ(b− x)

σ2

)
Φ

(
b− x + γt

σ
√

t

))

= 1{x≤b} + 1{x>b}

∫ t

0

x− b√
2πσs3/2

exp

(
−(x− b + γs)2

2sσ2

)
ds.

Proof: The first equality follows from [KS], Equation (3.41), page 265 by observ-

ing that −W is also a Wiener process and setting γ → −γ/σ and β → (x−b)/σ .

The second equation is obtained by taking the derivative in t . ♦

To be able to define a compound Poisson process, we first introduce the Pois-

son process. Therefore, we remind the reader that an exponentially distributed
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random variable T with intensity λ is absolutely continuous with distribution

IPT (dx) = λ exp(−λx) · 1{x>0}dx .

Definition 1.7 (Poisson process)

Let {τi}i≥1 denote a sequence of independent exponentially distributed random

variables with parameter λ and Tn =
∑n

i=1 τi . The process N = {Nt}0≤t<∞
defined by

Nt :=
∑
n≥1

1{t≥Tn}

is called a Poisson process with intensity λ .

Time

N
(t

)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Figure 1.2: A sample path of a Poisson process N with intensity λ = 3 .

If {τi}i≥1 model the waiting times within special occurrences (for instance some

purchase orders for a company X), then Nt can be interpreted as the sum of

these occurrences up to time t .

Lemma 1.4 (Distribution of Poisson process)

The process N of Definition 1.7 follows a Poisson distribution, that is

IP(Nt = n) = e−λt (λt)n

n!
, ∀n ∈ N0. (1.1)

Proof: This result can be shown by simple calculations. See [Bi], page 299. ♦

We later simulate stochastic processes with a Poisson-process component by con-

ditioning on the number of jumps with the above lemma and on the location

of the jumps. Therefore, we need to know the distribution of (T1, T2, . . . , Tk)

conditioned on the events {ω ∈ Ω : Nt(ω) = k} for all k ∈ N . The next lemma

provides this information.
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Lemma 1.5 (Distribution of jump times)

Under the condition Nt = k , the jump times (T1, T2, . . . , Tk) of Definition 1.7

are distributed as order statistics, that is,

IP(T1,T2,...,Tk|Nt=k)(d(t1, t2, . . . , tk)) = 1{0<t1<...<tk≤t}
k!

tk
d(t1, t2, . . . , tk). (1.2)

Proof: Let Ai := (−∞; si] with si ∈ R , i = 1, . . . , k . By the definition of

conditional probability,

IP(T1 ∈ A1, . . . , Tk ∈ Ak|Nt = k) =
IP(T1 ∈ A1, . . . , Tk ∈ Ak, Nt = k)

P (Nt = k)
.

Since Ti is the sum of i independent, exponentially distributed random variables

τ1, . . . , τi ,

IP(T1 ∈ A1, . . . , Tk ∈ Ak, Nt = k)

= IP(T1 ∈ A1, . . . , Tk−1 ∈ Ak−1, Tk ∈ [0; min{sk, t}], Tt+1 > t)

= IP(τ1 ∈ [0; s1], τ2 ∈ [0; s2 − τ1], . . . , τk ∈ [0; min{sk, t} − τk−1], τk+1 ∈ (t− τk;∞))

=

∫

A1×...×Ak

1{0<t1<...<tk≤t}λ
ke−λt1 · . . . · e−λ(tk−tk−1) · e−λ(t−tk)d(t1, t2, . . . , tk)

=

∫

A1×...×Ak

1{0<t1<...<tk≤t}λ
ke−λtd(t1, t2, . . . , tk).

From Equation (1.1) in Lemma 1.4, we obtain

IP(Nt = k) = e−λt (λt)k

k!
.

Combining these representations and using B(R) = σ({(−∞; x], x ∈ R}) com-

pletes the proof. ♦

Having defined a Poisson process, it is possible to define a more general class of

stochastic processes:

Definition 1.8 (Compound Poisson process)

A compound Poisson process with intensity λ > 0 and jump-size distribution IPY

is an adapted stochastic process M = {Mt}0≤t<∞ , defined by

Mt :=
Nt∑
i=1

Yi,

where the jump sizes Yi are independent and identically distributed with distri-

bution IPY , and N = {Nt}0≤t<∞ is a Poisson process with intensity λ , inde-

pendent of Y = {Yi}i≥1 .



1.2. Lévy processes 11

Remark 1.1 (Connection with Poisson process)

By choosing IPY ({1}) = 1 and thus having set Yi ≡ 1 for all i , we see that a

Poisson process is a special case of a compound Poisson process.

Lemma 1.6 (Compound Poisson process is Lévy process)

A compound Poisson process is a Lévy process.

Proof: By the definition of N in Definition 1.7 we see that a compound Poisson

process is càdlàg. Independence and stationarity of increments and stochastic

continuity can be simply validated. For detailed calculations we refer to [CT],

Proposition 3.3, page 71. ♦

The Lévy-Khinchin formula, which is introduced later6, yields an explicit repre-

sentation of the characteristic function of a Lévy process at every time t . In the

case of a compound Poisson process we can directly obtain this result. The proof

is based on the commonly used technique to condition on the number of jumps.

Lemma 1.7 (Characteristic function of a compound Poisson process)

Let M denote a compound Poisson process with intensity λ and jump-size dis-

tribution IPY . Its characteristic function ΦMt at time t admits the following

representation:

ΦMt(z) = IE(exp(izMt)) = exp

(
tλ

∫

R

(
eiuz − 1

)
IPY (du)

)
, ∀z ∈ R.(1.3)

Proof: Let Mt =
∑Nt

i=1 Yi be as in Definition 1.8. Let f̂(z) = ΦY1(z) denote

the characteristic function of Y1 . Since {Yi}i≥1 are independent and identically

distributed, we find

ΦMt(z) = IE (IE(exp(izMt)|Nt))

= IE

(
IE

(
exp

(
iz

Nt∑
i=1

Yi

)∣∣∣∣∣ Nt

))

= IE

((
f̂(z)

)Nt
)

=
∞∑

n=0

e−λt(λt)n
(
f̂(z)

)n

n!

= e−λteλtf̂(z)

6See Theorem 1.2.
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= exp
(
tλ

(
f̂(z)− 1

))

= exp

(
tλ

∫

R

(
eiuz − 1

)
IPY (du)

)
.

The last equation holds, since
∫
R IPY (du) = 1 . ♦

1.2.2 General properties of Lévy processes

In this paragraph, we discuss general properties of Lévy processes and important

results of Lévy-process theory. They not only serve as useful tools when dealing

with Lévy processes but also show how jump-diffusion processes are character-

ized within the class of Lévy processes. Furthermore, they are helpful tools for

understanding proofs connected to theorems, such as those in Section 3.3.

The jump structure of a Lévy process is described by the jump measure and the

Lévy measure. It is well defined, since càdlàg functions have at most countably

many jumps.7

Definition 1.9 (Jump measure)

Let X denote a Lévy process. The random measure8 JX defined by

JX(A×B) :=
∑

t≥0:∆Xt>0

1t∈A · 1{∆Xt∈B}, ∀A×B ∈ B(R+
0 × R)

is called the jump measure of X .

Definition 1.10 (Lévy measure)

Let X denote a Lévy process. The measure ν defined by

ν(B) := IE(JX([0; 1]×B)) = IE

( ∑
t≥0:∆Xt>0

1t∈[0;1] · 1{∆Xt∈B}

)
, ∀B ∈ B(R)

is called the Lévy measure of X .

7For a proof, see [R], Appendix A.1.
8A random measure is a measure which additionally depends on the state of the world

ω ∈ Ω , respectively here the realization of X . Mathematically, it is a function JX : Ω ×
B([0;∞[×R) → R+, (ω, C) 7→ JX(ω)(C) . For a discussion of random measures and especially
Poisson-random measures, see [CT], Chapter 2.6.
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Since a Lévy process is càdlàg, the number ν(A) is the expected number of

jumps, per unit of time, whose sizes belong to A . Now we are able to give a

first important result in Lévy-process theory: the Lévy-Itô decomposition, which

describes the structure of the sample paths and allows us to characterize every

real-valued9 Lévy process with the so called Lévy triplet.

Theorem 1.1 (Lévy-Itô decomposition)

Let X denote a Lévy process, ν its Lévy measure, and JX its jump measure.

Then, there exist γ1 ∈ R , σ ∈ R+
0 , and a Wiener process W such that

Xt = γ1t + σWt + X1
t + lim

ε↓0
X̃ε

t , where

X1
t :=

∫

|x|>1, s∈[0;t]

xJX(ds× dx) and

X̃ε
t :=

∫

ε≤|x|≤1, s∈[0;t]

x(JX(ds× dx)− ν(dx)ds).

W, X1 and lim
ε↓0

X̃ε are mutually independent.

Proof: We refer to [Sa], Theorem 19.2, page 120 and Chapter 20, page 125, where

a proof is given. ♦

This representation is complicated, since on the one side, not all Lévy processes

are compound Poisson processes and hence, the Lévy measure ν can have a

singularity at zero.10 On the other side,
∫
|x|>1

|x|ν(dx) does not have to be

finite. We truncate the jump size in Theorem 1.1 at one, but we also could

truncate it at any other size ε > 0 . From the Lévy-Itô decomposition, we realize

that all distributional properties of a Lévy process are represented by γ1, σ2 ,

and the Lévy measure ν 11:

Definition 1.11 (Lévy triplet, center of the process)

The triplet (σ2, ν, γ1)1 , where σ, ν , and γ1 are as in Theorem 1.1 is called the

Lévy triplet12 (with respect to the truncation function 1{x≤1} ) of X . If the

9Of course, there exists also a characterization of a vector-valued Lévy process. The
standard-deviation parameter is replaced by a covariance matrix. However, we concentrate
on the one-dimensional case in this thesis.

10From the càdlàg property it follows that zero is the only critical point.
11No distributional information gets lost at the transition from JX to ν due to the inde-

pendent and stationary increments of a Lévy process.
12The Lévy triplet is also called characteristic triplet.
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condition
∫
|x|>1

|x|ν(dx) < ∞ is satisfied, then we call γc = γ +
∫
|x|>1

|x|ν(dx)

the center of the process X and (σ2, ν, γc)c the Lévy triplet (without truncation)

of X .

The term center of the process is justified by the fact that a Lévy process X

can be shown13 to satisfy IE(X1) = γc if the integrability condition holds. The

condition is satisfied if the Lévy process is a compound Poisson process with

integrable jump sizes, that is, IE(|Y1|) < ∞ .

Another important result of Lévy-process theory is the possibility to express the

characteristic function of a Lévy process at every time t in terms of its Lévy

triplet:

Theorem 1.2 (Lévy-Khinchin representation)

Let X denote a Lévy process with characteristic triplet (σ2, ν, γ)1 . Then its

characteristic function at time t satisfies:

ΦXt(z) = etψ(z), z ∈ R with (1.4)

ψ(z) := −1

2
σ2z2 + iγz +

∫

R

(
eiuz − 1− iuz1{|u|≤1}

)
ν(du). (1.5)

If
∫
|u|>1

|x|ν(du) < ∞ holds, Equation (1.5) can be replaced with the simpler

expression

ψ(z) := −1

2
σ2z2 + iγcz +

∫

R

(eiuz − 1− iuz)ν(du), (1.6)

where γc = γ +
∫
|u|>1

|u|ν(du) is as in Definition 1.11.

Proof: We only show Equation (1.4). For Equation (1.5) we refer to [CT], The-

orem 3.1, page 83, where the statement is proven. Equation (1.6) is a direct

consequence of Equation (1.5). The stochastic continuity14 of t 7→ Xt implies

continuity in distribution and thus, continuity of t 7→ ΦXt(z) for all z ∈ R . We

obtain for all z ∈ R due to the independent and stationary increments:

ΦXt+s(z) = ΦXt+(Xt+s−Xt)(z) = ΦXt(z)ΦXt+s−Xt(z) = ΦXt(z)ΦXs(z).

The exponential function is the only continuous function which satisfies this mul-

tiplicative property. ♦
13For instance, by differentiating Equation (1.4) in the below presented Theorem 1.2.
14See Definition 1.5, property 3.
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Lemma 1.8 (Wiener process and compound Poisson process)

1. A Wiener process has the Lévy triplet15

(1, 0, 0)1 and (1, 0, 0)c,

respectively.

2. The Lévy triplet of a compound Poisson process with intensity λ and jump-

size distribution IPY
16 is

(
0, λIPY (du), λ

∫

R
u1{|u|≤1}IPY (du)

)

1

.

If the jump sizes are integrable, that is,
∫
R |u|IPY (du) exists, then we do

not need to truncate and have the Lévy triplet

(
0, λIPY (du), λ

∫

R
uIPY (du)

)

c

.

Proof: The parameters can be directly derived by comparing the well-known

characteristic function ΦWt(z) = exp(−0.5tz2) of a Wiener process at time t 17

and Equation (1.3) in Lemma 1.7, respectively, to Equations (1.4) and (1.5) in

the Levy-Khinchin representation. ♦

1.3 Jump-diffusion processes

In this section, we discuss the class of jump-diffusion processes, which is the most

important class of Lévy processes in this thesis.

Definition 1.12 (Jump-diffusion process)

The process X = {Xt}0≤t<∞ defined by

Xt := γt + σWt +
Nt∑
i=1

Yi,

15This is one of numerous examples which show that in general Lévy measures are not
probability measures.

16For some important jump-size distributions in financial applications, the explicit represen-
tations of the Lévy measures can be found in [CW], Table 1.

17Obtained by using the technique of completing the square.
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where W is a Wiener process, independent from N and {Yi}i≥1 which are de-

fined as in Definition 1.8, is called a jump-diffusion process with drift γ , volatil-

ity of diffusion σ , intensity λ , and jump-size distribution IPY . If there are

no jumps, that is, IPY ({0}) = 1 , then we also call the stochastic process pure

diffusion process or Brownian motion.18

Time

X
(t

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
05

0.
10

0.
15

0.
20

Figure 1.3: A sample path of a jump-diffusion process X with drift γ = 0.025 ,

volatility of diffusion σ = 0.05 , intensity λ = 3 , and jumps of constant size

0.05 , that is, IPY ({0.05}) = 1 .

Remark 1.2 (Jump-diffusion process is Lévy process)

Since obviously Zt = γt is a Lévy process and sums of independent Lévy processes

are again Lévy processes, so is a jump-diffusion process. We know the Lévy-

Khinchin representation of all three summands, can multiply their characteristic

functions due to the independence of the underlying random variables and can

compute the Lévy triplet for X

(
σ2, λIPY (du), γ + λ

∫

R
u1{|u|≤1}IPY (du)

)

1

and if the integrability condition is satisfied

(
σ2, λIPY (du), γ + λ

∫

R
uIPY (du)

)

c

,

respectively.

We need the following lemma later.

18Compare to the notes after Definition 1.6.
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Lemma 1.9 (Difference of two jump-diffusion processes)

Let

Xt = γt + σWt +
Nt∑
i=1

Yi and

X̃t = γ̃t + σ̃W̃t +
Ñt∑
i=1

Ỹi

denote two jump-diffusion processes, such that the covariance satisfies Cov(Wt, W̃t)

= ρσσ̃t , where the correlation ρ ∈ [−1; 1] is constant over time, and all other

appearing random variables are mutually independent. The intensity of N (resp.

Ñ ) is denoted by λ (resp. λ̃ ), the jump-size distribution of Y (resp. Ỹ ) by

IPY (resp. IPỸ ). Then X̂ = X − X̃ is also a jump-diffusion process and takes

the form

X̂t
d
= γ̂t + σ̂Ŵt +

N̂t∑
i=1

Ŷi,

where γ̂ = γ− γ̃ , σ̂ =
√

σ2 + σ̃2 − 2σσ̃ρ , Ŵ is a Wiener process, N̂ a Poisson

process with intensity λ̂ = λ + λ̃ , and Ŷ has the distribution IPŶ (du) = λ/(λ +

λ̃)IPY (du) + λ̃/(λ + λ̃)IP−Ỹ (du) .

Proof: The deterministic part is obvious. We start with the difference of the two

Wiener processes. If ρ = 1 , then W
a.s.
= W̃ and σWt − σ̃W̃t

d
= |σ − σ̃|Wt which

proves the statement about σ̂ and Ŵ . So, let be ρ ∈ [−1; 1) . Then, σWt− σ̃W̃t

has variance (σ2 + σ̃2 − 2σσ̃ρ) · t = σ̂2t and

Ŵt :=
1√

σ2 + σ̃2 − 2σσ̃ρ
(σWt − σ̃W̃t) ∼ N (0, t)

is a Wiener process with σ̂Ŵ = σWt − σ̃W̃t . Let Mt =
∑Nt

i=1 Yi and M̃t =
∑Ñt

i=1(−Ỹi) denote the compound Poisson processes. Since they are independent,

we can simply calculate the characteristic function of their sum ΦMt+M̃t
at time t

as the product of the characteristic functions ΦMt and ΦM̃t
, as given in Lemma

1.7:

ΦMt+M̃t
(z) = exp

(
t

∫

R

(
eiuz − 1

) (
λIPY (du) + λ̃IP−Ỹ (du)

))

= exp

(
t(λ + λ̃)

∫

R
(eiuz − 1)

(
λ

λ + λ̃
IPY (du) +

λ̃

λ + λ̃
IP−Ỹ (du)

))
.
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We notice that this corresponds to the characteristic function of a compound

Poisson process with intensity λ̂ and jump-size distribution IPŶ at time t . ♦

We shall also need the moments of a jump-diffusion process. The formula for the

expectation is called Wald’s equation.

Lemma 1.10 (Moments of a jump-diffusion process)

Let the notation be as in Definition 1.12.

1. If the jump sizes are integrable, that is, IE(|Y1|) < ∞ , then the expectation

of a jump diffusion X at time t exists and

IE(Xt) = tγc = t

(
γ + λ

∫

R
uIPY (du)

)
= t (γ + λIE(Y1)) .

2. If in addition the jump sizes are square integrable, that is, IE(Y 2
1 ) < ∞ ,

then the variance of a jump diffusion X at time t exists and is given by

Var(Xt) = t
(
σ2 + λIE(Y 2

1 )
)
.

Proof: Let all integrability conditions be satisfied. Since N follows a Poisson

distribution, IE(Nt) = Var(Nt) = λt holds. By conditioning on the number of

jumps and using the independence of diffusion and jump component, we obtain

IE(Xt) = IE

(
γt + σWt +

Nt∑
i=1

Yi

)

= γt + 0 + IE

(
IE

(
Nt∑
i=1

Yi

∣∣∣∣∣ Nt

))

= γt + IE (Nt · IE(Y1))

= γt + λtIE(Y1),

Var(Xt) = Var

(
γt + σWt +

Nt∑
i=1

Yi

)

= σ2Var(Wt) + IE




(
Nt∑
i=1

Yi

)2

−

(
IE

(
Nt∑
i=1

Yi

))2

= σ2t + IE


IE




(
Nt∑
i=1

Yi

)2
∣∣∣∣∣∣
Nt





− t2λ2IE(Y1)

2
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= σ2t + IE

(
IE

(
Nt∑

i,j=1

YiYj

∣∣∣∣∣Nt

))
− t2λ2IE(Y1)

2

= σ2t + IE
(
NtIE(Y 2

1 ) + Nt(Nt − 1)IE(Y1)
2
)− t2λ2IE(Y1)

2

= σ2t + IE(Nt)IE(Y 2
1 ) +

(
IE(N2

t )− IE(Nt)
)
IE(Y1)

2 − t2λ2IE(Y1)
2

= σ2t + λtIE(Y 2
1 ) +

(
λ2t2 + λt− λt

)
IE(Y1)

2 − t2λ2IE(Y1)
2

= t
(
σ2 + λIE(Y 2

1 )
)
.

This completes the proof. ♦

At first glance, it seems surprising that instead of the variance the second quadratic

moment of Y appears in the formula for the variance of X . The reason is that

the event of no jump occurring is considered, too. By looking at jumps of constant

size one this becomes clear.



Chapter 2

Models

In this chapter, we discuss some background information about corporate bonds

and introduce the class of structural jump-diffusion models, on which we concen-

trate in this thesis.19 We also give a brief overview of an alternative approach to

modelling credit risk by means of so called ”reduced-form models”. In the last

section, we show that a firm-value process which includes large negative jumps

implies credit spreads for small maturities which are strictly positive. Hence, the

empirical observation that credit spreads do not vanish as maturity decreases can

be captured by this class of models.

2.1 Economic background

A bond in general is a debt security which is traded on fixed-income markets.

The bond holder pays a principal to the issuer, who pays back predefined coupon

payments at fixed dates and a face value at the bond’s maturity.20

Government bonds, such as American Treasury notes or German Bundesschatz-

briefe, represent safe investments.21 The holder is guaranteed to receive all claims

related to the bond. These bonds are called “risk-free bonds”. Since all payments

are sure for such a bond, there is no difficulty at all to calculate its fair price, which

19For an introduction to pure diffusion models without any jumps, we refer to [BR], Chapter
I.3. and [BK], Chapter 9.3.

20For a detailed introduction to bonds, see [BKM], Chapter 14.
21Of course, there are also risky sovereign bonds. For a discussion, see [DS], Chapter 6.4.1.

However, we assume a risk-free investment possibility to be given and concentrate on the pricing
of defaultable, corporate bonds.

20
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is just the sum of all discounted payments. However, it is difficult to determine

the fair price of a “corporate” or “defaultable bond”, which is issued by another

institution, such as a large corporation. The holder of such a bond cannot be sure

to receive all promised payments. In case of a default by the issuing institution, a

bond holder receives only a fraction of his claim or no payment at all depending

on the severity of the institution’s default. Pricing a corporate bond is therefore

based on two stochastic influences: Whether default occurs and how severe the

default is.

Investing in bonds implies more risks than just the default risk. There exist

also the interest-rate risk22, the inflation risk23, and the liquidity risk24. In this

thesis, however, we concentrate on the default risk and assume that there are no

other risks associated to the bond. Recent cases show that the default risk is not

a theoretical risk. For instance, the company WorldCom was unable to repay

its debt to the investors after its bankruptcy in 2002. Therefore, a bond buyer

demands for a higher interest rate than the corresponding risk-free interest rate

in exchange for the risk.

Bonds are classified by different rating companies, such as S&P, according to

their default risk. Table 2.1 shows the average credit spreads, that is the amount

by which the interest rate of the bond exceeds the risk-free interest rate, for a

given risk classification. Different maturities imply different spreads. Matching

this phenomenon, called term structure of interest rates, is an essential point of

modelling.

An important type of bond is the class of zero-coupon bonds.25 The only payment

associated with them takes place at the time of maturity. As the next lemma

shows, every bond with predefined payment schedule can be replicated using a

portfolio of zero-coupon bonds with appropriate maturities. So, we concentrate

on pricing corporate zero-coupon bonds in this thesis.

22The interest-rate risk describes the risk of incurring opportunity costs, since there will be
bonds with a higher return if the interest rate increases.

23The inflation risk is closely related to the interest-rate risk. If the inflation rises, an invest-
ment in tangible assets is maybe a better investment than holding a bond, since the cash flows
from the bond take place in the future, when they have less worth.

24The liquidity risk reflects the problem of finding someone to buy the bond if the investor
decides to sell it. This risk is especially high for rarely traded bonds issued by small companies.

25There are other types of bonds, such as callable bonds, which include the right to reduce
the bond’s maturity. We do not pay attention to this class of bonds. For a description of
different types of bonds and more sophisticated credit derivatives, such as credit default swaps,
we refer to [Bo].
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Maturity Risk-free Defaultable Credit Spread

3 months 4.63 5.18 0.55

6 months 4.73 5.26 0.53

1 year 4.73 5.30 0.57

2 years 4.67 5.36 0.69

3 years 4.67 5.42 0.75

4 years 4.65 5.48 0.83

5 years 4.63 5.55 0.92

7 years 4.60 5.64 1.04

8 years 4.60 5.72 1.12

9 years 4.60 5.75 1.14*

10 years 4.60 5.80 1.20

15 years 4.72 6.02 1.31*

20 years 4.71 6.04 1.33

25 years 4.63 6.12 1.49

30 years 4.50 6.11 1.61

* was caused by a rounding error.

Table 2.1: Credit spreads for different maturities for February 28th 2006. The

data set is provided by Bloomberg L.P. It consists of the risk-free (US Treasure

Composite) interest rates, the average defaultable (US Industrial BBB) interest

rates, and the corresponding credit spreads.

Lemma 2.1 (Representation of coupon bonds)

For any coupon bond there exists a portfolio of zero-coupon bonds with the same

payoff structure. More precisely, the price of a coupon bond φ(0, t1, t2, . . . , tn, q)

with maturity T , face value F , and promised coupon payments q = (q1, q2, . . . , qn)

at 0 < t1 < t2 < . . . < tn = T satisfies

φ(0, t1, t2, . . . , tn, q) =
n∑

j=1

qjφ(0, tj) + Fφ(0, tn),

where φ(0, tj) denotes the price of a zero-coupon bond with face value one and

maturity tj .

Proof: The statement follows directly from the no-arbitrage condition. ♦
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2.2 Structural jump-diffusion models

In a structural credit-risk model, the value of a company, the so called firm value,

and a default threshold are explicitly modelled with stochastic processes. For

this thesis, both processes are defined by the exponentials V = {Vt}t≥0 and

D = {Dt}t≥0 of the jump diffusions X = {Xt}t≥0 and d = {dt}t≥0 on a filtered

probability space (Ω,F ,F, IP) . More precisely,

Vt = v0 exp(Xt), v0 ∈ R, (2.1)

Xt = γXt + σXWX
t +

NX
t∑

i=1

Y X
i , (2.2)

Dt = d0 exp(dt), d0 ∈ R, d0 < v0, and (2.3)

dt = γdt + σdW d
t +

Nd
t∑

i=1

Y d
i . (2.4)

γX , γd, σX , and σd are constant over time and defined as in Definition 1.12,

along with WX ,W d, NX , Nd, Y X , and Y d . Additionally, we assume that the

covariance of W and W̃ satisfies Cov(Wt, W̃t) = ρσσ̃t , where ρ ∈ [−1; 1] is

constant over time, and that all other appearing random variables are mutually

independent.

We assume that IP is a risk-neutral measure.26 We denote by F = {Ft}t≥0 the

natural filtration generated by the processes V and D 27, that is, Ft = σ(Vs, Ds :

0 ≤ s ≤ t) = σ(Xs, ds : 0 ≤ s ≤ t) , augmented to satisfy the usual conditions of

right-continuity and IP -completeness28.

The firm value can represent the company’s accumulated assets, which equal the

sum of the company’s equity and debt, or the sum of the company’s discounted

future cash flows. Also, there are different interpretations for the default thresh-

old: It can stand for the sum of the company’s short-term liabilities plus a fraction

(for instance 50%) of the long-term liabilities, as in the models of the financial

consulting company KMV.29 Black and Cox interpret the threshold in [BC] as

the minimal firm value required to operate the company.

26But the discounted firm-value and default-threshold processes do not have to be martin-
gales, since they do not always represent tradeable assets.

27This implies that we can observe both the actual firm value and the actual default threshold.
[Schm] discusses a model where the default threshold cannot be observed.

28See Definition 1.1.
29See [CB], Section 2.
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The stochastic processes of the model are described by the following parameters30:

γX , γd : The linear trends of the diffusion components.

σX , σd : The volatilities of the diffusion components.

λX , λd : The jump intensities.

IPY X , IPY d : The jump distributions.

v0, d0 : The initial firm value and the initial value of the default threshold.

We prove the results and introduce the algorithms for general jump-size distribu-

tions as far as possible. If necessary, as for the implementation, we concentrate

on two-sided exponentially distributed jump sizes introduced at the end of this

section.

While in the financial literature generalizations to stochastic interest rates were

made31, we concentrate on a constant interest rate, which we denote by r .

The company issues a zero-coupon bond with maturity T at time 0 . We have

got two similar ways to model how default is triggered: In the classical approach

by Black, Scholes, [BlS] (1973) and Merton, [M1] (1974, without jumps) and [M2]

(1976, with jumps), a credit event is triggered if at the bond’s maturity the firm

is not able to meet its obligations, that is, the firm value is below the default

threshold. The second approach is to assume that default is triggered at the

first time τ , when the firm value crosses32 the default threshold.33 These models

are called first-passage time models.34 This idea was first presented by Black

30In Theorem 2.1 we see that the two stochastic processes can be combined to one. The new
stochastic process will be the quotient of the firm value and the default threshold. Hence, we
shall not need the parameters γd, σd, λd, d0 .

31For instance, Longstaff and Schwartz, [LS] extended the Black-Cox model to include
stochastic interest rates. The short-rate process follows the mean-reverting process suggested
by Vasicek, [V] in 1977 and can be correlated with the firm-value process V .

32We use the expression “to cross” although we define default as the event that the firm value
crosses OR touches the default barrier. It can be shown that having a real Gaussian component,
that is, σ > 0 for σ from Theorem 2.1, the two definitions are equivalent. Compare to [Bi],
Chapter 37, page 507.

33If the default barrier is constant, that is, dt ≡ 0 , then it was shown in Lemma 1.1 that τ

is a stopping time. If {dt}t≥0 is a jump-diffusion process, then τ is also a stopping time, since
the relevant filtration F is the natural filtration of the two stochastic processes V and D ,
which represent the firm value and default threshold. This property can be proved by applying
Theorem 2.1.

34By setting the default barrier to zero for the time until the bond’s maturity we realize that
the first structural models are special cases of the more general first-passage time models. Since
it is not possible to manipulate the default barrier in such a way in the restricted jump-diffusion
setup, this does not hold true for our structural jump-diffusion models.
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and Cox, [BC] in 1976. In general, the time of default is endogenously included

in structural models. While a corporate bond in [BlS] and [M1] resembles a

European put, in the first-passage time models it is more like a barrier option.

Altogether, it is possible to adapt pricing techniques of equity securities to price

bonds and other debt securities. In this thesis, we concentrate on the first-passage

time setup.

Only since the late nineties of the twentieth century, firm-value processes with

a diffusion and jump component have been combined with first-passage time

models. They were first introduced by Schönbucher, [Schö], Section 3 in 1996

and Zhou, [Z1] in 1997.35 Allowing the firm-value process to jump provides a

natural model of the default severity, which is now endogenously given by the

model: If a company defaults by a jump, its value process falls below its default

threshold. This random undershot is used to specify the default severity, and

hence the recovery rate. Therefore, we model the recovery rate as a function of

the firm-value to default-threshold ratio at the time of default. The bond holder

receives the fraction w(Vτ/Dτ ) of the face value36 in case of a default, where w is

a positive, non-decreasing and measurable function, defined on the unit interval

[0; 1] .37 We consider two different recovery-rate functions:

wR
1 (x) = R, R ∈ [0; 1],

wR
2 (x) = R · x, R ∈ [0; 1].

Using wR
1 implies not to pay any attention to the undershot 1 − Vτ/Dτ of the

firm-value process over the default barrier, that is, the same amount of money

independent of the firm value at time of default is paid back to the investor at

time of default. When using wR
2 the investor’s payout at time of default depends

linearly on the firm value.38

The recovery payoff can be timed in two different ways: at time of default or at

the bond’s maturity.

Remark 2.1 (Summary of the model parameters)

The model is determined by the specification of the jump-diffusion processes in-

cluding the jump-size distribution, by fixing the interest rate and the bond’s ma-

turity, by setting the recovery rates, and by deciding about the recovery-payoff

timing.

35Already in 1981, there was a model presented in [MB] which combined jump processes with
first-passage time models. However, there was no diffusion component included.

36This is one unit of money in our setup.
37This definition slightly differs from Zhou’s suggestion in [Z2].
38For empirical studies about the recovery rate, see for instance [AK].
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Figure 2.1: Two sample paths of X + ln(v0) and d + ln(d0) with parameters

γX = 0.025 , σX = 0.05 , λX = 3 , γd = 0.025 , σd = 0.08 , v0 = e0.05 , and

d0 = 1 . While X has constant jumps of size 0.05 , d is a pure diffusion. On

the left picture no default occurs. On the right picture, however, default occurs

at time τ = 0.32 . If the maturity of the corresponding bond is T = 1 , in

the Black-Scholes-Merton setup no default would occur in either sample, since

V1 > D1 holds.

We illustrate the influence of the recovery-payoff timing on the zero-coupon bond

valuation in the next lemma.

Lemma 2.2 (Price of a zero-coupon bond)

With φ(t, T ) (resp. φ̃(t, T ) ) denoting the price of a corporate bond at time t

with recovery payout at time of default (resp. at maturity), we obtain for τ > t :

φ(t, T ) = e−r(T−t)IP(τ > T |Ft) + IE

(
e−r(τ−t)w

(
Vτ

Dτ

)
1{t<τ≤T}

∣∣∣∣Ft

)
,(2.5)

φ̃(t, T ) = e−r(T−t)

(
IP(τ > T |Ft) + IE

(
w

(
Vτ

Dτ

)
1{t<τ≤T}

∣∣∣∣Ft

))
. (2.6)

Proof: The fair price of a defaultable bond is given as the expectation of its

discounted payout with respect to the risk-neutral probability measure IP . The

discount factor39 for the time interval [t1; t2] is exactly e−r(t2−t1) . If no default

occurs the bond holder receives one unit of money. In case of a default, w(Vτ/Dτ )

is paid. This completes the proof. ♦

The last lemma yields the representation of a defaultable zero-coupon bond as

the sum of two securities. One security pays one unit of money at maturity if

39This is also the price of a risk-free zero-coupon bond.
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the company does not default, the other security pays the (possibly stochastic)

recovery rate w if the company defaults before or at maturity.

If we have to calibrate the model40 the number of parameters is too high.41

However, this problem can be reduced, since we can decrease the number of

parameters by merging the two stochastic processes V and D to only one jump

diffusion Ṽ . This is illustrated in the next theorem.

Theorem 2.1 (Reducing the model’s complexity)

Let V and D be defined as in Equations (2.1) to (2.4). Define

Ṽt := ṽ0 exp(X̃t) with

X̃t := γt + σWt +
Nt∑
i=1

Yi and

D̃t := 1,

where ṽ0 := v0

d0
and X̃ is a jump-diffusion process with parameters γ = γX −

γd , σ =
√

(σX)2 + (σd)2 − 2σXσdρ , intensity λ = λX + λd , and jump-size

distribution IPY (du) = λX/(λX + λd)IPY X (du) + λd/(λX + λd)IP−Y d(du) . Then,

the model specified by the firm-value process Ṽ and default threshold D̃ has the

same dynamics as the model specified by V and D , in particular both times of

default ( τ and τ̃ ) and both undershots ( 1− Vτ/Dτ and 1− Ṽτ̃ ) are identically

distributed. Thus, the same bond prices and credit spreads are generated from the

two model specifications.

Proof: In Lemma 1.9 we have shown that X̃t
d
= Xt − dt . So,

Ṽt = ṽ0 exp(X̃t)
d
=

v0 exp(Xt)

d0 exp(dt)
=

Vt

Dt

and

τ̃ = inf{s : Ṽs ≤ D̃s} = inf{s : Ṽs ≤ 1} d
= inf{s : Vs/Ds ≤ 1} = τ,

which completes the proof. ♦

Theorem 2.1 is useful not only for calibrating but also for simplifying simulation

algorithms. Obviously, it is faster to simulate only one stochastic process, even

if the intensity of the jump component increases and the jump-size distribution

40That is, to adapt the model parameters to given market prices.
41Another problem linked to this one is the fact that a change of different parameters can

have the same effect, for instance increasing the default drift is almost equivalent to decreasing
the firm-value drift.
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occasionally becomes more complex. Thus, from now on we assume a constant

default threshold Dt ≡ 1 . This yields V = Ṽ .

We need the following definition:

Definition 2.1 (Distance to default)

At any time t ≥ 0 , the distance to default for X , that is, how far Xt is away

from the critical barrier is given by

xt := ln(Vt) = ln(v0) + Xt.

x0 from the last definition has a special meaning: −x0 is the barrier which the

stochastic process X crosses when default occurs, as shown in the next remark.

Remark 2.2 (Further possible simplification of the model)

Default occurs if 1 ≥ Vt = v0 exp(Xt) . That is equivalent to

Xt ≤ − ln(v0) ⇐⇒ Xt

ln(v0)
≤ −1.

If we standardize γnew = γ
ln(v0)

, σnew = σ
ln(v0)

, and Y new =
{

Yi

ln(v0)

}
i≥1

, we would

not need the parameter v0 any more. However, in this thesis, we abstain from

this simplification, since firstly, the parameter v0 is often exogenously given and

does not have to be calibrated and secondly, when comparing bond values and

credit spreads of companies in different financial situations it is easier to modify

v0 than to modify γ , σ , and the jump-size distribution IPY .

There are infinitely many choices for selecting the jump-size distribution. Merton,

[M2] and Zhou, [Z2] chose normally distributed jump sizes, that is Yi ∼ N (µ, δ2)

for µ ∈ R and δ ∈ R+ . This choice has the advantage that the probability-

density function of the jump-diffusion process X can be analytically repre-

sented.42 In contrast, Scherer, [Sche] used two-sided exponentially distributed

jump sizes, which were studied by Kou and Wang, [KW]. Due to the memo-

ryless property of exponentially distributed random variables, some expressions

depending on the first-passage times can sometimes be analytically obtained. As

long as possible, we state the theorems in terms of general jump-size distribu-

tions. However, we implemented the algorithms with two-sided exponentially

distributed jump sizes.

42For details, we refer to [CT], page 111.
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Definition 2.2 (Two-sided exponential distribution)

The distribution

IPY (dx) = pλ⊕e−λ⊕x1{x≥0}dx + (1− p)λªeλªx1{x<0}dx

with parameters p ∈ [0; 1] and λ⊕, λª ∈ R+ is called a two-sided exponential

distribution.

Jumps following this distribution are positive with probability p and negative

with probability 1− p . Their size is exponentially distributed with means 1/λ⊕
and 1/λª, respectively.

2.3 Alternative approaches

There are alternative structural models. The simplest one, a pure diffusion model,

is included as a special case in the jump-diffusion model by only allowing jumps

of size zero.43 Also, by setting σ = 0 we obtain a pure jump model, as presented

in [MB]. Cariboni and Schoutens, [CS] discuss a so called variance-Gamma ap-

proach. Here, the firm-value process is the exponential of a stochastic process X

which is completely driven by jumps, that is, X is built by infinitely many jumps

in any finite interval and its paths are of finite variation. This implies that it

does not have a Brownian-motion component. To obtain results, time-consuming

Monte-Carlo simulations have to be done or partial-differential integral equations

have to be solved.

Many different interpretations of the default boundary are discussed in the finan-

cial literature. One approach differing from ours is to model the ratio of the firm

value to the default threshold as a mean-reverting process in order to include a

company’s policy to receive a fixed leverage ratio as suggested by Collin-Dufresne

and Goldstein, [CG].44 In Leland’s model, [L], the owner of the company chooses

the default threshold.

In reduced-form models45, the firm value does not serve as a reference. Instead,

there is an exogenously specified Poisson process P with random intensity H .

43Thus, there are still jumps but they are of size zero. We chose this interpretation of pure
diffusion models in order to remain in the class of jump-diffusion models. For λ = 0 , N is
not a Poisson process any more.

44Since the mean-reverting component does not allow us to reformulate the quotient of firm
value and threshold as a jump-diffusion process, we do not deal with this interpretation in this
thesis. For further details in a pure diffusion setup see the original paper [CG].

45Also intensity-based models called.
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Default is triggered by the first jump of P . This jump is not predictable with

respect to the underling filtration F . The reduced-form models mainly differ in

the definition of the default-intensity process H , which is also called a hazard-

rate process. In reduced-form models, the recovery rate is also given exogenously.

For an introduction to these models, we refer to [DS], Chapter 3.5. Another

alternative is to combine structural and intensity-based models to so called hybrid

models. The default-intensity process H is determined by the firm value. Duffie

and Lando, [DL] discuss such a model which additionally assumes periodic and

imperfect accounting information.

The orientation mainly at the fundamentals firm value and liabilities is both

advantageous and disadvantageous at the same time for the structural approach.

On the one hand, a link between the firm’s assets and liabilities and default

risk is explicitly given and has not to be constructed as in the reduced-form

approach. Also, the value of the company at time of default is endogenously

included and can be used to determine the recovery rate. On the other hand, it

is not possible to always observe the firm value and liabilities. Their structure can

be very complex (outstanding wages, tax payments, etc.) and it can be difficult

to calculate them exactly, since balance sheets often include noisy information,

as the case of the company Enron shows. Furthermore, reduced-form models can

be better adjusted to fit observed credit spreads, since they are not restricted by

the connection of fundamentals and default risk.

The default times in pure diffusion models are predictable, that is, there always

exist increasing sequences of stopping times which converge to them. This implies

that short-term credit spreads are extremely low, contradictory to reality.46 In

contrast, default times in reduced-form models occur by surprise and are unpre-

dictable. A jump-diffusion model can have both kinds of stopping times: While

the diffusion creates predictable stopping times, the jump component generates

unexpected ones.

For a detailed comparison of the structural and reduced-form approach, we refer

to the paper of Jarrow and Protter, [JP].

2.4 Credit spreads for small maturities

As stated in the last section, credit spreads for short-maturity bonds in a tra-

ditional pure diffusion model are smaller than observed credit spreads on the

46See for instance [JMR] or [Fo].
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markets. This is a huge drawback of pure diffusion models, since they are not

able to mirror this property of short-term bonds and so, cannot be used to price

them. We now show that including large negative jumps results in credit spreads

which do not vanish as maturity decreases to zero.

We start with the formal definition of credit spreads:

Definition 2.3 (Credit spread)

Let φ(0, T ) denote the price of a zero-coupon bond with maturity T . Then its

corresponding credit spread is the real number ηT that solves the relation

φ(0, T ) = e−(r+ηT )T .

The local default rate is an important component of the exact limit of credit

spreads as maturity tends to zero:

Definition 2.4 (Local default rate of τ )

The local default rate of τ , abbreviated as LDRτ , is defined by

LDRτ = lim
h↓0

1

h
IP(τ ≤ h).

Time t

V
(t

)

0.0 0.2 0.4 0.6 0.8 1.0

1.
00

1.
05

1.
10

1.
15

1.
20

Default threshold

Firm value

Time t

LD
R

(t
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
05

0.
10

0.
15

Figure 2.2: A sample path of V and the corresponding local default rate LDRτ .

The jump sizes are assumed to be two-sided exponentially distributed. We chose

as parameters γ = 0.025 , σ = 0.05 , p = 0.5 , λ = 2 , λ⊕ = λª = 20 , and

v0 = 1.1 .

We first concentrate on the pure diffusion setup. The next result shows that the

local default rate in pure diffusion models is zero. Furthermore, it helps to obtain

results for the jump-diffusion setup.
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Lemma 2.3 (The local default rate of τ in a pure diffusion model)

If there are no jumps, that is, Y ≡ 0 , then LDRτ = 0 .

Proof: The case σ = 0 is obvious. So without loss of generality, σ > 0 holds.

Lemma 1.3 yields the cumulative distribution function of the minimum of a Brow-

nian motion. We obtain the cumulative distribution function of the first-passage

time τ with x = 0 and b = −x0 = − ln(v0) , where x0 denotes the distance to

default:

IP(τ ≤ h) = Φ

(−x0 − γh

σ
√

h

)
+ exp

(
−2γx0

σ2

)
Φ

(−x0 + γh

σ
√

h

)
,

where Φ represents the cumulative normal distribution. Hence,

LDRτ = lim
h↓0

1

h
IP(τ ≤ h)

= lim
h↓0

1

h

(
Φ

(−x0 − γh

σ
√

h

)
+ exp

(
−2γx0

σ2

)
Φ

(−x0 + γh

σ
√

h

))

= lim
h↓0

x0√
2πσh

3
2

exp

(
−(x0 + γh)2

2σ2h

)

= 0.

In the second to last equation, we applied l’Hospital’s rule. The derivative was

calculated in Lemma 1.3. ♦

Now, we can handle the jump-diffusion setup. We were able to generalize a result

from Scherer.47 For absolutely continuous48 jump-size distributions, the local

default rate is determined by the Lévy measure of the logarithm of the firm-value

process and the distance to default.

Theorem 2.2 (The local default rate of τ in a jump-diffusion model)

Let FY denote the cumulative jump-size distribution function. The distance to

default for X is given by x0 . We obtain

LDRτ =

{
λFY ((−x0)−) + λ · 1

2
IP(Y = −x0) if σ > 0,

λFY ((−x0)−) + λ · 1γ≤0 · IP(Y = −x0) if σ = 0.

If the jump-size distribution is absolutely continuous, this simplifies to

LDRτ = λFY (−x0) = ν([−∞;−x0]),

47See [Sche], Theorem 4.1.
48That is, the distribution IPY has a representation IPY (dx) = g(x)dx for a measurable

function g : R→ R . This also implies that Y ’s cumulative distribution function FY satisfies
FY (x) = FY (x−) for all x ∈ R .
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where ν denotes the Lévy measure of X .

Proof: We condition on the number Nh of jumps which occurred up to time h

and denote the first jump time by τ(h) . We obtain

lim
h↓0

1

h
IP(τ ≤ h)

= lim
h↓0

1

h

∞∑
n=0

IP(Nh = n)IP

(
inf

0≤s≤h
Xs ≤ −x0

∣∣∣Nh = n

)

= lim
h↓0

e−λh

h
IP

(
inf

0≤s≤h
(γs + σWs) ≤ −x0

)
+

lim
h↓0

λe−λhIP

(
inf

0≤s≤h

(
γs + σWs + 1{s≥τ(h)}Y1

) ≤ −x0

)
+

lim
h↓0

1

h

∞∑
n=2

e−λh(λh)n

n!
IP

(
inf

0≤s≤h

(
γs + σWs +

Ns∑
j=1

Yj

)
≤ −x0

∣∣∣Nh = n

)
.

Lemma 2.3 yields that the first limit is zero. Considering the last limit, the

probability can be limited by one and a dominated convergence argument allows

us to interchange limit and summation, establishing that this limit also equals

zero. We now examine the second limit, the case of exactly one jump. Writing

Bs := γs+σWs , At(x) := {ω ∈ Ω : inf0≤s<t Bs(ω) ≤ x} and AC
t (x) := Ω\At(x)

for brevity, we obtain by conditioning

IP

(
inf

0≤s≤h

(
Bs + 1{s≥τ(h)}Y1

) ≤ −x0

)

= IE
(
IE

(
1{inf0≤s≤h(Bs+1{s≥τ(h)}Y1)≤−x0}

∣∣∣ Y1

))

= IE
(
IE

(
1Aτ(h)(−x0) + 1AC

τ(h)
(−x0)∩{infτ(h)≤s≤h Bs+Y1≤−x0}

∣∣∣Y1

))

= IP
(
Aτ(h)(−x0)

)
+

IE
(
IE

(
IE

(
1AC

τ(h)
(−x0)∩{infτ(h)≤s≤h Bs+Y1≤−x0}

∣∣∣ Bτ(h), Y1

)∣∣∣Y1

))

= IP
(
Aτ(h)(−x0)

)
+

IE
(
IE

(
IE

(
1AC

τ(h)
(−x0)∩Ãh−τ(h)(−x0−Y1−Bτ(h))

∣∣∣ Bτ(h), Y1

)∣∣∣ Y1

))
,

where Ãt(x) is defined as At(x) with B being replaced by the independent

Brownian motion B̃s := Bτ(h)+s − Bτ(h) . Since τ(h) ≤ h holds, the limit of the

first term tends to zero with h , as in the pure diffusion setup. Lemma 2.3 also

yields for the second term: If Y1 > −x0 , then the conditional expectation tends
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to zero, since so does IP(Bτ(h) ≤ −x0 − y) for all y > −x0 for h going to zero,

due to the continuity of the diffusion part. If Y1 < −x0 , then the conditional

expectation tends to one, since so does IP(Bτ(h) ≤ −x0 − y) for all y < −x0 for

h going to zero and since IP(Ãt(x)) = 1 for all t, x ∈ R+ . If Y1 = −x0 , then

the conditional expectation tends to zero if Bτ(h) > 0 and to one if Bτ(h) ≤ 0

with h . Thus, we obtain for σ > 0 ,

lim
h↓0

IP

(
inf

0≤s≤h

(
Bs + 1{s≥τ(h)}Y1

) ≤ −x0

)

= 0 + FY ((−x0)−) + IP(Y1 = −x0) · lim
h↓0

IE
(
IE

(
1{Bτ(h)≤0}

∣∣∣ τ(h)
))

= FY ((−x0)−) + IP(Y1 = −x0) · lim
h↓0

IE

(
Φ

(
−γ

√
τ(h)

σ

))

= FY ((−x0)−) +
1

2
IP(Y1 = −x0).

For σ = 0 , the corresponding statements can be shown equivalently. ♦

The result can be interpreted as follows: If a negative jump exceeds the distance

to default with positive probability, that is, FY ((−x0)−) > 0 , then the local

default rate is positive. Based on this local default rate, we are now able to

calculate the exact limit of credit spreads as maturity decreases to zero.

Theorem 2.3 (Credit spreads at time zero)

We assume a constant recovery rate, that is, we choose wR
1 (x) ≡ R . Then, the

limit of credit spreads at time zero is given by

lim
h↓0

ηh = (1−R)LDRτ .

Proof: The theorem does not specify the recovery-payoff timing. First, we calcu-

late the credit spread of a zero-coupon bond φ̃ with maturity h whose payoff in

case of a default takes place at maturity h . We obtain from Equation (2.6) in

Lemma 2.2:

φ̃(0, h) = e−rh (IP(τ > h) + R · IP(τ ≤ h)) .

By the definition of credit spreads,

lim
h↓0

η̃h = lim
h↓0

−1

h
ln

(
φ̃(0, h)

)
− r

= lim
h↓0

−1

h
ln (IP(τ > h) + R · IP(τ ≤ h))
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= − lim
h↓0

ln (IP(τ > h) + R · IP(τ ≤ h))− ln (IP(τ > 0) + R · IP(τ ≤ 0))

h

= − δ

δh
ln (IP(τ > h) + R · IP(τ ≤ h))

∣∣∣∣
h=0

=
δ
δh

IP(τ ≤ h)−R · δ
δh

IP(τ ≤ h)

1− IP(τ ≤ h) + R · IP(τ ≤ h)

∣∣∣∣∣
h=0

= LDRτ −R · LDRτ

= LDRτ (1−R).

Hence, a bond φ̃ with recovery payoff at maturity satisfies the statement. Let

us now look at a bond φ whose payout in case of a default takes place at time

of default. We can give a lower bound for its payout R · e−rτ by R · e−rh and an

upper bound by R . The lower bound is represented by φ̃ , the upper bound is

represented by a bond φ̂ with value

φ̂(0, h) = e−rh · IP(τ > h) + 1 ·R · IP(τ ≤ h).

Calculating the limit of credit spreads at time zero as for φ̃ , we again obtain

lim
h↓0

η̂h = LDRτ (1−R).

Credit spreads are monotone decreasing functions of the bond value, that is,

lim
h↓0

η̂h ≤ lim
h↓0

ηh ≤ lim
h↓0

η̃h.

Hence, the limit of credit spreads at time zero for φ is given by

lim
h↓0

ηh = LDRτ (1−R).

This completes the proof. ♦

Remark 2.3 (Interpretation of Theorem 2.3)

We found that the limit of credit spreads is the product of the local default rate

and the fractional loss at time of default. This is economically reasonable, as

a potential loss is decreasing in the recovery rate, resulting in a smaller credit

spread. Moreover, the local default rate approximates the probability of a default

within a small time interval. Therefore, credit spreads of bonds with a small

maturity merely depend on the probability of a sudden default, in other words,

credit spreads are increasing in the local default rate.
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Figure 2.3: The credit spreads of 2× 50 corporate bonds φi(0, tj), i = 1, 2, j =

1, . . . , 50 with maturities tj = j/50 issued by two companies identified with the

firm-value processes V 1 and V 2 with two-sided exponentially distributed jump

sizes and parameters γ1 = 0.025 , γ2 = 0.2 , σ1 = σ2 = 0.05 , λ1 = λ2 = 2 ,

p1 = p2 = 1/2 , λ1
⊕ = λ2

⊕ = λ1
ª = λ2

ª = 20 , and v1
0 = 1/0.8 and v2

0 = 1/0.9,

respectively. The interest rates are chosen to be constant r = 0.02 , and so is

the recovery-rate function w0.5
1 (x) ≡ 0.5 . The credit spreads were calculated by

the later introduced Algorithm 3.2 with ten million simulations per bond. As we

can see, as maturity goes to zero both credit spreads tend to (1−R)LDRi
τ (0) =

1/2 · λipi · exp(−λi
ª · ln(vi

0)) , which is approximately 0.00576 for company V 1

and 0.06079 for company V 2, respectively. The reason for the higher credit

spread of the second company close to zero is the fact that it is closer to default

at time zero, since v2
0 < v1

0 . The different shapes are caused by the different life

cycles of V 1 and V 2 . So, V 2 represents a company which is close to default

at time zero but has high growth perspectives represented by a high γ2 . Its

credit spread therefore narrows down. In contrast, V 1 is a company which has

a lower leverage at time zero but also a lower expected growth. This fits exactly

to empirical observations, see for instance [Fo].



Chapter 3

Bond pricing

As briefly explained in Lemma 2.1, we can represent every coupon bond with pre-

defined payment schedule as a weighted sum of zero-coupon bonds with appropri-

ate maturities. Thus, we restrict our focus to the valuation of zero-coupon bonds.

In the first three sections, we introduce methods to calculate their prices, namely

Zhou’s algorithm, the Brownian-bridge pricing technique, and the Laplace-trans-

form approach. All three methods are designed to evaluate the pricing formula

within the jump-diffusion setting. Further, we discuss differences and biases of

the three algorithms in the fourth section.

3.1 Zhou’s algorithm

Zhou suggests in [Z2] a simple Monte-Carlo simulation to obtain bond prices. His

idea is to discretize the time interval [0; T ] into a fine grid and then to sample

trajectories of the firm-value process on this grid. Default can only occur at

the grid points. Since there is always a small probability of a default occurring

strictly between the grid points, this algorithm underestimates the risk of default.

Hence, the calculated bond prices are biased, as we will see. In this section, we

assume that the jump sizes can be simulated numerically and that the recovery-

rate function w is continuous.

The following theorem, which appears in [Z2] as Theorem 1, serves as the theo-

retical justification for Zhou’s algorithm, which we present afterwards. Zhou only

presents a short outline of the proof. We slightly modify the theorem by setting

the recovery payoff to the time of default, which we assume to be at the middle

of the time interval before default is observed. Then, we prove the statement for

37
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all jump-size distributions. In Zhou’s original paper, the recovery payoff takes

place at maturity. The proof for this setup can be easily derived from our proof.

Theorem 3.1 (Price of a zero-coupon bond)

The price of a zero-coupon bond with maturity T, φ(0, T ) , can be expressed as

φ(0, T ) = exp(−rT )IP(τ > T ) + lim
n→∞

n∑
i=1

exp
(
−rti− 1

2

)
IE

(
w

(
V ∗

ti

) |Ω∗
i

)
IP(Ω∗

i ),

where for i = 1, . . . , n

ti :=
i

n
T, ti− 1

2
=

i− 1
2

n
T, and

Ω∗
i :=

{
V ∗

ti
≤ 1 and V ∗

tj
> 1, ∀j < i

}
.

Moreover, V ∗
ti

is defined recursively as

V ∗
t0

:= v0,

ln
(
V ∗

ti

)
:= ln

(
V ∗

ti−1

)
+ xi + πi · yi, i = 1, . . . , n.

Here, xi , yi , and πi are mutually and serially independent random variables

drawn from

xi ∼ N
(

γ · T

n
, σ2 · T

n

)
,

yi ∼ IPY , and

πi =

{
0 with prob. 1− λ · T/n,

1 with prob. λ · T/n.

Proof: In the proof, we add the letter n to the index of the variables to emphasize

the dependence of the sets on n . For the case that a set A has probability zero we

define for a random variable Z : IE(Z|A) := 0. Since the recovery-rate function

w is continuous, it has a maximum on the relevant interval [0; 1] and we denote

wmax = max{w(x) : x ∈ [0; 1]} .

Furthermore, we use the notation Ni,n := Nti − Nti−1
. Since N is a Poisson

process, its increments {Ni,n}i are mutually independent and exponentially dis-

tributed, as shown in Lemma 1.4. We denote by Ωi,n := {ω ∈ Ω : ti−1 < τ(ω) ≤
ti} the set of all states ω ∈ Ω such that the company defaults in (ti−1; ti] . We

define An := {ω ∈ Ω : ∃i ∈ {1, 2, . . . , n} with Ni,n(ω) ≥ 2} as the set of the
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states ω ∈ Ω such that the process Xt = ln(Vt/v0) has at least two jumps in one

interval (ti−1; ti] , i ≤ n . We denote by AC
n = Ω \ An the complement of An .

For An ,

IP(An) ≤ n · c 1

n2
= c

1

n
(3.1)

holds for a constant c ∈ R+
0 .

From Equation (2.5) in Lemma 2.2 we conclude

φ(0, T ) = e−rT IP(τ > T ) +

lim
n→∞

n∑
i=1

IE(e−rτw(Vτ )|Ωi,n ∩ AC
n )IP(Ωi,n ∩ AC

n ) +

lim
n→∞

n∑
i=1

IE(e−rτw(Vτ )|Ωi,n ∩ An)IP(Ωi,n ∩ An).

The third limit is zero, since

0 ≤ lim
n→∞

n∑
i=1

IE(e−rτw(Vτ )|Ωi,n ∩ An)IP(Ωi,n ∩ An)

≤ wmax · lim
n→∞

n∑
i=1

IP(Ωi,n|An) · IP(An)

≤ wmax · c · lim
n→∞

1

n

n∑
i=1

IP(Ωi,n|An)

≤ wmax · c · lim
n→∞

1

n
· 1

= 0.

In the next step, we replace the stochastic discount factor by a deterministic one.

We observe that on Ωi,n

∣∣∣exp(−rτ(ω))− exp
(
−rti− 1

2

)∣∣∣ ≤ exp

(
r

T

2n

)
− 1

holds. Hence, with Ω̃i,n := Ωi,n ∩ AC
n ,

∣∣∣∣∣
n∑

i=1

IE(exp(−rτ)w(Vτ )|Ω̃i,n)IP(Ω̃i,n)−
n∑

i=1

IE
(
exp

(
−rti− 1

2

)
w(Vτ )

∣∣∣ Ω̃i,n

)
IP(Ω̃i,n)

∣∣∣∣∣

≤
n∑

i=1

(
exp

(
r

T

2n

)
− 1

)
wmaxIP(Ωi,n)
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≤
(

exp

(
r
T

n

)
− 1

)
wmax −→ 0 (n →∞).

This shows that the limits of both sums are equal.

In the next step, we approximate w(Vτ ) by w(Vti) . We know with τi represent-

ing the time of the potential jump in (ti−1; ti] and w being uniformly continuous

on the compact set [0; 1]

∣∣∣IE
(
(w(Vτ )− w(Vti))1Ω̃i,n

)∣∣∣

≤ IE
(
|w(Vτ )− w(Vti)| · 1Ω̃i,n

· 1{Ni,n=1 and τi>τ}

)
+

IE
(
|w(Vτ )− w(Vti)| · 1Ω̃i,n

· 1{Ni,n=0 or τi≤τ}
)

≤ 2wmax · IP
(
Ω̃i,n ∩ {Ni,n = 1} ∩ {τi > τ}

)
+ o(1) · IP

(
Ω̃i,n

)

≤ 2wmax · IP(Ni,n = 1) · IP
(
Ω̃i,n

)
+ o(1) · IP

(
Ω̃i,n

)

= o(1) · IP
(
Ω̃i,n

)
, (3.2)

since the increments of a Lévy process are independent and IP(Ni,n = 1) is of

complexity o(1/n) 49.

In the next step, we prove that

IP
(
Ω̃i,n ∩ {ω ∈ Ω : Vti(ω) > 1}

)
= o

(
1

n2

)
(3.3)

by conditioning on the number of jumps in the interval (ti−1; ti] :

IP
(
Ω̃i,n ∩ {Vti > 1}

)
=

∞∑
j=0

IP
(

Ω̃i,n ∩ {Vti > 1}
∣∣∣ {Ni,n = j}

)
· IP(Ni = j)

≤ IP (Ωi,n| {Ni,n = 0}) +

IP (Ωi,n ∩ {Vti > 1}| {Ni,n = 1}) · λT

n
+ 0.

The third term is zero, since Ω̃i,n ⊂ AC
n . As in Lemma 2.3 by applying l’Hospital

rule a second time, the first term is of complexity o(1/n2) . It remains to show

49We remind the reader that a function f : N → R is of complexity o(g(n)) if f(n)/g(n)
tends to zero as n goes to ∞ . Throughout the proof we omit to show that every time∑n

i=1 o(1/n) = o(1) and
∑kn

i=1 o(1)IP(Ci,n) = o(1) hold, where C1,n, . . . , Ckn,n are, for every
n, mutually disjoint subsets of Ω . This can be easily verified for all used o -notations, but it
does not hold in general.
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that IP
(
Ωi,n ∩ {Vti,n > 1}

∣∣ {Ni,n = 1}) is of complexity o(1/n) . We denote the

jump time by τi . Then we are able to bound the probability by examining

whether the default occurs before or after the jump:

IP (Ωi,n ∩ {Vti > 1}| {Ni,n = 1})
= IP (Ωi,n ∩ {Vti > 1} ∩ {τ < τi}| {Ni,n = 1}) +

IP (Ωi,n ∩ {Vti > 1} ∩ {τ ≥ τi}| {Ni,n = 1})
≤ IP (Ωi,n ∩ {τ < τi}| {Ni,n = 1}) +

IP ({Vti > 1} ∩ {ti ≥ τ ≥ τi}| {Ni,n = 1})

≤ IP

({
Vti−1

> 1
} ∩

{
inf

ti−1≤s<τi

Vs ≤ 1

}∣∣∣∣ {Nτi− −Nti−1
= 0}

)
+

IP

(
{Vti > 1} ∩

{
inf

τi≤s<ti
Vs ≤ 1

}∣∣∣∣ {Nti −Nτi
= 0}

)
.

As in the case with no jumps, by conditioning on Vτi
in the second term and using

a similar formula for the maximum of a Brownian motion as for the minimum in

Lemma 1.3, we again see that both terms are of complexity o(1/n) . Hence, so

is IP (Ωi,n ∩ {Vti > 1}| {Ni,n = 1}) and Equation (3.3) is proven.

We also need that

IP(Ωi,n|AC
n ) · IP(An) = o

(
1

n

)
. (3.4)

Due to Equation (3.1) it suffices to show that IP
(
Ωi,n|AC

n

)
tends to zero as n

goes to ∞ :

IP
(
Ωi,n|AC

n

)
= IP

(
Ωi,n ∩ {Ni,n = 0}|AC

n

)
+ IP

(
Ωi,n ∩ {Ni,n = 1}|AC

n

)

= IP
(
Ωi,n|AC

n ∩ {Ni,n = 0}) · IP
(
AC

n ∩ {Ni,n = 0})

IP (AC
n )

+

IP
(
Ωi,n|AC

n ∩ {Ni,n = 1}) · IP
(
AC

n ∩ {Ni,n = 1})

IP (AC
n )

≤ IP
(
Ωi,n|AC

n ∩ {Ni,n = 0}) +
λT
n

1 + λT
n

.

The limit of the second term is obviously zero and so is the limit of the first term,

which can be proven as in Lemma 2.3. Thus, Equation (3.4) holds.

Now,

IP(Ω̃i,n) = IP
(
Ω̃i,n ∩ {Vti ≤ 1}

)
+ IP

(
Ω̃i,n ∩ {Vti > 1}

)
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(3.3)
= IP

(
AC

n ∩ Ωi,n ∩ {Vti ≤ 1}) + o

(
1

n

)

= IP
(
Ωi,n ∩ {Vti ≤ 1}|AC

n

) · (1− IP(An)) + o

(
1

n

)

(3.4)
= IP

(
Ωi,n ∩ {Vti ≤ 1}|AC

n

)
+ o

(
1

n

)

= IP
({Vti ≤ 1} ∩ {Vtj > 1, ∀ j < i}

∣∣ AC
n

)
+ o

(
1

n

)
, (3.5)

where the last equation follows from the fact that

IP
({τ ≤ ti−1} ∩ {Vtj > 1, ∀ j < i}|AC

n

)
= n · o

(
1

n2

)
= o

(
1

n

)
,

which follows directly from Equation (3.3). Thus, by writing briefly Bi,n :=

{Vti ≤ 1} ∩ {Vtj > 1, ∀ j < i} ,

∣∣∣IE
(
w(Vti)1Ω̃i,n

)
− IE

(
w(Vti)1Bi,n

∣∣ AC
n

)∣∣∣ ≤ wmax

∣∣∣IP
(
Ω̃i,n

)
− IP

(
Bi,n|AC

n

)∣∣∣
(3.5)
= o

(
1

n

)
. (3.6)

We now replace V by V ∗ . We need

fi : {0, 1}i → R+,

fi(k1, . . . , ki) =
IP

({N1 = k1} ∩ . . . ∩ {Ni = ki}|AC
n

)

IP ({π1 = k1} ∩ . . . ∩ {πi = ki})

=

(
λ T

n

1+λ T
n

)Pi
j=1 kj

(
1

1+λ T
n

)i−Pi
j=1 kj

(
λT

n

)Pi
j=1 kj

(
1− λT

n

)i−Pi
j=1 kj

=

(
1− λ2T 2

n2

)−i (
1− λ

T

n

)Pi
j=1 kj

.

Let K ∈ N denote an arbitrary constant (independent of i ). Then, fi(k1, . . . , ki) =

1 + o(1) for
∑i

j=1 kj ≤ K and we obtain

IE
(
w(Vti)1Bi,n

1{NT≤K}
∣∣ AC

n

)

=
∑

k1∈{0,1},...,ki∈{0,1}Pi
j=1 kj≤K

IE
(
w(Vti)1Bi,n

∣∣AC
n ∩ {N1 = k1} ∩ . . . ∩ {Ni = ki}

) ·

IP
({N1 = k1} ∩ . . . ∩ {Ni = ki}|AC

n

)
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=
∑

k1∈{0,1},...,ki∈{0,1}Pi
j=1 kj≤K

IE
(

w(V ∗
ti
)1Ω∗i,n

∣∣∣ {π1 = k1} ∩ . . . ∩ {πi = ki}
)
·

IP ({π1 = k1} ∩ . . . ∩ {πi = ki}) · fi(k1, . . . , ki)

=
∑

k1∈{0,1},...,ki∈{0,1}Pi
j=1 kj≤K

IE
(
w(V ∗

ti
)1Ω∗i,n∩{π1=k1}∩...∩{πi=ki}

)
(1 + o(1))

= IE
(
w(V ∗

ti
)1Ω∗i,n1{

Pn
i+1 πi≤K}

)
+ o(1) · IP(Ω∗

i,n). (3.7)

For the event that more than K jumps happen until time T , we obtain

g1(K) := lim
n→∞

n∑
i=1

exp
(
−rti− 1

2

)
IE

(
w(Vti)1Bi,n

1{NT >K}
∣∣ AC

n

)

≤ wmaxIP(NT > K),

g2(K) := lim
n→∞

n∑
i=1

exp
(
−rti− 1

2

)
IE

(
w(V ∗

ti
)1Ω∗i,n1{

Pn
i=1 πi>K}

)

≤ wmax lim
n→∞

IP

(
n∑

i=1

πi > K

)

≤ wmax lim
n→∞

(
n

K

)(
λT

n

)K

≤ wmax(λT )K

K!
,

and thus

g1(K)− g2(K) → 0 (K →∞). (3.8)

Summarized, we obtain

Φ(0, T )

= lim
n→∞

n∑
i=1

exp
(
−rti− 1

2

)
IE

(
w(Vτ )

∣∣∣Ω̃i,n

)
IP

(
Ω̃i,n

)

= lim
n→∞

n∑
i=1

exp
(
−rti− 1

2

)
IE

(
w(Vτ )1Ω̃i,n

)

(3.2)
= lim

n→∞

n∑
i=1

exp
(
−rti− 1

2

)(
IE

(
w(Vti)1Ω̃i,n

)
+ o(1) · IP

(
Ω̃i,n

))

(3.6)
= lim

n→∞

n∑
i=1

exp
(
−rti− 1

2

) (
IE

(
w(Vti)1Bi,n

∣∣ AC
n

)
+ o

(
1

n

))
+ lim

n→∞
o(1) · 1
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(3.7)
= lim

n→∞

n∑
i=1

exp
(
−rti− 1

2

)(
IE

(
w(V ∗

ti
)1Ω∗i,n

)
+ o(1) · IP(Ω∗

i,n)
)

+ g1(K)− g2(K)

= lim
n→∞

n∑
i=1

exp
(
−rti− 1

2

)
IE

(
w

(
V ∗

ti

) |Ω∗
i,n

)
IP(Ω∗

i,n) + g1(K)− g2(K).

Letting K go to ∞ and applying Equation (3.8) completes the proof of Theorem

3.1. ♦

Based on the last theorem, we now introduce Zhou’s algorithm. As model speci-

fication, we choose an arbitrary jump-diffusion process with jump sizes Y which

can be simulated numerically, a constant interest rate r , a strictly positive matu-

rity T > 0 , recovery payoff at time of default50, and an arbitrary but continuous

recovery-rate function w : [0; 1] → R+
0 .

Algorithm 3.1 (Zhou’s algorithm)

Choose the number of simulation runs K and the fineness51 of the grid N and

approximate φ(0, T ) by

φ(0, T ) ≈ 1

K

K∑
j=1

φN
j (0, T ),

where each φN
j (0, T ) is calculated by these steps:

1. Denote ti ≡ T · i/N for all i ∈ {0, 1, . . . , N} .

2. Generate a series of mutually and serially independent random vectors

(xi, πi, yi) for i ∈ {1, 2, . . . , N} with

xi ∼ N
(

γ · T

N
, σ2 · T

N

)
,

yi ∼ IPY , and

πi =

{
0 with prob. 1− λ · T/N,

1 with prob. λ · T/N.

3. Let V ∗
t0

= v0 and calculate V ∗
ti

according to the formula

V ∗
ti

= V ∗
ti−1

· exp(xi + πi · yi), i ∈ {1, 2, . . . , N}.
50An algorithm for recovery payoff at maturity can be obtained by a slight change.
51This is here the number of intervals.
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4. Find the smallest integer i ≤ N such that V ∗
ti
≤ 1 . If such an i exists, let

φN
j (0, T ) = exp

(
−r

(
ti − 1

2N

))
· w(V ∗

ti
).

If such an i does not exist, set

φN
j (0, T ) = exp(−rT ).

This algorithm52 is simple but has serious drawbacks. It returns biased bond

prices, since it underestimates the risk of default when assuming that default can

only occur at the times ti, i = 1, . . . , n . Also, increasing the number of intervals

in order to obtain a smaller bias results in a long running time. In Section 3.4,

we present some numerical results to substantiate these statements.

Remark 3.1 (Sums of zero bonds)

To price more complex coupon bonds with payouts at discrete time points we repli-

cate them with a weighted sum of zero-coupon bonds with appropriate maturities

and price them separately, as shown in Lemma 2.1. However, we now work with

pathwise simulations and it is not self-evident that this approach does not pro-

duce a systematic bias. To check this concern, we simulated the price of a coupon

bond directly and compared it to the sum of the prices of the corresponding zero-

coupon bonds. The results, which are listed in the appendix, Result B.1, show that

the error caused by the transition to zero-coupon bonds is negligible and that no

systematic bias is generated.

3.2 Brownian-bridge pricing technique

Metwally and Atiya, [MA] presented in 2002 another algorithm, which is again

based on a Monte-Carlo simulation. This algorithm is designed for pricing barrier

options in a jump-diffusion model. In contrast to Zhou’s algorithm, it not only

produces unbiased results but also is significantly faster than Zhou’s algorithm.

The principal idea is to condition on the number of jumps, the jump times, and

the values of the jump-diffusion process at these times. Scherer, [Sche] adapted

the algorithm to calculate bond prices with constant recovery rates. By a slight

modification, we generalize this algorithm to include stochastic recovery rates,

depending on the value of the company at the time of default. Besides, we

52See the appendix, Remark B.1 for additional information about its implementation.
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significantly improve an approximation of the corresponding integral suggested

in [MA] in terms of precision.

If σ = 0 holds, then there exists no random influence after having conditioned

on the number of jumps, the jump times, and the jump sizes. Having all this

information about the jump structure, calculating the non-random default time

is trivial. For simplicity, we assume throughout this section that there exists a

real diffusion component, that is, σ > 0 .

An essential stochastic ingredient of this algorithm is the Brownian bridge:

Definition 3.1 (Brownian bridge)

A Brownian bridge over [t0; t1] with volatility σ , pinned at x ∈ R and y ∈ R ,

is an almost surely continuous stochastic process WBB(x,y,t0,t1,σ) whose finite-

dimensional distributions are given by

IP
W

BB(x,y,t0,t1,σ)
s1

,...,W
BB(x,y,t0,t1,σ)
sn

(d(x1, . . . , xn))

=
n∏

i=1

p((si − si−1)σ
2, xi−1, xi) · p((t1 − sn)σ2, xn, y)

p((t1 − t0)σ2, x, y)
d(x1, . . . xn),

where t0 = s0 < · · · < sn < t1 , x0 = x , (x1, . . . , xn) ∈ Rn , and

p(t, a, b) :=
1√
2πt

exp

(−(a− b)2

2t

)
.

Lemma 3.1 (Spanned diffusion process is Brownian bridge)

Let X denote a jump-diffusion process without jumps in [t0; t1] . Then Z, defined

by

Zt := IE(Xt|Xt0 = x,Xt1 = y, Nt1 −Nt0 = 0), t ∈ [t0; t1], (3.9)

is a Brownian bridge over [t0; t1] with volatility σ , pinned at x and y , where σ

is the volatility of the diffusion component of X . Vice versa, for every Brownian

bridge Z there is a Brownian motion X , such that Equation (3.9) is satisfied.

Proof: We refer to [KS], Section 5 B for the statement if X does not have a drift.

If X has a drift γ then Zt − γt is the Brownian bridge corresponding to the

drift-free process Xt − γt . It is easily verified that

IPZs1−γs1,...,Zsn−γsn(d(x1, . . . , xn)) = IPZs1 ,...,Zsn
(d(x1 + γs1, . . . , xn + γsn))
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= IPZs1 ,...,Zsn
(d(x1, . . . , xn)).

Thus, Z = {(Zt−γt)+γt}t∈[t0;t1] is a Brownian bridge, since adding a drift does

not change the continuity of the paths. The second statement is obvious. ♦

Remark 3.2 (Diffusion component)

As we have just seen, it is irrelevant for a Brownian bridge of a spanned diffusion

process X whether X has a drift component or not. Thus, in all calculations

with a Brownian motion pinned at the endpoints, we can assume without loss of

generality that its drift is zero.

For the Brownian-bridge pricing technique, we need the probability-density func-

tion of the minimum of a Brownian bridge.53 It is given in the next lemma.

Lemma 3.2 (Probability-density function of τ in Brownian bridge)

Let X denote a Brownian bridge over [t0; t1] with volatility σ , pinned at Xt0

and Xt1 . Let b ∈ R denote an arbitrary barrier. Then, we obtain54 for

Ct := {ω ∈ Ω : {Xs(ω)}t0≤s≤t1 passes b for the first time in [t; t+dt]}, t ∈ (t0; t1],

g(t)dt := IP(Ct|Xt0 , Xt1) (3.10)

= 1{Xt0>b}
Xt0 − b

2yπσ2(t− t0)3/2(t1 − t)1/2
·

exp

(
− (Xt1 − b)2

2(t1 − t)σ2
− (Xt0 − b)2

2(t− t0)σ2

)
dt,

where

y =
1√

2πσ2(t1 − t0)
exp

(
−(Xt1 −Xt0)

2

2σ2(t1 − t0)

)
.

Proof: See [MA], Section II. ♦

We can calculate the cumulative distribution function corresponding to g at t1 :

Lemma 3.3 (Minimum of a Brownian bridge)

The probability of a Brownian bridge X over [t0; t1] with volatility σ , pinned at

Xt0 and Xt1 , falling below a barrier b ∈ R is given by

Φ̃BB
b (Xt0 , Xt1 , t1 − t0) := IP

(
min

t0≤s≤t1
Xs ≤ b

)

53Compare to Lemma 1.3, where the probability-density function of the minimum of a Brow-
nian motion was calculated.

54In [MA] and [Sche], the same probability-density function is given but not simplified.



3.2. Brownian-bridge pricing technique 48

= 1{Xt0≤b or Xt1≤b} +

1{Xt0>b and Xt1>b} exp

(
−2(Xt0 − b)(Xt1 − b)

(t1 − t0)σ2

)
.

Proof: The statement directly follows by integrating g in Equation (3.10). One

possible way to integrate is to calculate the Laplace transform of the integral and

invert this transform, as done in Lemma 3.4.55 ♦

The Brownian-bridge pricing technique works as follows: First, we generate the

number of jumps and the jump times. Then, we generate the value of X im-

mediately before and after each jump. More precisely, if (τ1, τ2, . . .) denotes the

sequence of jump times, the value of X immediately before the first jump is a

sample drawn from a Gaussian distribution with mean γτ1 and variance σ2τ1 .

The value at the first jump time is obtained by adding a realization of the jump-

size distribution to this number. For the value immediately before the second

jump time, we add another sample drawn from a Gaussian distribution with

mean γ(τ2− τ1) and variance σ2(τ2− τ1) , and so on. We can now check whether

the company defaults at one of the jump times. The probability of the company

not defaulting between two jumps is the probability of a Brownian bridge not

crossing a certain barrier. This probability is given in Lemma 3.3.

We now present a theorem which justifies the algorithm which we introduce later.

Theorem 3.2 (Price of a zero-coupon bond)

The price of a zero-coupon bond with maturity and recovery payoff at time of

default, φ(0, T ) , can be expressed as

φ(0, T ) = IE
(
IE

(
1{τ>T}e

−rT + w(Vτ )1{τ≤T}e
−rτ

∣∣F∗)) (3.11)

=
∞∑

k=0

∫

(τ1,...,τk)

∈[0;T ]k

∫

(x1,...,xk+1)

∈(−∞;∞)k+1

∫

(y1,...,yk)

∈(−∞;∞)k

IE
(
1{τ>T}e

−rT + w(Vτ )1{τ≤T}e
−rτ

∣∣F∗) ·

k∏
j=1

IPY (dyj) ·
k+1∏
j=1

ϕγ∆τj ,σ2∆τj
(xj)dxj ·

1{0<τ1<···<τk<T}
k!

T k
d(τ1, . . . , τk) · (λT )k

k!
e−λT ,

where

F∗ := σ {NT ; 0 < τ1 < · · · < τNT
< T ; Xτ1−, Xτ1 , . . . , Xτi−, Xτi

, . . . , XT}
55By setting r = 0 in Lemma 3.4, we realize that Lemma 3.3 is a special case of the

approximation in Lemma 3.4.
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is the σ -algebra representing the information from the number of jumps, their lo-

cation and the values of X immediately before the jump times, at the jump times,

and at maturity. The function ϕγ∆τj ,σ2∆τj
represents the probability-density func-

tion of the normal distribution with mean γ(τj−τj−1) and variance σ2(τj−τj−1) ,

where τ0 = 0 and τNT +1 = T .

For b = − ln(v0) , the conditional expectation satisfies

IE
(
1{τ>T}e

−rT + w(Vτ )1{τ≤T}e
−rτ

∣∣F∗)

= w(1)
U∑

i=1

i−1∏
j=1

ΦBB
b (j)

∫ τi

τi−1

e−rsgi(s)ds +

w(VτI
)1{I 6=0}e

−rτI

I∏
j=1

ΦBB
b (j) + 1{I=0}e

−rT

NT +1∏
j=1

ΦBB
b (j), (3.12)

where

I := min {i ∈ {1, . . . , NT} : Xτi
≤ b} , min ∅ := 0,

denotes the index of the first jump time such that XτI
crosses the barrier,

U :=

{
I if I 6= 0,

NT + 1 if I = 0,

ΦBB
b (j) := 1− Φ̃BB

b (Xτj−1
, Xτj−, τj − τj−1) represents the probability of the com-

pany not defaulting within the interval (τj−1; τj) , and gi(t)dt = IP(Ct|Xτi−1
, Xτi−)

is defined as in Equation (3.10) as the probability of the company defaulting in

[t; t + dt] for t ∈ (τi−1; τi) .

The price of a zero-coupon bond with recovery payoff at maturity, φ̃(0, T ) , is

calculated on the same way after having replaced e−rτ by e−rT in all equations.

The term w(1)
∑U

i=1

∏i−1
j=1 ΦBB

b (j)
∫ τi

τi−1
e−rsgi(s)ds in Equation (3.12) simplifies

to w(1)e−rT
∑U

i=1

∏i
j=1 ΦBB

b (j) .

Proof: The price formula for a zero-coupon bond φ̃ with recovery payoff at

maturity is a direct consequence of the price formula for the more sophisticated

bond φ with recovery payoff at time of default. Hence, it is sufficient to prove

the statements for φ .

The first equality in Equation (3.11) follows directly from Equation (2.5) in

Lemma 2.2 and the basic properties of the conditional expectation. The formu-

las for the probability distribution of the number of jumps and the probability-

density function of the jump locations in the second equation are given in the
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Lemmas 1.4 and 1.5. Furthermore, we use the fact that the jump sizes are in-

dependent from each other and all other appearing random variables and the

increments of the Lévy process X are independent and Gaussian between the

jump times.

It remains to prove Equation (3.12). If the company does not die from a jump of

the underlying stochastic process, then I = 0 and U = NT + 1 hold. However,

it can die from the diffusion. In this case, the value of the company at time

of default equals one and the recovery paid to the bond holder is w(1) . The

probability of the company dying after the ith and before the (i + 1)th jump at

time t ∈ (τi; τi+1) is the probability of the company not dying in the intervals

before, that is
∏i

j=1 ΦBB
b (j) , times the probability of the firm-value process V

first crossing the default bound b within (τi; τi+1) at time t which is described

by gi+1(t) . The probability of the firm-value process V dying from diffusion is

given by
∏NT +1

j=1 ΦBB
b (j) . Even if the case I > 0 occurs, default by diffusion can

happen before time τI . The probability of this event is again given by the first

term in Equation (3.12). Default by diffusion does not occur with probability∏I
j=1 ΦBB

b (j) . In this case, the recovery is w(VτI
) . Combining the two cases

I = 0 and I > 0 completes the proof. ♦

Based on this theorem, we now formally introduce the Brownian-bridge pric-

ing algorithm. Similar to Zhou’s algorithm, we choose as model specification

an arbitrary jump-diffusion process with jump sizes Y which can be simulated

numerically, a constant interest rate r , a strictly positive maturity T > 0 , re-

covery payoff at time of default56, and an arbitrary (not necessarily continuous)

recovery-rate function w : [0; 1] → R+
0 .

Algorithm 3.2 (Brownian-bridge pricing algorithm)

Choose the number of simulation runs K and approximate φ(0, T ) by

φ(0, T ) ≈ 1

K

K∑
j=1

φj(0, T ),

where each φj(0, T ) is calculated by these steps:

1. Simulate the number of jumps NT according to Equation (1.1).

2. Simulate the jump times τ1 < τ2 < · · · < τNT
according to Equation (1.2)

independent from NT . Set τ0 = 0 and τNT +1 = T .

56Again, an algorithm for a recovery payoff at maturity can be obtained by a slight change.
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3. Generate two series of mutually independent random variables x1, . . . , xNT +1

and y1, . . . , yNT
, independent from NT and τ1, . . . , τNT

, with

xi ∼ N (
γ(τi − τi−1), σ

2(τi − τi−1)
)

and

yi ∼ IPY .

4. Calculate inductively X0, Xτ1−, Xτ1 , Xτ2−, . . . , XτNT
, XτNT +1− = XτNT +1

by

Xτ0 = 0,

Xτi− = Xτi−1
+ xi, ∀ i ∈ {1, . . . , NT + 1},

Xτi
= Xτi− + yi, ∀ i ∈ {1, . . . , NT}.

5. Determine I , U , and b as in Theorem 3.2.

6. Calculate φj(0, T ) = IE
(
1{τ>T}e−rT + w(Vτ )1{τ≤T}e−rτ

∣∣F∗) as in Equa-

tion (3.12) of Theorem 3.2.

The speed of this algorithm57 depends strongly on the expected number of jumps,

that is λT . The higher the jump intensity λ , the more samples have to be drawn

and the more integrals have to be calculated. We illustrate this in Section 3.4,

where we compare the speed of this algorithm for different parameter sets.

Remark 3.3 (Sums of zero bonds)

As for Zhou’s algorithm, we also check for the Brownian-bridge pricing technique

whether a systematic bias is caused due to pricing a coupon bond with payouts

at discrete time points according to Lemma 2.1. The results are listed in the

appendix, Result B.2. Again, they show that the error caused by the transition to

zero-coupon bonds is negligible and that no bias is generated.

If we assume recovery payoff at time of default we have to calculate the integrals

which appear in the conditional expectation in step 6 of Algorithm 3.2. This is

the most time-consuming step. Metwally and Atiya, [MA] suggest an approxi-

mation of these integrals, which we introduce below. Important tools which are

used are the Laplace transform of a function and its inverse. Their definitions

are given in the appendix. The idea is to calculate the Laplace transform of such

an integral (which can be represented as the convolution of two functions), to

interpret this transform as a function of r , to expand it into a Taylor series, and

57See the appendix, Remark B.2 for additional information about its implementation.
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to calculate the Laplace inverse of the second-order approximation. Our calcula-

tions yield a different result from that in the original paper [MA], as discussed in

Remark 3.4. However, numerical experiments, which we illustrate in Figure 3.1,

show that our approximation is closer to the correct value.

Lemma 3.4 (Approximation of the integral58)

We assume that Xτi−1
> b . The integral in Equation (3.12) can be approximated

by59

∫ τi

τi−1

e−rsgi(s)ds = e−rτi−1

(
exp

(
−2(Xτi−1

− b)(Xτi− − b)

∆τiσ2

)
+ (3.13)

r(Xτi−1
− b)

4σ
(A1 + C1B)

)
+ O(r3)

if Xτi− > b and by
∫ τi

τi−1

e−rsgi(s)ds = e−rτi−1

(
1 +

r(Xτi−1
− b)

4σ
(A2 + C2B)

)
+ O(r3)(3.14)

if Xτi− ≤ b , where

∆τi = τi − τi−1,

∆Xi = Xτi− −Xτi−1
,

A1 = − r

σ
∆τi∆Xi exp

(
−2(Xτi−1

− b)(Xτi− − b)

∆τiσ2

)
,

C1 = −
√

2π∆τi exp

(
(∆Xi)

2

2∆τiσ2

)
Φ

(
2b−Xτi− −Xτi−1√

∆τiσ2

)
,

B = 4− r∆τi − r

σ2
∆Xi

(
Xτi− + Xτi−1

− 2b
)
,

A2 =
r

σ
∆τi

(
Xτi− + Xτi−1

− 2b
)
, and

C2 = −
√

2π∆τi exp

(
(∆Xi)

2

2∆τiσ2

)
Φ

(
∆Xi√
∆τiσ2

)

with Φ denoting the cumulative normal distribution function.

Proof: A substitution and some calculations show that the integral can be written

as the convolution of two functions. We find
∫ τi

τi−1

e−rxgi(x)dx = e−rτi−1

∫ ∆τi

0

f(x)h(∆τi − x)dx,

58See the appendix, Remark B.3 for additional information about its implementation.
59We remind the reader that a function f : R → R is of complexity O(g(x)) , if f(x)/g(x)

is bounded.
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where

f(x) =
e−rx∆0√

2πσ2
x−

3
2 exp

(
− ∆2

0

2xσ2

)
and

h(x) =
1√

2πσ2y
x−

1
2 exp

(
− ∆2

1

2xσ2

)

with y as in Lemma 3.2, ∆0 := Xτi−1
− b , and ∆1 := Xτi− − b .

We now calculate the Laplace transform of the integral. Being a convolution, its

Laplace transform is the product of the Laplace transforms of f and h . The

Formulas 5.28 and 5.30 of [OB], Chapter 1.5, page 41 yield

(
L

(
ax−

3
2 exp

(
− a2

4x

)))
(s) = 2

√
π exp(−a

√
s), a ∈ R+ and

(
L

(
x−

1
2 exp

(
− a2

4x

)))
(s) =

√
π

exp(−|a|√s)√
s

, a ∈ R.

By these formulas, the shift theorem, and some simple calculations,

(L (f)) (s) = exp

(
−
√

2∆0

σ

(√
s + r

)
)

and

(L (h)) (s) =
exp

(
−
√

2|∆1|
σ

√
s
)

√
2σ
√

sy
.

Thus, the explicit form of the Laplace transform is given by

lr(s) :=

(
L

(∫ t

0

f(x)h(t− x)dx

))
(s)

= (L(f)) (s) · (L(h)) (s)

=
exp

(
−
√

2|∆1|
σ

√
s
)

σy
√

2s
· exp

(
−
√

2∆0

σ

(√
s + r

)
)

.

Using the representation of y in Lemma 3.2, that is,

y =
1√

2πσ2∆τi

exp

(
− ∆X2

i

2σ2∆τi

)
,

we obtain

α :=
1√
2σy

=
√

π∆τi exp

(
(∆Xi)

2

2σ2∆τi

)
.
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We now interpret lr(s) as a function in r and expand it into a Taylor series.

Therefore, we calculate its derivatives and obtain

l1r(s) :=
δ

δr
lr(s) = −∆0α√

2σ
·
exp

(
−
√

2|∆1|
σ

√
s
)

√
s

·
exp

(
−
√

2∆0

σ

(√
s + r

))
√

s + r
,

l2r(s) :=
δ2

δ2r
lr(s) =

∆2
0α

2σ2
·
exp

(
−
√

2|∆1|
σ

√
s
)

√
s

·
exp

(
−
√

2∆0

σ

(√
s + r

))

s + r
+

∆0α

2
3
2 σ

·
exp

(
−
√

2|∆1|
σ

√
s
)

√
s

·
exp

(
−
√

2∆0

σ

(√
s + r

))

(s + r)
3
2

,

l3r(s) :=
δ3

δ3r
lr(s) =

5∑
j=3

cj ·
exp

(
−
√

2|∆1|
σ

√
s
)

√
s

·
exp

(
−
√

2∆0

σ

(√
s + r

))

(s + r)
j
2

(3.15)

for some constants c3, c4 , and c5 . Hence, the second-order Taylor expansion of

lr(s) around zero is given by

lr(s) = l0(s) + r · l10(s) +
r2

2
l20(s) +

r3

6
l3r∗s (s), (3.16)

where r∗s ∈ (0; r) depends on s .

The inverse Laplace transform is linear, allowing us to examine each component

of Equation (3.16) separately. We start with the last term. Simple calculations

show that

∣∣∣∣∣∣


L−1


exp

(
−
√

2|∆1|
σ

√
s
)

√
s

·
exp

(
−
√

2∆0

σ

√
s + r∗s

)

(s + r∗s)
j
2





 (t)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∫ y+i∞

y−i∞
exp(st)

exp
(
−
√

2|∆1|
σ

√
s
)

√
s

·
exp

(
−
√

2∆0

σ

√
s + r∗s

)

(s + r∗s)
j
2

ds

∣∣∣∣∣∣

≤ exp(yt)

∫ y+i∞

y−i∞

∣∣∣∣∣∣
exp

(
−
√

2|∆1|
σ

√
s
)

√
s

·
exp

(
−
√

2∆0

σ

√
s + r∗s

)

(s + r∗s)
j
2

∣∣∣∣∣∣
ds

≤ exp(yt)

∫ y+i∞

y−i∞

exp
(
− |∆1|

σ

√
|s|

)
√
|s| ·

exp
(
−∆0

σ

√
|s + r∗s |

)

(|s + r∗s |)
j
2

ds

≤ exp(yt)

∫ ∞

−∞

exp
(
−∆0+|∆1|

σ

√
|x|

)

|x| j+1
2

dx



3.2. Brownian-bridge pricing technique 55

is uniformly (with respect to r∗s ) bounded for all j ∈ {3, 4, 5} . This proves

that the error caused by truncating the Taylor-series expansion of the Laplace

transform lr(s) after the second term is of size O(r3) .

We use the Formulas 5.87, 5.89, and 5.92 of [OB], Chapter 2.5, pages 258 and

259 and Lemma A.6, which yield for a ∈ R+

(
L−1

(
exp(−2a

√
s)√

s

))
(t) =

exp(−a2

t
)√

πt
,

(
L−1

(
exp(−2a

√
s)

s

))
(t) = 2

(
1− Φ

(√
2a√
t

))
,

(
L−1

(
exp(−2a

√
s)

s
3
2

))
(t) =

2
√

t exp(−a2

t
)√

π
− 4a

(
1− Φ

(√
2a√
t

))
, and

(
L−1

(
exp(−2a

√
s)

s2

))
(t) = −2a

√
t exp(−a2

t
)√

π
+ (2t + 4a2)

(
1− Φ

(√
2a√
t

))
.

In the next steps, we apply these equations with a := (∆0 + |∆1|)/(
√

2σ) on the

first three terms of Equation (3.16), denoting β := 1− Φ(
√

2a/
√

∆τi) .

l0(s) = α ·
exp

(
−
√

2(∆0+|∆1|)
σ

√
s
)

√
s

.

(L−1 (l0)
)
(∆τi) = exp

(
(∆Xi)

2

2σ2∆τi

)
· exp

(
−(∆0 + |∆1|)2

2σ2∆τi

)

=

{
1, Xτi− ≤ b,

exp
(−2(Xτi−1−b)(Xτi−−b)

σ2∆τi

)
, Xτi− > b.

l10(s) = −∆0α√
2σ

·
exp

(
−
√

2(∆0+|∆1|)
σ

√
s
)

s
.

(L−1
(
l10

))
(∆τi) = −

√
2
∆0

σ
· α · β.

l20(s) =
∆2

0α

2σ2

exp
(
−
√

2(∆0+|∆1|)
σ

√
s
)

s
3
2

+
∆0α

2
3
2 σ

exp
(
−
√

2(∆0+|∆1|)
σ

√
s
)

s2
.

(L−1
(
l20

))
(∆τi) =

2
√

∆τi exp
(
− (∆0+|∆1|)2

2σ2∆τi

)
√

π

(
∆2

0α

2σ2
− ∆0 + |∆1|√

2σ
· ∆0α

2
3
2 σ

)
+

2β

(
∆0α

2
3
2 σ

(
∆τi +

(∆0 + |∆1|)2

σ2

)
− ∆2

0α

2σ2

√
2(∆0 + |∆1|)

σ

)
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=

√
∆τi exp

(
− (∆0+|∆1|)2

2σ2∆τi

)
α∆0(∆0 − |∆1|)

2
√

πσ2
+

β
∆0α√

2σ
∆τi + β

∆0α√
2σ3

(∆2
1 −∆2

0).

By combining these equations with the representation of lr(s) in Equation (3.16)

and using

Φ(−x) = 1− Φ(x),
∫ τi

τi−1

e−rxgi(x)dx = e−rτi−1
(L−1 (lr)

)
(∆τi),

and the linearity of the inverse Laplace transform we obtain the approximation

of the integral. ♦

Remark 3.4 (Comparison with result from [MA])

Our approximation of the integrals slightly differs from the approximation in

[MA]. They obtain one factor e−∆τi which we do not need and they evaluate

Φ at a different position.60 Since the error term in Equation (3.15) is negative,

we expect that the bond prices generated by both approximations are slightly larger

than the real ones and that the corresponding credit spreads are slightly lower.

We implemented both approximations and compared the quality of the approxi-

mation for different parameter sets and different interest rates. Our simulations

show that our approximation implies a lower relative pricing error almost al-

ways61. While the pricing error of the original algorithm increases significantly

in r the pricing error of our modification remains small when the interest rate in-

creases. Comparing the different scenarios, we find that a lower intensity implies

a higher pricing error in the original approximation. Our formulas always create

a bias as expected, namely bond prices which are slightly to high. In contrast, the

original formulas create bond prices which are too low. These observations led us

to believe that there is an error in the calculations of the original paper, [MA].62

We strongly recommend to use our formulas instead of the original ones.

60To be more precise: In [MA], the second term in the sum of Equations (3.13) and
(3.14) is multiplied by e−∆τi and Φ is evaluated at (2b − Xτi− − Xτi−1/(

√
2∆τiσ2) (resp.

(∆Xi)/(
√

2∆τiσ2) ) in C1 (resp. C2 ).
61Except for the third scenario when r equals 2.5% .
62However, the credits for this excellent idea go to Metwally and Atiya who firstly introduced

this algorithm and discussed it. We just want to stress that our formulas correct an error and
help to reduce a bias significantly, especially when higher interest rates are used.
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Figure 3.1: The relative pricing error of the original and our approximation in

different scenarios.

Figure 3.1 shows the absolute values of the relative pricing error of both approx-

imations in different scenarios. More precisely, it shows |(pu − pa)/pu| , where

pu (resp. pa ) represents the unbiased (resp. approximated) bond price. We

calculated the pricing error in three scenarios, assuming a drift of γ = 0.025 ,

volatility of diffusion σ = 0.05 , and two-sided exponentially distributed jumps.

The first graph shows the scenario with a low jump intensity λ = 0.5 and pa-

rameters p = 0.5 , λ⊕ = λª = 10 , the second one shows the pricing error for

λ = 2 , p = 0.5 , and λ⊕ = λª = 20 , and the third graph shows the relative

pricing error when many small jumps are expected, that is, λ = 8 , p = 0.5 ,

and λ⊕ = λª = 40 .63 The recovery rate was set constant to 0.4 at time of

default. We chose T = 5 as maturity. For each scenario and each interest rate,

we performed ten million simulations.

For the scenario with a low number of large jumps expected, the relative pricing

63The scenarios were chosen so that the jump structure changes but the overall volatility
stays constant, compare to Lemma 1.10.
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error of the original Taylor approximation increases up to 4.41%, when the in-

terest rate tends to 25%64. In the scenario with an average number of two jumps

per year, the pricing error increases to 1.25% and even in the scenario with a

high number of jumps, the pricing error still exceeds 0.33%. In contrast, applying

our formulas, the pricing error remains relatively small, namely at about 0.036%,

0.018%, and 0.015%, respectively. The exact numbers underlying this graph are

given in the appendix, Result B.3.

3.3 Laplace-transform approach

The Algorithms 3.1 and 3.2 take too long when used for calibrating the model

parameters if the grid size and the number of expected jumps, respectively, is high.

We briefly discuss an alternative method which is not based on a Monte-Carlo

simulation and therefore much faster. A drawback of this method is that it only

works for two-sided exponentially distributed jump sizes and a constant recovery

rate. We introduce the basic ideas and theorems. For a detailed discussion see

[KW] and [Sche]. In Section 3.4 we compare results and running time of this

method and the already introduced Monte-Carlo simulations. The idea of the

method discussed in this section is to find an analytical representation F of the

Laplace transform of IP(τ ≤ t) , to invert F numerically, and to calculate the

bond price based on this inversion.65

The next lemma is helpful for calculating the Laplace transform.

Lemma 3.5 (Representation of the moment-generating function)

Let the jumps of the Lévy process Xt be two-sided exponentially distributed as

in Definition 2.2. The moment-generating function Φ̃Xt of X at time t can be

represented as

Φ̃Xt(x) := IE(exXt) = etG(x), x ∈ R,

where G(x) = ψ(−ix) for ψ defined in Equation (1.5) of Theorem 1.2. G(x)−α

has for all α > 0 exactly four roots. We denote them by β1,α , β2,α , −β3,α , and

−β4,α . All of them are real and they satisfy

0 < β1,α < λ⊕ < β2,α < ∞ and 0 < β3,α < λª < β4,α < ∞,

64Of course, r = 25% is not realistic. Nevertheless, simulations with high interest rates
illustrate how fast the original approximation becomes inaccurate. However, even for r = 5% ,
the relative pricing error of the original approach is 0.18%, which exceeds the relative pricing
error of 0.007% in our approximation by far.

65We have to detour, since there is no analytical solution of IP(τ ≤ t) known.
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where λª and λ⊕ are defined as in Definition 2.2. β1,α , β2,α , β3,α , and β4,α

can be found as the roots of a polynomial.

Proof: See Theorem 1.2, Remark 1.2, [KW], Lemma 2.1, and its adapted version,

[Sche], Lemma 3.3. ♦

We are able to express the Laplace transform F of IP(τ ≤ t) in terms of the

zeros of G(x)− α .

Theorem 3.3 (The Laplace transform of IP(τ ≤ t) )

Fix α > 0 . For b = −ln(v0) , we obtain

IE(e−ατ ) = A2e
bβ3,α + B2e

bβ4,α and

F (α) := L (IP(τ ≤ t)) (α) =
1

α

(
A2e

bβ3,α + B2e
bβ4,α

)
,

where66

A2 =
λª − β3,α

λª
· β4,α

β4,α − β3,α

and B2 =
β4,α − λª

λª
· β3,α

β4,α − β3,α

.

Proof: See the proofs of [KW], Theorem 3.1 and [Sche], Theorem 3.1 for the

expression of IE(e−ατ ) . The representation of the Laplace transform F is a

direct consequence obtained by a partial integration:

F (α) =

∫ ∞

0

e−αtIP(τ ≤ t)dt =
1

α

∫ ∞

0

e−αtdIP(τ ≤ t) =
1

α
IE(e−ατ ).

This shows the second part of the statement. ♦

Since the Laplace transform F depends on β3,α and β4,α , which are not explicitly

given, no explicit inversion of the Laplace transform is known and we need a

numerical inversion algorithm. Kou and Wang, [KW], Section 5 suggest the

Gaver-Stehfest algorithm, which is a direct consequence of the next lemma.

Lemma 3.6 (Gaver-Stehfest)

Let F denote the Laplace transform of IP(τ ≤ t) . Then,

IP(τ ≤ t) = lim
n→∞

n∑

k=1

w(k, n)F̃k(t),

66We chose these indices to stay consistent with [KW] and [Sche].
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where

w(k, n) = (−1)n−k kn

k!(n− k)!
and

F̃n(t) =
ln(2)

t
· (2n)!

n!(n− 1)!

n∑

k=0

(−1)k

(
n

k

)
F

(
(n + k) ln(2)

t

)
.

Proof: See [AW], Proposition 8.2. ♦

As discussed in [KW], Section 5, we can increase the numeric stability by skipping

F̃1 and F̃2 . For constant recovery rates wR
1 (x) ≡ R , Lemma 2.2 gives us the

formula67

φ(0, T ) = e−rT IP(τ > T ) + R

∫ T

0

e−rtdIP(τ ≤ t).

Together with the presented lemmas and theorems in this section this leads to the

Laplace-transform algorithm68 for bonds with recovery payoff at time of default.

Algorithm 3.3 (Laplace-transform algorithm)

1. Choose a number K to partition the interval [0; T ] in K equidistant subin-

tervals.

2. Choose N > 0 and calculate for all tj := j/K · T , j ∈ {1, 2, . . . , K}

IPN(τ ≤ tj) ≈
N∑

k=1

w(k, N)F̃k+2(tj),

where w and F̃k are defined as in Lemma 3.6.

3. Calculate the approximated bond price φK,N(0, T ) by

φK,N(0, T ) = e−rT (1− IPN(τ ≤ T )) +

R

K∑
j=1

exp

(
−r

j − 0.5

n
T

)
IPN

(
τ ∈

(
(j − 1)T

n
;
jT

n

])
.

The drawbacks for this algorithm are its restrictions to a constant recovery rate

and to two-sided exponentially distributed jump sizes. The big advantage of this

algorithm is its speed. In the next section, we compare calculated bond prices

and running time of this method and the other introduced algorithms.

67The second term in this equation is not directly related to the Laplace transform, since the
integration interval is [0; T ] and not [0;∞) . That is the reason why we first have to apply the
Laplace inversion.

68See the appendix, Remark B.4 for additional information about its implementation.



3.4. Comparison 61

3.4 Comparison

In this section, we provide a comparison of all presented algorithms.

While the Laplace-transform approach implies the highest restrictions to the

model assumptions, namely a constant recovery rate and two-sided exponen-

tially distributed jumps, Zhou’s Monte-Carlo simulation requires only continuous

recovery-rate functions and the Brownian-bridge pricing technique even works for

an arbitrary recovery-rate function.

We implemented all algorithms in C.69 Concerning Zhou’s algorithm, we used

three different discretizations: N in Algorithm 3.1 was set to 10T , 100T , and

1000T (where T denotes the maturity in years), which corresponds to checking

whether the bond defaulted about once per month, every three days, and three

times per day. As parameters, we chose r = 0.02, γ = 0.025, σ = 0.05 , and

T = 5 . The jump sizes are assumed to be two-sided exponentially distributed.

Negative and positive jumps occur with the same probability, that is, p = 0.5 . v0

is set to 1/0.8 , that is, default occurs when the value of a company falls under

80% of its value at time zero. We performed all simulations in four different

scenarios: In the first three scenarios, the recovery rate is kept constant, w0.5
1 (x) ≡

0.5 . In the scenario titled “Low”, we expect only λ = 0.5 jumps per year but

they are expected to be large, that is, λª = λ⊕ = 10 . The scenario “Middle”

corresponds to λ = 2 and λª = λ⊕ = 20 . In the scenario “High”, λ = 8

jumps per year are expected with λª = λ⊕ = 40 . The scenario “Stochastic”

has the same same jump structure as the scenario ”Middle”, but the recovery

rate is stochastic, w0.7
2 (x) = 0.7x . Lemma 1.10 yields that the volatility and

expectation of the underlying Lévy process remain the same in all scenarios. We

performed one million simulations per algorithm, except for the Laplace-transfor-

mation approach, which needs only one run. Since the Brownian-bridge pricing

technique generates an unbiased price, we additionally performed ten million runs

of this algorithm and interpreted the result as the correct price.

Table 3.1 includes, besides the running time and the generated credit spread of

each algorithm and scenario, the relative error of the credit spread which we

define as (spread− generated spread)/spread 70. The data set shows that Zhou’s

algorithm produces a significant bias. When simulating with only 10 grid points

69See Appendix B for details about the implementation and the machines we worked on.
70While “spread” denotes the credit spread obtained from the Brownian-bridge simulation

with ten million runs, “generated spread” represents the credit spread from the corresponding
algorithm.
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Low Middle High Stochastic

Spread .013171 .016213 .018184 .009742

Zhou (10) Rel. error 7.2465 8.9464 9.0436 7.5799

Time 0:5:28.23 0:5:22.09 0:7:36.21 0:5:48.35

Spread .013751 .017162 .019251 .010081

Zhou (100) Rel. error 3.1620 3.6168 3.7065 4.3639

Time 0:52:11.84 0:48:26.94 0:54:00.39 0:51:31.67

Spread .013942 .017428 .019567 .010193

Zhou (1000) Rel. error 1.8169 2.1229 2.1259 3.3014

Time 8:48:31.82 8:00:06.00 8:44:07.81 9:19:27.21

Spread .014209 .017813 .019969 .010548

Brown. bridge Rel. error -0.0634 -0.0393 0.1150 -0.0664

Time 0:6:45.78 0:19:24.65 0:58:23.12 0:19:33.96

Spread .014323 .017853 .020037 .010624

Taylor (orig.) Rel. error -0.8662 -0.2640 -0.2251 -0.7874

Time 0:0:42.18 0:2:17.55 0:8:03.13 0:2:19.27

Spread .014162 .017815 .019989 .010523

Taylor (our) Rel. error 0.2676 -0.0505 0.0150 0.1708

Time 0:0:39.74 0:2:06.30 0:8:03.13 0:2:19.25

Spread .014168 .017776 .019972 -

Laplace Rel. error 0.2254 0.1685 0.1000 -

Time 0:0:0.14 0:0:0.14 0:0:0.14 -

Brown. bridge 10 Mil. .014200 .017806 .019992 .010541

Table 3.1: Comparison of Zhou’s algorithm (with discretization N = 10T , N =

100T , N = 1000T ), the Brownian-bridge pricing technique, the original and

our Taylor approximation, and the Laplace-transform approach in four different

jump-structure and recovery settings. The relative error is given as percentage.

per year, the relative error exceeds 7%. Even with 1000 grid points per year, the

relative error is at least 1.8%, which is still too high for an application in real life.

The error results from the fact that the algorithm not only omits to check for

default between the grid points but also allows at most one jump between the grid

points. Thus, the default risk is significantly underestimated and the resulting

credit spreads are too low. The restriction to at most one jump in between the

grid and the fact that a growing jump intensity increases the probability of more

than one jump in between the grid also explain the observation that the relative

error increases in the jump intensity. Another drawback of Zhou’s algorithm is

its inefficiency in terms of running time, especially for fine grids (and thus, small
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biases).

Examining the running time of the Brownian-bridge pricing technique shows that

it depends strongly on the expected number of jumps. The reason therefore is

that the number of random variables that have to be drawn and the number

of integrals which have to be calculated depends on the number of jumps. The

same statement holds for the Taylor approximations, where the calculations of

the approximations are significantly faster but still have a strong impact on the

running time. While the Taylor approximation already significantly reduces the

running time, the Laplace-transformation approach is unbeatable. Besides, both

the Laplace-transformation approach and especially our Taylor approximation

yield very good results which can be used to obtain credit spreads. Hence, for cal-

ibrations with constant (resp. stochastic) recovery rates, the Laplace-transform

approach (resp. our Taylor approximation) is an adequate choice.



Appendix A

Laplace transform

Essential tools in the Sections 3.2 and 3.3 are the Laplace transform and its

inverse. In this chapter, we give a short definition and introduce important

properties which we apply in some proofs. We abstain from introducing the

Laplace transform in full generality; instead we define it briefly without specifying

its domain, as this simplification is totally sufficient for our purposes. In the

second part of this chapter, we prove a representation of a Laplace inversion

which is used in Lemma 3.4. For an introduction to Laplace-transform theory,

we refer to [Schi] and [D]. As a table for well-known Laplace transforms and

inverses we use [OB].

Definition A.1 (Laplace transform, Laplace inverse)

Let f denote a continuous function defined on R+
0 such that

∫∞
0

e−stf(t)dt exists

for some s ∈ R . Then, the Laplace transform of f , L(f) : Uf → C , where

Uf := {s ∈ C : Re(s) > cf} for cf := inf{α ∈ R :
∫∞

0
e−αtf(t)dt exists} , is

defined by

(L(f)) (s) :=

∫ ∞

0

e−stf(t)dt.

The Laplace inverse L−1 is the inverse function of the Laplace transform.

Lemma A.1 (Representation of the Laplace inverse)

Let F = L(f) denote the Laplace transform of a function f . It holds

f(t) =
(L−1(F )

)
(t) =

1

2πi

∫ y+i∞

y−i∞
etsF (s)ds, ∀ t > 0

with y ∈ R chosen so that all singularities of F are to the left of y .

64
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Proof: See [Schi] or [D]. ♦

We use some properties of the Laplace transform and its inverse which we now

present.

Lemma A.2 (Linearity of the Laplace transform)

The Laplace transform and its inverse are linear.

Proof: The statement follows directly from Definition A.1 and Lemma A.1. ♦

Lemma A.3 (Shift theorem)

If f has a Laplace transform defined on Uf = {s ∈ C : Re(s) > cf} , then for

all a ∈ R , e−atf(t) has a Laplace transform defined on Ũ = {s ∈ C : Re(s) >

cf − a} . It holds (L(e−atf(t))
)
(s) = (L(f)) (s + a).

Proof: For s with Re(s) > cf − a ,

(L(f)) (s + a) =

∫ ∞

0

e−(s+a)tf(t)dt =

∫ ∞

0

e−ste−atf(t)dt =
(L(e−atf(t))

)
(s)

holds by the definition. ♦

Lemma A.4 (Convolution)

If f and h have Laplace transforms defined on Uf = {s ∈ C : Re(s) > cf}
and Uh = {s ∈ C : Re(s) > ch} , then their convolution, that is (f ∗ h)(t) :=∫ t

0
f(x)h(t− x)dx , has a Laplace transform, defined on Uf∗h = {s ∈ C : Re(s) >

max{cf , ch}} . It holds

(L(f ∗ h)) (s) = (L(f)) (s) · (L(h)) (s).

Proof:

(L(f ∗ h)) (s) =

∫ ∞

0

e−st

∫ t

0

f(x)h(t− x)dxdt

=

∫ ∞

0

∫ ∞

x

e−stf(x)h(t− x)dtdx

=

∫ ∞

0

∫ ∞

0

e−ste−sxf(x)h(t)dtdx

= (L(f)) (s) · (L(h)) (s),
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where the second to last equation follows by a substitution. ♦

In order to calculate a Laplace inversion in Lemma 3.4, the following functions

are useful.71 We do not specify their area of domain.

Definition A.2 (Some important functions)

• The Gamma function Γ is defined by

Γ(z) := lim
n→∞

n!nz

z(z + 1)n

,

where (z)n := z · (z + 1) · . . . · (z + n− 1) .

• The Kummer’s function 1F1 is given by

1F1(a, b, z) :=
∞∑

n=0

(a)n

(b)n

zn

n!
.

• The Whittaker’s functions Mk,m and Wk,m are defined by

Mk,m(z) := zm+ 1
2 e−

1
2
z
1F1(

1

2
+ m− k, 2m + 1, z)

= zm+ 1
2 e

1
2
z
1F1(

1

2
+ m + k, 2m + 1,−z) and

Wk,m(z) :=
Γ(−2m)

Γ
(

1
2
−m− k

)Mk,m(z) +
Γ(2m)

Γ
(

1
2

+ m− k
)Mk,−m(z),

where the equality follows from 1F1(a, b, z) = ez
1F1(b− a, b,−z) .

• The Parabolic cylinder function Dk is given by

Dk(z) := 2
1
4
+ 1

2
kz−

1
2 W 1

4
+ 1

2
k, 1

4

(
1

2
z2

)
.

For the Laplace inversion we are doing in Lemma 3.4, we have to evaluate the

Gamma function for different values. The following lemma is helpful.

Lemma A.5 (Some properties of the Gamma function)

The Gamma function Γ satisfies

Γ(x + 1) = xΓ(x), x ∈ R+

71We want to emphasize that the functions introduced here are only a very small subset of
functions which appear in the context of Laplace transforms and inversions.
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Γ(1) = 1,

Γ

(
1

2

)
=

√
π, and

Γ

(
−1

2

)
= −2

√
π.

Proof: The statement follows from an integration by parts over an alternative

representation of Γ and from an induction. See [O], Chapter 2.1. ♦

Lemma A.6 (A useful Laplace inversion)

It holds for a ∈ R+

(
L−1

(
exp(−2a

√
s)

s2

))
(t) = (2t + 4a2)

(
1− Φ

(√
2a√
t

))
− 2a

√
t√

π
e−

a2

t .

Proof: By Formula 5.94 in [OB], Section 2.5, page 259,

(
L−1

(
exp(−2a

√
s)

s2

))
(t) =

2
3
2 t√
π

e−
a2

2t D−3

(√
2a√
t

)

=
2

3
2 t√
π

e−
a2

2t
2−

5
4 t

1
4

2
1
4 a

1
2

W− 5
4
, 1
4

(
a2

t

)

=
t

5
4√
aπ

e−
a2

2t W− 5
4
, 1
4

(
a2

t

)

=
t

5
4√
aπ

e−
a2

2t

(
−4M− 5

4
, 1
4

(
a2

t

)
+
√

πM− 5
4
,− 1

4

(
a2

t

))

=
t

5
4√
aπ

e−
a2

2t

(
−4

(
a2

t

) 3
4

e
a2

2t 1F1

(
−1

2
,
3

2
,−a2

t

)
+

√
π

(
a2

t

) 1
4

e−
a2

2t 1F1

(
3

2
,
1

2
,
a2

t

))

= −4
a
√

t√
π

1F1

(
−1

2
,
3

2
,−a2

t

)
+ te−

a2

t 1F1

(
3

2
,
1

2
,
a2

t

)
.

We calculate

1F1

(
3

2
,
1

2
, z

)
=

∞∑
n=0

(
3
2

)
n(

1
2

)
n

zn

n!
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=
∞∑

n=0

(3 + 2n− 2)
zn

n!

= ez + 2z
∞∑

n=1

zn−1

(n− 1)!

= ez(1 + 2z)

and for z ∈ R−

1F1

(
−1

2
,
3

2
, z

)
=

∞∑
n=0

(−1
2

)
n(

3
2

)
n

zn

n!

=
∞∑

n=0

−1

(3 + 2n− 4)(3 + 2n− 2)

zn

n!

=
1

2

∞∑
n=0

1

2n + 1

zn

n!
− 1

2

∞∑
n=0

1

2n− 1

zn

n!

=
1

2

∞∑
n=0

(
√−z)2n

2n + 1

(−1)n

n!
− 1

2

∞∑
n=1

(
√−z)2n

2n− 1

(−1)n

n!
+

1

2

=
1

2
√−z

∞∑
n=0

(
√−z)2n+1

2n + 1

(−1)n

n!
−
√−z

2

∞∑
n=1

(
√−z)2n−1

2n− 1

(−1)n

n!
+

1

2

=
1

2
√−z

∞∑
n=0

∫ √−z

0

x2ndx · (−1)n

n!
−

√−z

2

∞∑
n=1

∫ √−z

0

x2n−2dx · (−1)n

n!
+

1

2

=
1

2
√−z

∫ √−z

0

∞∑
n=0

(−x2)n

n!
dx−

√−z

2

∫ √−z

0

1

x2

∞∑
n=1

(−x2)n

n!
dx +

1

2

=
1

2
√−z

∫ √−z

0

e−x2

dx−
√−z

2

∫ √−z

0

e−x2 − 1

x2
dx +

1

2

=
1

2
√−z

∫ √−z

0

e−x2

dx +

√−z

2


 e−x2 − 1

x

∣∣∣∣∣

√−z

0

+

∫ √−z

0

2xe−x2

x
dx


 +

1

2

=
1

2
√−z

∫ √−z

0

e−x2

dx +
ez − 1

2
+
√−z

∫ √−z

0

e−x2

dx +
1

2

=
1− 2z

2
√−z

∫ √−z

0

e−x2

dx +
ez

2
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=
(1− 2z)

√
π

2
√−z

· 1√
2π

∫ √−2z

0

e−
x2

2 dx +
ez

2

=
(1− 2z)

√
π

4
√−z

(
2Φ

(√−2z
)− 1

)
+

ez

2
.

Combining these results, we obtain

(
L−1

(
exp(−2a

√
s)

s2

))
(t)

= −4
a
√

t√
π

(
(1 + 2a2

t
)
√

π
4a√

t

(
2Φ

(√
2a√
t

)
− 1

)
+

e
−a2

t

2

)
+ t

(
1 +

2a2

t

)

= (2t + 4a2)

(
1− Φ

(√
2a√
t

))
− 2a

√
t√

π
e−

a2

t .

This completes the proof. ♦
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Details about the implementation

In this appendix, we provide some further information about the programs which

do the simulations and obtain the data we present in this thesis. All programs

can be found on a CD attached to this thesis.

We implemented all algorithms with two-sided exponentially distributed jump

sizes, a constant interest rate, and recovery functions wR
1 and wR

2 , as specified

in Section 2.2. In case of a default, the recovery was paid at time of default. We

used the C-programming language and routines from the NAG-software library72.

We worked on a Sun computer equipped with an UltraSPARC-III+ processor

(900MHz). To provide a benchmark of the running time the output user time of

the Unix command timex was chosen.

Remark B.1 (Implementation of Zhou’s algorithm (Algorithm 3.1))

As opposed to the procedure presented in Algorithm 3.1, we decided not to begin

with the simulation of a whole sample path of V ∗ but instead to simulate it piece

by piece and to decide at every time step whether a default occurred. After the time

of default, the path of V ∗ is irrelevant and this small modification allowed us to

save the time which would be otherwise spent on simulating unnecessary samples.

The NAG routines we used were g05ccc() for the random generator, g05ddc()

for simulating the Gaussian part, g05cac() for deciding whether a jump occurred

and whether it was negative or positive, and g05dbc() for obtaining the jump

size.

Result B.1 (Sum of zero bonds in Zhou’s algorithm73)

72See http://www.nag.co.uk.
73See Lemma 2.1 and Remark 3.1.
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We calculated the price of a coupon bond φ(0, t1, t2, T, q) with maturity T = 10 ,

face value 1 , and coupon payments q = (1, 1, 0) at the times t1 = 2 and t2 = 3

with an adapted Zhou’s algorithm and compared it to the sum of the prices of three

zero-coupon bonds φ(0, t1), φ(0, t2) , and φ(0, T ) with maturities t1, t2 , and T .

The number of grid points a year was set to 100 . The other parameters were

r = 0.02 , γ = 0.025 , σ = 0.05 , and v0 = 1/0.8 . The jumps were two-sided

exponentially distributed with parameters p = 0.5 , λ = 2 , and λ⊕ = λª = 20 .

Recovery at time of default was w0.5
1 ≡ 0.5 (times one for the zero-coupon bonds

and times the sum of the outstanding coupon payments and the face value for the

coupon bond). We performed ten runs, each run with 200, 000 path simulations.

The obtained differences (φ(0, t1) + φ(0, t2) + φ(0, T )) − φ(0, t1, t2, T ) are listed

in Table B.1.

Run Difference Run Difference

1 0.000058 6 -0.000593

2 0.001739 7 -0.000101

3 0.001972 8 0.000716

4 -0.000879 9 0.002380

5 -0.001974 10 -0.000897

Table B.1: The difference of the sum of φ(0, t1), φ(0, t2) , and φ(0, T ) and

φ(0, t1, t2, T ) .

As we can see, the differences are small and both negative and positive.

Remark B.2 (Implementation of Brownian-bridge pricing Alg. 3.2)

We used an implementation from [Sche] and modified it to include stochastic

recovery rates. As for Zhou’s algorithm, we did not simulate Xτi
for all jump

times τi at the beginning but compared simultaneously whether a default by jump

or a sure default by diffusion occurred, that is, Xτi− has crossed the default

barrier − ln(v0) , and stopped if this was confirmed. We used the NAG routines

g05ccc() for the random generator, g05ecc() and g05eyc() for simulating the

number of jumps, g05cac() and m01cac() for the jump times, g05ddc() for

obtaining the Gaussian increments, g05cac() and g05dbc() for simulating the

jump size, and d01ajc() for calculating the integral.

Result B.2 (Sum of zero bonds in Brownian-bridge pricing alg.74)

In order to calculate the price of a coupon bond φ(0, t1, t2, T, q) with maturity

74See Lemma 2.1 and Remark 3.3.
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T = 10 , face value 1 , and coupon payments q = (1, 1, 0) at the times t1 =

2 and t2 = 3 we modified the Brownian-bridge pricing algorithm slightly: We

conditioned on the values of X not only at the jump times but also at the times

of coupon payments t1 and t2 , since the recovery changes at these times. Then,

we compared φ(0, t1, t2, T, q) to the sum of the prices of the zero-coupon bonds

φ(0, t1), φ(0, t2) , and φ(0, T ) with maturities t1, t2 , and T . The parameters

were the same as in the corresponding Zhou simulation: r = 0.02 , γ = 0.025 ,

σ = 0.05 , and v0 = 1/0.8 . The jumps were two-sided exponentially distributed

with parameters p = 0.5 , λ = 2 , and λ⊕ = λª = 20 . Recovery at time of

default was w0.5
1 ≡ 0.5 (times one for the zero-coupon bonds and times the sum

of the outstanding coupon payments and of the face value for the coupon bond).

We performed ten runs, each run with 200, 000 path simulations. The obtained

differences (φ(0, t1) + φ(0, t2) + φ(0, T ))− φ(0, t1, t2, T ) are listed in Table B.2.

Run Difference Run Difference

1 0.000111 6 -0.000820

2 0.000276 7 -0.002072

3 0.000209 8 -0.000955

4 -0.000798 9 -0.000891

5 0.000854 10 -0.000331

Table B.2: The difference of the sum of φ(0, t1), φ(0, t2) , and φ(0, T ) and

φ(0, t1, t2, T ) .

Similar to the data in Table B.1, the differences are small and both negative and

positive.

Remark B.3 (Implementation of the approximation in Lemma 3.4)

We only had to modify the implementation for the calculation of the unbiased ver-

sion slightly. We exchanged the NAG routine d01ajc(), used for calculating the

integral over g , by g01eac() to evaluate the cumulative normal distribution Φ .

Result B.3 (Relative error of the approximation75)

For each scenario, we calculated the relative pricing error for different interest

rates. We list the exact numbers in Table B.3.

Remark B.4 (Implementation of the Laplace-transform Algorithm 3.3)

75See Lemma 3.4 and Remark 3.4.
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λ = 0.5 λ = 2 λ = 8

r Original Our Original Our Original Our

2.5 0.072560 -0.006450 0.035636 -0.008159 0.008500 -0.008627

5.0 0.183640 -0.007161 0.089252 -0.008701 0.027612 -0.009191

7.5 0.339830 -0.008382 0.154848 -0.009499 0.049408 -0.010083

10.0 0.550475 -0.009074 0.239234 -0.010398 0.074507 -0.010582

12.5 0.836835 -0.010999 0.338649 -0.011148 0.105069 -0.011337

15.0 1.228662 -0.012840 0.462425 -0.012113 0.139050 -0.010996

17.5 1.747642 -0.016792 0.603955 -0.013367 0.177395 -0.012765

20.0 2.400023 -0.021394 0.788351 -0.014252 0.221226 -0.013789

22.5 3.288684 -0.028168 0.993531 -0.015914 0.272949 -0.013913

25.0 4.414416 -0.036117 1.253171 -0.017627 0.330520 -0.014954

Table B.3: The relative pricing errors for approximations with the original and

our formula. All numbers are given as percentages.

We used an implementation from [Sche]. Scherer calculates the roots of G(x)−α

by reformulating the problem as an equivalent polynomial equation76 and using the

Pegasus algorithm77 to find its roots. Choosing N = 9 and K = 100T yields a

sufficiently good result.

76See [Sche], Lemma 3.3.
77See [ER] for a description of this algorithm.
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Summary

In this thesis, we present a structural default model and methods to price cor-

porate bonds within this framework. The model is based on two jump-diffusion

processes: While the first process represents the company’s value, the second one

models a default threshold. A bond holder receives all promised payments as

long as the company’s value process does not cross the default threshold. If the

company defaults, the investor receives a fraction of the outstanding payments.

Since only the difference between the two stochastic processes, the so called dis-

tance to default, is relevant for pricing a bond, we can simplify the model to a

setup with only one stochastic process.

With the possibility of jumps, the model captures empirical observations, such

as the fact that credit spreads for short maturities do not vanish. However,

including jumps makes it difficult to find analytical solutions for fair bond prices

in this setup. To overcome this problem, we present and compare different Monte-

Carlo simulations. In Zhou’s algorithm, the time to maturity is discretized and

at every grid point default is checked for. Not being able to check for default

between the grid points, however, causes biased bond prices, which are too high

as the default probabilities are underestimated. The Brownian-bridge pricing

technique avoids this bias by conditioning on the jumps. An analytical formula

can be found for the probabilities of default between the jumps, when the jump-

diffusion process behaves like a Brownian bridge. In the pricing formula, these

probabilities form an integral which is numerically expensive to calculate but

possible to approximate. If the jump sizes are two-sided exponentially distributed

and the bond holder receives a non-stochastic payment in case of a default, we

can renounce a Monte-Carlo simulation but use the Laplace-transform approach,

where the bond is priced by means of the analytically known Laplace transform

of the default probabilities. This approach turns out to be the fastest pricing

algorithm available.

80



Summary 81

Contribution

We introduce a jump-diffusion model with an arbitrary jump-size distribution

and a stochastic default threshold, which is modelled as another jump-diffusion

process. The model is a generalization of Zhou’s and Scherer’s model, [Z2] and

[Sche], where the default threshold is deterministic and constant, respectively,

and the jumps are normally distributed and two-sided exponentially distributed,

respectively. As in [Z2], stochastic recoveries are allowed. We show that the

model can be simplified to a model with a constant default threshold.

Assuming constant recovery rates, we give an analytical formula for the local

default rate and prove that in the jump-diffusion model the credit spreads do

not vanish as maturity decreases. Both results are non-trivial generalizations of

[Sche], where equivalent statements are proven but only for two-sided exponen-

tially distributed jump sizes. This generalization was suggested by and worked

out together with Matthias Scherer.

We thoroughly prove a theorem which justifies Zhou’s algorithm for all jump-size

distributions. In [Z1] and [Z2], where the jump sizes are restricted to normally

distributed random variables, only a short outline of the proof is given.

We generalize the Brownian-bridge pricing technique from [Sche] and [MA] to

include stochastic recovery rates. Furthermore, we significantly improve an ap-

proximation for an integral which is used in the algorithm in terms of precision.

An extensive simulation of the original approximation as introduced in [MA] and

[Sche] and of our approximation shows by how much the error of the approxima-

tion is reduced if our approximation is used.

By implementing all algorithms and performing several simulations we systemati-

cally compare resulting bond prices and running times of the different algorithms.

We also check for Zhou’s algorithm and for the Brownian-bridge pricing technique

whether coupon bonds can be priced by means of a portfolio of zero-coupon bonds

without a bias.
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