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Piecewise constant local martingales with bounded
numbers of jumps
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Abstract
A piecewise constant local martingale M with boundedly many jumps is a uniformly
integrable martingale if and only if M is integrable.
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1 Main theorem
Let (2, 7,(Z)i>0,P) denote a filtered probability space with {J,5, % C Z. In
Section 2, we shall prove the following theorem.

Theorem 1.1. Assume for some N € Ny and some stopping times 0 < p; < --- < py we
have a local martingale M of the form

N N
M= Jnlp, o thatis, M;=Y Julgsp,y, t>0, (1.1)
m=1 m=1
where J, is #,, -measurable foreachm =1,--- ,N. If
E {lianlinfMt_} < 00 (1.2)
tToo

then M is a uniformly integrable martingale.

In (1.2), we could replace the limit inferior by a limit since M only has finitely many
jumps and hence converges to a random variable M.,. Hence, (1.2) is equivalent to
E[M] < oc.

Corollary 1.2. Suppose the notation and assumptions of Theorem 1.1 hold, but with
(1.2) replaced by

E[M;]<oo, t>0.
Then M is a martingale.

Progf. Fix a deterministic time 7" > 0 and consider the loc,ag martingale M=MT ; that
is, M is the local martingale M stopped at time 7. Then M satisfies the conditions of
Theorem 1.1, with J,, replaced by J,,1;,, <7} for each m =1,--- | N. Hence, M is a
uniformly integrable martingale. Since T' was chosen arbitrarily the assertion follows. O
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[1] prove the following special case of Theorem 1.1.

Proposition 1.3. Fix N € Ny, and assume we have a discrete-time filtration & =
(%m)m=01,.. v and a G-local martingale Y = (Y,,)m=0,1,..n. IfE[Yy] < oo thenY
is a ®-uniformly integrable martingale.

Note that Proposition 1.3 follows from Theorem 1.1. Indeed, define the continuous-
time process M and the filtration (.%;);>0 by M; = Yjyan and .#; = %N, Tespectively,
where [t] denotes the largest integer smaller than or equal to ¢t. Then M is a local
martingale as in (1.1), with N replaced by N + 1. To see this, set p,, = m — 1 and
IJn=Ym_1—Ynm_owithY_ ; =0, foreachm=1,--- | N 4+ 1. Applying Theorem 1.1 then
yields Proposition 1.3.

2 Proofs of Theorem 1.1

In the following, we will provide two proofs of Theorem 1.1. The first one assumes
Proposition 1.3 is already shown and reduces the more general situation of Theorem 1.1
to the discrete-time setup of Proposition 1.3. The second proof does not assume Proposi-
tion 1.3, but instead provides a direct argument based on an induction.

Proof I, relying on Proposition 1.3. Let us set pg = 0 and py41 = oo and let (7,)nen
denote a localization sequence of M such that M™ is a uniformly integrable martingale
for each n € IN. For any stopping time 7 we may define a sigma algebra

Foo =0 ({AN{t <1}, A€ F0 t >0} UT).

Note that {7 = oo} = ), cn{n <7} € Fr_.

Let us now define a filtration & = (¥,,,),—0,... ;v and a process Y = (Y,;,)m=0,1,... .8 by
G = Fp,, N Fp, ..~ and Y, = M, , respectively. Note that Y is adapted to &. Next, let
us define a non-decreasing sequence (o0, ),en of random times, each taking values in

{O,--- ,N—l,oo} by
N-—-1
On = Z m]l{p'm.STn<p'rn+l<Oo} + OO]lUﬁzo{pmSm}ﬂ{mnH:OO}'

m=0

Then, o, is a B-stopping time for each n € IN since
{07L = 771} = {pm < Tn < Pm+1 < OO} S ﬁpm \ cgzpm+1— = gma m = Oa te 7N - 17

and, furthermore, lim,1o 0y, = o0.
We now fix n € IN and prove that Y7~ is a -martingale, which then yields that Y is a
®-local martingale. To this end, we have, foreach m =0,--- | N,

N-1

Yor =3 My dio,=ky + My, (s, —oc)
k=0
N-1

= Z MPmAk]l{PkSTn<pk,+1 <oo} T Mpm]lUﬁ:O{ka'rn}ﬁ{p;H_l:oo}
k=0

— MTn
- Mpm, )

yielding E[|Y,o"

] < oo0. Now, fix m =1,---,N. First, forany A € %, _1, we have

E[YTZ"]IA] = E[M;—:;]IA] = E[M;:L,l]lA] = E[Yn(;i’l]lA];
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next, for any ¢t > 0 and A € .%;, we have

ElY,n " Lan(i<pmy] (M Langi<p,ny] = EIM{" Lan(i<p,y) = EIM]" _1Langi<p,,}]

=E
=E[Y " 1 L ange<pntls

yielding that E[Y,2"14] = E[Y,.",14] for all A € ¢,,_;. Hence, Y is indeed a &-local
martingale.

The assumptions of the theorem yield that E[Y] < oo; hence Y a &-uniformly
integrable martingale by Proposition 1.3. Now, fix t > 0 and A € .%;. Then we get
ElIM[] + El|Mocl] < 232N _ E[[Yon] < oc and

m=0
N N
E[MOO]IA] = Z E[YN]lAm{pnlgt<P7n+l}] = Z E[YmﬂAm{Pm§t<pm+l}]
m=0 m=0

E[Mt]lAﬁ{PmSt<Pm+1}] = E[Mt]lA]

I
] =

3
I
o

since AN{pm <t < pmi1} € %y foreach m =0,--- , N. Hence, M is indeed a uniformly
integrable martingale. O

Proof II, relying on an induction argument. We proceed by induction over N. The case
N = 0 is clear. Hence, let us assume the assertion is proven for some N € INy and
consider the assertion with N replaced by N + 1. Let (7, )nen denote a corresponding
localization sequence such that M ™ is a uniformly integrable martingale for each n € IN.

Step 1: In the first step, we want to argue that the nondecreasing sequence (7, )nen,
given by

Tn = Tnl{r,<pi} +001(r, >0} 2 T,
is also a localization sequence for M. To this end, fix k£ € IN and consider the process
M=(M—~M") 5,
Then we have
M~ < M~ +|M™|;
hence

E [liminf]\A/ft_} <E {liminf Mt_] +E[ M| < . (2.1)
ttoo tToo

Next, we argue that M is also a local martingale, again with localization sequence

(Tn)nen-. Indeed, forn € IN, t,h > 0, and A € %, note that

E M7 0a] = E[(MT5, = MIR™) Langpusmesn] +E (M7 = MIERT™) Langn<minirsn]
= E[(M{" = M) Langp <nesny] + B [(MTR™ = MTR™) Langp <niyninso]
=E {],\Z‘/T"]IA} ,

where we used the definition of M, {p1 < 7, <t} € F, AN {p1 < 7} N {7 >t} € Fn
and the martingale property of M. Alternatively, we could have observed that M. =
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fd 1), <r.<sydM; (using the fact that ]]‘{Plg/&}]]']]ﬂcpc[[} is bounded and predictable since
it is adapted and left-continuous). Hence, M is a local martingale of the form

N1
M= Z (Jml{PISTk<Pm}) 1[[PM=°O[[’

m=2

satisfying (2.1), and the induction hypothesis yields that M is a uniformly integrable
martingale. This again yields that

M™ = M™ 4+ M

is also a uniformly integrable martingale, proving the claim that (7,,),en is a localization
sequence for M.

Step 2: We want to argue that M, € £! for each ¢ € [0, cc]. To this end, fix ¢ € [0, ]
and note

E[[M]] < liminf E Han

} 2.2)

= E[Mo] +2lim inf E [(M[)} (2.3)

< E[Mo] + 2liminf E {(M;)} (2.4)
ntoo

< E[My] + 2E[M] (2.5)

< 0. (2.6)

Here, the inequality in (2.2) is an application of Fatou’s lemma. The equality in (2.3)
relies on the fact that for any uniformly integrable martingale X we have E[|X;|] =
E[X,"] +E[X, ] = E[X0] + 2E[X, ]. The inequality in (2.4) uses that (M ™)~ is a uniformly
integrable submartingale, thanks to Jensen’s inequality, for each n € IN. The inequality
in (2.5) (which is, actually, an equality) uses the fact that Mz € {0, M}, foreachn € IN,
by construction of the localization sequence (7, )nen- Finally, the inequality in (2.6) holds
by assumption.

Step 3: We now argue that M is a uniformly integrable martingale. To this end, fix
t > 0 and A € .%,;. Observe that

E[Moola] = lim (E [MocLan(z, <p<oo}] +E [MocLan(z,<pi}n{pm=co}] + E [Moclaniz,>p11])

ntToo
— lim E [M?nn I } 2.7
anIllo oo Lan{z, =0} (2.7)
= 7111%10 (E [Mog']lAm{?nx}} —E [M£'1Am{t<?n<oo}})
~ lmE [Mf”]lAm{?n>t}] (2.8)
= E[M;14]. (2.9)

We obtained the equality in (2.7) since 7,, = co on the event {7,, > p;}, and since the
first term on the left-hand side is zero by the dominated convergence theorem and the
second one thanks to the form of M. In (2.8), we used the martingale property of M T in
the first term and the fact that M», = 0 on the event {7,, < oo} in the second term, for
each n € IN. Finally, we exchanged limit and expectation in (2.9), again by an application
of the dominated convergence theorem. This then concludes the proof. O
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3 Two examples concerning the assumptions in Theorem 1.1

Example 3.1. Assume ({,.%, P) allows for a sequence (6,,)men of independent random
variables with P[f; = 2] = 1 and P[§,, = —1] = 1/2 = P[f,,, = 1] for all m > 2. Fix families
(Jim)men and (pp, )men of random variables with

T =270 and  p = (L= Ym) Iy, gy + o0l oy

Next, define M asin (1.1) with N = co and assume that (.%;);>o is the filtration generated
by M. Then M is a local martingale, with localization sequence (p,,)men. Indeed, M is a
process that starts in one, and then, at times 1/2,2/3,- - - doubles its value or jumps to zero,

each with probability 1/2. Since it eventually jumps to zero as P[J,._,{0,, = —1}] =1,
we have M; = 0. In particular, M is not a true martingale, but satisfies E[M| | = 0 < oo.
Thus, the assertions of Theorem 1.1 or Corollary 1.2 are not valid if N = oo, even if
PlUnenipm = o0} = 1. =

The next example illustrates that the assumptions of Corollary 1.2 are not sufficient
to guarantee that M is a uniformy integrable martingale, even if there is only one jump
possible, that is, even if N = 1. The example is adapted from [2], where it is used as a
counterexample for a different conjecture.

Example 3.2. Let p be an IN U {oo}-valued random variable with

: 1 .
P[p:l]:ﬁ7 'LE]N
This then yields that
2
™
Plp= =1-—.
[p = o] 13

Moreover, let § be an independent {—1, 1} valued random variable with P[§ = 1] = P[§ =
—1] = 1/2. Define J = 6p>. Then the stochastic process

M = Jlf, oo,

along with the filtration (.%;);> it generates, satisfies exactly the conditions of Corol-

lary 1.2. Indeed, p is an §-stopping time and M; < p®1{,<; < t?, hence M; € L' for

each t > 0. Thus, M is a martingale. This fact would also be very easy to check by hand.
We have M, = limyoc M; exists and satisfies M| = p*1{,<o0}. Thus,

o 1
(Ml = 355 = o,
i€IN

and M cannot be a uniformly integrable martingale. O
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