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Some first remarks

• This mini course only touches on a few themes in the world of
local and stochastic volatility models.

• The course puts more emphasis on models used for pricing
and hedging than on models used for estimation.

• This presentation is partially based on notes by Michael
Monoyios and Sergey Nadtochiy.
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Definition: spot volatility

• In the Black-Scholes (BS) model,

dSt = µStdt + σStdBt ,

the constant σ is the (spot) volatility of S .

• Observe that

lim
∆t↓0

1

∆t
Var

(
log

(
St+∆t

St

))
=

d

dt
[log(S)]t = σ2. (1)

• We can use (1) as a definition for spot volatility in general
models of the form

dSt = µtStdt + σtStdBt

(in particular, without jumps) and have

d

dt
[log(S)]t = σ2

t .
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Estimation: spot volatility

• Usually, the volatility is easier to estimate than the drift.

• Large amount of current research on high-frequency / tick
data.

• In a simple setup: assume discrete price observations
si = Si∆t(ω) for i = 0, . . . , n with n∆t = T .

• Define logarithmic returns ri := log(si/si−1) for i = 1, . . . , n.

• Itô’s formula yields

d log(St) =

(
µt −

1

2
σ2
t

)
dt + σtdBt .

• Thus,

Ri = log

(
Si∆t

S(i−1)∆t

)
=

∫ i∆t

(i−1)∆t

(
µt −

1

2
σ2
t

)
dt +

∫ i∆t

(i−1)∆t
σtdBt .
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Estimation: spot volatility II

• Assume, for a moment, that µt ≡ µ and σt ≡ σ.

• Then,

Ri ∼ N
((

µ− 1

2
σ2

)
∆t, σ2∆t

)
.

• Thus, maximum likelihood estimator σ̂2 of σ2 is, with
r̄ =

∑n
i=1 ri/n,

σ̂2 =
1

∆t
· 1

n

n∑
i=1

(ri − r̄)2 =
1

T

n∑
i=1

(ri − r̄)2.

• How can we find an estimator for σ2
t if σt is not a constant?
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Estimation: spot volatility III

• Remember: ∫ T

0
σ2
t dt = [log(S)]T .

• Thus, ∫ T

0
σ2
t dt ≈

n∑
i=1

r 2
i ,

where the right-hand side is the approximate quadratic
variation.

• If σt ≡ σ, this then yields an estimator σ̃2 of σ2:

σ̃2 =
1

T

n∑
i=1

r 2
i ≈

1

T

n∑
i=1

(ri − r̄)2 = σ̂2.
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Estimation: spot volatility IV

• General theory yields (remember, we did not allow for jumps)
that

n∑
i=1

r 2
i

P→
∫ T

0
σ2
t dt

as ∆t ↓ 0.

• Thus, we can estimate
∫ T

0 σ2
t dt consistently with

high-frequency data.

• However, keep in mind that model assumptions (diffusion) do
not describe well super-high frequency data (ticker size, ...).

• If we know
∫ T

0 σ2
t dt for all T > 0, then we can determine σ2

t

Lebesgue-almost everywhere. (More cannot be expected.)
However the integrated version seems to be the more natural
quantity in any case.
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Estimation: spot volatility V

• Consider again the case σt ≡ σ.

• One then needs to decide on a choice of T , often 30 or 180
days when using daily observations.

• Development of more sophisticated methods, e.g.
(exponentially weighted) moving averages (RiskMetrics)

• See notes for an example with Dow Jones data.
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Realized versus implied volatility

• Realized volatility estimate: based on historical data (past
observations).

• Implied volatility: based on current market prices.

• Observe that BS-pricing formula (for calls and puts) implies,
as a function of σ, an inverse function. For each price (in its
range), there exists a unique σ, which, when put into the BS
formula, yields that price.

• Given a market price C MKT
t (T ,K ), the implied volatility

Σt(T ,K ) is the unique volatility, that solves

C BS
t (Σt(T ,K )2, St ,T ,K ) = C MKT

t (T ,K ).

• The function Σt is called volatility surface.

• If BS model was correct, Σt(·, ·) would be constant.
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Implied volatility of SP500 index options
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Black-Scholes and implied volatility

• BS assumption of constant implied volatility clearly does not
hold in markets where calls and puts are liquidly traded
(otherwise, implied volatilities cannot be observed).

• Graphs illustrate that implied volatilities today change as
maturity and strike changes.

• Moreover, implied volatilities for fixed maturities and strikes
also change over time; that is, Σt(T ,K ) as a function of t is
not constant.



Introduction Local volatility models Stochastic volatility models

VIX
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VIX II
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Modeling of implied volatilities

• A word of warning: In this course, we shall not model implied
volatilities;

• instead, we shall model the process σt .

• Implied volatilities correspond, in some sense, to averages of
future realizations of paths of σt .

• The direct modeling of implied volatilities is highly complex;
in particular to check whether these models satisfy standard
no-arbitrage conditions, e.g.

• call prices are convex functions in strike K ,
• call prices are increasing functions in maturity T .
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Stylized facts

• Volatility clustering and persistence: small price moves follow
small moves, large moves follow large moves (high
autocorrelation of volatility measures).

• Thick tails: distribution of asset returns have heavier tails
than normal distribution (leptokurtic distribution).

• Negative correlation between prices and volatility: when prices
go down, volatility tends to rise (leverage effect).

• Mean reversion: volatility tends to revert to some long-run
level.

BS model does not capture these stylized facts.
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Autocorrelation of squared returns

From Lai and Xing, Statistical Models and Methods for Financial
Markets (Springer).
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Various volatility models

• Pricing and hedging models. In increasing generality:
• deterministic models: σt = σ(t) only function of t,
• local volatility models: σt = σ(t,St) function of t and St ,
• stochastic volatility models: additional stochastic factors,

e.g. SABR, Heston.

• Econometric models (mainly for estimation / forecasting):
ARCH, GARCH, EGARCH, IGARCH, ARMA-EGARCH, ...
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Econometric models

• Usually formulated in discrete time, suitable for statistical
estimation (“time series” analysis).

• Motivated by an attempt to model volatility clustering.

• Heteroskedastic = variance / volatility can change.

• Autoregressive Conditional Heteroskedastic (ARCH) models:
With Pi denoting the log-price at times i∆t,

Pi = Pi−1 + α + ηiεi ,

where α represents the trend, {εi}i∈N is a family of
i.i.d. standard normally distributed random variables and

η2
i = β0 +

k∑
j=1

βj(Pi−j − Pi−j−1 − α)2.

Thus, large observed recent price changes increase volatility of
next price change.
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Econometric models II

• Generalized ARCH (GARCH) models depend also on past
values of ηi .

• Usually a GARCH model needs less parameters. (ARCH
models often need large k to get good fit.)

• Analytic expressions for maximum-likelihood estimators or
forecasted volatilities are available.

• In EGARCH models, one distinguishes between positive and
negative returns.

• For details, see for example books by Lai and Xing, Statistical
Models and Methods for Financial Markets (Springer) or Tsay,
Analysis of Financial Time Series (Wiley).
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Outline from now on

Pricing and hedging models:

1. deterministic models: σt = σ(t) only function of t

2. local volatility models: σt = σ(t, St) function of t and St

3. stochastic volatility models: additional stochastic factors
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Deterministic volatility models

• Simplest generalization of BS:

dSt = µStdt + σ(t)StdBt ,

where σ(·) is a deterministic function of t.

• Pricing and hedging of contingent claims is basically the same
as in BS.

• Market is complete (all contingent claims can be replicated by
trading in the underlying).

• Contingent claim price v(t,St) corresponding to terminal
payoff h(ST ) usually satisfies BS PDE (assume no dividends)

vt(t, s) + rsvs(t, s) +
1

2
σ(t)2vs,s(t, s)− rv(t, s) = 0,

v(T , s) = h(s).
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Deterministic volatility models II
• By the Feynman-Kac theorem,

v(t, s) = EQ
[
e−r(T−t)h(ST )|St = s

]
,

where S has Q-dynamics

dSt = rStdt + σ(t)StdBQ
t .

• Now, solve SDE to obtain

log(ST ) = log(St) + r(T − t)− 1

2

∫ T

t
σ(u)2du +

∫ T

t
σ(u)dBQ

u

to observe that distribution of ST , given St = s, is normal:

log(ST ) ∼ N
(

log(s) +

(
r − 1

2
σ̄2
t

)
(T − t), σ̄2

t (T − t)

)
where

σ̄2
t =

1

T − t

∫ T

t
σ(u)2du.
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Deterministic volatility models III

• Thus, in all BS pricing formulas for European,
path-independent contingent claims, just replace σ by σ̄t .

• E.g., price of a call option at time t if St = s is given by

C BS
t (σ̄2

t , s,T ,K ) = sN (d1)− e−r(T−t)KN (d2),

where

d1 =
log(s/K ) + (r + σ̄2

t )(T − t)

σ̄t
√

T − t
,

d2 = d1 − σ̄t
√

T − t,

σ̄2
t =

1

T − t

∫ T

t
σ(u)2du.
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Definition: local volatility model

• Further generalization of BS:

dSt = µStdt + σ(t,St)StdBt .

• The deterministic function

(t, s)→ σ(t, s)

is called local volatility.

• Model is complete.

• Option price v(t,St) for terminal payoff h(ST ) usually
satisfies BS PDE

vt(t, s) + rsvs(t, s) +
1

2
σ(t, s)2vs,s(t, s)− rv(t, s) = 0,

v(T , s) = h(s).
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Example: Constant Elasticity of Variance (CEV) model

• Important example:

σ(t, s) = δsβ

for δ > 0 and usually β ≤ 0.

• Case β > 0 needs care (strict local martingality).

• β = −1/2: Cox-Ingersoll-Ross / square-root process
(well-known from modeling interest rates).

• β < 0 yields leverage effect: spot volatility increases as asset
price declines.

• Generally, be cautious concerning possibly positive probability
of hitting zero.

• Process is analytically tractable (including analytic formulas
for barrier and lookback options).

• Can be extend (by making δ stochastic) to SABR model.
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Another example: Quadratic Normal Volatility model

• Risk-neutral dynamics described by

dSt = (aS2
t + bSt + c)dBt .

• Here,

σ(t, s) = as + b +
c

s
.

• Used to price Foreign Exchange options.

• Strict local martingality is again an issue,

• but process is analytically tractable.
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Calibration

• We shall assume that there is a liquid market for “vanilla”
calls / puts.

• Then, these contingent claims are marked to market,

• and could be used as hedging instruments to price exotic
contingent claims.

• E.g., vanillas written on major indices (SP500, SP100, DJ,
DAX, FTSE, ...), large stocks, currencies.

• Throughout this section, we shall try to find a local volatility
function σ, such that the model prices (expectations under
the risk-neutral measure) agree with the observed market
prices (calibration).

• In other words, we are trying to choose a certain distribution
among a class of distributions.
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Digression: Breeden-Litzenberger formula

• Assume that S is a Markov process with a density p(t, s,T , ·)
for ST , conditioned on St = s.

• Then,

Ct(s,T ,K ) = e−r(T−t)

∫ ∞
0

p(t, s,T , y)(y − K )+dy .

• Thus,

∂

∂K
Ct(s,T ,K ) = −e−r(T−t)

∫ ∞
K

p(t, s,T , y)dy ,

∂2

∂K 2
Ct(s,T ,K ) = e−r(T−t)p(t, s,T ,K ),

• implying that observing all call prices yields the (marginal)
density of ST .
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Digression: Breeden-Litzenberger formula II

Several practical issues:

• Not all call prices can be observed (as the corresponding calls
are not traded).

• Call prices are only observed with “some error”
(bid-ask-spread).

• Differentiation is numerically highly unstable.

• Interpolating observed call prices with a smooth function is
very difficult (interpolation scheme might not be
arbitrage-free [call prices monotone and convex in K ]).
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Kolmogorov equations

• Assume from now on that S is given by

dSt = rStdt + σ(t,St)StdBt ,

in particular, S is Markovian, and (assume that it) has a
density p(t, s,T , ·) for ST , conditioned on St = s.

• Then p(t, s,T , y) satisfies “BS PDE”

−pt(t, s,T , y) = rsps(t, s,T , y) +
1

2
σ(t, s)2s2ps,s(t, s,T , y),

p(T , s,T , y) = δ(s − y)

where δ(·) is Dirac delta function, satisfying∫ ∞
−∞

h(y)δ(x − y)dy = h(x).

• This PDE is also called Kolmogorov backward equation.
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Kolmogorov equations II

• Observed that T , y are constant in Kolmogorov backward
equation.

• By a simple argument based on integrating by parts (see
lecture notes), one can derive the following PDE for
p(t, s,T , y):

pT (t, s,T , y) = −r
∂

∂y
(yp(t, s,T , y)) +

1

2

∂2

∂y2

(
σ(T , y)2y2p(t, s,T , y)

)
,

p(t, s, t, y) = δ(s − y)

• This PDE is called Kolmogorov forward equation or
Fokker-Planck equation.

• Now, t, s are constant.

• This PDE is quite useful as its solution corresponds to the
whole surface p(t, s, ·, ·).
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Dupire’s formula
• Multiply forward Fokker-Planck equation by (y − K )+ and

integrate over y to obtain

∂

∂T

∫ ∞
K

p(t, s,T , y)(y − K)dy =

−
∫ ∞
K

r
∂

∂y
(yp(t, s,T , y))(y − K)dy +

1

2

∫ ∞
K

∂2

∂y2

(
σ(T , y)2y2p(t, s,T , y)

)
(y − K)dy.

• Integrating by parts (under sufficient regularity assumptions),
multiplying by e−r(T−t), and applying the
Breeden-Litzenberger formula yield

e−r(T−t) ∂

∂T

∫ ∞
K

p(t, s,T , y)(y − K)dy = e−r(T−t)
(∫ ∞

K
ryp(t, s,T , y)dy +

1

2
σ(T ,K)2K2p(t, s,T ,K)

)

= rCt (s,T ,K)− rK
∂

∂K
Ct (s,T ,K) +

1

2
σ(T ,K)2K2 ∂2

∂K2
Ct (s,T ,K).

• We obtain Dupire’s formula

σ(T ,K )2 = 2
∂
∂T Ct(s,T ,K ) + rK ∂

∂K Ct(s,T ,K )

K 2 ∂2

∂K2 Ct(s,T ,K )
.
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Dupire’s formula II

• Do not confuse Dupire’s equation

∂

∂T
C + ry

∂

∂y
C − 1

2
σ(T , y)2y 2 ∂

2

∂y 2
C = 0

with the BS equation

∂

∂t
C + rs

∂

∂s
C +

1

2
σ(t, s)2s2 ∂

2

∂s2
C − rC = 0.

• Main advantage of Dupire’s equation is that it treats call price
as a function of strike and maturity.

• Dupire’s formula can be used to calibrate a local volatility
model to call prices.
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Dupire’s formula III

Uniqueness: Given a continuum of arbitrage-free call prices there
exists at most one local vol surface which calibrates them:

σ(T ,K ) =

√√√√2
∂
∂T Ct(s,T ,K ) + rK ∂

∂K Ct(s,T ,K )

K 2 ∂2

∂K2 Ct(s,T ,K )
.

Existence: Not obvious as the SDE

dSt = rStdt + σ(t,St)StdBt

needs to have a solution.



Introduction Local volatility models Stochastic volatility models

Dupire’s formula IV

• Neither Dupire nor Derman-Kani (who developed a
discrete-time version) thought of local volatility as a realistic
model for the evolution of actual volatility.

• Local volatility can be interpreted as a “code-book”, a
translation of a call price surface, due to the one-to-one
mapping of a (arbitrage-free) call price surface and a local
volatility surface.

• Why do we need more complicated models? Local volatility
models basically capture all marginal distributions.
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Dupire’s formula and implied volatility

• Remember: Implied volatility Σt(T ,K ) defined via

C BS
t (Σt(T ,K )2, s,T ,K ) = Ct(s,T ,K ).

• Reparameterize (dimensionless variables):

w(T , x) = Σt(T , ser(T−t)ex)2(T − t).

• Then,

σ(T , ser(T−t)ex)2 =
wT

1− x
w wx + 1

4

(
−1

4 −
1
w + x2

w2

)
w 2
x + 1

2 wx ,x

.

• For details, see for example Gatheral, The Volatility Surface
(Wiley).
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Dupire’s formula: drawbacks

• Requires continuum of observed call prices.

• Prices are not exactly observed due to bid-ask spreads.

• Differentiation is numerically unstable.

• Interpolations are difficult as no-arbitrage conditions have to
be guaranteed.

• More generally, local volatility models do not capture the
correct dynamics. (E.g., calibrate local volatility model at
times t0 and t1 and observe that parameters usually change
completely.)
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Outline for the rest of this section

Calibration of local volatility models

1. Inverse problems

2. Examples

3. Regularization

4. Application to calibration of local volatility models
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Inverse problems

• A problem is called an inverse problem if it is defined as a
inverse of some other, “more explicitly” stated problem.

• E.g., instead of going from a model (here described through
the local volatility σ(·, ·)) to option prices, going the other
way around, from option prices to model parameters.

• A problem is called well-posed if

1. a solution exists,
2. the solution is unique, and
3. the solution depends “continuously” on the data (input).

• Otherwise, the problem is called ill-posed.
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Examples: well- and ill-posed problems

• Integration: given f , find F (x) =
∫ x

0 f (z)dz . Consider an

erroneous observation f̃ := f + g with supx |g(x)| ≤ ε. Then,∣∣∣∣∫ x

0
f̃ (z)dz −

∫ x

0
f (z)dz

∣∣∣∣ ≤ ∫ x

0
|g(z)|dz ≤ εx .

Thus, integration represents a well-posed problem.

• Differentiation: given F , find f (x) = ∂
∂x F (x). Consider an

erroneous observation F̃ := F + ε sin(x/ε2). Then
|F̃ (x)− F (x)| ≤ ε, but∣∣∣∣ ∂∂x

F̃ (x)− ∂

∂x
F (x)

∣∣∣∣ =

∣∣cos
(
x
ε2

)∣∣
ε

→∞

as ε ↓ 0. Thus, differentiation represents an ill-posed problem.
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Implied volatility of SP500 index options

From Cont, Encyclopedia of Quantitative Finance (Wiley).
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Tikhonov regularization

• Consider an abstract ill-posed inverse problem

F (x) = y , x ∈ X , y ∈ Y .

• Solution may not exist, may not be unique, or may be
unstable.

• Remedy: Solve a regularized optimization problem instead:

min
x∈X
‖F (x)− y‖2

Y + αG (x),

where G is some (convex) penalty function, e.g.,
G (x) = ‖x − x0‖2

X with x0 a “prior” guess.

• Regularization factor α needs to be determined by
cross-validation.
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Tikhonov regularization applied to local vol. calibration
• Market prices V mkt(Ti ,Ki ) and model prices V σ(Ti ,Ki )

(produced in a model with local volatility σ(·, ·))
• V : usually out-of-the money calls / puts.
• Consider, for some weights wi ,

min
σ∈S

n∑
i=1

wi

(
V mkt(Ti ,Ki )− V σ(Ti ,Ki )

)2
+ α‖σ‖2.

• For example,

‖σ‖2 =

∫ T

0

∫ ∞
0

(
∂2σ

∂K 2

)2

+

(
∂σ

∂T

)2

dKdt

(“Flatter” volatility surfaces are preferred)
• Choice of weights wi should depend on liquidity of

corresponding options.
• Choice of S: often, spline-based representation (local

volatility is parameterized by finitely many values, thus
optimization problem is finite-dimensional problem).
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Tikhonov reg. applied to local vol. calibration II

Advantages:

• No need to have continuum of observed strikes and maturities.

• No need to interpolate market prices.

• Convex penalization leads to numerical stability.

• Calibrated surface is smooth due to choice of penalization
norm.

Disadvantages:

• Computationally demanding.

• Penalization criterion does not include weights to take into
account distribution of St ; thus, criterion overweights values
with small probability of occurrence.
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Problems of local volatility models

• Local volatility models can perfectly fit marginals
(European-style path-independent options),

• but have problems with pricing path-dependent options, and

• their dynamics are not realistic.
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Formal description: stochastic volatility models

• Allow now σt to be a stochastic process:

dSt = µ(t,St ,Yt)Stdt + σ(t, St ,Yt)StdBt , (2)

dYt = a(t,St ,Yt)dt + b(t,St ,Yt)dWt , (3)

d〈B,W 〉t = ρdt.

• We can write Wt = ρBt +
√

1− ρ2Zt , where Z is a BM
independent of B.

• If the underlying asset (with price process St) is the only
hedging instrument, then the market is incomplete since, in
general, contingent claims written on Y cannot be replicated
by trading in S only.

• ρ < 0 corresponds to the leverage effect.
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Risk-neutral measures

• Denote by P the historical (physical) probability measure
under which S and Y have the dynamics of (2) and (3).

• If we assume no-arbitrage (NFLVR to be precise), then there
exists a measure Q, equivalent to P, such that e−rtSt is a
local martingale under Q. (1st Fundamental Theorem of
Asset Pricing)

• However, Q might not need to be unique. Indeed, it is unique
if and only if the model is complete (each contingent claim
can be replicated perfectly by trading in S alone). (2nd
Fundamental Theorem of Asset Pricing)
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Risk-neutral measures II

• Denote the class of equivalent local martingale measures by
M.

• Any Q ∈M is characterized by its stochastic discount factor
/ Radon-Nikodym derivative with respect to P:

ZQ
t :=

dQ
dP

∣∣∣∣
Ft

= E(−λ · B − ψ · Z )t ,

where E is the Doléans-Dade (stochastic) exponential

E(X )t := eXt−X0− 1
2

[X ]t ,

and

λt :=
µ(t, St ,Yt)− r

σ(t,St ,Yt)
,

and ψ is progressively measurable.
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Risk-neutral measures III

• As we have seen, λ is fixed by the model (representing the
market price of risk), but ψ is an (almost) arbitrary process.

• For any Q ∈M, we have E[ZQ
T ] = 1.

• Thus, this yields a necessary condition on ψ. For this
condition to hold, Novikov’s condition is sufficient:

E
[
e

1
2

∫ T
0 (λ2

t +ψ2
t )dt
]
<∞.
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Risk-neutral measures IV

• Under Q, we obtain that BQ,XQ are independent BM with

BQ
t = Bt +

∫ t

0
λ(u, Su,Yu)du,

ZQ
t = Zt +

∫ t

0
ψudu.

• Furthermore, we obtain the dynamics

dSt = rStdt + σ(t, St ,Yt)StdBQ
t ,

dYt =
(

a(t,St ,Yt)− b(t, St ,Yt)
(
ρλ(t, St ,Yt) +

√
1− ρ2ψt

))
dt

+ b(t,St ,Yt)dW Q
t ,

d〈BQ,W Q〉t = ρdt.
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Arbitrage-free prices

• Consider a claim that pays h(ST ,YT ) at time T .

• Denote

CQ
t = EQ

[
e−r(T−t)h(ST ,YT )|Ft

]
• If (S ,Y ) is Markovian under Q, e.g. if ψt = ψ(t, St ,Yt), we

have CQ
t = vQ(t,St ,Yt) for

vQ(t, s, y) = EQ
[
e−r(T−t)h(ST ,YT )|St = s,Yt = y

]
.

• Clearly, CQ and vQ depend on the choice of risk-neutral
measure Q.

• All possible, arbitrage-free prices of the claim with payoff
h(ST ,YT ), are given by the interval[

inf
Q∈M

CQ
t , sup

Q∈M
CQ
t

]
.
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Choice of risk-free measure

• If infQ∈M CQ
t = supQ∈M CQ

t , then there is a unique price and
the claim can be perfectly replicated, by the general theory.
(e.g., usually [but not always] h(ST ,YT ) = ST ).

• Otherwise, distinguish two cases:

1. Only S is a liquidly traded asset, and there are no other
hedging instruments available.

2. There is another hedging instrument available (e.g., a call).

• In case 1, we have a problem. Possible approaches:
• Reconsider, whether the model should be changed.
• Find a hedging strategy that minimizes risk (e.g., VaR),

quadratic hedging, ...
• Take an ad-hoc measure: Minimal Martingale (Entropy)

Measure, ...
• Choose the superreplicating price: supQ∈M CQ

t . This often is a
very conservative approach.
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Portfolio dynamics and lack of replication
• If an investor holds ∆t units of S at each time t and keeps /

borrows the remainder in / from the bank account
(self-financing strategy), then her wealth process
X := {Xt}t∈[0,T ] satisfies

dXt = rXtdt + ∆tStσ(t,St ,Yt) (λ(t,St ,Yt)dt + dBt)

= rXtdt + ∆tStσ(t,St ,Yt)dBQ
t .

• Price of a claim CQ
t = vQ(t, St ,Yt) satisfies (under P):

dCQ
t = (vQ

t +AvQ)dt + (σStv
Q
s + ρbvQ

y )dBt

+
√

1− ρ2bvQ
y dZt ,

where

Av =
1

2
σ2s2vs,s +

1

2
b2vy ,y + ρσsbvs,y + µsvs + avy .

• It is simple to see that usually perfect hedging with S only is
impossible.
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Market completion

• Introduce another traded asset, for example, a contingent
claim (that cannot be replicated by trading in S only) with
payoff g(S

T̃
,Y

T̃
) at time T̃ ≥ T . Denote its price at time t

by Ot = u(t, St ,Yt).

• Now,

dOt = (ut +Au)dt + (σStus + ρbuy )dBt

+
√

1− ρ2buydZt ,

= (ut +Au − λ(σStus + ρbuy )− ψ
√

1− ρ2buy )dt

+ (σStus + ρbuy )dBQ
t +

√
1− ρ2buydZQ

t .

• Thus, there exists exactly one ψ (assuming uy 6= 0) such that
the drift term equals ru under the corresponding Q.

• Thus, with S and O as traded assets, there exists only one
risk-neutral martingale measure and thus, the market is
complete.
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Market completion II

• An investor can hold ∆t units of S , Nt units of O, and the
bank account. Her wealth process X satisfies

dXt = ∆tdSt + NtdOt + r(Xt −∆tSt − NtOt)dt

= (r(Xt − Ntu) + ∆tσλSt + Nt(ut +Au))dt

+ (∆tσSt + Nt(σStus + ρbuy ))dBt + Nt

√
1− ρ2buydZt .

• In order to hedge a contingent claim perfectly, we need a
wealth process with XT = h(ST ,YT ).

• We continue by setting the dZ and dB-terms equal in the
dynamics of X and CQ:

dCQ
t = (vQ

t +AvQ)dt + (σStv
Q
s + ρbvQ

y )dBt

+
√

1− ρ2bvQ
y dZt ,
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Market completion III

• Equating the dZ -terms yields

Ntuy = vQ
y .

This component of the hedging strategy is called “Vega
hedging”.

• Now, equating the dB-terms yields

∆t = vQ
s −

vQ
y

uy
us .

This component of the hedging strategy is called “Delta
hedging”.

• Thus, the “volatility risk” of the claim is offset by the vega
hedge and the delta hedge gets adjusted by the delta provided
through the vega hedge.
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Market completion IV

• Equating now the dt-terms yields

ut +Au − σλStus − ru

uy
=

vQ
t +AvQ − σλStv

Q
s − rvQ

vQ
y

.

• Observe that the left-hand side equals

(ρλ+
√

1− ρ2ψ)b.

• This comes from setting the drift equal to ru in

dOt = (ut +Au − λ(σStus + ρbuy )− ψ
√

1− ρ2buy )dt

+ (σStus + ρbuy )dBQ
t +

√
1− ρ2buydZQ

t .
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Market completion V
• Thus, both u and vQ satisfy the PDE

ft +AQf − rf = 0,

where

AQf =
1

2
σ

2s2fs,s +
1

2
b2fy,y + ρσsbfs,y + rsfs +

(
a − b

(
ρλ +

√
1− ρ2ψ

))
fy .

• Observe that AQ is the generator of

dSt = rStdt + σ(t, St ,Yt)StdBQ
t ,

dYt =
(

a(t,St ,Yt)− b(t, St ,Yt)
(
ρλ(t,St ,Yt) +

√
1− ρ2ψt

))
dt

+ b(t,St ,Yt)dW Q
t ,

d〈BQ,W Q〉t = ρdt.

• Thus, the Feynman-Kac formula yields

v(t, s, y) = EQ
[
e−r(T−t)h(ST ,YT )|St = s,Yt = y

]
.
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Special case: zero correlation
• Assume for the moment that ρ = 0.
• Then

dSt = rStdt + σ(t, St ,Yt)StdBQ
t ,

dYt = (a(t,St ,Yt)− b(t,St ,Yt)ψt) dt + b(t,St ,Yt)dW Q
t ,

d〈BQ,W Q〉t = 0dt.

• A call with payoff h(ST ) = (ST − K )+ has a price

v(t, s, y) = EQ
[
e−r(T−t)h(ST )|St = s,Yt = y

]
= EQ

[
EQ[e−r(T−t)h(ST )|Ft , {σt}t≥0]|St = s,Yt = y

]
= EQ

[
C BS
t (σ̄2

t , s,T ,K )|Yt = y
]
,

where

σ̄2
t :=

1

T − t

∫ T

t
σ2(s,Ys)ds.
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Examples of stochastic volatility models

• Hull-White model: ρ = 0, µ(·, ·, ·) = µ, σ(·, ·, y) =
√

y and Y
GBM:

dSt = µStdt +
√

YtStdBt ,

dYt = aYtdt + bYtdWt ,

d〈B,W 〉t = 0dt.

• Heston model: µ(·, ·, ·) = µ, σ(·, ·, y) =
√

y and Y a
square-root / Cox-Ingersoll-Ross process (mean-reverting!):

dSt = µStdt +
√

YtStdBt ,

dYt = a(b − Yt)dt + b
√

YtdWt ,

d〈B,W 〉t = ρdt.

• Standard models are mainly chosen due to their analytic
tractability.
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Another class of stochastic volatility models

• Sometimes, stochastic volatility models are specified through
a time-change Vt =

∫ t
0 vsds.

• The time change Vt has an interpretation as business time (in
contrast to versus calendar time).

• E.g.,

St = ert+BVt .

• If B and V are independent, this is just another
representation of the stochastic volatility model above, due to

the self-similarity of BM (Bct
d
=
√

cBt).

• Advantage: Interpretation as business time.

• Disadvantage: It is not clear, a priori, how to model the
leverage effect, for example.
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Hedging: stochastic volatility model vs. BS

• In theory, stochastic volatility models can help in hedging the
“volatility risk”, which is an improvement in comparison with
the BS model.

• However, hedging ratios depend strongly upon the
parameters, and are sensitive with respect to changes in
parameters (recalibration).

• This is another example of an ill-posed problem.

• Often, a simple model does better since its parameters can be
calibrated more efficiently, are more robust, and hedging errors
can get “averaged out”.
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