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with a staircase reward function∗

Anne Laure Bronstein†, Lane P.Hughston‡,
Martijn R.Pistorius§ and Mihail Zervos¶

September 11, 2006

Abstract

We consider the problem of optimally stopping a general one-dimensional Itô diffu-
sion X. In particular, we solve the problem that aims at maximising the performance
criterion Ex[e

−
R τ

0
r(Xs) dsf(Xτ )] over all stopping times τ , where the reward function

f can take only a finite number of values and has a “staircase” form. This problem
is partly motivated by applications to financial asset pricing. Our results are of an
explicit analytic nature and completely characterise the optimal stopping time. Also,
it turns out that the problem’s value function is not C1, which is due to the fact that
the reward function f is not continuous.

1 Introduction

This paper is concerned with the problem of optimally stopping the one-dimensional Itô
diffusion

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x > 0. (1)
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Here, W is a standard one-dimensional Brownian motion, and b, σ are deterministic functions
such that (1) has a unique weak solution that is non-explosive and assumes values in the
interval ]0,∞[. The objective of the discretionary stopping problem is to maximise the
performance criterion

Ex

[

e−
R τ

0 r(Xs) dsf(Xτ )
]

over all stopping times τ , where r > 0 is a given deterministic function. The reward function
f takes finite values, and is increasing and piecewise constant, so its graph looks like a
staircase with a finite number of steps.

The simplest version of this problem, which arises when b ≡ 0 and σ ≡ 1, i.e., when
X is a standard Brownian motion, and when f can take only two values, was solved by
Salminen [S85] using Martin boundary theory. The more general version of Salminen’s
model that arises when X is a Brownian motion with drift was recently solved by Dayanik
and Karatzas [DK03, Section 6.7] using a new methodology for addressing general one-
dimensional discretionary stopping problems by means of a new characterisation of excessive
functions that they have developed.

The investigations undertaken here have been partly motivated by the problem of pricing
digital options of American type. In this context, the stochastic differential equation (1)
models the underlying asset price dynamics, and the discounting rate r can be interpreted
as the interest rate (i.e., the short rate). In such financial applications, r would typically be
taken to be a strictly positive constant.

We have also been motivated by some general stochastic control theoretic issues; in
particular, it is of interest to observe that the problem we study provides an example in
which the so-called “principle of smooth fit”, which suggests that the value function of an
optimal stopping problem should be C1, does not hold. Indeed, it turns out that the value
function is not C1 at all points that belong both to the boundary of the stopping region and
to the set of points at which f is discontinuous. This phenomenon has been observed by
Salminen [S85], and by Dayanik and Karatzas [DK03]. One of the purposes of this paper is
to offer a new way of addressing this issue, based on local time techniques. At this point, we
should mention that our methodology has some similarities with the analysis of Karatzas and
Sudderth [KS99], who solve a stochastic optimisation problem that combines discretionary
stopping with control of the underlying diffusion’s drift.

Incidentally, we should note that we have opted to consider the case in which f takes
finite rather than infinite values only to simplify the presentation of our results. Simplicity of
exposition has also been behind our assumption that f is increasing. Indeed, our construction
of the solution to the problem follows a “stepwise” approach that, at least in principle, can
be adapted to account for arbitrary piecewise constant reward functions.
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2 The discretionary stopping problem

We consider a stochastic system whose state process X satisfies (1). We impose conditions
(ND)′ and (LI)′ in Karatzas and Shreve [KS88, Section 5.5.C]; these conditions are sufficient
for (1) to have a weak solution that is unique in the sense of probability law. In particular,
we make the following assumption.

Assumption 1 The deterministic functions b, σ : ]0,∞[→ R satisfy the following condi-
tions:

σ2(x) > 0, for all x > 0, (2)

and

for all x > 0, there exists ε > 0 such that

∫ x+ε

x−ε

1 + |b(s)|

σ2(s)
ds <∞. (3)

We also assume that the probability that the diffusion X hits either of the boundaries 0 or
∞ of its state space in finite time is zero.

Assumption 2 The diffusion X is non-explosive.

Feller’s test for explosions provides a necessary and sufficient condition for X to be non-
explosive (see Karatzas and Shreve [KS88, Theorem 5.5.29]).

We adopt a weak formulation of the optimal stopping problem that we study. In partic-
ular, we allow for a stopping strategy to depend, in principle, on the underlying diffusion’s
initial condition x > 0.

Definition 1 Given an initial condition x > 0, a stopping strategy is any collection Sx =
(Ω,F ,Ft,Px,W,X, τ), where (Ω,F ,Ft,Px,W,X) is a weak solution to (1) and τ is an (Ft)-
stopping time. We denote by Sx the family of all stopping strategies associated with a given
initial condition x > 0.

With each stopping strategy Sx ∈ Sx, we associate the performance criterion

J(Sx) = Ex

[

e−Λτf(Xτ )
]

, (4)

where

Λt =

∫ t

0

r(Xs) ds. (5)
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The reward function f appearing here is assumed in the present investigation to have the
form of a finite staircase, given by

f(x) = K01]0,p1[(x) +
N−1
∑

j=1

Kj1[pj ,pj+1[(x) +KN1[pN ,∞[,

where 0 < p1 < · · · < pN and 0 ≤ K0 < K1 < · · · < KN are given constants. The objective
of the discretionary stopping problem is to maximise J over Sx. Accordingly, we define the
value function

v(x) = sup
Sx∈Sx

J(Sx). (6)

We shall also need the following additional assumption.

Assumption 3 The discounting rate r is locally bounded and there exists a constant r0 > 0
such that r(x) > r0, for all x > 0.

At this point, we should note that Assumption 3 and the fact that f is bounded imply that
(4) is well-defined when the event {τ = ∞} has positive probability. Indeed, in this case, we
define

e−Λτf(Xτ )

∣

∣

∣

∣

τ=∞

:= lim
t→∞

e−Λtf(Xt) = 0.

3 The Hamilton-Jacobi-Bellman (HJB) equation

On the basis of standard theory of optimal stopping, we expect that the value function v
should satisfy the HJB equation

max
{

1
2
σ2(x)v′′(x) + b(x)v′(x) − r(x)v(x), f(x) − v(x)

}

= 0, for x > 0. (7)

It turns out that the value function v of our discretionary stopping problem, which is defined
by (6), has discontinuities in its first derivative. Therefore, it does not suffice in the present
situation merely to consider classical solutions to the HJB equation (7). For this reason, we
consider solutions to (7) in the sense of distributions. In particular, we consider candidates
w for the value function v that are differences of convex functions; for a survey of the
results needed here, see Revuz and Yor [RY94, Appendix 3]. If a function w : ]0,∞[→ R

is the difference of two convex functions, then its left-hand side derivative w′
− exists and is

a function of finite variation, which implies that w′
− is locally bounded. Also, the second

distributional derivative of w is a measure, which we denote by w′′(dx). In view of this
notation and these observations, we define the measure Lw on (]0,∞[,B(]0,∞[)), where
B(]0,∞[) is the Borel σ-algebra on ]0,∞[, by

Lw(dx) = 1
2
σ2(x)w′′(dx) + b(x)w′

−(x) dx− r(x)w(x) dx. (8)

Now, we consider solutions to (7) in the following sense.
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Definition 2 A function w : ]0,∞[→ R satisfies the HJB equation (7) if it can be expressed
as the difference of two convex functions,

−Lw is a positive measure, (9)

w(x) ≥ f(x), for all x > 0, (10)

and

the support of the measure Lw is contained in the complement of the open set
C := {x > 0 | w(x) > f(x)}.

(11)

At this point, it is worth noting that the set C appearing in this definition is indeed open
because w is continuous and f is upper semicontinuous.

Following Zervos [Z03, Theorem 1], we can now establish conditions that are sufficient
for optimality in our problem.

Theorem 1 In the discretionary stopping problem formulated in Section 2, suppose that
Assumptions 1–3 hold, and let w : ]0,∞[→ R be a bounded solution to the HJB equation (7)
in the sense of Definition 2. Then, v = w and, given any initial condition x > 0, a stopping
strategy

S
∗
x = (Ω∗,F∗,F∗

t ,P
∗
x,W

∗, X∗, τ ∗), (12)

such that (Ω∗,F∗,F∗
t ,P

∗
x,W

∗, X∗) is a weak solution to (1) and

τ ∗ = inf {t ≥ 0 | X∗
t ∈ Cc} , (13)

where C is the open set defined by (11), is optimal.

Proof. Fix an initial condition x > 0 and a weak solution (Ω,F ,Ft,Px,W,X) to (1). Using
the Itô-Tanaka formula (e.g., see Revuz and Yor [RY94, Theorem VI.1.5]), we obtain

w(Xt) = w(x) +

∫ t

0

b(Xs)w
′
−(Xs) ds+

∫ t

0

σ(Xs)w
′
−(Xs) dWs + 1

2

∫ ∞

0

La
t w

′′(da), (14)

where La is the local time process of the diffusion X at level a. In view of the occupation
times formula (Revuz and Yor [RY94, Corollary VI.1.6]), we can see that

∫ ∞

0

La
t

b(a)w′
−(a) − r(a)w(a)

σ2(a)
da =

∫ t

0

[

b(Xs)w
′
−(Xs) − r(Xs)w(Xs)

]

ds.
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It follows that (14) is equivalent to

w(Xt) = w(x) +

∫ t

0

r(Xs)w(Xs) ds+

∫ t

0

σ(Xs)w
′
−(Xs) dWs + ALw

t ,

where Lw is the measure defined by (8) and the process ALw is defined by

ALw
t =

∫ ∞

0

La
t

σ2(a)
Lw(da), for t ≥ 0. (15)

Also, using the integration by parts formula, we calculate

e−Λtw(Xt) = w(x) +

∫ t

0

e−Λs dMs +

∫ t

0

e−Λs dALw
s , (16)

where M is the stochastic integral defined by

Mt =

∫ t

0

σ(Xs)w
′
−(Xs) dWs. (17)

To proceed further, fix any admissible stopping strategy Sx ∈ Sx, and let (τm) be a
sequence of (Ft)-stopping times such that limm→∞ τm = ∞ and the stopped process M τm ,
where M is defined as in (17) above, is a uniformly integrable martingale. Rearranging terms
and taking expectations in (16), we can see that

Ex

[

e−Λτ∧τmf(Xτ∧τm
)
]

= w(x) + Ex

[

e−Λτ∧τm [f(Xτ∧τm
) − w(Xτ∧τm

)]
]

+ Ex

[
∫ τ∧τm

0

e−Λs dALw
s

]

. (18)

Now, (9) and the definition (15) imply that −ALw is an increasing process because the local
time La is an increasing process. In view of this observation and (10), it follows that

Ex

[

e−Λτ∧τmf(Xτ∧τm
)
]

≤ w(x).

However, by passing to the limit m→ ∞ in this inequality using the dominated convergence
theorem, we can see that J(Sx) ≤ w(x), which proves that v(x) ≤ w(x).

Now, let S
∗
x be the stopping strategy given by (12)–(13), and let (τ ∗m) be a localising

sequence for the local martingale M∗, which is defined as in (17). Since the measure dLa
t
∗ is

supported on the set {t ≥ 0 | X∗
t = a}, the definition of τ ∗ implies

La
t
∗ = 0, for all t ∈ [0, τ ∗] and a ∈ Cc,

which, in view of (11) and (15), implies ALw∗
t = 0, for all t ≤ τ ∗. However, combining this

observation with (18) and the fact that the set {x > 0 | w(x) = f(x)} is closed, which follows
from the upper semicontinuity of f , we can see that

E
∗
x

[

e
−Λ∗

τ∗∧τ∗mf(X∗
τ∗∧τ∗

m
)
]

= E
∗
x

[

e
−Λ∗

τ∗m

[

f(X∗
τ∗
m
) − w(X∗

τ∗
m
)
]

1{τ∗
m<τ∗}

]

+ w(x).
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In view of the boundedness of f and w, and the uniform positivity of the discounting factor
r (see Assumption 3), we can pass to the limit m → ∞ using the dominated convergence
theorem, to conclude that J(S∗

x) = w(x). Combining this result with the inequality v(x) ≤
w(x) that we established above, we can see that v(x) = w(x) and that S

∗
x is an optimal

strategy. �

We shall also need the following result, which is a version of the classical maximum
principle, for the construction of an appropriate solution to the HJB equation (7) in the
next section.

Lemma 2 Suppose that Assumptions 1–3 hold, fix two constants y, z ∈ [0,∞] such that
y < z, and suppose that g : ]y, z[→ R is a bounded function such that g is the difference of
two convex functions,

Lg is a positive measure on (]y, z[,B(]y, z[)) , (19)

if y > 0, then lim
x↓y

g(x) ≤ 0 and lim
x↓y

|g′−(x)| <∞, (20)

and

if z <∞, then lim
x↑z

g(x) ≤ 0 and lim
x↑z

|g′−(x)| <∞. (21)

Then g(x) ≤ 0, for all x ∈ [y, z].

Proof. In view of (20) and (21), if y > 0 and/or z < ∞, then we extend g by setting
g(x) = lims↓y g(s) for all x ≤ y, and/or g(x) = lims↑z g(s) for all x ≥ z, and we note that
the resulting function on ]0,∞[ is the difference of two convex functions.

Now, fix any initial condition x ∈ ]y, z[ and any weak solution (Ω,F ,Ft,Px,W,X) to (1),
and define

T = inf {t ≥ 0 | Xt /∈ ]y, z[} .

Also, let (τm) be a localising sequence of (Ft)-stopping times for the stochastic integral M
that is defined as in (17). Since g is the difference of two convex functions, it satisfies (16).
Taking expectations in this formula, and using (20) and (21), we obtain

Ex

[

e−Λτmg(Xτm
)1{τm<T}

]

≥ Ex

[

e−Λτm∧T g(Xτm∧T )
]

= g(x) + Ex

[
∫ τm∧T

0

e−Λs dALg
s

]

.

Since local times are increasing processes, we can see that (19) and the definition of ALg as
in (15) imply that ALg

·∧T is an increasing process. It follows that

Ex

[

e−Λτmg(Xτm
)1{τm<T}

]

≥ g(x).

In view of Assumption 3 and the boundedness of g, we can pass to the limit m → ∞ using
the dominated convergence theorem, to conclude that 0 ≥ g(x). �
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4 The solution to the discretionary stopping problem

We solve the optimal stopping problem that we consider by constructing a solution to the
HJB equation (7) that satisfies the requirements of Theorem 1. To this end, we first observe
that the general solution to the homogeneous ordinary differential equation (ODE)

1
2
σ2(x)w′′(x) + b(x)w′(x) − r(x)w(x) = 0, (22)

which is associated with (7), is given by

w(x) = Aϕ(x) +Bψ(x), (23)

where A,B ∈ R are constants. The functions ψ, ϕ are defined by

ψ(x) =

{

Ex

[

e−ΛTy

]

, for x < y,
(

Ey

[

e−ΛTx

])−1
, for x ≥ y,

(24)

ϕ(x) =

{

(

Ey

[

e−ΛTx

])−1
, for x < y,

Ex

[

e−ΛTy

]

, for x ≥ y,
(25)

respectively, for a given choice of y > 0. Here Λ is defined by (5), while Tx (resp., Ty) is the
first hitting time of {x} (resp., {y}). For future reference, we note that

ϕ and ψ are both strictly positive and C1, their second derivative exists in the
classical sense, ϕ is strictly decreasing, and ψ is strictly increasing.

(26)

Also, the Wronskian W of ϕ and ψ, which identifies with the first derivative of the scale
function of the diffusion X, is given by

W(x) := ϕ(x)ψ′(x) − ϕ′(x)ψ(x)

= W(y) exp

(

−2

∫ x

y

b(s)

σ2(s)
ds

)

, for x > 0, (27)

for any given choice of y > 0. These results have been known for several decades, and can be
found in various forms in several references, including Feller [F52], Breiman [B68], Itô and
McKean [IM74], Karlin and Taylor [KT81], Rogers and Williams [RW00], and Borodin and
Salminen [BS02].

Returning now to our optimal stopping problem, we conjecture that the value function
satisfies the HJB equation (7) in the classical sense outside the set of the points at which the
discontinuities of f occur, namely, inside the set ]0,∞[ \{p1, . . . , pN}. This conjecture and
the intuitive idea that some of the points p1, . . . , pN (e.g., pN) should belong to the stopping
region Cc of the discretionary stopping problem that we are solving motivate a “stepwise”
approach, the first objective of which is to solve the following two problems.

8



zy

K

L

Figure 1: Graph of the first possible solution w̃ to the HJB equation (7) that satisfies the
boundary conditions w̃(y) = K and w̃(z) = L > K when f ≡ K and the independent
variable x takes values in the interval ]y, z[, for y < z.

Problem 1 Given constants 0 < y < z and 0 ≤ K < L, find a continuous, bounded function
w̃ : [y, z] → R that is a classical solution to (7) with f(x) = K, for x ∈ ]y, z[, and satisfies
the boundary conditions

w̃(y) = K and w̃(z) = L.

Problem 2 Given constants z > 0 and 0 ≤ K < L, find a continuous, bounded function
w̃ : [0, z] → R that is a classical solution to (7) with f(x) = K, for x ∈ ]0, z[, and satisfies
the boundary conditions

w̃(0) ≥ K and w̃(z) = L.

The solution to Problem 1 is associated with two qualitatively different possibilities. The
first of these arises when w̃ satisfies the ODE (22) for all x ∈ ]y, z[, in which case, w̃ is given
by

w̃(x) =











K, for x = y,

Aϕ(x) +Bψ(x), for x ∈ ]y, z[,

L, for x = z,

(28)

where A and B are constants (see Figure 1). The continuity of w̃ at the boundary of [y, z]
yields a linear system of two equations for the unknowns A and B, the solution of which is
given by

A =

(

L

ψ(z)
−

K

ψ(y)

) (

ϕ(z)

ψ(z)
−
ϕ(y)

ψ(y)

)−1

, (29)

B =

(

L

ϕ(z)
−

K

ϕ(y)

) (

ψ(z)

ϕ(z)
−
ψ(y)

ϕ(y)

)−1

. (30)
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y

K

L

zq

Figure 2: Graph of the second possible solution w̃ to the HJB equation (7) that satisfies
the boundary conditions w̃(y) = K and w̃(z) = L > K when f ≡ K and the independent
variable x takes values in the interval ]y, z[, for y < z.

Lemma 3 The function w̃ defined by (28), where A and B are given by (29) and (30),
respectively, provides a solution to Problem 1 if and only if

ψ′(y)

ϕ′(y)
≤
Lψ(y) −Kψ(z)

Lϕ(y) −Kϕ(z)
. (31)

We collect in the Appendix the proofs of results not fully developed in the text.
The second possibility arises when there is a point q ∈ ]y, z[ such that w̃(x) = K for

x ∈ [y, q], and w̃ satisfies the ODE (22) for x ∈ ]q, z[, which is associated with

w̃(x) =











K, for x ∈ [y, q],

Aϕ(x) +Bψ(x), for x ∈ ]q, z[,

L, for x = z,

(32)

where A and B are constants (see Figure 2). To determine A, B and the free boundary
point q, we appeal to the requirement that w̃ should satisfy (7) in the classical sense in ]y, z[,
which implies that w̃ should be C1 at q, and to the boundary condition w̃(z) = L. It is
straightforward to see that the resulting system of equations is equivalent to the expressions

A =

(

L

ψ(z)
−

K

ψ(q)

) (

ϕ(z)

ψ(z)
−
ϕ(q)

ψ(q)

)−1

, (33)

B =

(

L

ϕ(z)
−

K

ϕ(q)

) (

ψ(z)

ϕ(z)
−
ψ(q)

ϕ(q)

)−1

, (34)

and the algebraic equation

F (q) = 0, (35)
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where the function F is defined by

F (x) = − [Lψ(x) −Kψ(z)] + [Lϕ(x) −Kϕ(z)]
ψ′(x)

ϕ′(x)
, for x ∈ [y, z[. (36)

Lemma 4 Given any y > 0, equation (35) has a solution q ∈ ]y, z[ if and only if

ψ′(y)

ϕ′(y)
>
Lψ(y) −Kψ(z)

Lϕ(y) −Kϕ(z)
. (37)

If this condition is satisfied, then the solution q to (35) is unique and the function w̃ defined
by (32), where A and B are given by (33) and (34), respectively, solves Problem 1.

Now, let us consider Problem 2, which is again associated with two qualitatively different
solutions. Since limx↓0 ϕ(x) = ∞, which follows from the definition (25) of ϕ and the
assumption that X is non-explosive, we can see that

w̃(x) =
L

ψ(z)
ψ(x), for x ∈ [0, z], (38)

is the appropriate choice for w̃ that is analogous to the solution of Problem 1 developed
in Lemma 3 because it is the only bounded solution to the ODE (22) that satisfies the
boundary condition w̃(z) = L. Taking note of the fact that ψ is strictly increasing and
positive, it is straightforward to see that this choice indeed provides the solution to Problem 2
if Lψ(0) ≥ Kψ(z), where ψ(0) := limx↓0 ψ(x). When the problem’s data are such that
Lψ(0) < Kψ(z), which can be true only if K > 0, we are faced with the possibility for the
solution to Problem 2 to be as in Lemma 4.

Lemma 5 Equation (35) has a unique solution q ∈ ]0, z[ if and only if Lψ(0) < Kψ(z).
Moreover, the following two statements are true:
(a) If Lψ(0) ≥ Kψ(z), then (38) provides a solution to Problem 2.
(b) If Lψ(0) < Kψ(z), then the function w̃ defined by (32)–(34), where q is the unique
solution to (35), with y = 0, solves Problem 2.

We can now construct a solution to the HJB equation (7) in the sense of Definition 2 that
identifies with the value function of our discretionary stopping problem using the following
algorithm.

Step 1 Set l = 0 and define the N -dimensional vectors

i(l) = (1, 2, . . . , N − 1, N) and ρ(l) = (p1, p2, . . . , pN−1, pN) .

11



Step 2 Define the function w(l) : ]0,∞[→ R by

w(l)(x) = w
(l)
0 (x)1i

0,ρ
(l)
1

h(x) +

dim i(l)−1
∑

j=1

w
(l)
j (x)1h

ρ
(l)
j ,ρ

(l)
j+1

h(x) +KN1[pN ,∞[,

where w
(l)
0 is the solution to Problem 2 with z = ρ

(l)
1 , K = K0 and L = K

i
(l)
1

, given

by Lemma 5, while, for j = 1, . . . , dim i(l) − 1, w
(l)
j is the solution to Problem 1 with

y = ρ
(l)
j , z = ρ

(l)
j+1, K = K

i
(l)
j

and L = K
i
(l)
j+1

, given by Lemmas 3 and 4.

Step 3 Let m be index of the first element of the vector i(l) such that

lim
x↑ρ

(l)
m

d

dx
w(l)(x) < lim

x↓ρ
(l)
m

d

dx
w(l)(x) ⇔ Lw(l)

({

ρ(l)
m

})

> 0.

If no such index exists, then set w = w(l) and STOP. Otherwise, let i(l+1) and ρ(l+1) be
the vectors obtained by deleting the m-th entry of the vectors i(l) and ρ(l), respectively,
set l = l + 1, and go back to Step 2.

Plainly, this algorithm terminates after at most N−1 steps and each of the functions w(l)

that the algorithm produces is the difference of two convex functions. Also, any functions
w(l) and w(l+1) produced by two consecutive iterations of the algorithm satisfy w(l) ≤ w(l+1),
thanks to Lemma 2 (see also Figure 3). Also, we can easily check that the resulting function
w satisfies the assumptions of Theorem 1, and, therefore, it identifies with our problem’s
value function. We conclude with the main result of the paper.

Theorem 6 The value function of the discretionary stopping problem formulated in Sec-
tion 2 identifies with the function w resulting from the algorithm above, and an optimal
stopping strategy is given by (12)–(13) in Theorem 1.

Appendix

Proof of Lemma 3 By construction, we will show that w̃ satisfies the HJB equation (7)
for x ∈ ]y, z[ if we prove that

w̃(x) ≥ K, for all x ∈ ]y, z[. (39)

To this end, we first note that the facts that y < z and 0 ≤ K < L, (26) and the definition
of B in (30) imply that B > 0. In view of this observation and (26), we can see that

w̃′(x) ≡ Aϕ′(x) +Bψ′(x) ≥ 0, for all x ∈ ]y, z[, (40)
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Figure 3: Illustration of two successive iterations of the algorithm that provides the solution
to the HJB equation (7).

if and only if

−
ψ′(x)

ϕ′(x)
≥
A

B
, for all x ∈ ]y, z[. (41)

Now, using (a) the fact that ϕ, ψ satisfy the ODE (22), and (b) the expression (27) for their
Wronskian, we can see that

d

dx

(

−
ψ′(x)

ϕ′(x)

)

= −
ψ′′(x)ϕ′(x) − ψ′(x)ϕ′′(x)

[ϕ′(x)]2

=
2r(x)W(x)

[σ(x)ϕ′(x)]2

> 0, for all x ∈ ]y, z[. (42)

This inequality shows that (40)–(41) are both true if and only if

−
ψ′(y)

ϕ′(y)
≥
A

B
. (43)

Moreover, if (43) is not true, then w̃′(x) < 0 for all x sufficiently close to y. Combining this
observation with the fact that w̃(y) = K, we can see that (39) fails to be true. We conclude
that (39) is true if and only if (43) holds, which, in view of the definitions of A, B in (29),
(30), respectively, is equivalent to (31), and the proof is complete. �
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Proof of Lemma 4 In view of (26) and the fact that 0 ≤ K < L, we can see that

F (z) = −ψ(z) [L−K] + ϕ(z) [L−K]
ψ′(z)

ϕ′(z)
< 0.

Also, with reference to (42), we calculate

F ′(x) = [Lϕ(x) −Kϕ(z)]
d

dx

(

ψ′(x)

ϕ′(x)

)

< 0, for x ∈ ]y, z[.

It follows that the equation F (q) = 0 has a unique solution q ∈ ]y, z[ if and only if F (y) > 0,
which is equivalent to (37).

With regard to its construction, we can see that the function w̃ satisfies the HJB equation
(7) for x ∈ ]y, z[ if and only if

w̃(x) ≥ K, for all x ∈ [q, z[. (44)

Now, following the same reasoning as in the proof of Lemma 3 above, we obtain

w̃′(x) ≥ 0, for all x ∈ ]q, z[ ⇔ −
ψ′(q)

ϕ′(q)
≥
A

B
.

However, combining this observation with the fact that w̃ is C1 at q, which implies that

w̃(q) = K and w̃′(q) ≡ Aϕ′(q) +Bψ′(q) = 0,

we can see that (44) is true , and the proof is complete. �

Proof of Lemma 5 With reference to the proof of Lemma 4, we can see that equation (35)
has a unique solution q ∈ ]0, z[ if and only if

lim
x↓0

F (x) ≡ lim
x↓0

[

Kψ(z) + L
W(x)

ϕ′(x)
−Kϕ(z)

ψ′(x)

ϕ′(x)

]

> 0, (45)

where W is the Wronskian of ϕ and ψ defined by (27). To establish conditions under which
this inequality is true, we calculate

d

dx

(

W(x)

ϕ′(x)

)

= −
2r(x)W(x)ϕ(x)

[σ(x)ϕ′(x)]2
< 0.

This result, combined with the inequality W(x)/ϕ′(x) < 0, which is true for all x > 0,
implies that limx↓0 W(x)/ϕ′(x) exists in ] −∞, 0]. However, this observation, the fact that
limx↓0 ψ(x) exists in [0,∞[ because ψ is strictly positive and increasing, and the expression

ϕ(x)ψ′(x)

ϕ′(x)
=

W(x)

ϕ′(x)
+ ψ(x), for x > 0, (46)
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which follows immediately from the definition (27) of W, imply that

lim
x↓0

ϕ(x)ψ′(x)

ϕ′(x)
∈ ] −∞, 0].

Now, we use a contradiction argument to show that this limit is actually equal to 0. To this
end, we suppose that

lim
x↓0

ϕ(x)ψ′(x)

ϕ′(x)
= −2ε, for some ε > 0. (47)

This assumption implies that there exists x1 > 0 such that

−
ϕ′(s)

ϕ(s)
≤

1

ε
ψ′(s), for all s ∈ ]0, x1].

In view of this inequality, we can see that

lnϕ(x) = lnϕ(y) +

∫ y

x

(

−
ϕ′(s)

ϕ(s)

)

ds

≤ lnϕ(y) +
1

ε
[ψ(y) − ψ(x)] , for all 0 < x < y ≤ x1,

which implies

ϕ(x) ≤ ϕ(y) exp

(

1

ε
[ψ(y) − ψ(x)]

)

, for all 0 < x < y ≤ x1. (48)

For fixed y, the right hand side of this inequality remains bounded as x ↓ 0 because ψ is
positive and increasing, which implies that (48) cannot be true because limx↓0 ϕ(x) = ∞. It
follows that (47) is false, and, therefore,

lim
x↓0

ϕ(x)ψ′(x)

ϕ′(x)
= 0 ⇒ lim

x↓0

ψ′(x)

ϕ′(x)
= 0.

However, these limits and (46) imply that (45) is equivalent to the inequality Kψ(z) −
Lψ(0) > 0, which establishes the claim regarding the solvability of (35).

Now, part (a) of the lemma is obvious, while part (b) follows by a straightforward adap-
tation of the arguments used to establish the corresponding claim in Lemma 4. �
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[IM74] K. Itô and H.P.McKean (1974), Diffusion Processes and their Sample Paths ,
Springer-Verlag.

[KS88] I. Karatzas and S. E. Shreve (1988), Brownian Motion and Stochastic Calculus,
Springer-Verlag.

[KS99] I. Karatzas and W. D. Sudderth (1999), Control and stopping of a diffusion
process on an interval, The Annals of Applied Probability , vol.9, pp. 188-196.

[KT81] S.Karlin and H.M.Taylor (1981), A Second Course in Stochastic Processes,
Academic Press.

[RY94] D.Revuz and M.Yor (1994), Continuous Martingales and Brownian Motion, 2nd
edition, Springer-Verlag.

[RW00] L.C.G.Rogers and D.Williams (2000), Diffusions, Markov Processes and
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