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Abstract

We consider a variant of an optimisation problem involving sequential entry and
exit decisions that has emerged in the economics literature as a real option model. The
problem that we solve aims at maximising an ergodic, or long-term average, perfor-
mance criterion in a pathwise as well as in an expected sense. Such a performance
index is probably better suited to decision making within a sustainable economic en-
vironment. Qur results include a complete characterisation of the optimal strategy,
which can take qualitatively different forms depending on the problem’s data, as well
as explicit expressions for the maximal value of the associated performance criterion.

1 Introduction

We consider an investment project in a random economic environment that can be operated
in two modes, say “active” and “passive”. When it is in its “active” mode, the project yields
payoff at a rate that depends on the value of an underlying random economic indicator,
such as a given commodity’s price or demand, which we model by a general one-dimensional
ergodic Ito diffusion. When the project is in its “passive” mode, it incurs losses that reflect,
for example, maintenance costs. The transition of the project from one mode to the other
one can be realised immediately at certain fixed costs. The sequence of times at which
the project’s mode is changed constitutes a decision strategy that is determined by the
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project’s management. The objective of the resulting optimisation problem is to maximise a
performance criterion that quantifies the payoff flow associated with each switching strategy
over the set of all admissible such strategies. This type of a real option model has emerged in
the economics literature (see, e.g., Brennan and Schwartz [BS85], Dixit [D89] and Dixit and
Pindyck [DP94]). Similar models have been analysed in the mathematics literature by Brekke
and Oksendal [BO91, BO94], Duckworth and Zervos [DZ01], Lumley and Zervos [LZ01], and
Wang [W05].

To the best of our knowledge, all of the real option theory, including the references men-
tioned above, addresses optimisation problems involving ezpected discounted performance
indices. Such performance criteria are justified by standard economics theory because they
quantify the present value of the payoff flow that is expected from each admissible manage-
rial decision policy. If payoffs resulting from decision making are of a “monetary” nature,
then such an approach is the appropriate one. However, if decision making payoffs are of a
“utility” nature, then the use of an expected discounted performance criterion is not ideal
because, by their very nature, such indices attach higher values to payoffs arising in the
shorter term time horizon. Indeed, the choice of the discounting rate that an investor uses
in, e.g., Merton’s classical utility maximisation problem with an infinite horizon can be in-
terpreted as a quantification of the investor’s impatience to consume. Plainly, apart from
being associated with “unfairness” when one considers the utility derived from consumption
by successive generations, the choice of a discounting rate seems rather arbitrary. As a mat-
ter of fact, its main purpose is to guarantee the convergence of the associated performance
criteria and the finiteness of the associated value functions. With regard to these economic
considerations, one novelty of this paper arises from the fact that we consider an ergodic,
or long-term average, performance criterion that we maximise in a pathwise as well as in an
expected sense. Such a type of an index is probably better suited to “utility” based decision
making in the context of sustainable development because it assigns the same weighting to
payoffs enjoyed by present and future generations.

The vast majority of the models in the real option theory that admit solutions of an
explicit analytical form assume that the underlying economic indicator is modelled by a
geometric Brownian motion. One major advantage of the ergodic criterion that we consider
here arises from the fact that it allows for results of an equally explicit nature when the
underlying economic indicator dynamics are modelled by a wide range of one-dimensional It6
diffusions. These include the exponential of an Ornstein-Uhlenbeck process, which appears
in the Black-Karasinski interest rate model, and the family of constant elasticity of variance
processes, such as the square root process appearing in the Cox-Ingersoll-Ross interest rate
model. It is well documented in the economics literature that such mean-reverting diffusions
present much more realistic models for a range of economic indicators, such as commodity
prices, than the geometric Brownian motion. Therefore, the model that we study can provide
a most valuable alternative when addressing practical applications.

The use of performance indices of an ergodic nature can be criticised on the grounds
that they result in highly non-unique optimal strategies. In particular, any two decision
strategies that differ on an arbitrarily long, but finite, time period are associated with the



same value of the performance criterion. However, the idea that long-term average criteria
should be considered in connection with sustainable development applications addresses
this issue because, in the presence of a transparent decision making process, it rules out
speculation from the perspective of the decision maker.

At this point, we should observe that ergodic stochastic optimal control currently has a
well-developed body of theory. In particular, one should note major advances in the field that
include, restricting attention to continuous-time models, Kushner [K78], Karatzas [K83],
Gatarek and Stettner [GS90|, Borkar and Ghosh [BG88], Bensoussan and Frehse [BF92],
Menaldi, Robin and Taksar [MRT92], Duncan, Maslowski and Pasik-Duncan [DMP98],
Kurtz and Stockbridge [KS98|, Borkar [B99], Kruk [K00], Sadowy and Stettner [SS02], the
references therein, and others. Also, ergodic stochastic control with a pathwise rather than
an expected criterion has recently attracted considerable interest in the literature, e.g., see
Rotar [R91], Presman, Rotar and Taksar [PRT93|, Dai Pra, Di Masi and Trivellato [DDT01],
Dai Pra, Runggaldier and Tolloti [DRT04], and the references therein.

The paper is organised as follows. Section 2 is concerned with the formulation of the
investment project model that we study. In Section 3, we consider examples of stochastic
dynamics for the underlying economic indicator that satisfy our assumptions, and we refor-
mulate the optimisation problems that we solve to equivalent and simpler ones. In Section 4,
we consider the associated dynamic programming equation, and we establish a verification
theorem and an ergodic result that we use later. Finally, Section 5 is concerned with the
solution to the optimisation problems considered.

2 Problem formulation

We consider an investment project that is operated within a random economic environment.
We model this environment by means of a one-dimensional It6 diffusion. In particular, we
assume that all randomness affecting the payoff flow resulting from the project’s management
is characterised by a state process X that satisfies the one-dimensional SDE

dXt == b(Xt) dt + O'(Xt) th, XO = c R, (1)

where b,0 : R — R are given functions, and W is a standard one-dimensional Brownian
motion. In practice, we can think of such an investment project as a unit that can produce
a single commodity. In this context, the process X can be used to model an economic
indicator, such as the commodity’s demand, or the logarithm of the commodity’s price.

We assume that the project can be operated in two distinct modes, say “active” and
“passive”. The sequence of times at which the project’s operating mode is switched from
“active” to “passive” and vice versa presents a sequence of decisions made by the project’s
management. We assume that, when decided, the project’s transition from one of its op-
erating modes to the other one is realised instantaneously. To model a switching strategy
adopted by the project’s management, we use an adapted, finite variation, left-continuous
process Z with values in {0,1} and we denote Z; by z. In particular, a choice of such a



switching process Z represents a strategy that keeps the investment in its “active” operating
mode when Z; = 1, and in its “passive” mode whenever Z; = 0. Also, the times at which the
jumps of Z occur represent the discretionary times at which the project’s mode is changed.
The variable Zy; = z € {0, 1} indicates the project’s operating mode at time 0.

Throughout our analysis, we adopt a weak formulation point of view.

Definition 1 Given an initial condition (z,z) € R x {0,1}, a switching strategy in the
random economic environment modelled by (1) is any collection C,, = (S, Z) such that
S. = (9, F, F,P,, W, X) is a weak solution of (1) and Z is an (F;)-adapted, finite variation,
caglad process with values in {0, 1} and with Z, = z. We denote by C, ., the set of all such
switching strategies.

For a switching strategy to be well-defined, we adopt the following assumption.

Assumption 1 The deterministic functions b, 0 : R — R satisfy the following conditions:

o*(z) >0, forallzeR, (2)
"1+ [b(s)|

for all x € R, there exists € > 0 such that /
o?(s)

r—¢&

ds < oo. (3)

Indeed, with regard to standard theory of one-dimensional diffusions (see Karatzas and
Shreve [KS88] and Rogers and Williams [RW00]), (2) and (3) imply that (1) defines a regular
one-dimensional diffusion. Moreover, the scale function p and the speed measure m given by

p(0)=0 and p'(z)=exp (—2 /Ow :2(2) ds) , forzeR, (4)
and
2

respectively, which characterise one-dimensional diffusions, such as the one associated with
(1), are well-defined.

We also assume that the solution to (1) is non-ezplosive and recurrent. With regard
to Proposition 5.5.22 in Karatzas and Shreve [KS88], we therefore impose the following
assumption.

Assumption 2 The scale function p defined by (4) satisfies lim, , o p(z) = —oo and
lim, o p(z) = 0.



With each switching strategy C, , € C, ., we associate the pathwise performance criterion
jP((Cz,z) = jP(Cm,z; h/17 ho, Kl; KO)

:=lim sup% [ /0 [Zihi (Xy) + (1 = Zi)ho(Xy)]dt

T—00

- Z [Kll{AZt—l}‘f‘KO]-{AZt—1}]:|: (6)

te[0,T]
as well as the ezxpected performance criterion
J¥(Cy,z) = J%(Capai b, ho, Ko, Ko)

:= lim sup %]Ex [ /0 : [Zihi (Xy) + (1 = Zy)ho(X)]dt

T—00

- Z [K1l{az,=1} + KO]-{AZt:—l}]:| ; (7)

te[0,T]

where AZ; = Z;, — Z;. Here, hy (resp., hyg) models the running payoff resulting from the
project when this is operated in its “active” (resp., “passive”) mode. Also, Ky and K are
the fixed costs associated with each switching of the project’s operating mode from “active”
to “passive” and vice versa, respectively.

The first objective is to maximise J* over C;,. in a pathwise sense. In particular, we are
going to prove that there exists a constant A* such that

sup JP (Csp) = A7, (8)
Q,Z ecac,z

in the sense that, given any initial condition (z, 2),

for all C,, = (Sy, Z) € Coy, A* > J7(Cy,), Pp-ass., (9)
and there exists C; , = (S}, Z*) € C,,, such that \* = J(C} ), P;-a.s.. (10)
The second objective is to maximise J® over C:,.- In this case, we are going to show that
sup  JH(C,,) = N, (11)
Cs,2 €Ca,z

where \* is the same constant as the one in (8). The following additional assumption ensures
that the resulting optimisation problems are well-defined.

Assumption 3 The following conditions hold:

o is locally bounded, (12)
|+ )+ ()l m(ds) < . (13)
h := hy — hy is strictly increasing, (14)



Assumption (12) is of a technical nature, and is satisfied in all cases of interest. Assumption
(13) ensures the ergodicity of certain processes, such as the state process X, and is essential
for the performance criteria that we consider to be well-defined and for the constant A\*
appearing in (8) and (11) to be a real number. With regard to an interpretation of the state
process as an economic indicator, such as demand or a log-price, (14) is a natural assumption
to make in practice. Indeed, increased demand/prices are plainly associated with increased
running payoff values, which implies that the running payoff function h; associated with the
“active” mode of the investment project should be an increasing function. On the other hand,
it would be reasonable to assume that the running payoff function h, associated with the
“passive” mode of the project is identically equal to a negative constant modelling running
maintenance costs. These two observations provide the grounds for adopting (14) as an
assumption. At this point, it is worth noting that the only reason for allowing hy to have a
non-trivial dependence on the state process is because such a generalisation does not affect
the complexity of our analysis, and can potentially be associated with other applications.

Finally, assumption (15) is essential for the well-posedness of the optimisation problem
considered. Indeed, the possibility K; + Ky < 0 is associated with arbitrarily large values
of the performance criteria that can be achieved by a strategy involving sufficiently rapid
changes of the project’s operational mode. However, even though we interpret the constants
K, and K| as switching costs, we allow for the possibility that one of them is negative. With
regard to economics considerations, this presents a degree of freedom that can be used to
model a situation such as the one arising when the cost of switching the project from its
“passive” mode to its “active” one is not totally sunk, but can be partially recovered by
realising the reverse switching.

3 Examples and problem simplifications

If we interpret the state process X given by (1) as a log-price, the geometric Brownian
motion that is widely used in finance as well as in the theory of real options as an asset
price is not compatible with the assumptions that we have adopted in the previous section
because its speed measure has infinite mass and, therefore, (13) is not satisfied. However, a
number of asset price processes that are better suited to the commodity markets modelling,
and have emerged in the context of the interest rate theory satisfy the requirements of our
assumption. The following two examples are concerned with diffusions that are associated
with the Black-Karasinski and the Cox-Ingersoll-Ross short rate models.

Example 1 In the context of the Black-Karasinski short rate model, the logarithm of an
asset’s price identifies with the Ornstein-Uhlenbeck process X given by the SDE

dX, = k(6 — X,) dt + o AW,

where k, 6 and o are strictly positive constants. It is straightforward to calculate that the



scale function p and the speed measure m of this diffusion are given by

2k6 k
p'(z) = exp (——2x + —2x2> :
o
2 k6? (x —0)?
m(dz) = 5 €XP <?) exp (— e ) dz,

respectively, and to verify that the corresponding requirements in Assumptions 1, 2 and 3
hold, provided that the functions hg and h; are suitably chosen.

Example 2 We can model the price of a given asset by means of the process e* satisfying
the SDE

de™ = k(0 —e*)dt + o (eXt)l dW,

where k, 6, o are strictly positive constants, and [ € [%, 1], so that e* is a so-called constant
elasticity of variance (CEV) process. Note that, for [ = £ and k6 — 0® > 0, ¢ identifies
with the short rate process in the Cox-Ingersoll-Ross model. With regard to Ito’s formula,
it is straightforward to check that

dX; = (kbe ™t — 1o?e217DXe — k) dt 4 g~ 070X g,

The scale function p and the speed measure m of this diffusion are given by

) (1-20)z _q 2(1-lz _q
p'(z) = exp (— k&(e )+k(e )—l-a:),

o?(1—21I) o?(1—1)
2 2k0 (e —1) K (e27De — 1)
S — 1-2
m(dzx) 3 OXP ( 21 —20) 20 =) +( Dz | dz,

if I €]3,1[, by
2k0 2k (e —1

o
2 2 2k (e® — 1
m(dzr) = 5 OXD ( kgx _ 2k )> dz,

o2 o2

if | = =, and by

N [—

p(z) = exp (—%0 (e_: —U, [1 + %] x) :

o o?
2 2k0 (e =1 2k
m(dx) = 3 XD <—% - [ﬁ + 1] ac) dz,

if | = 1. We can check that if [ €]1,1], or if / = £ and k6 — 20 > 0, then the requirements
in Assumptions 1, 2 and 3 are all satisfied for appropriate choices of the functions hq and h;.
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We now consider simplifications of the control problems formulated in Section 2 that we
are going to solve. Fix any initial condition (z,z) and any switching strategy C,, € C, ..
With reference to (13) in Assumption 3, the ergodic Theorems V.53.1 and V.54.5 in Rogers
and Williams [RW00] imply

Jim % [ /O " (X)) dt] ~ lim %]Ex [ /O " (X)) dt] _ ﬁR) /_ " ho(s) m(ds) < co. (16)

T—o0 oo

Also, it is straightforward to verify that

lim — Z KoAZ, = lim —]E Y KyAZ| =0 (17)

T—)oo
te[0,T] te[0,T

Combining these observations with the calculation

- ) 1 T
J"(Ca,z; b, ho, K1, Kg) = lim sup T [/ Zy [ (Xe) = ho(Xo)ldt = ) (K1 + Ko) Liaz—1)
0

T—o0 te[0,T]

T
+ / ho(Xp)dt+ > KOAZt],
0

t€[0,T']

we can see that

o0

- 1
JP((CZ,Z; hl,ho,Kl,Ko) = JP((CI,Z;hl - ho,Kl + Ko) + m/ ho(s) m(ds),

— 00
where

1 T
JP((Cz,z) = JP(Cz,za h, K) = lim sup T [/ Zth(Xt) dt — Z Kl{AZt:l}:| . (18)

T=o0 0 t€[0,T[

Similarly, we can use (16) and (17) to show that

o0

- 1
J(Cy 2 by, ho, K1,y Ko) = J¥(Cayos hy — ho, Ky + Ko) + m/ ho(s) m(ds),

—00
where

1 T
JE((C:B,z) = JE((Cw,Z; h, K) = lim sup TEIJ [/ Zih(Xy) dt — Z Kl{Aztzl}]. (19)

T=roo 0 te[0,T]

It follows that, given any initial condition (z, z), the problem of maximising the performance
index J¥ (resp JE) over C,, is equivalent to maximising the performance criterion J* (resp.,
J®) over C, .



4 The dynamic programming equation

We now consider the problem of maximising the performance indices J* and J* defined by
(18) and (19), respectively, over all admissible switching strategies. To discover the optimal
strategy, we look for a solution (w;,wp) to the Hamilton-Jacobi-Bellman (HJB) equation
that takes the form of the following pair of coupled quasi-variational inequalities

max { $0*(z)w} (z) + b(z)w| (z) + h(z), wo(z) —wi(z)} =0, z€R, (20)
max { 30°(z)wy (z) + b(z)wy(z), wi(z) —we(z) — K} =0, z€R (21)

With regard to standard theory of stochastic control, the structure of these equations
is closely related with the following considerations. Assuming that, at a given time ¢, the
project is in its “passive” mode and the state process X assumes the value z, the project’s
management is faced with two possible actions. The first one is to switch the project to
its “active” mode and then continue optimally. Since the choice of such an action is not
necessarily optimal, we can conclude that the value Vy(z) of the project in its “passive”
mode is greater than or equal to the value V;(z) of the project in its “active” mode minus
the switching cost of K. This observation is associated with the inequality

Vo(.%‘) 2 Vl(.T) - K. (22)

The second possible action is to leave the project in its “passive” mode, which is associated
with a zero rate of payoff, over a short period of time, and then continue optimally. This
second possibility, which may be suboptimal, is associated with the inequality

307 (@)Vy () + b(a) Vg (x) < 0. (23)

Since these are the only two actions that are available to the project’s management, one
has to be optimal, so one of (22) or (23) must be satisfied with equality. However, these
arguments suggest the structure of (21). The structure of (20) can be explained in a similar
way.

The considerations above explaining the structure of the HJB equation (20)—(21) will
play an important role in our investigation that leads to the solution of the optimisation
problem considered. However, these ideas have to be used with care because the functions
wy and wy neither identify with the value function of the optimisation problem, which, as
it turns out is identically equal to a constant, nor do they determine uniquely the optimal
strategy. The latter observation is related with the fact that, due to the “average” nature of
the performance criterion considered, a suboptimal behaviour over an arbitrarily long, but
finite, time period does not affect optimality.

The following result provides conditions that are sufficient for a switching strategy to be
optimal.

Theorem 1 Fiz any initial condition (x, z) € Rx{0, 1}, consider the problem of mazimising
the performance indices J* and J* defined by (18) and (19), respectively, over the class of all
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admissible switching strategies Cy ., and suppose that Assumptions 1, 2 and 3 hold. Suppose
that the functions wy,wy € W °(R) satisfy (20)-(21), and there exists a constant C' such
that

sup w1 () — wo(z)| + sup lo(2) [w (z) — wp(a)]]* < C. (24)

Also, suppose that there exists a switching strategy C;, . = (S}, Z*) such that
[10®(X))wi(X7) + b(X))w( (X)) + h(X])] Z; =0, Leb-a.e., for allt >0,
[Lo*( X)) wy (X]) + b(X)wy(X])] (1 — ZF) =0, Leb-a.e., for all t >0,
(w1 (X]) —wo(X}) — K] 1jaz;=1y =0, for allt >0,
[wo(X{) —wi(X7)] 1jazi——1y =0, forallt >0,

P?-a.s.. Under these assumptions,

T—oo

1 T
JY(C, ) < lim SUp 7 [—wl(XT) +/ o (X)wi (Xy) th} , Pg-a.s., (29)
0
for all C,, € Cy ., and

1 T
JP(C;,,) = limsup T [—wl(X;) —i—/o o(X})w) (X)) th*] , Pr-a.s. (30)

T—o0

Also,

1 T
sup  J¥(Cy,.) = JH(C;,,) = limsup [—wl(x;)+ /0 a(X:)w'l(Xt*)th*}. (31)

Cs,2€Cq,2 T—o0

Proof. Fix any initial condition (z,z) € R x {0,1}, and consider any switching strategy
C.. = (S4,Z) € C;,. Using the generalised It6’s formula that is applicable for functions
w € W2™(R) (e.g., see Krylov [K80, Theorem 2.10.1]) and the integration by parts formula,

loc
we calculate

Ty (Xp) = 2un () + /0 [Lo? () (Xy) + b(X) (X)) Zy e

T
+ Z wl(Xt)AZt—i-/ a(Xt)wi(Xt)thWt,
0

te[0,T[

(1= Zr)wo(Xr) = (1 — 2)wy(z) + /0 [Lo?(X,)ull(X,) + b(X)wh(X)] (1 — Z,) dt

_ Z wo(Xy)AZy + /To(Xt)wg(Xt)(l — Zy) dW;.

te[0,T]
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With regard to the definitions (18) and (19) of the performance indices J* and J¥, these
calculations imply

1

J¥(C,,.) = limsup — [ 4 Q(z) + Qéf”) + le) + Qg))] , (32)
T—00 T

J¥(C,,,) = limsup — ]E [QT + QT + QT + Q + Qg?)} , (33)
T—oo T

Q) = —wi(Xr) + / ' o (X)) w)(X,) dW,,
Q) = zwy(2) + (1 — 2)wo(z) — (1 — Zr) [wo(Xr) — w1 (X1)],

o = / o () [wh(Xe) — (X)) (1 — Z2) dW,,
QY = / " [P (X (X0) + b(X)w (X)) + h(X0)) Zudt

T / (302 (Xl (X)) + b(Xp)uh(X)] (1 = Z,) dt,

Qgﬁ) = Z [wl(Xt) — wO(Xt) - K] l{Athl} + Z [wo(Xt) - wl(Xt)] l{AZtZ—l}'

t€[0,T] te[0,T]

Assumption (24) implies

1
- )] = ,
711_1}[010 QT h_}nolo T]E [ ] 0, P,-as., (34)
and
lim —Q = lim 1E [ (3)] =0, Pgas (35)
T T T " 750 T © ’ v

The limits in (34) are indeed obvious. To see (35), we first observe that the quadratic
variation of the local martingale QB gatisfies

(@), = [ lolX) () (X0 (1 = 2 de < O 56)

where C' > 0 is the constant appearing in (24). It follows that the stochastic integral Q®) is
a square-integrable martingale, so

]Ex[ ”}_o for all T > 0. (37)

Furthermore, with regard to the Dambis, Dubins & Schwarz theorem (e.g., see Karatzas and
Shreve [KS88, Theorem 3.4.6]), there exists a standard, one-dimensional Brownian motion

11



B defined on a possible extension of (€2, F,P,) such that ng’) = Big®),- In view of this
representation, the fact that limy_,o, Br/T = 0, P,-a.s., and (36), we calculate

. 1 3 . 1 C
lim T ‘Q(T) < lim [T ‘B(Q(S))T| 1{0®)e <o} T (Q(3) |B(Q(3) | 1(0®)— Oo}]

T—oo T—oo
< lim 1 s |By| 1 + c |B | 1
S 1 — up (3) o _— ®) 3} —o00
T—oo | T 1040 o] tl H{{Q3))oo <00} (QB) (@B | L{(Q®) }
=0.

However, these inequalities and (37) imply (35).
To proceed further, we note that, since w;, wy satisfy the HIJB equation (20)—(21),

oW+ o) <0, forall T>0. (38)

In view of this inequality, we can see that (32)—(33) and (34)—(35) imply (29) as well as

T
J¥(C,,,) < lim sup %]Ez [—wl(XT) +/ o (Xs)w| (Xs) dWs| . (39)
0

T—00

Finally, if C; , satisfies (25)—(28), then we can see that (38) holds with equality. Therefore,

JY(C; ) satisfies (30), while J®(C; ,) satisfies (39) with equality, and the proof is complete.
U

As we are going to see, the expressions on the right hand sides of (30) and (31) are both
equal to the same constant. To this end, we are going to use the following result.

Lemma 2 Let S be a weak solution to the SDE (1), and let f : R — R be any function
satisfying f s)|m(ds) < oo. Also, suppose that the function u € W2 (R) satisfies

loc

307 (z)u" (x) + b(x)u'(z) + f(z) = 0. (40)
Then

Jim %[—u(XT)—l— /0 L (X (X) th] Tlgrololm { w(Xr) + /0 L (X (X)) W,
/ 1(s (41)

Proof. With regard to Ito’s formula,
T T
U(XT) = U,(m) +/ [%02(Xt)u"(Xt) + b(Xt)U,(Xt)] dt +/ O'(Xt)U,(Xt) th
0 0

12



Since u satisfies (40), it follows that

.1 T ) 17
7113010 T [_U(XT) + /0 o (X' (Xy) th} = Tlggo T/, f(Xy) dt.
With regard to the ergodic Theorems V.53.1 and V.54.5 in Rogers and Williams [RW00],
the limit appearing on the right hand side of this identity exists and is equal to the last
expression in (41). O

5 The solution to the control problem

We can now solve the optimisation problems considered. Up to a point in our analysis below,
we are going to consider solutions to the HJB equation (20)—(21) that are associated with
switching strategies that are suggested by intuitive economics considerations in connection
with the dynamic programming ideas discussed at the beginning of Section 4.

A first possibility arises if the operation of the investment project in its “active” mode
is very profitable, so that the optimal strategy should keep the project in its “active” mode
at all times (for a pictorial representation, see Figure 1). In this case, the optimality ideas

o Uttt
o

Figure 1: The case when it is optimal to keep the project in its “active” mode at all times.

discussed at the beginning of Section 4 suggest that we should look for a solution (w;,wp)
to the HJB equation (20)—(21) that is characterised by

10%(z)w (z) + b(z)wi(z) + h(z) =0, forall z € R,
wo(z) = wi(z) — K, forallzeR

It is straightforward to verify that every solution to these equations is given by

wi(z) = wo(z) + K = A+ Bp(z) — / p'(s)/ h(u) m(du) ds, for z € R, (42)
o o
where A, B € R and 2y € R are constants. Here, p and m are the scale function and the
speed measure defined by (4) and (5), respectively. The following result is concerned with
a necessary and sufficient condition for a choice of the functions w; and wy as in (42) to
provide a solution to the HJB equation.

13



Lemma 3 The functions wy and wy given by (42) satisfy the HIB equation (20)—(21) if and
only if h(z) >0, for all z € R.

We collect in the Appendix the proofs of those results that are not developed in the text.
A similar case arises when it is optimal to always keep the project in its “passive” mode
(see Figure 2). In this case, we look for a solution to (20)—(21) that satisfies

z=0

Figure 2: The case when it is optimal to keep the project in its “passive” mode at all times.

10%(z)wg () + b(z)wy(z) =0, for all z € R,
wi(x) = wo(z), forall z € R.

Every such solution is given by
wi(xz) = wo(zr) = A+ Bp(z), forz eR, (43)

for some constants A, B € R. A necessary and sufficient condition for these functions to
satisfy the HJB equation is provided by the following result, the proof of which we omit
because it is very similar to the proof of Lemma 3.

Lemma 4 The functions wy and wy given by (43) satisfy the HIB equation (20)—(21) if and
only if h(z) <0, for all x € R.

A more interesting case arises when the optimal strategy involves a sequence of switchings.
In such a case, we can guess that the optimal strategy takes the form that can be depicted
by Figure 3, and can be described as follows. Recalling that the running payoff function h
is strictly increasing, we should keep the investment in its “active” mode for as long as the
state process assumes sufficiently large values, and we should switch it to its “passive” mode
as soon as the state process hits a given “low” level that we are going to denote by o € R.
On the other hand, we should keep the project in its “passive” mode for as long as the state
process assumes sufficiently low values, and we should switch it to its “active” mode as soon
as the state process rises to an appropriate “high” level that we denote by 8 € R. Of course,

14



2=0 | |

Figure 3: The case when it is optimal to switch sequentially.

for this strategy to be well-defined, we must have o < . In this case, we look for a solution
o0 (20)—(21) that is characterised by

)=0, forxze]—o0,al,

30°(x ) ( ) b(ﬂﬂ)w'l(ﬂf) (90) =0, forz €la,o0],
) 0, forze]—oo,p,

0, forz € B, .

To specify the parameters  and [, we appeal to the so-called principle of smooth fit
that dictates that the functions w; and wg should be C* at the free boundary points o and
B, respectively. To this end, we first observe that every solution to (46) is given by

wo(x) = A+ Bp(z), forx €]—o0,p, (48)

where A and B are constants. Given such a solution, we can see that the only C' function
wy satisfying (44)—(45) is given by

_ ) A+ Bp(z), if x €] — 00,0,
wi(z) = {A + Bp(z) — f; P'(s) fas h(u) m(du) ds, if z €]a, ool. (49)
Moreover, (48) and (47) imply that wy is given by
wn () = A+ Bp(x), if x €] — o0, ],
o(2) {A + Bp(z) — K — [2p'(s) [ h(u) m(du) ds, if z € [8,00]. (50)

From this expression, we can see that wy will be C! if and only if the free boundary points
a < 3 satisfy the system of equations

F(a,)=0 and G(a,pB) =K, (51)

15



where

B
Fla, ) = / h(s) m(ds), (52)
B s
(o, B) = — / P(s) / h(w) m(du) ds
B
:—/ P (s)F(a, s) ds. (53)

For future reference, we note that

/ / u) ds m(du)

_ / p(s)h(s) m(ds) — p(B) F(a, ), (54)

the first identity following thanks to Fubini’s theorem. In view of condition (13) in Assump-
tion 3, F'(«, B) is well-defined and finite for all choices of a, 8 € [—00, 00] such that o < 3.
Also, G(«, B) is well-defined and finite for all a, 8 € R such that o < . However, we have
to take care in all arguments involving limits such as lim,_,_ o G(a, ) or limg_, G(e, B)
(see also the situation associated with Example 3 after Lemma 6 below).

Now, recalling that h is strictly increasing, we can see that there exist points a < f
satisfying F'(a, ) = 0 only if

zll)r_noo h(z) <0< wlggo h(x), (55)
which is a condition that complements the conditions required by the cases associated with
Lemmas 3 and 4. For future reference, we also note that (55) and the assumption that h is
strictly increasing imply that

<0, f €| — 00,7,
there exists a unique v € R such that h(z) , forz €] —o00,1] (56)
>0, forz €]y, ool
To proceed further, we define
a* =sup {a eER| Fla,o0) = / h(s) m(ds) < 0} (57)
and
B
8" inf {5 ER | F(—o00,8) = / h(s) m(ds) > 0}, (58)
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with the usual conventions sup) = —oc and inf ) = co. In the presence of (56), we can see
that

—oo < a" <y < f <o (59)
Moreover, given this definition and the monotonicity of h, we can check that

/_00 h(s)m(ds) <0 < (a* €]— 00,7 and 5* = c0),

o0

/_OO h(s)m(ds) >0 < (a* = —o0 and * €]y, x|),

oo

and

/_00 h(s)m(ds) =0 < (o =—oo and 3* = 00).

o0

The following result provides a stepping stone for our subsequent analysis.

Lemma 5 Suppose that (55) is true, and let v, o* and * be the points defined by (56),
(57) and (58), respectively. There exists a unique, C' function L :]a*,v[— ]y, B*[ such that
F(a, L(a)) = 0. Moreover, this function satisfies

. P B <0, forallze€]a,Lla),
iﬁ? L(a) =5, E%L(a) =7 Flog) {> 0, forall z €]L(a), 0], (60)
and
iy = 92 (L(a)p (L(a))h(e)
HO) = @) <" oy

We can now address the solvability of the system of equations given by (51).

Lemma 6 The system of equations given by (51) has a solution (a, B) such that —oo < a <
B < oo if and only if (55) is true and the constant G* defined by

G* = lifri G(a,L(a)) >0 (62)
satisfies
G* > K. (63)

Under these conditions, the solution (o, ) is unique, and (49)-(50) define a solution (w-, wy)
to the HIB equation (20)—(21) such that wy,wy € W2 °(R). Moreover, if we consider the
constant K > 0 as a variable, then

a = a(K) is strictly decreasing, %ﬂ% a(K)=~ and }1%1 a(K) = o, (64)
B = B(K) is strictly increasing, llyi% B(K)=7 and Igrél B(K) = p. (65)
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In view of the fact that lim, o+ L(a) = 8%, it is tempting to replace (63) by G(a*, 5*) > K,
which would result in a simpler restatement of Lemma 6. However, the following example
shows that such a condition is not always well-defined.

Example 3 Suppose that

—z2, ifz <0
b(z)=0, o()=vI+a! and h(x):{ o nE=

22, ifx>0.

For these choices of the problem’s data, we can check that p(z) = z, all of the associated
conditions in Assumptions 1, 2 and 3 hold, a* = —oo and * = co. Also, v =0, L(a) = —a,
for all @ < 0, and, with regard to the expression for G(«, L(«)) provided by (73) in the
Appendix,

83

ds=ln(1—|—a4), fora<vy=0,

|l
Gl L(a) :4/0 1

+ 54

defines a strictly decreasing function. Since lim, , o G(«, L(a)) = oo, condition (63) is
satisfied for any choice of the positive constant K. Now, with regard to (54), we calculate

2
1+ s*

B
G(e,0) =1In (1 + a4) and G(0,8)=1iIn(1 +B4) — Qﬁ/ ds,
0

which show that

lim G(a,8) =oc, forall € R, and lim G(a,3) = —oo, for all « € R.

ala*=—o00 BTB*=00

However, these limits show that the expression G(a*, 8*) = G(—o00,0) is not well-defined.

The cases considered up to now exhaust the range of candidates for the optimal strategy
that arise from simple economic arguments (see Figures 1, 2 and 3). It is therefore tempting
to assume that (63) is true for any positive value of K. However, the following example
reveals that this is not in general the case.

Example 4 Suppose that

((z—-1), ifz <1,
r—1, ifz>1,

b(z) =0, o(z)=vV1+a' and h(z) = {

where
[T (s =11+ s*)tds

¢= fol(l —s)(1+s*)"1ds '
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Plainly, all of the conditions in Assumptions 1, 2 and 3 are satisfied, o* = 0 and * = oc.
Furthermore, since

Ls(s—1) * s(s—1)
li L =2 2
alﬁ}(G(a, () C/o T4 ds + /1 T4 ds < o0,

there exist values for K such that (63) is not satisfied.

When the assumptions of Lemmas 3, 4 and 6 are not satisfied, we cannot construct
a solution to the HJB equation (20)-(21) that conforms with the heuristic considerations
discussed at the beginning of Section 4 and that does not have a non-trivial transient nature.
In this case, we indeed have to resort to a “variational” approach as in the proof of the
following theorem that is our main result.

Theorem 7 Fiz any initial condition (x, z) € Rx{0, 1}, consider the problem of mazimising

the performance indices J* and JE defined by (18) and (19), respectively, over all admissible

switching strategies in C, ,, and suppose that Assumptions 1, 2 and 3 are all satisfied. The

following statements, in which, supgc, _cc, . ¥ (Cy,,) is understood as in (9)-(10), hold true:
(i) If 0 < h(x), for allx € R, then

sup JP((Cm,z;h,K)z sup JE((Cm,z;h,K)
Cs,z €ECy,2 Cz,2 €Cy,z

- ﬁ /_ " h(s) mi(ds), (66)

o0

and the switching strategy (Sk, Z*), where S}, is a weak solution of (1) and Z* is defined by
Zf = 21y—0y + 10y, @8 optimal.
(ii) If h(z) <0, for all z € R, then

sup J(Cppih, K) = sup J¥(Cpuih, K) =0, (67)
Cs,2 €Cx,2 Ce,2€Ca,2

and the switching strategy (S%, Z*), where S is a weak solution of (1) and Z* is defined by
Z{ = 21—y, s optimal.
(iii) If lim, o h(z) < 0 < lim, oo h(z) and (63) is true, then

sup J'(Copsh, K) = sup J¥(C,.;h, K)

Ce,2 €Cy,2 Cz,2 €Cq,2
- ﬁ / h(s) m(ds)
_ ﬁ /ﬂ " h(s) m(ds), (68)

where (o, B) is the unique solution of (51) derived in Lemma 6, and an optimal switching
strategqy can be constructed as in the proof below.
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(iv) If img o h(z) < 0 < limy_,o h(z) and (63) is not true, then

sup JY(Cppih, K) = sup JY(C,.;h, K)
Ce,z2 €Ca,z Cs,2 €Cq,z

1 o
=0V ——— h ds). 69
| Mem(as (69)
In this case, if supg, ,cc,, J(Cuzihy K) > 0 (resp., supg, ,ec,, J(Cizih, K) = 0), then a
switching strategy that is optimal for case (i) (resp, case (ii)) above is optimal.

Proof. In each of the cases (i)-(iii), w1, wo € W;2>°(R). Assumption (24) in the verification
Theorem 1 follows immediately in cases (i) and (ii), and can be verified in case (iii) by
appealing to (12) in Assumption 3 and to the fact that wy, wy are C'. In cases (i)-(ii),
the strategies postulated in the statement of the theorem clearly satisfy (25)—(28). With
regard to case (iii), suppose that z = 1 and, given any initial condition =z € R, let S} =

(Q, F*, Fr,Pr W™, X*) be a weak solution of (1). If Z* is the process defined by

tr o
o0
Z; = 1y—0) + Z 1is,<t<T,}>
n=0

where Sy = 0 and the (F})-stopping times 7, and S,, n € N*, are defined recursively by
T,=inf{t>S,| X/ <a}, n=0,1,...,
S,=inf{t>T,| X;>p5}, n=1,2,...,

then we can check that (S}, Z*) € C,1, and (25)—(28) are satisfied. If z = 0, an admis-
sible switching strategy satisfying (25)—(28) can be constructed in a similar way. These
observations show that all of the requirements of Theorem 1 are satisfied in cases (i)—(iii),
which establishes (29), (30) and (31), as well as the optimality of the associated switching
strategies.

Now, (66) and (67) follow immediately from (29)—(31) and Lemma 2. In case (iii), w;
satisfies

30° (@) (@) + b(x)w) () + La,eof(2)h(z) =

by construction. Combining this observation with (29)—(31) and Lemma 2, we can see that
the second equality in (68) is true. The last equality in (68) follows from the first one and
the fact that F(a, 3) = 0, where F' is defined by (52).

To prove (iv), assume that lim, , o h(z) < 0 < lim,_, A(z) and that G* €0, oo[, where
G* is defined by (63). Also, fix any K > G*, and denote by J either of the performance
indices J¥ or JE. A simple inspection of (18) and (19) that define J¥ and J¥, respectively,
reveals that J(C, ,;h, K1) < J(C,; .5 h, Ky), for all K > Ky, for all C,, € C,,. It follows
that, given any C, , € C, ,,

J(Cz,z;haK) < J(szahaK)
<L / h(s)m(ds), for all K €]0,G",



the second inequality following from case (iii) that we established above. In view of (64),
the dominated convergence theorem, and the definition (57) of o*, we can pass to the limit
K 1 G* in these inequalities to obtain

1 o
23 7K S—
HCorih K) < o /a  h(s)m(ds)
_ ﬁffoooh(s)m(ds), if o = —o0, (70)
0, if a* > —o0,

for all C,, = (S,, Z). Now, if C; , = (S}, Z¥) is the optimal switching strategy considered
in case (i) or case (ii) of this theorem, depending on whether o* = —oo or a* > —o0, then

- {m 7%, h(s) m(ds), if o = oo,

J(C ;h, K _
if a* > —o0,

T,2 )
)

which, combined with (70), establishes all of the claims made in case (iv), and the proof is
complete. [l

Remark 1 It is worth noting that, although we have focused on conditions such as (63)
that is expressed in terms of the point o* defined by (57), we can indeed develop a totally
symmetric and equivalent analysis based on conditions involving the point 5* defined by
(58).

6 Appendix: Proofs of selected results

Proof of Lemma 3. With regard to their construction, w; and wy satisfy (20)—(21) if and
only if

wo(xz) —wy(z) <0, foralzeR (71)
Lo*(z)wy (z) + b(z)wy(z) <0, foralz e R (72)

Plainly, (71) is equivalent to K > 0, which is implied by Assumption (15). Also, we can
check that (72) is equivalent to h(z) > 0, for all z € R, which completes the proof. O

Proof of Lemma 5. Given o €]a*,v[, we consider the function Fiy) : [, 00[ — R that is
defined by Fiy(8) = F(a, 3). The calculation

s oo 2h(B) ) <0, if B €],
Tl = @) {> 0, if f ]y, o0,

shows that Fjy is strictly decreasing in ], y[ and strictly increasing in ]y, 0o[. Combining
this observation with F,j(e) = 0 and the definitions (57) and (58) of o and 5*, respectively,
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we can see that there exists a unique function L :]a*,v[— ]y, 8*[ such that Fi,(L()) =
F(a,L(a)) = 0 and (60) are true. Moreover, if —oo < o, then F(a, ) = 0 has no solution
B €la,o00| if @ €] — o0o,a*]. Finally, differentiation of F(«, L(a)) = 0 with respect to «
yields (61), the inequality there following from (56) and the fact that o < v < L(a). O

Proof of Lemma 6. In view of Lemma 5, the system of equations given by (51) has a unique
solution (a, B) such that —oo < a < < oo if and only if the equation G(«, L(«)) = K has
a unique solution « € |o*, y[. Now, with regard to (54), we can see that
L(a)
GlaL@) = [ pls)h(s) m(ds). (73)

o

Recalling the definition (5) of the speed measure m, this expression and (61) imply

iG(OA, L(a)) — Qh’(a) [p(L(a)) — p(a)]

<0, forall *
o 2(a)p(a) , for all a €a*, 7],

the inequality following because h(a) < 0 for @ < 7, L(a) > «, and p is strictly increas-
ing. However, this calculation shows that the function G(-,L(:)) :]a*,7v[— R is strictly
decreasing. Combining this observation with

lim G(a, L(a)) = G(7,7) =0,
which follows from (73) and the second limit in (60), we can conclude that the constant
G* defined by (62) is strictly positive and that the system of equations (51) has a unique
solution of the required form if and only of (63) is true.

Now, in the presence of (55) and (63), suppose that the switching cost K > 0 is an
independent variable, and consider the solution (o, 3) of (51) as a function of K. The limits
in (64) follow from the arguments that we used above in this proof to identify o = «(K) with
the solution to G(«, L(a)) = K. Also, the limits in (65) regarding 8 = f(K) = L(a(K))
follow from the ones in (64) and the ones in (60). To establish the monotonicity properties
of a(-) and S(-), we first differentiate equation F(a(K), 3(K)) = 0 with respect to K to
calculate

o/ (K). (74)

Differentiating the equation G(«(K), 8(K)) = K with respect to K, and using this expres-
sion, we obtain

_ o*(a(K))p' ((K))
2h(e(K)) [p(B(K)) — p(a(K))]

the inequality following thanks to (56), and the facts that «(K) < v < B(K) and p is
strictly increasing. However, this inequality proves that a(-) is strictly decreasing. Moreover,

o' (K) <0,
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this calculation, combined with (74), implies 8'(K) > 0, which proves that 5(-) is strictly
increasing.

To complete the proof, it remains to show that, assuming that (55) and (63) hold, (w1, wp)
given by (49)—(50), where o and [ are the unique solution to (51), solve the HJB equation
(20)—(21), which amounts to proving that

EN|
(2]

10%(z)w!(z) + b(z)w)(z) + h(z) <0, forz < a,

~ 3
N O
N— SN N N N

wo(z) —wi(z) <0, forz > aq,
wi(x) —wo(zr) — K <0, forz<pg,
Lo*(z)wg (z) + b(z)wy(z) <0, for z > B.

o~~~ o~

78

By construction, (75) is equivalent to h(x) < 0, for z < «, which is true in the light of (56
and the fact that o < «y. Similarly, (78) is equivalent to h(z) > 0, for z > 3, which is implie
by (56) and the fact that 8 > .

Either of (76) with > § or (77) with < « is equivalent to —K < 0, which is implied
by (15) in Assumption 3. In view of (49)—(50) and (53), we can see that (76) and (77) for
a <z < will follow if we show that

o

0<Glayz) <K, forzela,p. (79)

In the light of (53) and the last assertion in (60), we can see that

(%G(a, z) = —p'(2)F(a,z) >0, for z €]o, ],

which shows that the function G(«, ) is strictly increasing in |, 3]. However, if we combine
this observation with the equalities G(«, @) = 0 and G(«, 5) = K, we can see that (79) is
true, and the proof is complete. O
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