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Abstract

Kotani [5] has characterised the martingale property of a one-dimensional diffusion
in natural scale in terms of the classification of its boundaries. We complement this
result by establishing a necessary and sufficient condition for a one-dimensional dif-
fusion in natural scale to be a submartingale or a supermartingale. Furthermore, we
study the asymptotic behaviour of the diffusion’s expected state at time t as t → ∞.
We illustrate our results by means of several examples.

1 Introduction and the main result

We consider a one-dimensional conservative regular continuous strong Markov process X =
(Ω,F ,Ft,Px, Xt; t ≥ 0, x ∈ I) with values in an interval I ⊆ [−∞,∞] with endpoints α < β
that is open, closed or semi-open. We recall that a Markov process is called conservative if
there is no killing and a one-dimensional continuous strong Markov process with state space
I is called regular if

Px(Ty <∞) > 0 for all x ∈ (α, β) and y ∈ I.

Throughout the paper we denote

Ty = inf{t ≥ 0 | Xt = y}, T≤y = inf{t ≥ 0 | Xt ≤ y} and T≥y = inf{t ≥ 0 | Xt ≥ y},

for y ∈ [α, β], with the usual convention that inf ∅ = ∞. Also, we denote by p and m the
scale function and the speed measure of X. Given a measure ξ on

(
I,B(I)

)
and an interval

J ⊆ I, we denote by ξ|J the restriction of ξ in
(
I ∩ J,B(I ∩ J)

)
.
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Given a probability measure ν on
(
I,B(I)

)
, we define the probability measure Pν(·) =∫

I Px(·) ν(dx) on (Ω,F). To avoid trivialities, we make the following assumption.

Assumption 1. ν 6= λδα + (1− λ)δβ for all λ ∈ [0, 1]. �

The process
Yt = p(Xt∧Tα∧Tβ), t ≥ 0, (1)

is a continuous Pν-local martingale for all probability measures ν on
(
I,B(I)

)
in the sense

of Definition IV.1.5 in Revuz and Yor [7]:

Definition 1. A continuous (Ft)-adapted process (Zt) defined on (Ω,F ,Ft) is a Pν-local
martingale if there exists a sequence (τn) of (Ft)-stopping times such that τn ↗∞, Pν-a.s.,
and the process (Zt∧τn1{τn>0}) is a Pν-martingale for all n ≥ 1. �

The reason for considering this more general definition is because we allow for the initial
value Y0 = p(X0) to be non-integrable, namely, we allow for the possibility that Eν

[
|Y0|
]

=∫
I

∣∣p(x)
∣∣ ν(dx) =∞. In Remark 1 in the next section, we discuss the fact that (Yt) is indeed

a Pν-local martingale for all ν.
In this note we establish conditions under which (Yt) is a Pν-submartingale, a Pν-

supermartingale or a Pν-martingale. To this end, we recall Definition II.1.1 in Revuz and
Yor [7]:

Definition 2. The process (Yt) is a Pν-supermartingale if

(i) Eν [Y −t ] <∞ for all t ≥ 0, and

(ii) Eν [Yt | Fs] ≤ Ys for all s < t.

The process (Yt) is a Pν-submartingale if (−Yt) is a Pν-supermartingale, while, it is a Pν-
martingale if it is both a Pν-supermartingale and a Pν-submartingale. �

Kotani [5] has proved the following result.

Theorem 1. The following statements are equivalent:
(a) (Yt) is a Pν-martingale.

(b)
∫
I

∣∣p(u)
∣∣ ν(du) <∞ and neither α nor β is an entrance boundary point1 for X.

It is worth noting that the condition
∫
I

∣∣p(u)
∣∣ ν(du) < ∞ is equivalent to the condition

Eν
[
|Yt|
]
<∞ for all t ≥ 0, which is requirement (i) of Definition 2 for the case of a martingale

(see Corollary 4 in the next section). On the other hand, the property that neither α nor β
is an entrance boundary point for X, which does not depend on the choice of ν, is equivalent

1The terminology in the boundary classification we adopt here is consistent with the one in Karlin and
Taylor [4, Table 15.6.2], Revuz and Yor [7, Section VII.3], Rogers and Williams [8, Section V.51] and Urusov
and Zervos [9, Section 3]. However, it is different from the terminology in Itô and McKean [3, Sections 4.1
and 4.6] and Borodin and Salminen [1, Section II.1]. In particular, what is called “entrance boundary” in
the latter references is different from what we call “entrance boundary”.
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to the property that one of the following conditions (i)–(iv) holds. (Here, c ∈ (α, β) is an
arbitrary point.)

(i) p(α) > −∞ and p(β) <∞.

(ii) p(α) > −∞, p(β) =∞ and
∫

(c,β)
p(u)m(du) =∞.

(iii) p(α) = −∞, p(β) <∞ and
∫

(α,c)

∣∣p(u)
∣∣m(du) =∞.

(iv) p(α) = −∞, p(β) =∞,
∫

(α,c)

∣∣p(u)
∣∣m(du) =∞ and

∫
(c,β)

p(u)m(du) =∞.

The equivalence stated here follows from the criteria for a boundary point of X to be an
entrance one (see e.g. Urusov and Zervos [9, Section 3]). In fact, Kotani [5] stated Theorem 1
in terms of conditions (i)–(iv) rather than in terms of (b). At this point, it is worth noting
that Delbaen and Shirakawa [2] had earlier proved this result in a special case. In Table 1,
we provide additional information on the Pν-martingale (Yt) for each of the cases identified
by (i)–(iv) above.

Case number Properties of the martingale (Yt) under Pν

(i) U.I. martingale (bounded martingale)

(ii) Not a U.I. martingale (limt→∞ Yt = p(α), Pν-a.s.); Eν
[
supt≥0 Yt

]
=∞

(iii) Not a U.I. martingale (limt→∞ Yt = p(β), Pν-a.s.); Eν [inft≥0 Yt] = −∞

(iv) Not a U.I. martingale (lim supt→∞ Yt = − lim inft→∞ Yt =∞, Pν-a.s.)

Table 1. Properties of the martingale (Yt) under Pν for each of
the cases identified by (i)–(iv) above.

Our main result is the next theorem, which provides necessary and sufficient conditions
for (Yt) to be a Pν-supermartingale. The criterion for (Yt) to be a Pν-submartingale is
symmetric.

Theorem 2. The following statements are equivalent:
(A) (Yt) is a Pν-supermartingale.

(B)
∫
I p(u)− ν(du) <∞ and α is not an entrance boundary point for X.

Once again, we note that the condition
∫
I p(u)− ν(du) < ∞ is equivalent to require-

ment (i) of Definition 2 (see Corollary 4). Also, we repeat that the property that α is not
an entrance boundary point for X, which does not depend on the choice of ν, is equivalent
to the property that one of the following conditions (I)–(II) holds, where c ∈ (α, β) is an
arbitrary point.

(I) p(α) > −∞.

(II) p(α) = −∞ and
∫

(α,c)

∣∣p(u)
∣∣m(du) =∞.
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Clearly, Theorem 2 and its submartingale counterpart imply Theorem 1. On the other
hand, Theorem 2 can be proved in exactly the same way as Theorem 1. Here, we make use
of Theorem 1 and Corollary 4 that have already been established in Kotani [5] to derive
a slightly shorter proof of our main result. In Section 3, we present a couple of examples
illustrating the scope of application of Theorem 2.

Beyond the submartingale / supermartingale property of Y , we study the asymptotic
behaviour of the function t 7→ Ex[Yt] as t → ∞ for the most important class of diffusions
that arises when X identifies with the solution to a SDE (see Example 1 in Section 3 for the
precise context). Our main result in this direction, Theorem 5 in Section 4, establishes that,
if p(α) > −∞, then Y is a strict Px-supermartingale if and only if

lim
t→∞

Ex[Yt] = lim
t→∞

Ex
[
p(Xt∧Tα)

]
= p(α).

Apart from its independent interest, this result is instrumental in the study of Example 4 in
Section 5, which has the interesting property that the function t 7→ Ex

[
p(Xt)

]
is monotone

and switches sign as the initial point x ∈ R switches sign.

2 Proof of Theorem 2

Before addressing the proof of Theorem 2, we make three remarks that clarify material
presented in the previous section and make observations we need in the proof.

Remark 1. To see that the process (Yt) defined by (1) is indeed a Pν-local martingale for all
probability measures ν on

(
I,B(I)

)
, we first recall that (Yt) is a Px-local martingale for all

x ∈ I (see Revuz and Yor [7, Proposition VII.3.5]). In particular, the process (Yt∧T≤a∧T≥b)
is a Px-martingale for all x and a < b in I. Note that α (resp., β) belongs to I, i.e., it
is accessible, only if p(α) > −∞ (resp., p(β) < ∞). In view of this observation and the
definition (1) of (Yt), we can see that, if we define

ταn =

{
∞, if α is accessible

T≤an , if α is inaccessible

}
and τβn =

{
∞, if β is accessible

T≥bn , if β is inaccessible

}
,

for some monotone sequences (an) and (bn) in (α, β) such that limn→∞ an = α and
limn→∞ bn = β, then (Yt∧ταn∧τβn ) is a Px-martingale for all x ∈ I and n ≥ 1. Further-

more, (Yt∧ταn∧τβn1{ταn∧τβn>0}) is a Px-martingale for all x ∈ I and n ≥ 1 because the event

{ταn ∧ τβn > 0} belongs to F0. It follows that (Yt∧ταn∧τβn1{ταn∧τβn>0}) is a Pν-martingale for all

ν, which implies that (Yt) is a Pν-local martingale for all ν because ταn ∧ τβn ↗∞, Pν-a.s. �

Remark 2. If the process (Yt) is a Pν-supermartingale, then the process (Yt1{τ>0}) is a Pν-
supermartingale for every (Ft)-stopping time τ . Plainly, property (i) of Definition 2 remains
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valid. To verify property (ii) of Definition 2, we note that the Pν-supermartingale property
of (Yt) implies that

Eν
[
Yt1A

]
≤ Eν

[
Ys1A

]
for all s < t and A ∈ Fs.

Therefore, given any (Ft)-stopping time τ ,

Eν
[
Yt1{τ>0}1A

]
≤ Eν

[
Ys1{τ>0}1A

]
for all s < t and A ∈ Fs

because {τ > 0} ∈ Fs for all s ≥ 0, and the Pν-supermartingale property of (Yt1{τ>0})
follows. �

Remark 3. Consider a point b ∈ (α, β) and the diffusion X̃ = (Ω̃, F̃ , F̃t, P̃x, X̃t) with state
space I ∩ (−∞, b], and scale function p̃ and speed measure m̃ given by

p̃(x) = p(x) for all x ∈ I ∩ (−∞, b], m̃|I∩(−∞,b) = m|I∩(−∞,b) and m̃
(
{b}
)

=∞.

The diffusion X̃ behaves in the same way as X inside I ∩ (−∞, b) but is absorbed at b. In
particular, the process (Ỹt) =

(
p(X̃t∧Tα)

)
under the measure P̃x has the same distribution as

the process (Yt∧Tb) under the measure Px for all x ∈ I ∩ (−∞, b). �

We will need the following result. The case corresponding to f(x) = |x| is Lemma 1 in
Kotani [5]. The other cases can be proved in the same way.

Lemma 3. For each of the functions defined by f(x) = |x|, f(x) = x+ and f(x) = x−, there
exist constants c1, c2 > 0 such that

Ex
[
f(Yt)

]
≤ c1 + f

(
p(x)

)
+ c2t for all x ∈ I and t ≥ 0.

The following is an immediate consequence of this lemma.

Corollary 4. For each of the functions defined by f(x) = |x|, f(x) = x+ and f(x) = x−,

Eν
[
f(Y0)

]
≡
∫
I
f
(
p(x)

)
ν(dx) <∞ ⇔ Eν

[
f(Yt)

]
<∞ for all t ≥ 0.

Proof of Theorem 2. (A) ⇒⇒⇒ (B) Suppose that the Pν-local martingale (Yt) is a Pν-
supermartingale. Definition 2.(i) implies that

∫
I p(x)− ν(dx) = Eν [Y −0 ] < ∞. To show that

α is not an entrance boundary point, we first note that, given any b ∈ (α, β), the pro-
cess (Yt1{T≥b>0}) is a Pν-supermartingale (see Remark 2). Combining this observation with
Doob’s optional stopping theorem, we can see that (Yt∧T≥b1{T≥b>0}) is a Pν-supermartingale.
Therefore, (Yt∧T≥b1{T≥b>0}), which is both a Pν-local martingale and a Pν-supermartingale, is
a Pν-martingale because a local martingale that is bounded from above is a submartingale.

Now, we choose any b ∈ (α, β) such that ν
(
(α, b)

)
> 0 (such a point b exists thanks to

Assumption 1), and we note that, given any x ∈ (α, b),

there exists T ∈ (0,∞) such that Pν(Tx < T ∧ T≥b) > 0 (2)
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because

Pν
(
Tx < T≥b

)
=

∫
(α,b)

Pz
(
Tx < Tb

)
ν(dz) > 0.

In view of the fact that (Yt∧T≥b1{T≥b>0}) is a Pν-martingale, we can use Doob’s optional
stopping theorem to obtain

Eν
[
Y(Tx∧T+t)∧T≥b1{T≥b>0} | FTx∧T∧T≥b

]
= YTx∧T∧T≥b1{T≥b>0} = p(x)1{Tx<T∧T≥b} + YT∧T≥b1{T∧T≥b≤Tx}∩{T≥b>0} for all t ≥ 0.

On the other hand, we use the strong Markov property of (Yt) to calculate

Eν
[
Y(Tx∧T+t)∧T≥b1{T≥b>0} | FTx∧T∧T≥b

]
= EYTx∧T∧T≥b

[
Yt∧T≥b

]
1{T≥b>0}

= Ex
[
Yt∧T≥b

]
1{Tx<T∧T≥b} + EYT∧T≥b

[
Yt∧T≥b

]
1{T∧T≥b≤Tx}∩{T≥b>0} for all t ≥ 0.

These identities, together with (2), imply that

Ex
[
Yt∧Tb

]
= Ex

[
Yt∧T≥b

]
= p(x) for all t ≥ 0.

Combining this conclusion with the observation that (Yt∧Tb) is a Px-submartingale, which
follows from the fact that it is a Px-local martingale that is bounded from above, we can see
that (Yt∧Tb) is a Px-martingale. The required conclusion now follows from Theorem 1.

(B) ⇒⇒⇒ (A) If p(β) < ∞, then the conditions in (b) of Theorem 1 are satisfied. Hence,
(Yt) is actually a Pν-martingale (compare (I)–(II) after the statement of Theorem 2 with (i)
and (iii) after the statement of Theorem 1). We therefore assume that p(β) = ∞ in what
follows. (Note that this assumption implies that β is inaccessible.)

Suppose first that ν = δx, for some x ∈ (α, β), and fix any b ∈ (x, β). In view of
Lemma 3, we can see that Ex

[
|Yt∧Tb|

]
< ∞ for all t ≥ 0. The Px-local martingale (Yt∧Tb)

is an integrable Px-submartingale because a local martingale that is bounded from above
is a submartingale. On the other hand, the process (Ỹt) introduced by Remark 3 is a P̃x-
martingale because the diffusion X̃ satisfies the requirements of Theorem 1.(b). In particular,
the function t 7→ Ẽx[Ỹt] is constant and finite. Since (Ỹt) has the same distribution under P̃x
as the process (Yt∧Tb) under the measure Px, the function t 7→ Ex[Yt] is constant and finite.
Therefore, the integrable Px-submartingale (Yt∧Tb) is a Px-martingale, which implies that

Ex
[
Yt1{Tb>t}

]
≤ Ex[Yt∧Tb ] = p(x)

for all b ∈ (x, β) such that p(b) ≥ 0. In view of Lemma 3, we can pass to the limit b ↗ β
using the dominated convergence theorem to obtain

Ex[Yt] ≤ p(x) for all x ∈ (α, β) and t ≥ 0.
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Using this inequality and the strong Markov property, we can see that, given any t > s ≥ 0,

Ex[Yt | Fs] = 1{Tα∧Tβ≤s}Ys + 1{Tα∧Tβ>s}EXs [Yt−s] ≤ p(Xs∧Tα∧Tβ) = Ys.

It follows that (Yt) is a Px-supermartingale.
To complete the proof, we consider any measure ν satisfying the integrability condition∫

I p(x)− ν(dx) < ∞. This condition and Corollary 4 imply that (i) in Definition 2 holds
true. On the other hand, given any s < t and any event A ∈ Fs, we use the fact that (Yt) is
a Px-supermartingale and the definition of Pν to calculate

Eν
[
Yt1A

]
=

∫
I
Ex
[
Yt1A

]
ν(dx) ≤

∫
I
Ex
[
Ys1A

]
ν(dx) = Eν

[
Ys1A

]
,

which proves that property (ii) of Definition 2 is satisfied. �

3 Examples illustrating Theorem 2

To illustrate the scope of applications of Theorem 2, we first consider the following example.

Example 1. Given −∞ ≤ α < β ≤ ∞, let µ, σ : (α, β)→ R be Borel-measurable functions
that satisfy the conditions

σ(u) 6= 0 for all u ∈ (α, β) (3)

and

∫ b

a

1 + |µ(u)|
σ2(u)

du <∞ for all α < a < b < β. (4)

It is well-known that the stochastic differential equation

dXt = µ(Xt) dt+ σ(Xt) dWt, X0 = x ∈ (α, β), (5)

where W is a standard Brownian motion, has a weak solution that is unique in law up to a
possible explosion time, which is the first exit time of X from (α, β). We denote by ζ the exit
time of X from (α, β) and we make the convention that, on the event {ζ <∞}, the process
X is absorbed by the endpoint where it exits. Accordingly, the dynamics (5) hold only on
the stochastic interval [0, ζ). Thus defined, the weak solutions to (5) provide a conservative
regular continuous strong Markov process. The state space I of this Markov process is an
interval with endpoints α and β that contains α (resp., β) if and only if X reaches α (resp.,
β) in finite time with positive probability. It is well-known that the scale function p and the
restriction m|(α,β) of the speed measure in

(
(α, β),B

(
(α, β)

))
are given by the expressions

p(u) =

∫ u

c1

exp

(
−
∫ s

c2

2µ(r)

σ2(r)
dr

)
ds and m|(α,β)(du) =

2

σ2(u)p′(u)
du, (6)

where c1, c2 ∈ (α, β) are fixed arbitrary points. These expressions are sufficient to apply
Theorem 2 because only the knowledge of p and m|(α,β) is required in Theorem 2 (see (I)
and (II) after the formulation of Theorem 2). �
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In the context of Theorem 1, uniform integrability fails except in the trivial case of a
bounded martingale (see Table 1). On the other hand, the situation is different in the context
of Theorem 2. Indeed, the following example presents an unbounded Px-supermartingale that
is uniformly integrable for all x ∈ (α, β).

Example 2. Let X be the diffusion in natural scale (i.e., p(u) = u) with state space
I = (0,∞) that identifies with the solutions to the SDE

dXt = X2
t dWt, for X0 = x > 0,

where (Wt) is a standard Brownian motion. It is well-known that (Yt) ≡ (Xt) can be realised
in law as (‖ Bt ‖−1), where (Bt) is a three-dimensional Brownian motion with ‖ B0 ‖= x−1

and ‖ · ‖ is the Euclidean norm in R3. A short calculation shows that

sup
t≥0

Ex
[
Y p
t

]
<∞ for all p ∈ (1, 2),

which implies that (Yt) is uniformly integrable. Also, (Yt) is a Px-supermartingale because
it is a bounded from below Px-local martingale. On the other hand, Theorem 1 implies
that (Yt) is not a Px-martingale because

∫
(1,∞)

p(u)m(du) =
∫

(1,∞)
2u−3 du < ∞, in other

words, ∞ is an entrance boundary point. Alternatively, (Yt) is not a Px-martingale because,
otherwise, it would correspond to case (ii) of Table 1 and its uniform integrability would be
contradicted. �

4 Asymptotic behaviour of the expectation

In this section, we consider the context of Example 1 with zero drift µ ≡ 0 and

α > −∞, β =∞.

In other words, we consider the weak solution to the SDE

dXt = η(Xt) dWt, X0 = x ∈ (α,∞), (7)

where η : [α,∞)→ R is a Borel-measurable function satisfying

η(α) = 0, (8)

η(u) 6= 0 for all u ∈ (α,∞), (9)∫ b

a

η−2(u) du <∞ for all α < a < b <∞. (10)

The role of condition (8) is to make sure that α is absorbing whenever it is accessible. Notice
that the scale function of X is the identity function, namely, p(u) = u, that is, (Yt) ≡ (Xt).
In what follows we therefore work directly with the process (Xt).
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The process (Xt) is a Px-supermartingale because it is a bounded from below Px-local
martingale. Therefore, the function t 7→ Ex[Xt] is constant whenever (Xt) is a martingale,
and is decreasing and non-constant otherwise. The following result is concerned with the
asymptotic behaviour of this function as t→∞ whenever (Xt) is a strict supermartingale.

Theorem 5. The following statements are equivalent:
(i) (Xt) is a strict Px-supermartingale.

(ii)
∫∞
c

u
η2(u)

du <∞, where c ∈ (α,∞) is an arbitrary point.2

(iii) limt→∞ Ex[Xt] = α.

Proof. The equivalence between (i) ad (ii) follows immediately from Theorem 1 (or from
Theorem 2). We therefore need to prove that (iii) holds whenever X is a strict supermartin-
gale. Without loss of generality, we assume that α = 0 in what follows.

We start by embedding X in a geometric Brownian motion starting from x. To this end,
we consider the space C(R+) of continuous functions mapping R+ into R, we denote by Z
the coordinate process on this space, which is given by Zt(ω) = ω(t), and we define

Gt = xe−
1
2
t+Zt , for t ≥ 0.

Also, we denote by (G0
t ) the right-continuous regularisation of the natural filtration of Z,

which is defined by G0
t =

⋂
ε>0 σ(Zs, s ∈ [0, t+ ε]), we set G0 =

∨
t≥0 G0

t , and we denote by P
the probability measure on

(
C(R+),G0

)
under which Z is a standard (G0

t )-Brownian motion
starting from 0. Furthermore, we define

Gt = G0
t

∨(⋃
t≥0

N P
t

)
, for t ≥ 0, and G = G0

∨(⋃
t≥0

N P
t

)
, (11)

where N P
t are the P-null sets in G0

t . It is worth noting that the resulting filtration (Gt) is
not the usual augmentation of (G0

t ) because the latter one involves the null sets in G0 rather
than the union of null sets in (11). On the other hand, we may assume that (Gt) satisfies
the “usual conditions” as long as our arguments are reducible to ones involving (increasing)
bounded time horizons, which is the case in what follows.

In this context, we consider the (Gt)-adapted continuous strictly increasing process A
given by

At =

∫ t

0

G2
s

η2(Gs)
ds, for t ≥ 0, (12)

and we denote by Γ its inverse, which is given by

Γt = inf{s ≥ 0 | As > t}, for t ≥ 0,

2It is worth mentioning that this condition is satisfied if and only if ∞ is an entrance boundary point
(see also Footnote 1 in Section 1 for the terminology we use in this paper).
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with the usual convention that inf ∅ = ∞. It is worth noting that Γ is continuous and
P-a.s. strictly increasing on the stochastic interval [0, A∞) because A has these properties.
Moreover, (10) and the occupation times formula imply that At <∞, P-a.s., for all t ∈ R+,
which implies that limt→∞ Γt = ∞, P-a.s. On the other hand, we can have P(Γt = ∞) > 0
even for finite t.

We now define

Ḡt = GΓt , for t ≥ 0, and X̄t =

{
GΓt , for t ∈ [0, A∞)

0, for t ∈ [A∞,∞)

}
,

as well as W̄t =

∫ t

0

η−1(X̄s) dX̄s, for t ∈ [0, A∞), (13)

and we note that X̄ is continuous because limt→∞Gt = 0. Indeed, on the event {A∞ <∞},
the process X̄ hits the point α ≡ 0 at time A∞ and is stopped at this time. Moreover, X̄ is
a continuous (Ḡt)-local martingale on the stochastic interval [0, A∞) (see Revuz and Yor [7,
Section V.1]). Let us also note that A∞ is a predictable (Ḡt)-stopping time. Recalling that
Γ is continuous, we can use the time change formula for semimartingales and the fact that
AΓt = t on the event {t < A∞} to obtain

〈X̄〉t = 〈G〉Γt =

∫ Γt

0

G2
s ds

=

∫ Γt

0

η2(Gs) dAs =

∫ t

0

η2(GΓs) ds =

∫ t

0

η2(X̄s) ds, P-a.s., on {t < A∞}. (14)

In particular, we calculate

〈W̄ 〉t =

∫ t

0

η−2(X̄s) d〈X̄〉s = t, P-a.s., on {t < A∞}. (15)

Being a continuous (Ḡt)-local martingale on the stochastic interval [0, A∞) with angle bracket
satisfying (15), the process W̄ can be identified with a stopped Brownian motion. Indeed,
limt→A∞ W̄t exists and is finite on the event {A∞ < ∞}, and, if we define W̄t = W̄A∞ , for
t ∈ [A∞,∞), then W̄ is a (Ḡt)-Brownian motion that is stopped at A∞. Combining this
observation with the fact that

X̄t =

∫ t

0

η(X̄s) dW̄s, P-a.s., for t ≥ 0,

which follows from (13) and the discussion following (13), we can see that the law of X̄
under P is the same as the unique law of the solution to (7) under Px. By means of the
monotone convergence theorem, we therefore obtain

Ex[Xt] = EP[X̄t] = EP
[
GΓt1{Γt<∞}

]
= lim

T→∞
EP
[
GΓt1{Γt≤T}

]
. (16)
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To proceed further, we denote by Q the probability measure on
(
C(R+),G0

)
under which

the process B given by Bt = Zt − t, for t ≥ 0, is a standard (G0
t )-Brownian motion start-

ing from 0. The measures P and Q are locally equivalent but not equivalent. The local
equivalence of P and Q implies that the augmentation of (G0

t ) and G as in (11) with Q in
place P results in the same filtration (Gt) and σ-algebra G because N P

t = NQ
t for all t ≥ 0.

Furthermore, the density process of P and Q is given by

dQ
dP

∣∣∣∣
GT

=
1

x
GT , for T ≥ 0.

Combining this observation with the fact that G is a P-martingale, the fact that Γt is a
(Gt)-stopping time for all t ≥ 0, and with (16), we can see that

Ex[Xt] = lim
T→∞

EP
[
EP[GT | GT∧Γt ]1{Γt≤T}

]
= lim

T→∞
EP
[
GT1{Γt≤T}

]
= lim

T→∞
xQ(Γt ≤ T ) = xQ(Γt <∞) = xQ(A∞ > t).

In view of this result, we can see that the proof will be complete if we prove that∫ ∞
c

u

η2(u)
du <∞ ⇔ Q(A∞ <∞) ≡ Q

(∫ ∞
0

G2
s

η2(Gs)
ds <∞

)
= 1. (17)

To show (17), we remark that under Q the process G satisfies the SDE

dGt = Gt dt+Gt dBt, G0 = x

(recall that (Bt) ≡ (Zt − t) is a Q-Brownian motion), and we apply Proposition 6 with
X = G and f defined by

f(u) =
u2

η2(u)
, for u > 0.

In this case, σ and p of Proposition 6 are given by the formulas

σ(u) = u and p(u) = −1

u
, for u > 0.

These expressions imply that∫ ∞
c

(
p(∞)− p(u)

)
f(u)

p′(u)σ2(u)
du =

∫ ∞
c

u

η2(u)
du.

Furthermore, the exit time ζ in Proposition 6 is such that

Q(ζ =∞) = 1 and Q
(

lim
t↑ζ

Gt =∞
)
≡ Q

(
lim
t→∞

Gt =∞
)

= 1.

In view of these identifications, Proposition 6 implies the required equivalence (17). �
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5 Further examples

In this section we use Theorems 2 and 5 to study the following two examples.

Example 3. Let X be the diffusion in natural scale with state space I = R that identifies
with the solutions to the SDE

dXt = eXt dWt, X0 = x ∈ R.

Theorem 2 and its submartingale counterpart imply that (Xt) is a Px-supermartingale but
not a Px-submartingale for every initial point x. (It is worth noting that Kotani’s result,
Theorem 1, establishes only that (Xt) is a strict local martingale and does not indicate
whether X is a supermartingale or a submartingale.) In particular, the function t 7→ Ex[Xt]
is decreasing and non-constant for all x ∈ R. �

In the next example we observe an interesting effect: the behaviour of the function
t 7→ Ex[Xt] changes as x changes its sign.

Example 4. Let X be the diffusion in natural scale with state space I = R that identifies
with the solutions to the SDE

dXt = cosh(Xt) dWt, X0 = x ∈ R.

In this case, (Xt) is neither Px-supermartingale nor Px-submartingale, for any initial point x.
A straightforward application of Lemma 3 implies that Ex

[
|Xt|

]
< ∞ for all x ∈ R. Fur-

thermore,

(i) the function t 7→ E0[Xt] is identically zero;

(ii) given any x > 0, the function t 7→ Ex[Xt] is decreasing and limt→∞ Ex[Xt] = 0;

(iii) given any x < 0, the function t 7→ Ex[Xt] is increasing and limt→∞ Ex[Xt] = 0.

Statement (i) as well as the implication (ii)⇒ (iii) follow from the even symmetry of the
function x 7→ coshx. To see (ii), we fix any initial point x > 0, and we define the stopping
time

τ = inf{t ≥ 0 | Xt = 0}.

The stopped process (Xt∧τ ) satisfies (7) with η(x) = coshx, for x > 0, and η(0) = 0.
Therefore, Theorem 5 implies that t 7→ Ex[Xt∧τ ] is a decreasing function such that
limt→∞ Ex[Xt∧τ ] = 0. On the other hand, the even symmetry of the function x 7→ coshx
implies that the random variable Xt−Xt∧τ has a symmetric distribution. Furthermore, this
random variable is integrable with respect to Px because both Xt and Xt∧τ are. Combining
these observations with the identity Xt = Xt∧τ + (Xt −Xt∧τ ), we obtain statement (ii). �
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6 Convergence of integral functionals

This section is concerned with a result that we have used in the proof of Theorem 5. To
fix ideas, we consider the setting of Example 1, namely, the weak solution to the SDE (5),
where the coefficients µ and σ satisfy (3)–(4). As in Example 1, we denote by ζ the exit time
of (Xt) from (α, β), which may be finite with strictly positive probability. For the purposes
of this section, we further assume that

p(β) <∞, (18)

where the scale function p of X is given explicitly by (6). We also recall that (18) is equivalent
to β being an attracting boundary point, namely, Px

(
limt↑ζ Xt = β) > 0, where ζ can be

infinite with probability one. Let f : (α, β) → R+ be a positive Borel-measurable function
satisfying ∫ b

a

f(u)

σ2(u)
du <∞ for all α < a < b < β, (19)

which, by the occupation times formula, is equivalent to∫ t

0

f(Xs) ds <∞ for all t < ζ, Px-a.s.

The following result has been established in Mijatović and Urusov [6].

Proposition 6. Assume (18) and (19). Then the following statements hold true:
(i) If the integrability condition∫ β

c

(
p(β)− p(u)

)
f(u)

p′(u)σ2(u)
du <∞, (20)

which is independent of the choice of c ∈ (α, β), is true, then∫ ζ

0

f(Xs) ds <∞, Px-a.s. on

{
lim
t↑ζ

Xt = β

}
.

(ii) If the integrability condition (20) fails, then∫ ζ

0

f(Xs) ds =∞, Px-a.s. on

{
lim
t↑ζ

Xt = β

}
.
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