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1 Introduction

We consider a stochastic system, the state of which is modelled by the con-
trolled, one-dimensional Itô diffusion

dXt = Ut dt + dZt + σ(Xt) dWt, X0 = x ∈ R, (1)

where W is a standard, one-dimensional Brownian motion, U is a progressively
measurable process such that

Ut ∈ [−b(Xt), b(Xt)], for all t ≥ 0, (2)

and Z is a controlled, piece-wise constant process, the jumps of which occur at
the times when control effort is exercised in an impulsive way to reposition the
system’s state by an amount equal to the associated jump sizes. The objective
of the optimisation problem is to minimise the long-term average criterion
? Research supported by EPSRC grant no. GR/S22998/01
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lim sup
T→∞

1
T

Ex

[∫ T

0

h(Xt) dt +
∑

t∈[0,T ]

(
K+∆Zt + c+

)
1{∆Zt>0}

+
∑

t∈[0,T ]

(
−K−∆Zt + c−

)
1{∆Zt<0}

]
,

which is taken to be equal to ∞ if X explodes in finite time with positive prob-
ability, over all admissible choices of the controlled processes U and Z. Here, h
is a given function that is strictly decreasing in ]−∞, 0[ and strictly increasing
in ]0,∞[, and c+, c−,K+,K− are positive constants. This performance index
penalises deviations of the state process X from the nominal operating point
0. While the index does not explicitly penalise the expenditure of control ef-
fort associated with an admissible choice of U , which is constrained by (2),
it reflects a cost each time that control is exercised in an impulsive way. In
particular the constants c+ and K+ (resp., c− and K−) provide a fixed and a
proportional cost each time that the controller incurs a jump of the system’s
state in the positive (resp., negative) direction.

This problem provides one of the few non-trivial examples of optimal
stochastic control models that admit a solution of an explicit analytic nature.
The version of the problem that arises when the drift of (1) is not controllable
has been solved by Jack and Zervos [5]. Both of these problems have been
motivated by the research presented in Jeanblanc-Picqué [6], Mundaca and
Øksendal [8], Cadenillas and Zapatero [1, 2], and Chiarolla and Haussmann [3]
who consider the issue of controlling in an optimal way the stochastic dynam-
ics of a foreign exchange (FX) or an inflation rate by means of a central bank
intervention policy.

With regard to these references, we can see that the optimisation problem
that we consider can be of use to a central bank in its task of controlling an
FX rate as follows. The process X is used to model the stochastic dynamics
of the logarithm of an FX rate relative to a given nominal point. The central
bank wishes to keep the rate as close as possible to its given nominal point,
which translates to 0 in the state space of X. To achieve this aim, the central
bank uses the function h to penalise deviations of the rate from its nominal
value. To control the rate, the central bank has two intervention policies at
its disposal. The first one is through the continuous adjustment of its interest
rate, the effect of which is modelled by the process U . The second policy is to
purchase or sell large amounts of foreign capital at discrete times, the effect
of which is incorporated into the model through the jumps of the process Z.
In contrast to the above mentioned references where discounted criteria are
considered, here, as well as in Jack and Zervos [5], we consider a long-term
average criterion. Since an FX rate is not an asset and the function h does
not represent a tangible cost, the choice of a discounting factor does not have
a clear economic interpretation. This observation suggests that addressing
this type of application using a long-term average criterion rather than a
discounted one conforms better with the standard economics theory.
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Our analysis is based on the explicit construction of an appropriate so-
lution to the associated Hamilton-Jacobi-Bellman (HJB) equation. This con-
struction relies on the use of the so-called “smooth-pasting condition” that was
first observed to characterise a wide class of optimal stopping problems (e.g.,
see Shiryaev [9] and Krylov [7]). Also, part of it follows steps that parallel the
ones used in the analysis of Harrison, Sellke and Taylor [4] who consider the
impulse control of a Brownian motion with an expected, discounted criterion.
With regard to the structure of the problem that we solve, it is worth noting
that, even though the dynamics modelled by (1) allow for the possibility that
the state process X explodes in finite time, our assumptions ensure that the
optimal control strategy is a “stabilising” one.

2 The control problem

We consider a stochastic system, the state process X of which is driven by a
Brownian motion W, a controlled process U that affects the system’s dynamics
in an absolutely continuous way and a controlled process Z that affects the
system’s dynamics impulsively. In particular, we assume that the system’s
state process satisfies the controlled SDE

dXt = Ut dt + dZt + σ(Xt) dWt, X0 = x ∈ R, (3)

where σ : R → R is a given function and W is a standard, one-dimensional
Brownian motion. Here, U is a process such that, for some given function
b : R → [0,∞[,

Ut ∈ [−b(Xt), b(Xt)], for all t ≥ 0, (4)

and Z is a piece-wise constant, càglàd process. The time evolution of both
of these processes is determined by the system’s controller. With reference to
the current impulse control literature, it is worth observing that an admissible
choice of a process Z can equivalently be described by the collection

Z = (τ1, τ2, . . . , τn, . . . ;∆Zτ1 ,∆Zτ2 , . . . ,∆Zτn
, . . .) ,

where (τn, n ≥ 1) is the sequence of random times at which the jumps of Z
occur and (∆Zτn

, n ≥ 1) are the sizes of the corresponding jumps.
We adopt a weak formulation of the control problem that we study:

Definition 1. Given an initial condition x ∈ R, a control of a stochastic
system governed by dynamics as in (3) is any nine-tuple

Cx = (Ω,F ,Ft, Px,W,U, Z, X, τ),

where
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(Ω,F ,Ft, Px) is a filtered probability space satisfying the usual
conditions,
W is a standard, one-dimensional (Ft)-Brownian motion,
U is an (Ft)-progressively measurable process,
Z is a finite variation, piece-wise constant, càglàd, (Ft)-adapted
process with Z0 = 0, and
X is a càglàd, (Ft)-adapted process such that (3) and (4) are well
defined and satisfied up to the explosion time τ .

We define Cx to be the family of all such controls Cx.

With each control Cx ∈ Cx, we associate the performance criterion defined
by

J(Cx) := lim sup
T→∞

1
T

Ex

[∫ T

0

h(Xt) dt +
∑

t∈[0,T ]

(
K+∆Zt + c+

)
1{∆Zt>0}

+
∑

t∈[0,T ]

(
−K−∆Zt + c−

)
1{∆Zt<0}

]
, if Px (τ = ∞) = 1, (5)

where ∆Zt := Zt+ − Zt, and by

J(Cx) := ∞, if Px (τ = ∞) < 1. (6)

Here, h : R → R is a given function that models the running cost resulting
from the system’s operation and K+, c+,K−, c− > 0 are given constants
penalising the use of impulsive control effort.

The objective of the control problem is to minimise the performance cri-
terion defined by (5)–(6) over all controls Cx ∈ Cx. The following assumption
on the problem’s data is sufficient for our optimisation problem to be well
posed.

Assumption 1 The following conditions hold:
(a) There exists C1 > 0 such that

0 < σ2(x) ≤ C1(1 + |x|), for all x ∈ R, (7)

(b) For all x ∈ R, there exists ε > 0 such that∫ x+ε

x−ε

1 + b(s)
σ2(s)

ds < ∞, (8)

(c) h is continuous, strictly decreasing on ]−∞, 0[ and strictly increasing on
]0,∞[. Also, h(0) = 0, and there exists a constant C2 > 0 such that

h(x) ≥ C2(|x| − 1), for all x ∈ R. (9)

(d) Given any constant γ ∈ R,
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lim
x→±∞

1
σ2(x)

[h(x) + b(x)γ] = ∞. (10)

(e) There exist a− ≤ a+ such that the function

h(·)− b(·)K−


is strictly decreasing on ]−∞, a−[,
is strictly negative inside ]a−, a+[, if a− < a+,

is strictly increasing on ]a+,∞[.
(11)

(f) There exist α− ≤ α+ such that the function

h(·)− b(·)K+


is strictly decreasing on ]−∞, α−[,
is strictly negative inside ]α−, α+[, if α− < α+,

is strictly increasing on ]α+,∞[.
(12)

(g) K+, c+,K−, c− > 0.

It is worth noting that the conditions in this assumption involve no convexity
properties such as the ones often imposed in the stochastic control literature.
Also, although they appear to be involved, they are quite general and easy to
verify in practice.

Example 1. If we choose

b(x) = β|x|+ γ, σ(x) = ζ and h(x) = θ|x|p,

for some constants β, γ > 0, ζ 6= 0, θ > 0 and p > 1, then Assumption 1 holds.

Remark 1. It is worth noting that we can easily dispense of the assumption
that h is continuous. However, we decided against such a relaxation because
it would complicate the presentation of part of our analysis.

3 The solution to the control problem

With regard to the general theory of stochastic control, the solution to the
control problem formulated in the previous section can be obtained by finding
a sufficiently, for an application of Itô’s formula, smooth function w and a
constant λ satisfying the HJB equation

min
{

1
2
σ2(x)w′′(x)− b(x)|w′(x)|+ h(x)− λ,

c+ − w(x) + inf
z≥0

[
w(x + z) + K+z

]
,

c− − w(x) + inf
z≤0

[
w(x + z)−K−z

]}
= 0. (13)
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If such a pair (w, λ) exists, then, subject to suitable technical conditions, we
expect the following. Given any initial condition x ∈ R,

λ = inf
Cx∈Cx

J(Cx).

Note that this expression also reflects the fact that the optimal value of the
performance criterion is independent of the system’s initial condition. The set
of all x ∈ R such that

c− − w(x) + inf
z≤0

[
w(x + z)−K−z

]
= 0 (14)

is the part of the state space where the controller should act immediately with
an impulse in the negative direction, while the set of all x ∈ R such that

c+ − w(x) + inf
z≥0

[
w(x + z) + K+z

]
= 0 (15)

is the region of the state space where the controller should act with an impulse
in the positive direction. The interior of the set of all x ∈ R such that

1
2
σ2(x)w′′(x)− b(x)|w′(x)|+ h(x)− λ = 0 (16)

defines the part of the state space in which the controller should act only
through the exercise of absolutely continuous control of the drift. Inside this
region, it is optimal to choose

Ut = − sgn(w′(Xt))b(Xt). (17)

It turns out that all of these statements, are indeed true.
Now, we conjecture that an optimal strategy is characterised by five points,

y2 < y1 < a < x1 < x2, and takes the form that can be described as follows. If
the state space process X assumes any value x ≥ x2, then impulsive control is
exercised to “push” it instantaneously to the level x1. Similarly, whenever the
state process X assumes a value x ≤ y2, impulsive control action is used to
reposition it at y1. As long as the state process is inside the interval ]y2, x2[,
the controller expends absolutely continuous control effort at the maximum
rate, given by b(X), to “push” the state process X towards a, which, in view
of (17) is associated with (21) below. We therefore look for a solution (w, λ)
to the HJB equation (13) such that

w(x) = w(x1) + K−(x− x1) + c−, for x ≥ x2, (18)
1
2
σ2(x)w′′(x)− b(x)|w′(x)|+ h(x)− λ = 0, for x ∈ ]y2, x2[, (19)

w(x) = w(y1) + K+(y1 − x) + c+, for x ≤ y2, (20)

w′(x)


< 0, for x < a,

= 0, for x = a,

> 0, for x > a.

(21)
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Assuming that this strategy is indeed optimal, we need a system of appro-
priate equations to determine the free-boundary points y2, y1, a, x1, x2 and
the constant λ. To derive such equations, we argue as follows. With regard
to the boundary points y2 and x2 that separate the three regions defined by
(14)–(16) and the so-called “smooth-pasting condition”, we impose

w′(y2+) = −K+ and w′(x2−) = K−. (22)

Now, relative to impulses in the negative direction, let us consider the inequal-
ity

c− − w(x) + inf
z≤0

[
w(x + z)−K−z

]
≥ 0.

Assuming for the sake of the argument that we have somehow calculated w,
this inequality implies

c− − w(x2) + w(x)−K−(x− x2) ≥ 0, for all x ≤ x2.

With regard to (18) and the fact that x2 is a constant, this observation implies
that the function x 7→ w(x) − K−x has a local minimum at x = x1, which
can be true only if

w′(x1) = K−. (23)

Moreover, for x = x2, (18) implies∫ x2

x1

w′(s) ds = K− (x2 − x1) + c−. (24)

Similarly, a consideration of impulses in the positive direction leads to

w′(y1) = −K+ and
∫ y1

y2

w′(s) ds = −K+ (y1 − y2)− c+. (25)

Summarising the considerations above, a candidate for an optimal strategy
is characterised by six parameters, namely y2 < y1 < a < x1 < x2 and λ, and
a function w such that (18)–(25) are all true. Now, (19) and (21) can both be
true only if w satisfies

1
2
σ2(x)w′′(x)− sgn(x− a)b(x)w′(x) + h(x)− λ = 0, for x ∈ ]y2, x2[,

which is the case if

w′(x) = g(x, λ, a), for all x ∈ ]y2, x2[, (26)

where g is defined by

g(x, λ, a) := p′a(x)
∫ x

a

[λ− h(s)] ma(ds), x ∈ ]y2, x2[. (27)

Here, pa and ma are defined by
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pa(x) :=

{∫ x

a
exp

(
2

∫ s

a
b(u)σ−2(u) du

)
ds, if x ≥ a,

−
∫ a

x
exp

(
2

∫ a

s
b(u)σ−2(u) du

)
ds, if x < a,

(28)

ma(dx) :=
2

p′a(x)σ2(x)
dx. (29)

It follows that, to determine the six parameters y2 < y1 < a < x1 < x2

and λ, we have to solve the system of the following six algebraic, non-linear
equations:

g(x2, λ, a) = K−, g(x1, λ, a) = K−, (30)

g(y2, λ, a) = −K+, g(y1, λ, a) = −K+, (31)∫ x2

x1

g(s, λ, a) ds = K− (x2 − x1) + c−, (32)∫ y1

y2

g(s, λ, a) ds = −K+ (y1 − y2)− c+. (33)

where g is as in (27).
At this point, it is worth observing that pa and ma are the scale function

and the speed measure, respectively, of the uncontrolled Itô-diffusion

dXt = − sgn(Xt − a)b(Xt) dt + σ(Xt) dWt.

The following result asserts that a solution to the HJB equation (13) that
conforms with all of the heuristic considerations above indeed exists. Its proof
is developed in the Appendix.

Lemma 1. Suppose that Assumption 1 holds. The system of equations (30)–
(33), has a solution (y2, y1, a, x1, x2, λ) such that y2 < y1 < a < x1 < x2, and,
if w is the function defined by (18), (20) and (26), then w ∈ W 2,∞

loc (R), w
satisfies (21), and the pair (w, λ) is a classical solution to the HJB equation
(13).

We can now establish our main result.

Theorem 1. Consider the control problem formulated in Section 2, suppose
that Assumption 1 holds and let (w, λ) be the solution to the HJB equation
(13) provided by Lemma 1. Given any initial condition x ∈ R,

λ = inf
Cx∈Cx

J(Cx), (34)

and the strategy discussed above, which is constructed rigorously in the proof
below, is optimal.

Proof. Throughout this proof, we fix the solution (w, λ) to the HJB equation
(13) constructed in Lemma 1. We also fix an initial condition x ∈ R.
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Consider any admissible control Cx ∈ Cx such that J(Cx) < ∞. Using
Itô’s formula, we calculate

w(XT+) = w(x) +
∫ T

0

[
1
2
σ2(Xs)w′′(Xs) + Usw

′(Xs)
]

ds

+
∫ T

0

σ(Xs)w′(Xs) dWs +
∑

s∈[0,T ]

[w(Xs + ∆Zs)− w(Xs)] ,

which implies

IT (Cx) :=
∫ T

0

h(Xs) ds +
∑

s∈[0,T ]

(
K+∆Zt + c+

)
1{∆Zt>0}

+
∑

s∈[0,T ]

(
−K−∆Zt + c−

)
1{∆Zt<0}

= λT + w(x)− w(XT+) +
∫ T

0

σ(Xs)w′(Xs) dWs

+
∫ T

0

[
1
2
σ2(Xs)w′′(Xs) + Usw

′(Xs) + h(Xs)− λ

]
ds

+
∑

s∈[0,T ]

[
w(Xs + ∆Zs)− w(Xs) + K+∆Zs + c+

]
1{∆Zs>0}

+
∑

s∈[0,T ]

[
w(Xs + ∆Zs)− w(Xs)−K−∆Zs + c−

]
1{∆Zs<0}.

(35)

With reference to (4), we note that Utw
′(Xt) ≥ −b(Xt)|w′(Xt)|. Combining

this observation with the fact that (w, λ) satisfies the HJB equation (13), we
calculate

IT (Cx) ≥ λT + w(x)− w(XT+) +
∫ T

0

σ(Xs)w′(Xs) dWs. (36)

By construction, w is C1, w′(x) = K−, for all x ≥ x2, and w′(x) = −K+,
for all x ≤ y2. Therefore, there exists a constant C3 > 0 such that

w(x) ≤ C3(1 + |x|) and |w′(x)| ≤ C3, for all x ∈ R. (37)

For such a choice of C3, (36) yields

IT (Cx) ≥ λT + w(x)− C3 − C3 |XT+|+
∫ T

0

σ(Xs)w′(Xs) dWs. (38)

Now, with respect to Assumption 1.(c),
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∞ > J(Cx) ≥ −C2 + C2 lim sup
T→∞

1
T

Ex

[∫ T

0

|Xs| ds

]
. (39)

These inequalities imply

Ex

[∫ T

0

|Xs| ds

]
< ∞, for all T > 0, (40)

and lim inf
T→∞

1
T

Ex [|XT+|] = 0. (41)

To see (41), suppose that lim infT→∞ T−1Ex [|XT+|] > ε > 0. This implies
that there exists T1 ≥ 0 such that Ex [|Xs+|] > εs/2, for all s ≥ T1. Since the
sample paths of X have countable discontinuities, it follows that

lim sup
T→∞

1
T

Ex

[∫ T

0

|Xs| ds

]
≥ lim sup

T→∞

1
T

∫ T

T1

εs

2
ds = ∞,

which contradicts (39).
With regard to (7) in Assumption 1, the second inequality in (37), and

(40), we calculate

Ex

[∫ T

0

[σ(Xs)w′(Xs)]
2
ds

]
≤ C2

3C1

[
T + Ex

[∫ T

0

|Xs| ds

]]
< ∞, (42)

for all T > 0, which proves that the stochastic integral in (38) is a square
integrable martingale and therefore has zero expectation. In view of this ob-
servation, we can take expectations in (38) and divide by T to obtain

1
T

Ex [IT (Cx)] ≥ λ +
w(x)

T
− C3

T
− C3

T
Ex [|XT+|] .

In view of (41) and the definition of IT (Cx) in (35), we can pass to the limit
T →∞ to obtain J(Cx) ≥ λ.

To prove the reverse inequality, suppose that we can find a control

Ĉx = (Ω̂, F̂ , F̂t, P̂x, Ŵ , Û , Ẑ, X̂, τ̂) ∈ Cx

such that

Ût = − sgn(X̂t − a)b(X̂t), (43)

X̂t+ ∈ [y2, x2], (44)

∆Ẑt1{∆Ẑt>0} = (y1 − y2)1{X̂t=y2}, (45)

∆Ẑt1{∆Ẑt<0} = −(x2 − x1)1{X̂t=x2}, (46)
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for all t ≥ 0, P̂x-a.s.. Plainly, (44) implies that X̂ is non-explosive, so that
τ̂ = ∞, P̂x-a.s.. Also, since w satisfies (21), Ûtw

′(X̂t) = −b(X̂t)|w′(X̂t)|. In
view of this observation and (18)–(20), we can see that, in this context, (35)
implies

IT (Ĉx) = λT + w(x)− w(X̂T+) +
∫ T

0

σ(X̂s)w′(X̂s) dŴs. (47)

Now, (7) in Assumption 1, (37) and (44) imply

Ex

[∫ T

0

[
σ(X̂s)w′(X̂s)

]2

ds

]
≤ C2

3C1 (1 + |y2| ∨ |x2|) T < ∞,

for all T > 0, which proves that the stochastic integral in (47) is a square
integrable martingale, and

lim
T→∞

1
T

Ex

[
|w(X̂T+)|

]
≤ lim

T→∞

C3 (1 + |y2| ∨ |x2|)
T

= 0.

It follows that
lim

T→∞

1
T

Ex

[
IT (Ĉx)

]
= λ,

which proves that J(Ĉx) = λ, and establishes (34).
It remains to construct a control Ĉx ∈ Cx satisfying (43)–(46), which

amounts to constructing a weak solution (Ω̂, F̂ , F̂t, P̂x, Ŵ , Ẑ, X̂) to the SDE

dX̂t = − sgn(X̂t − a)b(X̂t) dt + dẐt + σ(X̂t) dŴt (48)

that satisfies (44)–(46). To this end, we fix a filtered probability space
(Ω̂, F̂ , F̄t, P̂x) satisfying the usual conditions and supporting a standard, one-
dimensional Brownian motion W̄ . By appealing to a simple induction argu-
ment, we construct a càglàd, piece-wise constant process Z̄ with Z̄0 = 0 such
that, if

X̄t := pa(x) + Z̄t + W̄t, (49)

then

X̄t+ ∈ [pa(y2), pa(x2)] , (50)
∆Z̄t1{∆Z̄t>0} = (pa(y1)− pa(y2))1{X̄t=pa(y2)}, (51)

∆Z̄t1{∆Z̄t<0} = − (pa(x2)− pa(x1))1{X̄t=pa(x2)}, (52)

for all t ≥ 0, P̂x-a.s.. The function pa appearing here is the solution to the
ODE

1
2
σ2(x)p′′a(x)− sgn(x− a)b(x)p′a(x) = 0. (53)

that is given by (28). In what follows, we denote by qa the inverse function of
pa. For future reference, we note that qa satisfies
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q′a (pa(x)) =
1

p′a(x)
and q′′a (pa(x)) = − p′′a(x)

[p′a(x)]3
. (54)

Now, we consider the continuous, increasing process A defined by

At :=
∫ t

0

σ̃−2(X̄s) ds,

where
σ̃(x) := p′a

(
qa(x)

)
σ
(
qa(x)

)
, x ∈ R, (55)

and we observe that limt→∞ At = ∞ thanks to (7) in Assumption 1 and (50).
Also, we denote by C the inverse of A defined by

Ct := inf {s ≥ 0 | As > t} ,

and we note that limt→∞ Ct = ∞. Since C is continuous, if we define

F̂t := F̄Ct
, X̃t := X̄Ct

, Z̃t := Z̄Ct
and Mt := W̄Ct

, (56)

then

X̃, Z̃ are càglàd, (F̂t)-adapted processes satisfying (50)–(52), (57)

and M is a continuous, (F̂t)-local martingale. Furthermore, if we define

Ŵt :=
∫ t

0

σ̃−1(X̃s) dMs,

then, in view of (49) and (56),

dX̃t = dZ̃t + σ̃(X̃t) dŴt, X̃0 = pa(x).

To see that Ŵ is a standard (F̂t)-Brownian motion, we first observe that

〈M〉t = Ct =
∫ Ct

0

σ̃2(X̄s) dAs =
∫ t

0

σ̃2(X̃s) ds,

the last equality following thanks to the time change formula and the fact
that ACs

= s. It follows that

〈Ŵ 〉t =
∫ t

0

σ̃−2(X̃s) d〈M〉s = t.

However, with reference to Lévy’s characterisation theorem, this calculation
and the fact that Ŵ is a continuous, (F̂t)-local martingale imply that Ŵ is
an (F̂t)-Brownian motion.

Finally, we define
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X̂t := qa(X̃t) and Ẑt := 1{t>0}
∑

s∈ [0,t[

[
qa(X̃s + ∆Z̃s)− qa(X̃s)

]
. (58)

In view of (57), we can verify that these processes satisfy (44)–(46), while an
application of Itô’s formula yields

X̂t = x +
∫ t

0

1
2
σ̃2

(
pa(X̂s)

)
q′′a

(
pa(X̂s)

)
ds + Ẑt

+
∫ t

0

σ̃
(
pa(X̂s)

)
q′a

(
pa(X̂s)

)
dŴs.

However, this SDE, (53), (54) and the identity

σ̃
(
pa(x)

)
= p′a(x)σ(x), x ∈ R,

which follows from the definition of σ̃ in (55), imply that (48) is satisfied, and
the construction is complete. �

Appendix: Proof of Lemma 1

Before addressing the proof of Lemma 1, we first establish some preliminary
results. For easy future reference, we note the calculations

∂g

∂x
(x, λ, a) = − 2

σ2(x)
[
h(x)− b(x)|g(x, λ, a)| − λ

]
, (59)

∂g

∂λ
(x, λ, a) =

{
p′a(x)ma ([a, x]) > 0, if x > a,

−p′a(x)ma ([x, a]) < 0, if x < a,
(60)

which follow from the definition of g in (27). The development of our analysis
requires the following definitions:

λ∗(a) := inf
{

λ ∈ R | sup
x≥a

g(x, λ, a) = ∞
}

, for a ∈ R, (61)

∗λ(a) := inf
{

λ ∈ R | inf
x≤a

g(x, λ, a) = −∞
}

, for a ∈ R, (62)

with the usual convention that inf ∅ = ∞.

Lemma 2. Fix any a ∈ R and suppose that Assumption 1 is true. If λ∗(a) and
∗λ(a) are defined as in (61) and (62), respectively, then λ∗(a), ∗λ(a) ∈ ]0,∞],
and

lim
x→∞

g(x, λ, a) =

{
−∞, if λ < λ∗(a),
∞, if λ ∈ [λ∗(a),∞] ∩ R,

(63)

lim
x→−∞

g(x, λ, a) =

{
∞, if λ < ∗λ(a),
−∞, if λ ∈ [∗λ(a),∞] ∩ R.

(64)
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Proof. We first prove that, given any λ, a ∈ R,

the equation g(x, λ, a) = 0 has at most two solutions x ∈ ]a,∞[,
(65)

and at most two solutions x ∈ ]−∞, a[.

Fix any λ, a ∈ R, and consider the solvability of g(x, λ, a) = 0 for x ∈ ]a,∞[.
Assumption 1.(c) implies that there exist at most two points x > a such that
h(x) = λ. Also, (59) implies that

given any x > a such that g(x, λ, a) = 0,
(66)

∂g

∂x
(x, λ, a) = − 2

σ2(x)
[h(x)− λ] .

Combining these observations with the boundary condition g(a, λ, a) = 0, we
can conclude that the number of solutions of g(x, λ, a) = 0 inside ]a,∞[ is less
than or equal to the number of solutions of h(x) = λ inside ]a,∞[, which is
at most two. Similarly, we show that the number of solutions of g(x, λ, a) = 0
inside ]−∞, a[ is also less than or equal to two.

Now, we show that

lim
x→∞

g(x, λ, a), lim
x→−∞

g(x, λ, a) ∈ {−∞,∞}, for all a, λ ∈ R. (67)

With reference to (65), the conclusion limx→∞ g(x, λ, a) ∈ {−∞,∞} will fol-
low if we show that either of

lim inf
x→∞

g(x, λ, a) ∈ [0,∞[, lim sup
x→∞

g(x, λ, a) ∈ ]−∞, 0], (68)

leads to a contradiction. Assuming that the first limit in (68) is true, we choose
a sequence xn →∞ such that

lim
n→∞

g(xn, λ, a) = lim inf
x→∞

g(x, λ, a) and lim
n→∞

∂g

∂x
(xn, λ, a) = 0.

If we assume that the second limit in (68) is true, then we choose a sequence
(xn) in a similar fashion. In either case, we define γ := supn≥1 |g(xn, λ, a)|.
Observing that γ ∈ R, and referring to (59) we calculate

0 = lim
n→∞

−2
σ2(xn)

[h(xn)− b(xn)g(xn, λ, a)− λ]

≤ lim
n→∞

−2
σ2(xn)

[h(xn)− b(xn)γ − λ]

= −∞,

the inequality following because b ≥ 0, and the last equality following thanks
to Assumption 1.(d). However this calculation provides the required contra-
diction. Likewise, we can show that limx→−∞ g(x, λ, a) ∈ {−∞,∞}.
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We can now prove the claims made relative to λ∗(a). With regard to the
definition of g in (27), the positivity of h and a simple continuity argument, we
can see that λ∗(a) ∈ ]0,∞]. Also, the fact that g(x, ·, a) is strictly increasing,
for all x > a, which follows from (60), implies

sup
x≥a

g(x, λ, a)

{
< ∞, for all λ < λ∗(a),
= ∞, for all λ ∈ ]λ∗(a),∞] ∩ R.

To show that supx≥a g(x, λ∗(a), a) = ∞, and thus, in the light of (67),
complete the proof of (63), we argue by contradiction. To this end, we assume
that λ∗(a) < ∞ and

lim
x→∞

g(x, λ∗(a), a) = −∞.

This limit and Assumption 1.(c) imply that there exists x̂(a) > a such that

g(x, λ∗(a), a) < 0 and h(x)− λ∗(a) > 0, for all x ≥ x̂(a). (69)

In view of the fact that limx→∞ g(x, λ, a) = ∞, for all λ > λ∗(a), (66) and the
second inequality in (69), we can appeal to a simple contradiction argument
to see that

g(x, λ, a) > 0, for all x ≥ x̂(a) and λ > λ∗(a).

However, this and the first inequality in (69) imply

lim
λ↓λ∗(a)

g(x, λ, a) ≥ 0 > g(x, λ∗(a), a), for all x ≥ x̂(a),

which contradicts the continuity of g.
Proving the statements relating to ∗λ(a) involves similar arguments. �
It is worth noting that the consideration of λ∗ and ∗λ is not a redundant

exercise. Indeed, we can easily construct examples in which λ∗(0), ∗λ(0) < ∞.
With reference to the structure of the system of equations (30)–(33), which
involves the functions g(·, ·, ·)+K+ and g(·, ·, ·)−K−, we consider the following
definitions:

λ∗(a) := inf
{

λ > 0 | sup
x≥a

g(x, λ, a) ≥ K−
}

, (70)

∗λ(a) := inf
{

λ > 0 | inf
x≤a

g(x, λ, a) ≤ −K+

}
. (71)

Lemma 3. Given a ∈ R, λ∗(a) > λ∗(a) > 0, and the equation g(x, λ, a) =
K− defines uniquely two C1 functions x1(·, a), x2(·, a) : ]λ∗(a), λ∗(a)[→ R
such that

a < x1(λ, a) < x2(λ, a) and a+ < x2(λ, a), for all λ ∈ ]λ∗(a), λ∗(a)[,

where a+ is as in Assumption 1.(e). Furthermore, the following statements
are true:
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x1(·, a) (resp., x2(·, a)) is strictly decreasing (resp., increasing), (72)
lim

λ↓λ∗(a)
x1(λ, a) = lim

λ↓λ∗(a)
x2(λ, a), lim

λ↑λ∗(a)
x2(λ, a) = ∞, (73)

h(x)− b(x)K− − λ > 0, for all x > x2(λ, a). (74)

Proof. Fix any a ∈ R. In view of (27) and the positivity of h, we can see that
λ∗(a) > 0. Also, the definitions of λ∗(a), λ∗(a) and the continuity of g imply
trivially that λ∗(a) < λ∗(a).

Now, observe that a simple inspection of (59) reveals that

if x > a satisfies g(x, λ, a) = K−, then
(75)

∂g

∂x
(x, λ, a) = − 2

σ2(x)
[
h(x)− b(x)K− − λ

]
.

With regard to the definitions of λ∗(a) and λ∗(a), (63) in Lemma 2, the fact
that g(a, λ, a) = 0, Assumption 1.(e) and the continuity of g, this observation
implies the following:

(I) If λ < λ∗(a), then the equation g(x, λ, a) = K− has no solutions
x ∈ ]a,∞[.

(II) If λ ∈ ]λ∗(a), λ∗(a)[, then the equation g(x, λ, a) = K− has one solu-
tion x1(λ, a) > a such that

h(x1(λ, a))− b(x1(λ, a))K− − λ < 0, (76)

and one solution x2(λ, a) > x1(λ, a) such that

h(x2(λ, a))− b(x2(λ, a))K− − λ > 0. (77)

Moreover, (74) is true.
(III) If λ ≥ λ∗(a), then the equation g(x, λ, a) = K− has one solution

x1(λ, a) > a such that

h(x1(λ, a))− b(x1(λ, a))K− − λ < 0. (78)

Since λ∗(a) > 0, Assumption 1.(e) and (77) imply that the solution x2 in
(II) above satisfies x2(λ, a) > a+. Also, (I) and (II) and the continuity of g
imply the first equality in (73), while (II), (III) and (72) imply the second
equality in (73). To prove (72), we differentiate g(xj(λ, a), λ, a) = K− with
respect to λ to calculate

∂xj

∂λ
(λ, a) =

σ2(xj(λ, a)) ∂g
∂λ (xj(λ, a), λ, a)

2 [h(xj(λ, a))− b(xj(λ, a))K− − λ]
,

for all λ ∈ ]λ∗(a), λ∗(a)[, j = 1, 2. However, this calculation, (60) and (76)
(resp., (77)) imply that the function x1(·, a) (resp., x2(·, a)) is strictly de-
creasing (resp., increasing), and the proof is complete. �

With regard to the problem’s data symmetry, we can trivially modify the
arguments of the preceding proof to establish the following result.
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Lemma 4. Given a ∈ R, ∗λ(a) > ∗λ(a) > 0, and the equation g(x, λ, a) =
−K+ defines uniquely two C1 functions y1(·, a), y2(·, a) : ]∗λ(a), ∗λ(a)[→ R
such that

y2(λ, a) < y1(λ, a) < a and y2(λ, a) < α−, for all λ ∈ ]∗λ(a), ∗λ(a)[

where α− is as in Assumption 1.(f). Furthermore,

y2(·, a) (resp., y1(·, a)) is strictly decreasing (resp., increasing), (79)
lim

λ↓∗λ(a)
y1(λ, a) = lim

λ↓∗λ(a)
y2(λ, a), lim

λ↑∗λ(a)
y2(λ, a) = −∞, (80)

h(x)− b(x)K+ − λ > 0, for all x < y2(λ, a). (81)

Proof of Lemma 1. With reference to (32)–(33), we define the functions
Q∗(·, a) : ]λ∗(a), λ∗(a)[→ R and ∗Q(·, a) : ]∗λ(a), ∗λ(a)[→ R by

Q∗(λ, a) =
∫ x2(λ,a)

x1(λ,a)

[
g(s, λ, a)−K−]

ds− c−, (82)

∗Q(λ, a) =
∫ y1(λ,a)

y2(λ,a)

[
g(s, λ, a) + K+

]
ds + c+, (83)

respectively, where x1, x2 are as in Lemma 3, and y1, y2 are as in Lemma 4.
Given these definitions, we will establish the claim regarding the solvability
of the system of equations (30)–(33) if we prove that

there exist ã ∈ R and λ̃ ∈ ]λ∗(ã), λ∗(ã)[∩ ]∗λ(ã), ∗λ(ã)[
(84)

such that Q∗(λ̃, ã) = ∗Q(λ̃, ã) = 0.

Differentiating (82) with respect to λ, and using the fact that both of
g(x1(λ, a), λ, a) and g(x2(λ, a), λ, a) are equal to the constant K−, we calculate

∂Q∗

∂λ
(λ, a) =

∫ x2(λ,a)

x1(λ,a)

∂g

∂λ
(s, λ, a) ds > 0, for λ ∈ ]λ∗(a), λ∗(a)[, (85)

the inequality following thanks to (60) and the fact that a < x1 < x2. Also,
with regard to (60), (63) and (72)–(73) in Lemma 3, we can see that

lim
λ↓λ∗(a)

Q∗(λ, a) = −c− < 0 and lim
λ↑λ∗(a)

Q∗(λ, a) = ∞. (86)

However, (85) and (86) imply that there exists a unique point Λ∗(a) ∈
]λ∗(a), λ∗(a)[ such that Q∗(Λ∗(a), a) = 0. Similarly, we can show that given
any a ∈ R, there exists a unique point ∗Λ(a) ∈ ]∗λ(a), ∗λ(a)[ such that
∗Q(∗Λ(a), a) = 0.

With regard to these calculations, (84) will follow if we prove that
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there exists ã ∈ R such that Λ∗(ã) = ∗Λ(ã). (87)

To this end, we differentiate Q∗(Λ∗(a), a) = 0 with respect to a to obtain

d

da
Λ∗(a) = −

∂Q∗

∂a (Λ∗(a), a)
∂Q∗

∂λ (Λ∗(a), a)
. (88)

Furthermore, we calculate

∂p′a
∂a

(x) = − sgn(x− a)
2b(a)
σ2(a)

p′a(x), for x 6= a,

which, in view of the definition of g in (27), implies

∂g

∂a
(x, λ, a) =

2 [h(a)− λ]
σ2(a)

p′a(x), for x 6= a.

Using this calculation and the fact that g(x, λ, a) = K− for x = x1(λ, a) or
x = x2(λ, a), we can see that

∂Q∗

∂a
(λ, a) =

2 [h(a)− λ]
σ2(a)

∫ x2(λ,a)

x1(λ,a)

p′a(s) ds.

which, combined with (85) and (88), it implies

d

da
Λ∗(a) > 0 for all a ∈ R such that h(a) < Λ∗(a). (89)

Using similar arguments, we can also show that

d

da
∗Λ(a) < 0, for all a ∈ R such that h(a) < ∗Λ(a). (90)

Now, if we assume that h(a) < Λ∗(a), for all a ∈ R, then (89) implies

h(a) < Λ∗(a) < Λ∗(0), for all a < 0,

which contradicts Assumption 1.(c). With respect to the usual convention
sup ∅ = −∞, it follows that A− := sup {a ∈ R | Λ∗(a) ≤ h(a)} > −∞. More-
over, since λ∗(a) < Λ∗(a), and h(a) < λ∗(a) for all a > 0 (see (27) and recall
the definition of λ∗(a) and Assumption 1.(c)), it follows that

A− := sup {a ∈ R | Λ∗(a) ≤ h(a)} ∈ ]−∞, 0[. (91)

Using a similar reasoning, we can also show that

A+ := inf {a ∈ R | ∗Λ(a) ≤ h(a)} ∈ ]0,∞[. (92)

With regard to (89)–(92), it follows that
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the function Λ∗(·)− ∗Λ(·) is strictly increasing
(93)

on the interval ]A−, A+[.

To proceed further, suppose that ∗Λ(A+) ≥ Λ∗(A+), so that h(A+) ≥
∗Λ(A+) ≥ Λ∗(A+). Then, (27) and Assumption 1.(c) combined with the fact
that A+ > 0 imply

g(x,Λ∗(A+), A+) < 0, for all x > A+,

which contradicts the definition of Λ∗. However, this proves that

Λ∗(A+)− ∗Λ(A+) > 0. (94)

Similarly, we can prove that Λ∗(A−) − ∗Λ(A−) < 0, which, combined with
(93) and (94), implies (87), and, therefore, (84). Moreover, these arguments
show that

h(ã) < λ̃. (95)

Now, with ã, λ̃ being as in (84), we define

w′(x) := g(x, λ̃, ã), for x ∈ [y2, x2] ≡ [y2(λ̃, ã), x2(λ̃, ã)]. (96)

With regard to our construction thus far, this, (18) and (20) define a unique,
modulo an additive constant, function w ∈ W 2,∞

loc (R) satisfying (18)–(20).
With reference to (63) and (64) in Lemma 2 and (84), we can see that

lim
x→−∞

g(x, λ̃, ã) = ∞ and lim
x→∞

g(x, λ̃, ã) = −∞.

With regard to the definition of g in (27) and (95), we can combine these
asymptotics with (65), the fact that g(ã, λ̃, ã) = 0 and the fact that

g
(
y2(λ̃, ã), λ̃, ã

)
= −K− < 0 < K+ = g

(
x2(λ̃, ã), λ̃, ã

)
,

to conclude that w satisfies (21) as well.
To complete the proof, we still need to prove that the function w satisfies

the HJB equation (13). With regard to its construction, this will follow if we
show that

1
2
σ2(x)w′′(x)− b(x)w′(x) + h(x)− λ ≥ 0, for all x > x2, (97)

1
2
σ2(x)w′′(x) + b(x)w′(x) + h(x)− λ ≥ 0, for all x < y2, (98)

w(x + z)− w(x)−K−z + c− ≥ 0, for z < 0, x ∈ R, (99)

w(x + z)− w(x) + K+z + c+ ≥ 0, for z > 0, x ∈ R. (100)

In view of (96), inequalities (97) and (98) follow by a straightforward calcula-
tion that shows that they are implied by (74) and (81) respectively. Inequality
(99) is equivalent to
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−
∫ x

x+z

[
w′(s)−K−]

ds + c− ≥ 0, for z < 0, x ∈ R. (101)

With regard to (21), the inequalities

w′(x)


< K−, for x < x1,

> K−, for x ∈ ]x1, x2[,
= K−, for x > x2,

and equation (82), it is straightforward to show that (101) is true. Finally,
the proof of (100) is similar. �
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