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Abstract

We consider the one-dimensional diffusion X that satisfies the SDE

dXt = b(Xt) dt+ σ(Xt) dWt (SDE)

in the interior int I = ]α, β[ of a given interval I ⊆ [−∞,∞], where b, σ : int I →
R are Borel-measurable functions and W is a standard one-dimensional Brownian
motion. We allow for the endpoints α and β to be inaccessible or absorbing. Given
a Borel-measurable function r : I → R+ that is uniformly bounded away from 0, we
establish a new analytic representation of the r(·)-potential of a continuous additive
functional of X. Furthermore, we derive a complete characterisation of differences
of two convex functions in terms of appropriate r(·)-potentials, and we show that a
function F : I → R+ is r(·)-excessive if and only if it is the difference of two convex
functions and −

(
1
2
σ2F ′′ + bF ′ − rF

)
is a positive measure. We use these results to

study the optimal stopping problem that aims at maximising the performance index

Ex

[
exp

(
−
∫ τ

0

r(Xt) dt

)
f(Xτ )1{τ<∞}

]
over all stopping times τ , where f : I → R+ is a Borel-measurable function that may
be unbounded. We derive a simple necessary and sufficient condition for the value
function v of this problem to be real-valued. In the presence of this condition, we
show that v is the difference of two convex functions, and we prove that it satisfies
the variational inequality max

{
1
2
σ2v′′ + bv′ − rv, f − v

}
= 0 in the sense of distribu-

tions, where f identifies with the upper semicontinuous envelope of f in the interior
int I of I. Conversely, we derive a simple necessary and sufficient condition for a so-
lution to this variational inequality to identify with the value function v. Furthermore,
we establish several other characterisations of the solution to the optimal stopping
problem, including a generalisation of the so-called “principle of smooth fit”. In our
analysis, we also make a construction that is concerned with pasting weak solutions
to (SDE) at appropriate hitting times, which is an issue of fundamental importance
to dynamic programming.
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Optimal stopping of a one-dimensional diffusion

1 Introduction

We consider the one-dimensional diffusion X that satisfies the stochastic differential
equation

dXt = b(Xt) dt+ σ(Xt) dWt (1.1)

in the interior int I = ]α, β[ of a given interval I ⊆ [−∞,∞]. We assume that b, σ : int I →
R are Borel-measurable functions satisfying appropriate local integrability and non-
degeneracy conditions ensuring that the SDE (1.1) has a weak solution that is unique
in the sense of probability law up to a possible explosion time at which X hits the
boundary {α, β} of I (see Assumption 2.1 in Section 2). If the boundary point α (resp.,
β) is inaccessible, then the interval I is open from the left (resp., open from the right),
while, if α (resp., β) is not inaccessible, then it is absorbing and the interval I is closed
from the left (resp., closed from the right).

In the presence of Assumption 2.1, a weak solution to (1.1) can be obtained by first
time-changing a standard one-dimensional Brownian motion and then making an ap-
propriate state space transformation. This construction can be used to prove all of the
results that we obtain by first establishing them assuming that the diffusion X iden-
tifies with a standard one-dimensional Brownian motion. However, such an approach
would hardly simplify the formalism because the data b (resp., σ) appear in all of the
analysis exclusively (resp., mostly) though the operators L, Lac defined by (3.2)–(3.3)
below. Furthermore, deriving the general results, which are important because many
applications assume specific functional forms for the data b and σ, by means of this
approach would require several time changes and state space transformations, which
would lengthen the paper significantly.

Given a point z ∈ int I, we denote by Lz the right-sided local time process of X
at level z (see Revuz and Yor [35, Section VI.1] for the precise definition of Lz and
its properties). Also, we denote by B(J ) the Borel σ-algebra on any given interval
J ⊆ [−∞,∞]. With each signed Radon measure µ on

(
int I,B(int I)

)
such that σ−2 is

locally integrable with respect to |µ|, we associate the continuous additive functional

Aµt =

∫ β

α

Lzt
σ2(z)

µ(dz), t ∈ [0, Tα ∧ Tβ [, (1.2)

where Tα (resp., Tβ) is the first hitting time of α (resp., β). It is worth noting that (1.2)
provides a one-to-one correspondence between continuous additive functionals of the
Markov process X and signed Radon measures on

(
int I,B(int I)

)
(see Theorem X.2.9,

Corollary X.2.10 and the comments on Section 2 at the end of Chapter X in Revuz and
Yor [35]). We also consider a discounting rate function r : I → R+, we assume that this
is a Borel-measurable function that is uniformly bounded away from 0 and satisfies a
suitable local integrability condition (see Assumption 2.2 in Section 2), and we define

Λt ≡ Λt(X) =

∫ t

0

r(Xs) ds. (1.3)

Given a signed Radon measure µ on
(
int I,B(int I)

)
, we consider the r(·)-potential

of the continuous additive functional Aµ, which is defined by

Rµ(x) = Ex

[∫ Tα∧Tβ

0

e−Λt dAµt

]
. (1.4)

We recall that a function F : int I → R is the difference of two convex functions if and
only if its left-hand side derivative F ′− exists and its second distributional derivative is
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Optimal stopping of a one-dimensional diffusion

a measure, and we define the measure LF by

LF (dx) =
1

2
σ2(x)F ′′(dx) + b(x)F ′−(x) dx− r(x)F (x) dx.

In the presence of a general integrability condition ensuring that the potential Rµ is
well-defined, we show that it is the difference of two convex functions, the measures
LRµ and −µ are equal, and

Rµ(x) =
2

C
ϕ(x)

∫
]α,x[

ψ(s)

σ2(s)p′(s)
µ(ds) +

2

C
ψ(x)

∫
[x,β[

ϕ(s)

σ2(s)p′(s)
µ(ds)

=

∫
]α,β[

2ϕ(x)ψ(x)

Cσ2(s)p′(s)
min

{
ψ(s)

ψ(x)
,
ϕ(s)

ϕ(x)

}
µ(ds), (1.5)

where C > 0 is an appropriate constant, p : int I → R is the scale function of X, and
ϕ,ψ : int I → ]0,∞[ are C1 functions with absolutely continuous with respect to the
Lebesgue measure first derivatives spanning the solution space of the ODE

1

2
σ2(x)g′′(x) + b(x)g′(x)− r(x)g(x) = 0,

and such that ϕ (resp., ψ) is decreasing (resp., increasing) (see Theorem 4.2). If the
signed measure µh is absolutely continuous with respect to the Lebesgue measure with
Radon-Nikodym derivative given by a function h, then the potential Rµh admits the
expressions

Rµh(x) = Ex

[∫ Tα∧Tβ

0

e−Λth(Xt) dt

]

=
2

C
ϕ(x)

∫ x

α

ψ(s)

σ2(s)p′(s)
h(s) ds+

2

C
ψ(x)

∫ β

x

ϕ(s)

σ2(s)p′(s)
h(s) ds (1.6)

(see Corollary 4.5 for this and other related results). Conversely, we show that, under
a general growth condition, a difference of two convex functions F : int I → R is
such that (a) both limits limy↓α F (y)/ϕ(y) and limy↑β F (y)/ψ(y) exist, (b) F admits the
characterisation

F (x) = lim
y↓α

F (y)

ϕ(y)
ϕ(x) +R−LF (x) + lim

y↑β

F (y)

ψ(y)
ψ(x), (1.7)

and (c) an appropriate form of Dynkin’s formula holds true (see Theorem 4.3). With a
view to optimal stopping, we use these results to show that a function F : I → R+ is
r(·)-excessive if and only if it is the difference of two convex functions and −LF is a
positive measure (see Theorem 5.1 for the precise result).

If r is constant, then general theory of Markov processes implies the existence of
a transition kernel ur such that Rµ(x) =

∫
]α,β[

ur(x, s)µ(ds) (see Meyer [29] and Re-
vuz [34]). If X is a standard Brownian motion, then

ur(x, s) =
1√
2r
e−
√

2r|x−s|

(see Revuz and Yor [35, Theorem X.2.8]). The general expression for this kernel pro-
vided by (1.5) is one of the new contributions of this paper. On the other hand, the
identity in (1.6) is well-known and can be found in several references (e.g., see Borodin
and Salminen [8, II.4.24]). Also, Johnson and Zervos [21] prove that the potential given
by (1.4) admits the analytic expression (1.5) and show that the measures LRµ and −µ
are equal if both of the endpoints α and β are assumed to be inaccessible.
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Optimal stopping of a one-dimensional diffusion

The representation of differences of two convex functions given by (1.7) is also new.
Such a result is important for the solution to one-dimensional infinite time horizon
stochastic control as well as optimal stopping problems using dynamic programming.
Indeed, the analysis of several explicitly solvable problems involve such a representa-
tion among their assumptions. For constant r, Salminen [37] considered more general
one-dimensional linear diffusions than the one given by (1.1) and used Martin boundary
theory (the results derived by Dynkin [15] and Kunita and Watanabe [25], in particular)
to show that every r-excessive function admits a representation that is similar to but
much less straightforward than the one in (1.7). Since a function on an open interval is
the difference of two convex functions if and only if it is the difference of two excessive
functions (see Çinlar, Jacod, Protter and Sharpe [11]), the representation derived by
Salminen [37] can be extended to differences of two convex functions. However, it is
not straightforward to derive such an extension of the representation in Salminen [37]
from (1.7) or vice-versa when the underlying diffusion satisfies (1.1) and r is constant.

The new result that a function F is r(·)-excessive if and only if it is the difference of
two convex functions and −LF is a positive measure is perhaps the simplest possible
characterisation of excessive functions because it involves only derivative operators.
In fact, we show that this result is equivalent to the characterisations of excessive
functions derived by Dynkin [16] and Dayanik [12] (see Corollary 5.2).

We use the results that we have discussed above to analyse the optimal stopping
problem that aims at maximising the performance criterion

Ex

[
exp

(
−
∫ τ

0

r(Xt) dt

)
f(Xτ )1{τ<∞}

]
(1.8)

over all stopping times τ , assuming that the reward function f is a positive Borel-
measurable function that may be unbounded (see Assumption 2.2 in Section 2). We
first prove that the value function v of this optimal stopping problem is the difference
of two convex functions and satisfies the variational inequality

max

{
1

2
σ2v′′ + bv′ − rv, f − v

}
= 0 (1.9)

in the sense of distributions, where f is defined by

f(x) =


lim supy→x f(y), if x ∈ int I,
f(α), if α is absorbing and x = α,

f(β), if β is absorbing and x = β

(1.10)

(see Definition 6.2 and Theorem 6.3.(I)–(II) in Section 6). This result provides sim-
ple criteria for deciding which parts of the interval I must be subsets of the so-called
waiting region. Indeed, the derived regularity of v implies that all points at which the
reward function f is discontinuous as well as all “minimal” intervals in which f cannot
be expressed as the difference of two convex functions (e.g., intervals throughout which
f has the regularity of a Brownian sample path) should be parts of the closure of the
waiting region. Similarly, the support of the measure (Lf)+ in all intervals in which Lf
is well-defined should also be a subset of the closure of the waiting region.

We then establish a verification theorem that is the strongest one possible because
it involves only the optimal stopping problem’s data. In particular, we derive a simple
necessary and sufficient condition for a solution w to (1.9) in the sense of distributions
to identify with the problem’s value function (see Theorem 6.4.(I)–(II)).

These results establish a complete characterisation of the value function v in terms
of the variational inequality (1.9). Indeed, they imply that the restriction of the optimal
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Optimal stopping of a one-dimensional diffusion

stopping problem’s value function v in int I identifies with the unique solution to the
variational inequality (1.9) in the sense of Definition 6.2 that satisfies the boundary
conditions

lim
y∈int I, y↓α

v(y)

ϕ(y)
= lim sup

y↓α

f(y)

ϕ(y)
and lim

y∈int I, y↑β

v(y)

ψ(y)
= lim sup

y↑β

f(y)

ψ(y)
.

It is worth noting that, if α (resp., β) is absorbing, then the corresponding boundary
condition is equivalent to

lim
y∈int I, y↓α

v(y) = lim sup
y↓α

f(y)

(
resp., lim

y∈int I, y↑β
ψ(y) = lim sup

y↑β
f(y)

)
(see (2.13)–(2.14)). Also, it is worth stressing the precise nature of these boundary
conditions. The limits on the left-hand sides are taken from inside the interior int I of I
and they indeed exist. On the other hand, the limsups on the right-hand sides are taken
from inside I itself. Therefore, if, e.g., α is absorbing, then we are faced either with

v(α) = f(α) = lim
y∈int I, y↓α

v(y) = lim sup
y↓α

f(y), if f(α) = lim sup
y↓α

f(y) ≥ lim sup
y∈int I, y↓α

f(y),

or with

v(α) = f(α) < lim
y∈int I, y↓α

v(y) = lim sup
y↓α

f(y), if f(α) < lim sup
y↓α

f(y) = lim sup
y∈int I, y↓α

f(y).

Furthermore, we prove that

v(x) = inf
{
Aϕ(x) +Bψ(x) | A,B ≥ 0 and Aϕ+Bψ ≥ f

}
(1.11)

for all x ∈ int I (see Theorem 6.4.(III)). In fact, this characterisation can be used as a
verification theorem as well (see also the discussion further below).

In the generality that we consider, an optimal stopping time might not exist (see
Examples 8.1–8.4 in Section 8). Moreover, the hitting time of the so-called “stopping
region”, which is given by

τ? = inf
{
t ≥ 0 | v(Xt) = f(Xt)

}
, (1.12)

may not be optimal (see Examples 8.2 and 8.4). In particular, Example 8.2 shows that
τ∗ may not be optimal and that an optimal stopping time may not exist at all unless f
satisfies appropriate boundary / growth conditions. Also, Example 8.4 reveals that τ?

is not in general optimal if f 6= f . In Theorem 6.3.(III), we obtain a simple sequence of
ε-optimal stopping times if f is assumed to be upper semicontinuous, and we show that
τ? is an optimal stopping time if f satisfies an appropriate growth condition.

Building on the general theory, we also consider a number of related results and
characterisations. In particular, we obtain a generalisation of the so-called “principle of
smooth fit” (see part (III) of Corollaries 7.2, 7.3 and 7.4 in Section 7).

In view of the version of Dynkin’s formula (4.41) in Corollary 4.5, we can see that, if
h is any function such that Rµh given by (1.6) is well-defined, then

sup
τ
Ex

[∫ τ∧Tα∧Tβ

0

e−Λth(Xt) dt+ e−Λτ∧Tα∧Tβ f(Xτ )1{τ<∞}

]
= Rµh(x) + sup

τ
Ex

[
e−Λτ∧Tα∧Tβ

(
f −Rµh

)
(Xτ∧Tα∧Tβ )1{τ<∞}

]
= Rµh(x) + sup

τ
Ex

[
e−Λτ∧Tα∧Tβ

(
f −Rµh

)+
(Xτ∧Tα∧Tβ )1{τ<∞}

]
. (1.13)
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Therefore, all of the results on the optimal stopping problem that we consider gener-
alise most trivially to account for the apparently more general optimal stopping problem
associated with (1.13).

The various aspects of the optimal stopping theory have been developed in sev-
eral monographs, including Shiryayev [38], Friedman [18, Chapter 16], Krylov [24],
Bensoussan and Lions [7], El Karoui [17], Øksendal [30, Chapter 10] and Peskir and
Shiryaev [32]. In particular, the solution to optimal stopping problems using classi-
cal solutions to variational inequalities has been extensively studied (e.g., see Fried-
man [18, Chapter 16], Krylov [24] and Bensoussan and Lions [7]). Results in this di-
rection typically make strong regularity assumptions on the problem data (e.g., the
diffusion coefficients are assumed to be Lipschitz continuous). To relax such assump-
tions, Øksendal and Reikvam [31] and Bassan and Ceci [4] have considered viscosity
solutions to the variational inequalities associated with the optimal stopping problems
that they study. The complete characterisation of the value function of the optimal stop-
ping problem we study in terms of solutions to the variational inequality (1.9) in the
sense of distributions is genuinely new. The only results of a similar nature that exist in
the theory of optimal stopping have been derived by Lamberton [26] who proved that
the value function of the finite version of the problem we consider here satisfies its
associated variational inequality in the sense of distributions. Furthermore, we are not
aware of any such results in the wider stochastic control literature.

Relative to the optimal stopping problem that we consider here when r is constant,
Dynkin [14] and Shiryaev [38, Theorem 3.3.1] prove that the value function v identi-
fies with the smallest r-excessive function that majorises the reward function f if f is
assumed to be lower semicontinuous. Also, Shiryaev [38, Theorem 3.3.3] proves that
the stopping time τ? defined by (1.12) is optimal if f is assumed to be continuous and
bounded, while Salminen [37] establishes the optimality of τ∗ assuming that the small-
est r-excessive majorant of f exists and f is upper semicontinuous. All of these results
follow immediately from the analysis we present here, which considers non-constant
discounting rates r and just Borel-measurable as well as unbounded reward functions
f . Recently, Dayanik and Karatzas [13] and Dayanik [12], who also considers random
discounting instead of discounting at a constant rate r, addressed the solution to the
optimal stopping problem by means of a certain concave characterisation of excessive
functions. In particular, they established a generalisation of the so-called “principle of
smooth fit” that is similar to, though not the same as, the one we derive here.

There are numerous special cases of the general optimal stopping problem we con-
sider that have been explicitly solved in the literature. Such special cases have been
motivated by applications or have been developed as illustrations of various general
techniques. In all such cases, the analysis relies on some sort of a verification the-
orem. Existing verification theorems for solutions using dynamic programming and
variational inequalities typically make strong assumptions that are either tailor-made
or difficult to verify in practice. For instance, Theorem 10.4.1 in Øksendal [30] in-
volves Lipschitz as well as uniform integrability assumptions, while, Theorem I.2.4 in
Peskir and Shiryaev [32] assumes the existence of an optimal stopping time, for which,
a sufficient condition is provided by Theorem I.2.7. Alternatively, they assume that the
so-called stopping region is a set of a simple specific form (e.g., see Rüschendorf and
Urusov [36] or Gapeev and Lerche [19]) or that the reward function f is piece-wise
smooth (see Presman [33]). The verification theorem that we establish here, which is
the best possible one because it involves the problem’s data only, suffers from no such
criticisms whatsoever.

Using martingale and change of measure techniques, Beibel and Lerche [5, 6],
Lerche and Urusov [28] and Christensen and Irle [10] developed an approach to de-
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termining an optimal stopping strategy at any given point in the interval I. Similar
techniques have also been extensively used by Alvarez [1, 2, 3], Lempa [27] and refer-
ences therein. To fix ideas, we consider the following representative cases that can be
associated with any given initial condition x ∈ I. If there exists a point d1 > x such that

C1 := sup
x∈I

f(x)

ψ(x)
=
f(d1)

ψ(d1)
, (1.14)

then v(x) = C1ψ(x) and the first hitting time of {d1} is optimal. Alternatively, if there
exist points κ ∈ ]0, 1[ and c2 < x < d2 such that

C2 := sup
x∈I

f(x)

κψ(x) + (1− κ)ϕ(x)

=
f(c2)

κψ(c2) + (1− κ)ϕ(c2)
=

f(d2)

κψ(d2) + (1− κ)ϕ(d2)
, (1.15)

then v(x) = κC2ψ(x) + (1 − κ)C2ϕ(x) and the first hitting time of {c2, d2} is optimal.
On the other hand, if x is a global maximiser of the function f/(Aψ + Bϕ), for some
A,B ≥ 0, then x is in the stopping region and v(x) = f(x). It is straightforward to
see that the conclusions associated with each of these cases follow immediately from
the representation (1.11) of the value function v (see also Corollary 7.1 and part (II) of
Corollaries 7.2, 7.3 and 7.4). It follows that (1.11) presents a unifying new character-
isation that implies the main results obtained in all of the references discussed at the
beginning of this paragraph.

In view of its corollaries, we can see that (1.11) effectively presents a verification
theorem of a local character. Indeed, its application invariably involves “guessing”
the structure of the waiting and the stopping regions, which is an issue that hardly
arises when addressing the solution to optimal stopping problems using variational
inequalities (see also the discussion after (1.10) above). Also, e.g., (1.14) on its own does
not allow for any conclusions for initial conditions x > d1 (see Example 8.5). It is also
worth noting that, if f is C1, then this approach is effectively the same as application
of the so-called “principle of smooth fit”: first order conditions at d1 (resp., c2, d2) and
(1.14) (resp., (1.15)) yield the same equations for d1, C1 (resp. c2, d2, κ, C2) as the
one that the “principle of smooth fit” yields (see also the generalisations in part (III) of
Corollaries 7.2, 7.3 and 7.4).

In stochastic analysis, a filtration can be viewed as a model for an information flow.
Such an interpretation gives rise to the following modelling issue. Consider an observer
whose information flow identifies with a filtration (Ht). At an (Ht)-stopping time τ , the
observer gets access to an additional information flow, modelled by a filtration (Gt),
that “switches on” at time τ . In this context, we construct a filtration that aggregates
the two information sources available to such an observer (see Theorem (8.6)). Build-
ing on this totally new construction, we address the issue of pasting weak solutions to
(1.1), or, more, generally, the issue of pasting stopping strategies for the optimal stop-
ping problem that we consider, at an appropriate stopping time (see Theorem (8.7) and
Corollary 8.8). Such a rather intuitive new result is fundamental to dynamic program-
ming and has effectively been assumed by several authors in the literature (e.g., see
the proof of Proposition 3.2 in Dayanik and Karatzas [13]).

The paper is organised as follows. In Section 2, we develop the context within which
the optimal stopping problem that we study is defined and we list all of the assumptions
we make. Section 3 is concerned with a number of preliminary results that are mostly
of a technical nature. In Section 4, we derive the representation (1.5) for r(·)-potentials
and the characterisation (1.7) of differences of two convex functions as well as a number
of related results. In Section 5, we consider analytic characterisations of r(·)-excessive
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functions, while, in Section 6, we establish our main results on the optimal stopping
problem that we consider. In Section 7, we present several ramifications of our general
results on optimal stopping, including a generalisation of the “principle of smooth fit”.
In Section 8, we consider a number of illustrating examples. Finally, we develop the
theory concerned with pasting weak solutions to (1.1) in the Appendix.

2 The underlying diffusion and the optimal stopping problem

We consider a one-dimensional diffusion with state space an interval of the form

I = ]α, β[ or I = [α, β[ or I = ]α, β] or I = [α, β], (2.1)

for some endpoints −∞ ≤ α < β ≤ ∞. Following Definition 5.20 in Karatzas and
Shreve [22, Chapter 5], a weak solution to the SDE (1.1) in the interval I is a collection
Sx = (Ω,F ,Ft,Px,W,X) such that (Ω,F ,Ft,Px) is a filtered probability space satisfying
the usual conditions and supporting a standard one-dimensional (Ft)-Brownian motion
W and a continuous (Ft)-adapted I-valued process X. The process X satisfies∫ t∧Tᾱ∧Tβ̄

0

[
|b(Xu)|+ σ2(Xu)

]
du <∞ (2.2)

and

Xt∧Tᾱ∧Tβ̄ = x+

∫ t∧Tᾱ∧Tβ̄

0

b(Xu) du+

∫ t∧Tᾱ∧Tβ̄

0

σ(Xu) dWu (2.3)

for all t ≥ 0 and α < ᾱ < x < β̄ < β, Px-a.s.. Here, as well as throughout the paper, we
denote by Ty the first hitting time of the set {y}, which is defined by

Ty = inf {t ≥ 0 | Xt = y} , for y ∈ [α, β],

with the usual convention that inf ∅ = ∞. The actual choice of the interval I from
among the four possibilities in (2.1) depends on the choice of the data b and σ through
the resulting properties of the explosion time Tα ∧ Tβ at which the process X hits the
boundary {α, β} of the interval I. If the boundary point α (resp., β) is inaccessible, i.e.,
if

Px
(
Tα <∞

)
= 0

(
resp., Px

(
Tβ <∞

)
= 0
)
,

then the interval I is open from the left (resp., open from the right). If α (resp., β) is
not inaccessible, then it is absorbing and the interval I is closed from the left (resp.,
closed from the right). In particular,

Xt =

{
α, if limu→Tα∧Tβ Xu = α,

β, if limu→Tα∧Tβ Xu = β,
for all t ≥ Tα ∧ Tβ . (2.4)

The following assumption ensures that the SDE (1.1) has a weak solution in I, as
described above, which is unique in the sense of probability law (see Theorem 5.15 in
Karatzas and Shreve [22, Chapter 5]).

Assumption 2.1. The functions b, σ : int I → R are Borel-measurable,

σ2(x) > 0 for all x ∈ int I ≡ ]α, β[, (2.5)

and ∫ β̄

ᾱ

1 + |b(s)|
σ2(s)

ds <∞ for all α < ᾱ < β̄ < β. (2.6)

2
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This assumption also implies that, given c ∈ int I fixed, the scale function p, given by

p(x) =

∫ x

c

exp

(
−2

∫ s

c

b(u)

σ2(u)
du

)
ds, for x ∈ int I, (2.7)

is well-defined, and the speed measure m on
(
int I,B(I)

)
, given by

m(dx) =
2

σ2(x)p′(x)
dx, (2.8)

is a Radon measure. At this point, it is worth noting that Feller’s test for explosions
provides necessary and sufficient conditions that determine whether the solution of
(1.1) hits one or the other or both of the boundary points α, β in finite time with positive
probability (see Theorem 5.29 in Karatzas and Shreve [22, Chapter 5]).

We consider the optimal stopping problem, the value function of which is defined by

v(x) = sup
(Sx,τ)∈Tx

Ex
[
e−Λτ f(Xτ )1{τ<∞}

]
= sup

(Sx,τ)∈Tx
J(Sx, τ), for x ∈ I, (2.9)

where
J(Sx, τ) = Ex

[
e−Λτ∧Tα∧Tβ f(Xτ∧Tα∧Tβ )1{τ<∞}

]
,

the discounting factor Λ is defined by (1.3) in the introduction, and the set of all stopping
strategies Tx is the collection of all pairs (Sx, τ) such that Sx is a weak solution to (1.1),
as described above, and τ is an associated (Ft)-stopping time.

We make the following assumption, which also implies the identity in (2.9).

Assumption 2.2. The reward function f : I → R+ is Borel-measurable. The discount-
ing rate function r : I → R+ is Borel-measurable and uniformly bounded away from 0,
i.e., r(x) ≥ r0 for all x ∈ I, for some r0 > 0. Also,∫ β̄

ᾱ

r(s)

σ2(s)
ds <∞ for all α < ᾱ < β̄ < β. (2.10)

2

In the presence of Assumptions 2.1 and 2.2, there exists a pair of C1 with absolutely
continuous first derivatives functions ϕ,ψ : I → R+ such that ϕ (resp., ψ) is strictly
decreasing (resp., increasing), and

ϕ(x) = ϕ(y)Ex
[
e−ΛTy

]
≡ ϕ(y)Ex

[
e−ΛTy1{Ty<Tβ}

]
for all y < x, (2.11)

ψ(x) = ψ(y)Ex
[
e−ΛTy

]
≡ ψ(y)Ex

[
e−ΛTy1{Ty<Tα}

]
for all x < y, (2.12)

for every solution Sx to (1.1). Also,

if α is absorbing, then ϕ(α) := lim
x↓α

ϕ(x) <∞ and ψ(α) := lim
x↓α

ψ(x) = 0, (2.13)

if β is absorbing, then ϕ(β) := lim
x↑β

ϕ(x) = 0 and ψ(β) := lim
x↑β

ψ(x) <∞, (2.14)

and, if α (resp., β) is inaccessible, then lim
x↓α

ϕ(x) =∞ (resp., lim
x↑β

ψ(x) =∞). (2.15)

An inspection of these facts reveals that, in all cases,

lim
y↓α

ψ(y)

ϕ(y)
= lim

y↑β

ϕ(y)

ψ(y)
= 0. (2.16)

The functions ϕ and ψ are classical solutions to the homogeneous ODE

1

2
σ2(x)g′′(x) + b(x)g′(x)− r(x)g(x) = 0, (2.17)
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and satisfy

ϕ(x)ψ′(x)− ϕ′(x)ψ(x) = Cp′(x) for all x ∈ I, (2.18)

where C = ϕ(c)ψ′(c) − ϕ′(c)ψ(c) and p is the scale function defined by (2.7). Further-
more, given any solution Sx to (1.1),

the processes
(
e−Λtϕ(Xt)

)
and

(
e−Λtψ(Xt)

)
are local martingales. (2.19)

The existence of these functions and their properties that we have listed can be found
in several references, including Borodin and Salminen [8, Section II.1], Breiman [9,
Chapter 16], and Itô and McKean [20, Chapter 4].

3 Preliminary considerations

Throughout this section, we assume that a weak solution Sx to (1.1) has been asso-
ciated with each initial condition x ∈ int I. We first need to introduce some notation.
To this end, we recall that, if g : int I → R is a function that is the difference of two
convex functions, then its left-hand side first derivative g′− exists and is a function of
finite variation, and its second distributional derivative g′′ is a measure. We denote by

g′′(dx) = g′′ac(x) dx+ gs(dx) (3.1)

the Lebesgue decomposition of the second distributional derivative g′′(dx) into the mea-
sure g′′ac(x) dx that is absolutely continuous with respect to the Lebesgue measure and
the measure g′′s (dx) that is mutually singular with the Lebesgue measure. Note that
the function g′′ac identifies with the “classical” sense second derivative of g, which exists
Lebesgue-a.e.. In view of these observations and notation, we define the measure Lg
on
(
int I,B(int I)

)
and the function Lacg : int I → R by

Lg(dx) =
1

2
σ2(x)g′′(dx) + b(x)g′−(x) dx− r(x)g(x) dx (3.2)

and

Lacg(x) =
1

2
σ2(x)g′′ac(x) + b(x)g′−(x)− r(x)g(x). (3.3)

Given a Radon measure µ on
(
int I,B(int I)

)
such that σ−2 is locally integrable with

respect to |µ|, we consider the continuous additive functional Aµ defined by (1.2) in
the introduction. Given any t < Tα ∧ Tβ , Aµt is well-defined and real-valued because
α < infs≤tXs < sups≤tXs < β and the process Lz increases on the set {Xs = z}. Also,
since Lz is an increasing process, Aµ (resp., −Aµ) is an increasing process if µ (resp.,
−µ) is a positive measure. The following result is concerned with various properties of
the process Aµ that we will need.

Lemma 3.1. Let µ be a Radon measure on
(
int I,B(int I)

)
such that σ−2 is locally

integrable with respect to |µ|, consider any increasing sequence of real-valued Borel-
measurable functions (ζn) on I such that

0 ≤ ζn(z) ≤ 1 and lim
n→∞

ζn(z) = 1, µ-a.e., (3.4)

and denote by µn the measure defined by

µn(Γ) =

∫
Γ

ζn(z)µ(dz), for Γ ∈ B(int I). (3.5)
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A|µ| is a continuous increasing process,

Aµ = −A−µ = Aµ
+

−Aµ
−
, A|µ| = Aµ

+

+Aµ
−
, (3.6)

and

lim
n→∞

Ex

[∫ Tα∧Tβ

0

e−Λt dA
|µn|
t

]
= Ex

[∫ Tα∧Tβ

0

e−Λt dA
|µ|
t

]
for all x ∈ int I. (3.7)

Proof. The process A|µ| is continuous and increasing because this is true for the local
time process Lz for all z ∈ I. Also, (3.6) can be seen by a simple inspection of the
definition (1.2) of Aµ. To prove (3.7), we have to show that, given any x ∈ int I,

lim
n→∞

Ex
[
I

(n)
Tα∧Tβ

]
= Ex

[
ITα∧Tβ

]
, (3.8)

where

I
(n)
t =

∫ t

0

e−Λu dA|µn|u and It =

∫ t

0

e−Λu dA|µ|u , for t ∈ [0, Tα ∧ Tβ ].

To this end, we note that (3.4) and the monotone convergence theorem imply that the
sequence (A

|µn|
t ) increases to A|µ|t for all t < Tα ∧ Tβ as n→∞, because

A
|µn|
t =

∫ β

α

Lzt
σ2(z)

|µn|(dz) =

∫ β

α

Lzt
σ2(z)

ζn(z) |µ|(dz), for t ∈ [0, Tα ∧ Tβ [.

Also, we use the integration by parts formula to calculate∫ t

0

e−Λu dA|µn|u = e−ΛtA
|µn|
t +

∫ t

0

e−Λur(Xu)A|µn|u du, for t ∈ [0, Tα ∧ Tβ [. (3.9)

In view of these observations and the monotone convergence theorem, we can see that

0 ≤ I(n)
t ≤ I(n+1)

t for all t ∈ [0, Tα ∧ Tβ ] and n ≥ 1, (3.10)

and

lim
n→∞

I
(n)
t = It for all t ∈ [0, Tα ∧ Tβ [, (3.11)

Combining these results with the fact that the positive processes I(n) are increasing,
we can see that

ITα∧Tβ = lim
t→Tα∧Tβ

It ≥ lim
t→Tα∧Tβ

I
(n)
t = I

(n)
Tα∧Tβ for all n ≥ 1

and

ITα∧Tβ = lim
t→Tα∧Tβ

It = lim
t→Tα∧Tβ

lim
n→∞

I
(n)
t ≤ lim

n→∞
I

(n)
Tα∧Tβ .

It follows that limn→∞ I
(n)
Tα∧Tβ = ITα∧Tβ , which, combined with monotone convergence

theorem, implies (3.8) and the proof is complete.

We will need the results derived in the following lemma, the proof of which is based
on the Itô-Tanaka-Meyer formula.
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Lemma 3.2. If F : int I → R is a function that is the difference of two convex functions,
then the following statements are true:
(I) The increasing process A|LF | is real-valued, and

e−ΛtF (Xt) = F (x) +

∫ t

0

e−Λu dALFu +

∫ t

0

e−Λuσ(Xu)F ′−(Xu) dWu, (3.12)

for t ∈ [0, Tα ∧ Tβ ].
(II) If F is C1 with absolutely continuous with respect to the Lebesgue measure first
derivative, i.e., if LF (dx) = LacF (x) dx in the notation of (3.2)–(3.3), then∫ t

0

e−Λu dALFu =

∫ t

0

e−ΛuLacF (Xu) du, for t ∈ [0, Tα ∧ Tβ ]. (3.13)

Proof. In view of the Lebesgue decomposition of the second distributional derivative
F ′′(dx) of F as in (3.1) and the occupation times formula∫ β

α

LztF
′′
ac(z) dz =

∫ t

0

σ2(Xu)F ′′ac(Xu) du,

we can see that the Itô-Tanaka-Meyer formula

F (Xt) = F (x) +

∫ t

0

b(Xu)F ′−(Xu) du+
1

2

∫ β

α

Lzt F
′′(dz) +

∫ t

0

σ(Xu)F ′−(Xu) dWu

implies that

F (Xt) = F (x) +

∫ t

0

[
1

2
σ2(Xu)F ′′ac(Xu) + b(Xu)F ′−(Xu)

]
du+

1

2

∫ β

α

Lzt F
′′
s (dz)

+

∫ t

0

σ(Xu)F ′−(Xu) dWu. (3.14)

Combining this expression with the definition (3.3) of Lac, we can see that

F (Xt) = F (x) +

∫ t

0

r(Xu)F (Xu) du+

∫ t

0

LacF (Xu) du+
1

2

∫ β

α

Lzt F
′′
s (dz)

+

∫ t

0

σ(Xu)F ′−(Xu) dWu. (3.15)

Using the occupation times formula once again and the definitions (3.2), (3.3) of L, Lac,
we can see that∫ t

0

LacF (Xu) du+
1

2

∫ β

α

Lzt F
′′
s (dz) =

∫ β

α

Lzt
σ2(z)

LacF (z) dz +

∫ β

α

Lzt
σ2(z)

1

2
σ2(z)F ′′s (dz)

=

∫ β

α

Lzt
σ2(z)

LF (dz)

= ALFt . (3.16)

The validity of Itô-Tanaka-Meyer’s and the occupation times formulae and (3.15)–(3.16)
imply that the process ALF is well-defined and real-valued. Also, (3.12) follows from
the definition (1.3) of the process Λ, (3.15)–(3.16) and an application of the integration
by parts formula.

If LF (dx) = LacF (x) dx, the definition of ALF and the occupation times formula
imply that

ALFt =

∫ t

0

LacF (Xu) du,

and (3.13) follows.
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The next result is concerned with a form of Dynkin’s formula that the functions ϕ, ψ
satisfy as well as with a pair of expressions that become useful when explicit solutions
to special cases of the general optimal stopping problem are explored (see Section 7).

Lemma 3.3. The functions ϕ, ψ introduced by (2.11), (2.12) satisfy

ϕ(x) = Ex

[
e
−Λτ∧Tᾱ∧Tβ̄ϕ(Xτ∧Tᾱ∧Tβ̄ )

]
, ψ(x) = Ex

[
e
−Λτ∧Tᾱ∧Tβ̄ψ(Xτ∧Tᾱ∧Tβ̄ )

]
(3.17)

for all stopping times τ and all points ᾱ < x < β̄ in I. Furthermore,

Ex

[
e−ΛTᾱ1{Tᾱ<Tβ̄}

]
=
ϕ(β̄)ψ(x)− ϕ(x)ψ(β̄)

ϕ(β̄)ψ(ᾱ)− ϕ(ᾱ)ψ(β̄)
(3.18)

and

Ex

[
e
−ΛTβ̄ 1{Tβ̄<Tᾱ}

]
=
ϕ(x)ψ(ᾱ)− ϕ(ᾱ)ψ(x)

ϕ(β̄)ψ(ᾱ)− ϕ(ᾱ)ψ(β̄)
. (3.19)

Proof. Combining (3.12) with the fact that Lϕ = 0, we can see that

e
−Λτ∧Tᾱ∧Tβ̄ϕ(Xτ∧Tᾱ∧Tβ̄ ) = ϕ(x) +Mτ∧Tᾱ∧Tβ̄ , (3.20)

where

Mt =

∫ t

0

e−Λuσ(Xu)ϕ′(Xu) dWu.

In view of (2.13) and the fact that the positive function ϕ is decreasing, we can see that
supy∈[ᾱ,β̄] ϕ(y) <∞. Therefore, MTᾱ∧Tβ̄ is a uniformly integrable martingale because it

is a uniformly bounded local martingale. It follows that Ex
[
Mτ∧Tᾱ∧Tβ̄

]
= 0 and (3.20)

implies the first identity in (3.17). The second identity in (3.17) can be established using
similar arguments.

Finally, (3.18) and (3.19) follow immediately once we observe that they are equiva-
lent to the system of equations

ϕ(x) = ϕ(ᾱ)Ex

[
e−ΛTᾱ1{Tᾱ<Tβ̄}

]
+ ϕ(β̄)Ex

[
e
−ΛT

β̄ 1{Tβ̄<Tᾱ}

]
and

ψ(x) = ψ(ᾱ)Ex

[
e−ΛTᾱ1{Tᾱ<Tβ̄}

]
+ ψ(β̄)Ex

[
e
−ΛTβ̄ 1{Tβ̄<Tᾱ}

]
,

which holds true thanks to (3.17) for τ ≡ ∞.

We conclude this section with a necessary and sufficient condition for the value
function of our optimal stopping problem to be finite.

Lemma 3.4. Consider the optimal stopping problem formulated in Section 2, and let f
be defined by (1.10) in the introduction. If

f : I → R+ is real-valued, lim sup
y↓α

f(y)

ϕ(y)
<∞ and lim sup

y↑β

f(y)

ψ(y)
<∞, (3.21)

then v(x) <∞ for all x ∈ I,

lim sup
y↓α

v(y)

ϕ(y)
= lim sup

y↓α

f(y)

ϕ(y)
and lim sup

y↑β

v(y)

ψ(y)
= lim sup

y↑β

f(y)

ψ(y)
. (3.22)

If any of the conditions in (3.21) is not true, then v(x) =∞ for all x ∈ int I.
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Proof. If (3.21) is true, then we can see that

sup
u≤y

f(u)

ϕ(u)
<∞ and sup

u≥y

f(u)

ψ(u)
<∞ for all y ∈ I.

Also,

f(x) ≤ sup
u≤y

f(u)

ϕ(u)
ϕ(x) + sup

u≥y

f(u)

ψ(u)
ψ(x) for all x, y ∈ I.

In view of (2.19), the processes
(
e−Λtϕ(Xt)

)
and

(
e−Λtψ(Xt)

)
are positive supermartin-

gales. It follows that, given any stopping strategy (Sx, τ) ∈ Tx,

J(Sx, τ) ≤ sup
u≤y

f(u)

ϕ(u)
Ex

[
e−Λτ∧Tα∧Tβϕ(Xτ∧Tα∧Tβ )1{τ<∞}

]
+ sup
u≥y

f(u)

ψ(u)
Ex

[
e−Λτ∧Tα∧Tβψ(Xτ∧Tα∧Tβ )1{τ<∞}

]
≤ sup

u≤y

f(u)

ϕ(u)
ϕ(x) + sup

u≥y

f(u)

ψ(u)
ψ(x), (3.23)

which implies that v(x) <∞.
To show the first identity in (3.22), we note that (3.23) implies that

v(x)

ϕ(x)
≤ sup
u≤y

f(u)

ϕ(u)
+ sup
u≥y

f(u)

ψ(u)

ψ(x)

ϕ(x)
.

Combining this calculation with (2.16), we obtain

lim sup
x↓α

v(x)

ϕ(x)
≤ sup
u≤y

f(u)

ϕ(u)
,

which implies that lim supy↓α v(y)/ϕ(y) ≤ lim supy↓α f(y)/ϕ(y). The reverse inequality
follows immediately from the fact that v ≥ f . The second identity in (3.22) can be
established using similar arguments.

If the problem data is such that the first limit in (3.21) is infinite, then we consider
any initial condition x ∈ int I and any sequence (yn) in I such that yn < x for all n ≥ 1

and limn→∞ f(yn)/ϕ(yn) =∞. We can then see that

v(x) ≥ lim
n→∞

J(Sx, Tyn) ≥ lim
n→∞

f(yn)Ex
[
e−ΛTyn

] (2.11)
= lim

n→∞

f(yn)ϕ(x)

ϕ(yn)
=∞,

where Sx is any solution to (1.1). Similarly, we can see that v(x) = ∞ for all x ∈ int I
if the second limit in (3.21) is infinite or if there exists a point y ∈ int I such that
f(y) =∞.

4 r(·)r(·)r(·)-potentials and differences of two convex functions

Throughout this section, we assume that a weak solution Sx to (1.1) has been associ-
ated with each initial condition x ∈ int I. Accordingly, whenever we consider a stopping
time τ , we refer to a stopping time of the filtration in the solution Sx.

We first characterise the limiting behaviour at the boundary of I of a difference
of two convex functions on int I, and we show that such a function satisfies Dynkin’s
formula under appropriate assumptions.

Lemma 4.1. Consider any function F : int I → R that is a difference of two convex
functions and is such that

lim sup
y↓α

|F (y)|
ϕ(y)

<∞ and lim sup
y↑β

|F (y)|
ψ(y)

<∞. (4.1)
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(I) If −LF is a positive measure, then

Ex

[∫ Tα∧Tβ

0

e−Λt dA
|LF |
t

]
<∞ for all x ∈ int I. (4.2)

(II) If F satisfies

Ex

[∫ Tα∧Tβ

0

e−Λt dA
|LF |
t

]
<∞, for some x ∈ int I, (4.3)

then both of the limits limy↓α F (y)/ϕ(y) and limy↑β F (y)/ψ(y) exist.
(III) Suppose that F satisfies (4.3),

lim
y↓α

F (y)

ϕ(y)
= 0 and lim

y↑β

F (y)

ψ(y)
= 0. (4.4)

If x ∈ int I is an initial condition such that (4.3) is true, then

Ex
[
e−ΛτF (Xτ )1{τ<Tα∧Tβ}

]
= F (x) + Ex

[∫ τ∧Tα∧Tβ

0

e−Λt dALFt

]
= Ex

[
e−Λτ∧Tα∧TβF (Xτ∧Tα∧Tβ )1{τ∧Tα∧Tβ<∞}

]
(4.5)

for every stopping time τ ; in the last identity here, we assume that

F (α) = lim
y↓α

F (y) = 0

(
resp., F (β) = lim

y↑β
F (y) = 0

)
if α (resp., β) is absorbing, namely, if Px(Tα < ∞) > 0 (resp., Px(Tβ < ∞) > 0),
consistently with (4.4).

Proof. Throughout the proof, τ denotes any stopping time. Recalling (3.12) in Lemma 3.2,
we write

e−ΛtF (Xt) = F (x) +

∫ t

0

e−Λu dALFu +Mt, (4.6)

where M is the stochastic integral defined by

Mt =

∫ t

0

e−Λuσ(Xu)F ′−(Xu) dWu.

We consider any decreasing sequence (αn) and any increasing sequence (βn) such that

α < αn < x < βn < β for all n ≥ 1, lim
n→∞

αn = α and lim
n→∞

βn = β. (4.7)

Also, we define

τ`(ᾱ, β̄) = inf

{
t ≥ 0

∣∣∣∣ ∫ t∧Tᾱ∧Tβ̄

0

σ2(Xu) du ≥ `

}
∧ Tᾱ ∧ Tβ̄ , (4.8)

where we adopt the usual convention that inf ∅ = ∞, and we note that the definition
and the construction of a weak solution to (1.1) (see Definition 5.5.20 in Karatzas and
Shreve [22]) imply that these stopping times satisfy

τ`(ᾱ, β̄) > 0 for all ` ≥ 1 and lim
`→∞

τ`(ᾱ, β̄) = Tᾱ ∧ Tβ̄ . (4.9)
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Optimal stopping of a one-dimensional diffusion

The function F ′− is locally bounded because it is of finite variation. Therefore, we can
use Itô’s isometry to calculate

Ex

[
M2
τ∧τ`(αm,βn)

]
= Ex

[∫ τ∧τ`(αm,βn)

0

[
e−Λuσ(Xu)F ′−(Xu)

]2
du

]

≤ sup
y∈[αn,βn]

[
F ′−(y)

]2
Ex

[∫ τ`(αm,βn)

0

σ2(Xu) du

]
≤ ` sup

y∈[αn,βn]

[
F ′−(y)

]2
<∞, (4.10)

which implies that the stopped process Mτ∧τ`(αm,βn) is a uniformly integrable martin-
gale. Combining this observation with (4.6), we can see that

Ex
[
e−Λτ∧τ`(αm,βn)F (Xτ∧τ`(αm,βn))

]
= F (x) + Ex

[∫ τ∧τ`(αm,βn)

0

e−Λu dALFu

]
.

In view of (4.9) and the local boundedness of F , we can pass to the limit using the
dominated convergence theorem to obtain

F (x) + lim
`→∞

Ex

[∫ τ∧τ`(αm,βn)

0

e−Λu dALFu

]
= Ex

[
e−Λτ∧Tαm∧Tβn F (Xτ∧Tαm∧Tβn )

]
= Ex

[
e−ΛτF (Xτ )1{τ≤Tαm∧Tβn}

]
+ F (αm)Ex

[
e−ΛTαm 1{Tαm<τ∧Tβn}

]
+ F (βn)Ex

[
e−ΛTβn 1{Tβn<τ∧Tαm}

]
= Ex

[
e−ΛτF (Xτ )1{τ≤Tαm∧Tβn}

]
+ ϕ(x)

F (αm)

ϕ(αm)

Ex
[
e−ΛTαm 1{Tαm<τ∧Tβn}

]
Ex
[
e−ΛTαm

]
+ ψ(x)

F (βn)

ψ(βn)

Ex
[
e−ΛTβn 1{Tβn<τ∧Tαm}

]
Ex
[
e−ΛTβn

] , (4.11)

the last identity following thanks to (2.11)–(2.12).

Proof of (I). If −LF is a positive measure, then −ALF = A−LF = A|LF | is an increas-
ing process. Therefore, we can use (4.9), (4.7) and the monotone convergence theorem
to calculate

lim
m,n→∞

lim
`→∞

Ex

[∫ τ`(αm,βn)

0

e−Λu dALFu

]
= lim
m,n→∞

Ex

[∫ Tαm∧Tβn

0

e−Λu dALFu

]

= Ex

[∫ Tα∧Tβ

0

e−Λu dALFu

]
.

Combining this with assumption (4.1), the inequalities

0 <
Ex
[
e−ΛTαm 1{Tαm<Tβn}

]
Ex
[
e−ΛTαm

] ≤ 1 and 0 <
Ex
[
e−ΛTβn 1{Tβn<Tαm}

]
Ex
[
e−ΛTβn

] ≤ 1, (4.12)
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and (4.11) for τ =∞, we can see that

0 ≤ Ex

[∫ Tα∧Tβ

0

e−Λt dA
|LF |
t

]

= − Ex

[∫ Tα∧Tβ

0

e−Λu dALFu

]

= lim
m,n→∞

(
F (x)− ϕ(x)

F (αm)

ϕ(αm)

Ex
[
e−ΛTαm 1{Tαm<Tβn}

]
Ex
[
e−ΛTαm

]
− ψ(x)

F (βn)

ψ(βn)

Ex
[
e−ΛTβn 1{Tβn<Tαm}

]
Ex
[
e−ΛTβn

] )
≤ |F (x)|+ ϕ(x) lim sup

m→∞

|F (αm)|
ϕ(αm)

+ ψ(x) lim sup
n→∞

|F (βn)|
ψ(βn)

<∞. (4.13)

Proof of (II). We now fix any initial condition x ∈ int I such that (4.3) is true and we
assume that the sequence (αm) has been chosen so that

lim
m→∞

F (αm)

ϕ(αm)
exists. (4.14)

In light of (3.6) in Lemma 3.1 and (4.9), we can see that the dominated convergence
theorem implies that

lim
m,n→∞

lim
`→∞

Ex

[∫ τ∧τ`(αm,βn)

0

e−Λu dALFu

]
= Ex

[∫ τ∧Tα∧Tβ

0

e−Λu dALFu

]
. (4.15)

The continuity of F and (4.1) imply that there exists a constant C1 > 0 such that

|F (y)| ≤ C1 [ϕ(y) + ψ(y)] .

Also, (2.19) implies that the processes
(
e−Λtϕ(Xt)

)
and

(
e−Λtψ(Xt)

)
are positive super-

martingales, therefore,

Ex
[
e−Λτ [ϕ(Xτ ) + ψ(Xτ )]1{τ<∞}

]
≤ C1 [ϕ(x) + ψ(x)] <∞.

Since

e−Λτ |F (Xτ )|1{τ≤Tαm∧Tβn} ≤ C1e
−Λτ [ϕ(Xτ ) + ψ(Xτ )]1{τ<∞} for all m,n ≥ 1,

we can see that the dominated convergence theorem implies that

lim
m→∞

Ex
[
e−ΛτF (Xτ )1{τ≤Tαm∧Tβn}

]
= Ex

[
e−ΛτF (Xτ )1{τ<Tα}∩{τ≤Tβn}

]
and

lim
m,n→∞

Ex
[
e−ΛτF (Xτ )1{τ≤Tαm∧Tβn}

]
= Ex

[
e−ΛτF (Xτ )1{τ<Tα∧Tβ}

]
. (4.16)

EJP 18 (2013), paper 34.
Page 17/49

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2182
http://ejp.ejpecp.org/


Optimal stopping of a one-dimensional diffusion

In view of these results, we can pass to the limit m→∞ in (4.11) to obtain

F (x) + Ex

[∫ τ∧Tα∧Tβn

0

e−Λu dALFu

]

= Ex
[
e−ΛτF (Xτ )1{τ<Tα}∩{τ≤Tβn}

]
+ lim
m→∞

ϕ(x)
F (αm)

ϕ(αm)

Ex
[
e−ΛTαm 1{Tαm<τ∧Tβn}

]
Ex
[
e−ΛTαm

]
+ lim
m→∞

ψ(x)
F (βn)

ψ(βn)

Ex
[
e−ΛTβn 1{Tβn<τ∧Tαm}

]
Ex
[
e−ΛTβn

]
= Ex

[
e−ΛτF (Xτ )1{τ<Tα}∩{τ≤Tβn}

]
+ ϕ(x)

Ex
[
e−ΛTα1{Tα≤τ∧Tβn}

]
Ex
[
e−ΛTα

] lim
m→∞

F (αm)

ϕ(αm)

+ ψ(x)
F (βn)

ψ(βn)

Ex
[
e−ΛTβn 1{Tβn<τ∧Tα}

]
Ex
[
e−ΛTβn

] , (4.17)

the second equality following by an application of the dominated convergence theorem.
These identities prove that the limit limy↓α F (y)/ϕ(y) exists because (αm) has been an
arbitrary sequence satisfying (4.14) and the function F/ϕ is continuous.

Proving that the limit limy↑β F (y)/ψ(y) exists follows similar symmetric arguments.
Proof of (III). The event {Tα < ∞} has strictly positive probability if and only if α is

an absorbing boundary point, in which case, (2.13) and (4.4) imply that limy↓α F (y) = 0.
In view of this observation and a similar one concerning the boundary point β, we can
see that the first identity in (4.5) holds true. Finally, the second identity in (4.5) follows
immediately once we combine (4.4) with (4.12) and (4.15)–(4.17).

The assumptions of the previous lemma involve the measure LF that we can asso-
ciate with a function on int I that is the difference of two convex functions. We now
address the following inverse problem: given a signed measure µ on

(
int I,B(int I)

)
,

determine a function F on int I such that F is the difference of two convex functions
and LF = −µ. Plainly, the solution to this problem is not unique because Lϕ = Lψ = 0.
In view of this observation, the solution Rµ that we now derive and identifies with the
r(·)-potential of the continuous additive functional Aµ is “minimal” in the sense that it
has the limiting behaviour captured by (4.23).

Theorem 4.2. A signed Radon measure µ on
(
int I,B(int I)

)
satisfies∫

]α,x[

ψ(s)

σ2(s)p′(s)
|µ|(ds) +

∫
[x,β[

ϕ(s)

σ2(s)p′(s)
|µ|(ds) <∞ (4.18)

for all x ∈ I, if and only if∫ β̄

ᾱ

1

σ2(s)
|µ|(ds) <∞ and Ex

[∫ Tα∧Tβ

0

e−Λt dA
|µ|
t

]
<∞ (4.19)

for all α < ᾱ < β̄ < β and all x ∈ I. In the presence of these integrability conditions,
the function Rµ : int I → R defined by

Rµ(x) =
2

C
ϕ(x)

∫
]α,x[

ψ(s)

σ2(s)p′(s)
µ(ds) +

2

C
ψ(x)

∫
[x,β[

ϕ(s)

σ2(s)p′(s)
µ(ds), (4.20)

where C > 0 is the constant appearing in (2.18), identifies with the r(·)-potential of Aµ,
namely,

Rµ(x) = Ex

[∫ Tα∧Tβ

0

e−Λt dAµt

]
, (4.21)
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it is the difference of two convex functions, and

LRµ(dx) = −µ(dx) and LR|µ|(dx) = −|µ|(dx). (4.22)

Furthermore,

lim
y↓α

|Rµ(y)|
ϕ(y)

= lim
y↑β

|Rµ(y)|
ψ(y)

= lim
y↓α

R|µ|(y)

ϕ(y)
= lim

y↑β

R|µ|(y)

ψ(y)
= 0. (4.23)

Proof. First, we note that, if the integrability condition (4.18) is true for some x ∈ I,
then it is true for all x ∈ I. If µ is a measure on

(
int I,B(int I)

)
satisfying (4.18), then the

function Rµ given by (4.20) is well-defined, it is the difference of two convex functions,
and it satisfies the corresponding identity in (4.22). To see these claims, we consider
the left-continuous function H : int I → R given by H(γ) = 0 and

H(x) =

{
−
∫

]x,γ[
2

Cσ2(s)p′(s) µ(ds), if x ∈ ]α, γ[,∫
[γ,x[

2
Cσ2(s)p′(s) µ(ds), if x ∈ ]γ, β[,

where γ is any constant in int I. Given any points ᾱ, β̄ ∈ int I such that ᾱ < γ < β̄, we
can use the integration by parts formula to see that

−H(ᾱ)ψ(ᾱ)−
∫ x

ᾱ

ψ′(s)H(s) ds = −H(x)ψ(x) +

∫
[ᾱ,x[

2ψ(s)

Cσ2(s)p′(s)
µ(ds),

H(β̄)ϕ(β̄)−
∫ β̄

x

ϕ′(s)H(s) ds = H(x)ϕ(x) +

∫
[x,β̄[

2ϕ(s)

Cσ2(s)p′(s)
µ(ds)

for all x ∈ [ᾱ, β̄]. It follows that the function Rµ defined by (4.20) admits the expression

Rµ(x) =

[
2

C

∫
]α,ᾱ[

ψ(s)

σ2(s)p′(s)
µ(ds)−H(ᾱ)ψ(ᾱ)

]
ϕ(x)

+

[
2

C

∫
[β̄,β[

ϕ(s)

σ2(s)p′(s)
µ(ds) +H(β̄)ϕ(β̄)

]
ψ(x)

− ϕ(x)

∫ x

ᾱ

ψ′(s)H(s) ds− ψ(x)

∫ β̄

x

ϕ′(s)H(s) ds (4.24)

for all α < ᾱ ≤ x ≤ β̄ < β. This result, the left-continuity of H and (2.18) imply that

(Rµ)′−(x) =

[
2

C

∫
]α,ᾱ[

ψ(s)

σ2(s)p′(s)
µ(ds)−H(ᾱ)ψ(ᾱ)

]
ϕ′(x)

+

[
2

C

∫
[β̄,β[

ϕ(s)

σ2(s)p′(s)
µ(ds) +H(β̄)ϕ(β̄)

]
ψ′(x)− Cp′(x)H(x)

− ϕ′(x)

∫ x

ᾱ

ψ′(s)H(s) ds− ψ′(x)

∫ β̄

x

ϕ′(s)H(s) ds (4.25)

for all α < ᾱ ≤ x ≤ β̄ < β. Furthermore, we can see that the restriction of the measure
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(Rµ)′′ in
(
]ᾱ, β̄[,B(]ᾱ, β̄[)

)
has Lebesgue decomposition that is given by

(Rµ)′′ac(x) =

[
2

C

∫
]α,ᾱ[

ψ(s)

σ2(s)p′(s)
µ(ds)−H(ᾱ)ψ(ᾱ)

]
ϕ′′(x)

+

[
2

C

∫
[β̄,β[

ϕ(s)

σ2(s)p′(s)
µ(ds) +H(β̄)ϕ(β̄)

]
ψ′′(x)− Cp′′(x)H(x)

− 2µac(x)

σ2(x)
− ϕ′′(x)

∫ x

ᾱ

ψ′(s)H(s) ds− ψ′′(x)

∫ β̄

x

ϕ′(s)H(s) ds,

(Rµ)′′s (dx) = − 2

σ2(x)
µs(dx),

in the notation of (3.1). Combining these expressions with (4.24)–(4.25) and the def-
inition (2.7) of the scale function p, we can see that the restrictions of the measures
LRµ and −µ in

(
]ᾱ, β̄[,B(]ᾱ, β̄[)

)
are equal. It follows that the measures LRµ and −µ on(

int I,B(int I)
)

are equal because ᾱ < β̄ have been arbitrary points in int I. Similarly,
we can check that the function R|µ| that is defined by (4.20) with |µ| in place of µ is the
difference of two convex functions and satisfies the corresponding identity in (4.22).

To proceed further, we consider any Radon measure µ on
(
int I,B(int I)

)
. Given

monotone sequences (αn) and (βn) as in (4.7), we define

ζn(z) =


0, if z < αn or z > βn,

1, if σ2(z) ≥ 1
n and αn ≤ z ≤ βn,

σ2(z), if σ2(z) < 1
n and αn ≤ z ≤ βn,

and we consider the sequence of measures (µn) that are defined by (3.5). The functions
R|µn|, defined by (4.20) with |µn| in place of µ, are real-valued and satisfy

R|µn|(x) =

{
2
Cψ(x)

∫
[αn,βn]

ϕ(s)
σ2(s)p′(s)ζn(s) |µ|(ds), if x < αn,

2
Cϕ(x)

∫
[αn,βn]

ψ(s)
σ2(s)p′(s)ζn(s) |µ|(ds), if x > βn.

Combining this calculation with (2.16), we can see that R|µn| satisfies the correspond-
ing limits in (4.23). Since −LR|µn| = |µn| = |LRµn | is a positive measure, part (I) of
Lemma 4.1 implies that

Ex

[∫ Tα∧Tβ

0

e−Λt dA
|µn|
t

]
<∞ for all x ∈ I,

while, (4.5) in Lemma 4.1 with τ = Tα ∧ Tβ implies that

R|µn|(x) = −Ex

[∫ Tα∧Tβ

0

e−Λt dA
LR|µn|
t

]
.

This identity, the fact that LR|µn| = −|µn| and (3.6) imply that the function R|µn| that is
defined as in (4.20) satisfies

R|µn|(x) = Ex

[∫ Tα∧Tβ

0

e−Λt dA
|µn|
t

]
. (4.26)

Since the sequence of functions (ζn) is monotonically increasing to the identity func-
tion, the monotone convergence theorem implies that

R|µ|(x) = lim
n→∞

(
2

C
ϕ(x)

∫
]α,x[

ψ(s)

σ2(s)p′(s)
ζn(s) |µ|(ds)

+
2

C
ψ(x)

∫
[x,β[

ϕ(s)

σ2(s)p′(s)
ζn(s) |µ|(ds)

)
. (4.27)
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If (4.18) is satisfied, then σ−2 is locally integrable with respect to |µ|, namely, the first
condition in (4.19) holds true, thanks to the continuity of the functions ϕ, ψ and p′. In
this case, (3.7) in Lemma 3.1 and (4.26) imply that

lim
n→∞

R|µn|(x) = lim
n→∞

Ex

[∫ Tα∧Tβ

0

e−Λt dA
|µn|
t

]
= Ex

[∫ Tα∧Tβ

0

e−Λt dA
|µ|
t

]
(4.28)

because (ζn) satisfies (3.4). Combining this result with (4.27) and the fact that (4.18)
implies that R|µ|(x) <∞, we can see that

R|µ|(x) = Ex

[∫ Tα∧Tβ

0

e−Λt dA
|µ|
t

]
<∞, (4.29)

and the second condition in (4.19) follows. Thus, we have proved that (4.18) implies
(4.19). Conversely, if (4.19) is satisfied, then (3.7) in Lemma 3.1 and (4.26) imply that
(4.28) is true. Combining (4.19) with (4.27) and (4.28), we can see that R|µ|(x) < ∞,
and (4.18) follows.

If µ satisfies the integrability conditions (4.18)–(4.19), then the function Rµ given by
(4.20) is well-defined and real-valued. Furthermore, it satisfies (4.21) thanks to (3.6),
(4.29) with µ+ and µ− in place of |µ|, and the linearity of integrals.

To establish (4.23), we consider any sequences (αn), (βn) as in (4.7), and we calcu-
late

0
(4.21)

= R|µ|(x)− lim
m,n→∞

Ex

[∫ Tαm∧Tβn

0

e−Λu dA|µ|u

]
(4.22)

= R|µ|(x) + lim
m,n→∞

Ex

[∫ Tαm∧Tβn

0

e−Λu dA
LR|µ|
u

]
= lim
m,n→∞

Ex

[
e−ΛTαm∧TβnR|µ|(XTαm∧Tβn )

]
= lim
m,n→∞

R|µ|(αm)Ex
[
e−ΛTαm 1{Tαm<Tβn}

]
+ lim
m,n→∞

R|µ|(βn)Ex

[
e−ΛTβn 1{Tβn<Tαm}

]
,

the third identity following from (4.5) for τ = Tαm∧Tβn . Since R|µ| is a positive function,
each of the two limits on the right-hand side of this expression is equal to 0. We can
therefore see that the first of these limits implies that

0 = lim
m→∞

lim
n→∞

R|µ|(αm)Ex
[
e−ΛTαm 1{Tαm<Tβn}

]
= lim
m→∞

R|µ|(αm)Ex
[
e−ΛTαm 1{Tαm<Tβ}

]
(2.11)

= lim
m→∞

R|µ|(αm)ϕ(x)

ϕ(αm)
,

which proves that limy↓αR|µ|(y)/ϕ(y) = 0 because (αm) has been arbitrary. We can
show that limx↑β R|µ|(x)/ψ(x) = 0 using similar arguments. Finally, the function |Rµ|
satisfies the corresponding limits in (4.23) because |Rµ| ≤ R|µ|.

The result we have just established and Lemma 4.1 imply the following representa-
tion of differences of two convex functions that involves the operator L and the functions
ϕ, ψ.

Theorem 4.3. Consider any function F : int I → R that is the difference of two convex
functions, and suppose that

lim sup
y↓α

|F (y)|
ϕ(y)

<∞ and lim sup
y↑β

|F (y)|
ψ(y)

<∞,
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and that the measure LF satisfies the equivalent integrability conditions (4.18)–(4.19)
(see also Remark 4.4 below). In this context, both of the limits limy↓α F (y)/ϕ(y) and
limy↑β F (y)/ψ(y) exist, and the function F admits the representation

F (x) = lim
y↓α

F (y)

ϕ(y)
ϕ(x) +R−LF (x) + lim

y↑β

F (y)

ψ(y)
ψ(x), (4.30)

where R−LF is given by (4.20)–(4.21). Furthermore, given any points ᾱ < x < β̄ in I
and any stopping time τ ,

Ex

[
e
−Λτ∧Tᾱ∧Tβ̄F (Xτ∧Tᾱ∧Tβ̄ )

]
= F (x) + Ex

[∫ τ∧Tᾱ∧Tβ̄

0

e−Λu dALFu

]
, (4.31)

in which expression, we denote

F (α) = lim
y↓α

F (y)

(
resp., F (β) = lim

y↑β
F (y)

)
if α (resp., β) is absorbing, namely, if Px(Tα <∞) > 0 (resp., Px(Tβ <∞) > 0).

Proof. In the presence of the assumption that LF satisfies (4.18)–(4.19), Lemma 4.1.(II)
implies that the limits limy↓α F (y)/ϕ(y) and limy↑β F (y)/ψ(y) exist, while Theorem 4.2
implies that the function R−LF is well-defined. In particular, we can see that (4.22)
implies that L (F −R−LF ) = 0. It follows that

F −R−LF = Aϕ+Bψ,

for some constants A,B ∈ R. Combining (2.16) with (4.23), we can see that the con-
stants A and B are as in (4.30). Finally, (4.31) follows from the representation (4.30) of
F , (3.17) in Lemma 3.3, (4.5) in Lemma 4.1 and (4.23) in Theorem 4.2.

Remark 4.4. In view of Lemma 4.1.(I), the positivity of the measure −LF is a sufficient
condition for LF to satisfy the integrability conditions (4.18)–(4.19). Also, if F is C1 with
first derivative that is absolutely continuous with respect to the Lebesgue measure, then
LF (dx) = LacF (x) dx, where Lac is defined by (3.3). This observation and part (II) of
Lemma 3.2 imply that, in this case (4.18)–(4.19) are equivalent to (4.32)–(4.33) below
for h = LacF . Furthermore, R−LF admits the expressions (4.34)–(4.35) below for h =

−LacF . 2

The measure LF and the potential R−LF have central roles in the characterisation
of differences of two convex functions we have established above. The following result
is concerned with the potential R−LF when LF is absolutely continuous with respect to
the Lebesgue measure.

Corollary 4.5. Consider any function h : I → R that is locally integrable with respect
to the Lebesgue measure, and let µh be the measure on

(
int I,B(int I)

)
defined by

µh(Γ) =

∫
Γ

h(s) ds, for Γ ∈ B(int I).

If µh satisfies the equivalent integrability conditions (4.18)–(4.19), which are equivalent
to ∫ x

α

ψ(s)

σ2(s)p′(s)
|h(s)| ds+

∫ β

x

ϕ(s)

σ2(s)p′(s)
|h(s)| ds <∞, (4.32)

Ex

[∫ Tα∧Tβ

0

e−Λt
∣∣h(Xt)

∣∣ dt] <∞, (4.33)
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then the function Rµh : int I → R defined by (4.20) or, equivalently, by

Rµh(x) =
2

C
ϕ(x)

∫ x

α

ψ(s)

σ2(s)p′(s)
h(s) ds+

2

C
ψ(x)

∫ β

x

ϕ(s)

σ2(s)p′(s)
h(s) ds, (4.34)

admits the probabilistic expression

Rµh(x) = Ex

[∫ Tα∧Tβ

0

e−Λth(Xt) dt

]
. (4.35)

This function, as well as the function defined by

R̃µh(x) = Ex

[∫ ∞
0

e−Λth(Xt) dt

]
, for x ∈ int I, (4.36)

is C1 with absolutely continuous first derivative and satisfies the ODE

Lacg(x) + h(x) ≡ 1

2
σ2(x)g′′(x) + b(x)g′(x)− r(x)g(x) + h(x) = 0. (4.37)

The functions Rµh and R̃µh satisfy

R̃µh(x) =
h(α)

r(α)

ϕ(x)

ϕ(α)
Iα +Rµh(x) +

h(β)

r(β)

ψ(x)

ψ(β)
Iβ , (4.38)

lim
y↓α

R̃µh(y)

ϕ(y)
= lim

y↓α

Rµh(y)

ϕ(y)
+

h(α)

r(α)ϕ(α)
Iα =

h(α)

r(α)ϕ(α)
Iα, (4.39)

lim
y↑β

R̃µh(y)

ψ(y)
= lim

y↑β

Rµh(y)

ψ(y)
+

h(β)

r(β)ψ(β)
Iβ =

h(β)

r(β)ψ(β)
Iβ , (4.40)

where

Iα =

{
1, if α is absorbing,

0, if α is inaccessible,
and Iβ =

{
1, if β is absorbing,

0, if β is inaccessible.

Furthermore,

Rµh(x) = Ex

[ ∫ τ∧Tα∧Tβ

0

e−Λth(Xt) dt

+ e−Λτ∧Tα∧TβRµh(Xτ∧Tα∧Tβ )1{τ∧Tα∧Tβ<∞}

]
(4.41)

for every stopping time τ and all initial conditions x ∈ int I, in which expression,
Rµh(α) = 0 (resp., Rµh(β) = 0) if α (resp., β) is absorbing, consistently with (4.39)–
(4.40).

Proof. It is straightforward to check that the function Rµh defined by (4.34) is C1 with
absolutely continuous first derivative and satisfies the ODE (4.37). This observation and
(4.38) imply the corresponding statements for R̃µh . The equivalence of (4.19) (resp.,
(4.21)) with (4.33) (resp., (4.35)) is a consequence of part (II) of Lemma 3.2 and the
identities µh(dx) = −LRµh(dx) = −LacRµh(x) dx = h(x) dx. Also, these identities,
part (II) of Lemma 3.2 and (4.5) imply (4.41), while the limits in (4.39)–(4.40) follow
from (4.23) and (4.38).

To prove (4.38), we first note that

R̃µh(x) = Ex

[
1{Tα<Tβ}

∫ ∞
Tα

e−Λt dt

]
h(α) +Rµh(x) + Ex

[
1{Tβ<Tα}

∫ ∞
Tβ

e−Λt dt

]
h(β).

EJP 18 (2013), paper 34.
Page 23/49

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2182
http://ejp.ejpecp.org/


Optimal stopping of a one-dimensional diffusion

In view of the definition (1.3) of Λ, we can see that, if α is absorbing, then

Ex

[
1{Tα<Tβ}

∫ ∞
Tα

e−Λt dt

]
= Ex

[
1{Tα<Tβ}e

−ΛTα

∫ ∞
Tα

e−r(α)(t−Tα) dt

]
=

1

r(α)
Ex
[
e−ΛTα1{Tα<Tβ}

]
(2.11)

=
1

r(α)

ϕ(x)

ϕ(α)
,

otherwise, this expectation is plainly 0. Similarly, we can see that

Ex

[
1{Tβ<Tα}

∫ ∞
Tβ

e−Λt dt

]
=

1

r(β)

ψ(x)

ψ(β)
Iβ ,

and (4.38) follows.

5 Analytic characterisations of r(·)r(·)r(·)-excessive functions

The following is the main result of this section.

Theorem 5.1. A function F : I → R+ is r(·)-excessive, namely, it satisfies

Ex
[
e−ΛτF (Xτ )1{τ<∞}

]
≤ F (x) (5.1)

for all stopping times τ and all initial conditions x ∈ I, if and only if the following
statements are both true:
(I) the restriction of F in the interior int I of I is the difference of two convex functions
and the associated measure −LF on

(
int I,B(int I)

)
is positive;

(II) if α (resp., β) is an absorbing boundary point, then F (α) ≤ lim infy∈int I, y↓α F (y)

(resp., F (β) ≤ lim infy∈int I, y↑β F (y)).

Proof. First, we consider any function F : I → R+ with the properties listed in (I)–
(II). The assumption that −LF is a positive measure implies that −ALF = A−LF is an
increasing process. Therefore, (4.31) in Theorem 4.3 implies that, given any points
ᾱ < x < β̄ in I and any stopping time τ such that ᾱ = α and τ = τ ∧ Tα (resp., β̄ = β

and τ = τ ∧ Tβ) if α (resp., β) is absorbing,

F (x) ≥ Ex
[
e−ΛτF (Xτ )1{τ<Tᾱ∧Tβ̄}

]
+ F (ᾱ)Ex

[
e−ΛTᾱ1{Tᾱ≤τ∧Tβ̄}

]
(1− Iα)

+ lim
y↓α

F (y)Ex

[
e−ΛTᾱ1{Tᾱ≤τ∧Tβ̄}

]
Iα + F (β̄)Ex

[
e
−ΛTβ̄ 1{Tβ̄≤τ∧Tᾱ}

]
(1− Iβ)

+ lim
y↑β

F (y)Ex

[
e
−ΛT

β̄ 1{Tβ̄≤τ∧Tᾱ}

]
Iβ

≥ Ex
[
e
−Λτ∧Tᾱ∧Tβ̄F (Xτ∧Tᾱ∧Tβ̄ )

]
, (5.2)

the second inequality following from the assumption that F satisfies the inequalities in
(II). If α (resp., β) is inaccessible, then we can pass to the limit ᾱ ↓ α (resp., β̄ ↑ β) using
Fatou’s lemma to obtain (5.1) thanks to the choices of ᾱ and β̄ that we have made. It
follows that F is r(·)-excessive.

To establish the reverse implication, we first show that an r(·)-excessive function is
lower semicontinuous and its restriction in int I is continuous. Given an initial condition
x ∈ int I and a point y ∈ I, we can use (5.1) to calculate

F (x) ≥ Ex
[
e−ΛTy

]
F (y)

(2.11)−(2.12)
= min

{
ψ(x)

ψ(y)
,
ϕ(x)

ϕ(y)

}
F (y).
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This calculation and the continuity of the functions ϕ, ψ imply that F (x) ≥ lim supy→x F (y),
which proves that F is upper semicontinuous in int I. The same arguments but with
points x ∈ I and y ∈ int I and their roles reversed imply that

F (y) ≥ min

{
ψ(y)

ψ(x)
,
ϕ(y)

ϕ(x)

}
F (x).

It follows that F (x) ≤ lim infy∈int I, y→x F (y), and the lower semicontinuity of F in I has
been established. In particular, part (II) of the proposition is true.

To prove that an r(·)-excessive function satisfies (I), we define the function Fq by

Fq(x) = qEx

[∫ ∞
0

e−qt−ΛtF (Xt) dt

]
, for x ∈ I, (5.3)

where q > 0 is a constant, and we note that

0 ≤ Fq(x)
(5.1)

≤ q

∫ ∞
0

e−qtF (x) dt = F (x) for all x ∈ I. (5.4)

If we consider the change of variables u = qt, then we can see that

Fq(x) = Ex

[∫ ∞
0

e−u−Λu/qF (Xu/q) du

]
.

In view of (5.4), the continuity properties of the function F and the continuity of the
process X, this expression implies that

lim
q→∞

Fq(x) = F (x) for all x ∈ I. (5.5)

Given its definition in (5.3), Corollary 4.5 implies that the function Fq is C1 with
absolutely continuous first derivative and that it satisfies the ODE

1

2
σ2(x)F ′′q (x) + b(x)F ′q(x)− (q + r(x))Fq(x) + qF (x) = 0

in the interior of I. In view of (5.4), we can see that

1

2
σ2(x)F ′′q (x) + b(x)F ′q(x)− r(x)Fq(x) = −q [F (x)− Fq(x)] ≤ 0.

This inequality implies that

d

dx

(
d

dx

(
Fq(x)

p′(x)

)
− Fq(x)

d

dx

1

p′(x)

)
− 2r(x)Fq(x)

σ2(x)p′(x)
≤ 0, (5.6)

where p is the scale function of the diffusion X, which is defined by (2.7).
To proceed further, we introduce the antiderivatives A1 and A2 of a function g that

is locally integrable in I, which are defined by

A1g(x) =

∫ x

c

g(y) dy and A2g(x) =

∫ x

c

∫ y

c

g(z) dz dy,

respectively, where c ∈ I is a fixed point that we can take to be the same as the point
appearing in the definition (2.7) of the scale function p. Inequality (5.6) then implies that
the function Fq/p′−A1 ((1/p′)′Fq)−A2

(
(2rFq)/(σ

2p′)
)

is concave, which, combined with
(5.5), implies that the function G := F/p′−A1 ((1/p′)′F )−A2

(
(2rF )/(σ2p′)

)
is concave.

The concavity of G and the equality

F

p′
= G+A1

((
1

p′

)′
F

)
+A2

(
2rF

σ2p′

)

EJP 18 (2013), paper 34.
Page 25/49

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2182
http://ejp.ejpecp.org/


Optimal stopping of a one-dimensional diffusion

imply that F/p′ is absolutely continuous and

F ′−(x) = p′(x)

(
G′−(x) +A1

(
2rF

σ2p′

)
(x)

)
.

This expression shows that F ′ has finite variation. Furthermore, taking distributional
derivatives, we can see that

2

σ2(x)
LF (dx) ≡ F ′′(dx) +

2b(x)

σ2(x)
F ′−(x) dx− 2r(x)

σ2(x)
F (x) dx = p′(x)G′′(dx),

which proves that F has the properties listed in part (I) thanks to the concavity of G.

In the spirit of Dynkin [16, Theorems 15.10 and 16.4], Dayanik [12] proves that a
function F is r(·)-excessive if and only if the function F/ϕ is (ψ/ϕ)-concave (equivalently,
the function F/ψ is (−ϕ/ψ)-concave), and he shows that such concavity assumptions im-
ply that the function −D−ψ/ϕ(F/ϕ) defined by (5.7) is increasing (equivalently, the right-

continuous modification D+
ϕ/ψ(F/ψ) of the function defined by (5.8) is increasing) (see

Proposition 3.1 and Remarks 3.1–3.3 of Dayanik [12] for the precise statements). Such
a result, which focuses on the functions −D−ψ/ϕ(F/ϕ), D+

ϕ/ψ(F/ψ), follows immediately
from our analysis above.

Corollary 5.2. A function F : I → R+ is r(·)-excessive if and only if the following
statements are both true:
(I) the function −D−ψ/ϕ(F/ϕ) given by

−D−ψ/ϕ(F/ϕ)(x) = − lim
y↑x

(F/ϕ)(x)− (F/ϕ)(y)

(ψ/ϕ)(x)− (ψ/ϕ)(y)
, for x ∈ int I, (5.7)

is well-defined, real-valued and increasing; equivalently, the function D−ϕ/ψ(F/ψ) given
by

D−ϕ/ψ(F/ψ)(x) = lim
y↑x

(F/ψ)(y)− (F/ψ)(x)

(ϕ/ψ)(y)− (ϕ/ψ)(x)
, for x ∈ int I, (5.8)

is well-defined, real-valued and increasing, and
(II) if α (resp., β) is an absorbing boundary point, then F (α) ≤ lim infy∈int I, y↓α F (y)

(resp., F (β) ≤ lim infy∈int I, y↑β F (y)).

Proof. Given a measure µ on
(
int I,B(int I)

)
, we mean that −µ is a positive measure

whenever we write µ(dx) ≤ 0 in the proof below. In view of Theorem 5.1, the result
will follow if we show that either of the functions given by (5.7), (5.8) is well-defined,
real-valued and increasing if and only if the restriction of F in int I is the difference
of two convex functions and LF ≤ 0. To this end, we note that the functions given by
(5.7), (5.8) are well-defined and real-valued if and only if F ′− exists and is real-valued,
in which case,

−D−ψ/ϕ(F/ϕ)(x) = −
ϕ(x)F ′−(x)− ϕ′(x)F (x)

ϕ(x)ψ′(x)− ϕ′(x)ψ(x)

(2.18)
= −

ϕ(x)F ′−(x)− ϕ′(x)F (x)

Cp′(x)
,

D−ϕ/ψ(F/ψ)(x) =
ψ(x)F ′−(x)− ψ′(x)F (x)

ϕ′(x)ψ(x)− ϕ(x)ψ′(x)

(2.18)
= −

ψ(x)F ′−(x)− ψ′(x)F (x)

Cp′(x)
.

The function −D−ψ/ϕ(F/ϕ) is increasing if and only if its first distributional derivative is
a positive measure, namely, if and only if the second distributional derivative of F is a
measure and

ϕ(x)

Cp′(x)
F ′′(dx)− ϕ′′(x)

Cp′(x)
F (x) dx−

[
ϕ(x)F ′−(x)− ϕ′(x)F (x)

] p′′(x)

C
[
p′(x)

]2 dx ≤ 0.
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In view of the definition (2.7) of the scale function p and the fact that p and C are both
strictly positive, we can see that this is true if and only if

ϕ(x)
1

2
σ2(x)F ′′(dx) + ϕ(x)b(x)F ′−(x) dx−

[
1

2
σ2(x)ϕ′′(x) + b(x)ϕ′(x)

]
F (x) dx ≤ 0,

which is true if and only if −LF ≥ 0, thanks to the fact that ϕ > 0 satisfies the ODE
(2.17). Similarly, we can see that the function D−ϕ/ψ(F/ψ) is increasing if and only if
−LF ≥ 0.

6 The solution of the optimal stopping problem

Before addressing the main results of the section, we prove that the value function
v is excessive.

Lemma 6.1. Consider the optimal stopping problem formulated in Section 2 and sup-
pose that its value function is real-valued. The value function v is r(·)-excessive, i.e.,

Ex
[
e−Λτ v(Xτ )1{τ<∞}

]
≤ v(x), (6.1)

for all initial conditions x ∈ I and every stopping strategy (Sx, τ) ∈ Tx. Also,

v(x) = sup
(Sx,τ)∈Tx

Ex
[
e−Λτ∧Tα∧Tβ f(Xτ∧Tα∧Tβ )1{τ<∞}

]
for all x ∈ I, (6.2)

where f is given by (1.10).

Proof. To prove the r(·)-excessivity of v, we first show that v is continuous in int I and
lower semicontinuous in I. To this end, we consider any points x, y ∈ int I. Given the
stopping strategy (Sx, Ty) ∈ Tx and any stopping strategy (Sy, τ) ∈ Ty, we denote by
(Ŝx, τ̂) a stopping strategy that is as in Corollary 8.8, so that

v(x) ≥ J(Ŝx, τ̂)

= Ex

[
e−ΛTα∧Tβ f(XTα∧Tβ )1{Tα∧Tβ<Ty}

]
+ Ex

[
e−ΛTy1{Ty<Tα∧Tβ}

]
J(Sy, τ)

≥ Ex
[
e−ΛTy1{Ty<Tα∧Tβ}

]
J(Sy, τ).

Since (Sy, τ) is arbitrary, we can use the dominated convergence theorem to see that
this inequality implies that

v(x) ≥ lim
y→x

Ex
[
e−ΛTy1{Ty<Tα∧Tβ}

]
lim sup
y→x

v(y) = lim sup
y→x

v(y),

which proves that v is upper semicontinuous in int I.
Repeating the same arguments with the roles of the points x, y ∈ int I reversed, we

can see that
lim inf
y→x

v(y) ≥ lim
y→x

Ey
[
e−ΛTx1{Tx<Tα∧Tβ}

]
v(x) = v(x).

If both α and β are absorbing, then we can use (2.11)–(2.14) to calculate

lim inf
x∈int I, x↓α

v(x) ≥ lim inf
x∈int I, x↓α

(
f(α)Ex

[
e−ΛTα1{Tα<Tβ}

]
+ f(β)Ex

[
e−ΛTβ 1{Tβ<Tα}

])
= lim inf

x↓α

(
f(α)ϕ(x)

ϕ(α)
+
f(β)ψ(x)

ψ(β)

)
= f(α) = v(α),

while, if α is absorbing and β is inaccessible, then

lim inf
x∈int I, x↓α

v(x) ≥ lim inf
x∈int I, x↓α

f(α)Ex
[
e−ΛTα

]
= lim inf

x↓α

f(α)ϕ(x)

ϕ(α)
= f(α) = v(α).
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If β is absorbing, then we can see that lim infx∈int I, x↑β v(x) ≥ v(β) similarly. It follows
that v is lower semicontinuous in I.

To show that v satisfies (6.1), we consider any stopping strategy (Sx, τ) ∈ Tx. We
assume that Xτ1{τ<Tα∧Tβ} takes values in a finite set {a1, . . . , an} ⊂ int I. For each i =

1, . . . , n, we consider an ε-optimal strategy (Sεai , τ
ε
i ) ∈ Tai . If we denote by (Sεx, τ

ε) ∈ Tx
a stopping strategy that is as in Corollary 8.8, then

v(x) ≥ J(Sεx, τ
ε)

= Ex

[
e−ΛTα∧Tβ f(XTα∧Tβ )1{Tα∧Tβ<τ}

]
+

n∑
i=1

Ex
[
e−Λτ1{Xτ=ai}

]
J(Sεai , τ

ε
i )

≥ Ex
[
e−ΛTα∧Tβ v(XTα∧Tβ )1{Tα∧Tβ<τ}

]
+

n∑
i=1

Ex
[
e−Λτ1{Xτ=ai}

]
[v(ai)− ε] ,

where the last inequality follows from the fact that f(XTα∧Tβ ) = v(XTα∧Tβ ) and the
ε-optimality of the strategies (Sεai , τ

ε
i ). Since ε > 0 is arbitrary, it follows that

v(x) ≥ Ex
[
e−Λτ∧Tα∧Tβ v(Xτ∧Tα∧Tβ )1{τ<∞}

]
,

and (6.1) follows in this case.
Now, we consider any stopping strategy (Sx, τ) ∈ Tx, and we define

τn = inf {t ≥ τ | Xt ∈ {a1, . . . , an}} ,

where (an) is any sequence that is dense in int I. Such a sequence of stopping times is
such that

τn1{Tα∧Tβ≤τ} =∞1{Tα∧Tβ≤τ} for all n ≥ 1 and lim
n→∞

τn1{τ<Tα∧Tβ} = τ1{τ<Tα∧Tβ}.

Therefore, limn→∞ τn∧Tα∧Tβ = τ∧Tα∧Tβ . Our analysis above has established that (6.1)
holds true for each of the stopping strategies (Sx, τn) ∈ Tx. Combining this observation
with Fatou’s lemma and the fact that v is lower semicontinuous, we can see that

v(x) ≥ lim inf
n→∞

Ex

[
e−Λτn∧Tα∧Tβ v(Xτn∧Tα∧Tβ )1{τn<∞}

]
≥ Ex

[
e−Λτ∧Tα∧Tβ v(Xτ∧Tα∧Tβ )1{τ<∞}

]
, (6.3)

which establishes (6.1).
Finally, we note that the continuity properties of v and the inequality v ≥ f imply

that v ≥ f . This observation and the r(·)-excessivity of v imply that

v(x) = sup
(Sx,τ)∈Tx

Ex
[
e−Λτ v(Xτ )1{τ<∞}

]
≥ sup

(Sx,τ)∈Tx
Ex
[
e−Λτ f(Xτ )1{τ<∞}

]
≥ sup

(Sx,τ)∈Tx
Ex
[
e−Λτ f(Xτ )1{τ<∞}

]
= v(x),

and (6.2) follows.

Our main results in this section involve solutions to the variational inequality

max
{
Lv, f − v

}
= 0 (6.4)

in the following sense.
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Definition 6.2. A function v : I → R+ satisfies the variational inequality (6.4) if its
restriction in int I is the difference of two convex functions,

−Lv is a positive measure on
(
int I,B(int I)

)
, (6.5)

f(x) ≤ v(x) for all x ∈ int I, (6.6)

and the measure Lv does not charge the open set {x ∈ int I | v(x) > f(x)}, (6.7)

where L is defined by (3.2) and f is defined by (1.10). 2

We now prove that the value function v satisfies the variational inequality (6.4) in the
sense of this definition. Also, we establish sufficient conditions for the existence of ε-
optimal as well as optimal stopping strategies. It is worth noting that the requirements
(6.13)–(6.14) are not really needed: the only reason we have adopted them is to simplify
the exposition of the proof.

Theorem 6.3. Consider the optimal stopping problem formulated in Section 2. The
following statements are true.
(I) If the problem data is such that

f(y) =∞, for some y ∈ I, or lim sup
y↓α

f(y)

ϕ(y)
=∞ or lim sup

y↑β

f(y)

ψ(y)
=∞,

then v(x) =∞ for all x ∈ I, otherwise, v(x) <∞ for all x ∈ I.
(II) If the problem data is such that

f(y) <∞ for all y ∈ I, lim sup
y↓α

f(y)

ϕ(y)
<∞ and lim sup

y↑β

f(y)

ψ(y)
<∞, (6.8)

then the value function v satisfies the variational inequality (6.4) in the sense of Defini-
tion 6.2,

lim
y∈int I, y↓α

v(y)

ϕ(y)
= lim sup

y↓α

f(y)

ϕ(y)
, lim

y∈int I, y↑β

v(y)

ψ(y)
= lim sup

y↑β

f(y)

ψ(y)
(6.9)

and

v(α) = f(α)
(
resp., v(β) = f(β)

)
if α

(
resp., β

)
is absorbing. (6.10)

(III) Suppose that (6.8) is true and that f = f . Given an initial condition x ∈ int I
consider any monotone sequences (αn), (βn) in I such that

α1 < x < β1, lim
n→∞

αn = α, lim
n→∞

βn = β, (6.11)

lim
n→∞

f(αn)

ϕ(αn)
= lim sup

y↓α

f(y)

ϕ(y)
, lim

n→∞

f(βn)

ψ(βn)
= lim sup

y↑β

f(y)

ψ(y)
, (6.12)

if α is absorbing and f(α) = lim sup
y↓α

f(y), then αn = α for all n ≥ 1, (6.13)

and if β is absorbing and f(β) = lim sup
y↑β

f(y), then βn = β for all n ≥ 1. (6.14)

Also, let Sx be any weak solution to (1.1), and define the associated stopping times

τ? = inf {t ≥ 0 | v(Xt) = f(Xt)} and τ?n = τ? ∧ Tαn ∧ Tβn . (6.15)

Then
v(x) = lim

n→∞
Ex

[
e−Λτ?n f(Xτ?n

)
]
. (6.16)
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Furthermore, the stopping strategy (Sx, τ
?) ∈ Tx is optimal if

lim sup
y↓α

f(y)

ϕ(y)
= 0 if α is inaccessible, lim sup

y↑β

f(y)

ψ(y)
= 0 if β is inaccessible, (6.17)

f(α) = lim sup
y↓α

f(y) if α is absorbing and f(β) = lim sup
y↑β

f(y) if β is absorbing.

(6.18)

Proof. We have established part (I) of the theorem in Lemma 3.4, so we assume that
(6.8) holds in what follows. In view of (3.22) and the fact that −Lv is a positive measure
on
(
int I,B(int I)

)
(see Theorem 5.1.(I) and Lemma 6.1), we can see that the restriction

of v in int I satisfies all of the assumptions of Theorem 4.3. Therefore, the limits of v/ϕ
and v/ψ in (6.9) exist,

v(x) = lim
y∈int I, y↓α

v(y)

ϕ(y)
ϕ(x) +R−Lv(x) + lim

y∈int I, y↑β

v(y)

ψ(y)
ψ(x) for all x ∈ int I, (6.19)

and, given any stopping strategy (Sx, τ) ∈ Tx,

Ex

[
e
−Λτ∧Tᾱ∧Tβ̄ ṽ(Xτ∧Tᾱ∧Tβ̄ )

]
= v(x) + Ex

[∫ τ∧Tᾱ∧Tβ̄

0

e−Λu dALvu

]
(6.20)

for all ᾱ < x < β̄ in I, where

ṽ(x) =


v(x), if x ∈ int I,
limy∈int I, y↓α v(y), if α is absorbing and x = α,

limy∈int I, y↓α v(y), if β is absorbing and x = β.

(6.21)

If α (resp., β) is absorbing, then (6.10) plainly holds true and

f(α) = v(α) ≤ lim inf
y∈int I, y↓α

v(y)

(
resp., f(β) = v(β) ≤ lim inf

y∈int I, y↑β
v(y)

)
,

thanks to the r(·)-excessivity of v (see Theorem 5.1.(II) and Lemma 6.1). Combining this
observation with the fact that the limit of v/ϕ in (6.9) exists, we can see that

lim
y∈int I, y↓α

v(y)

ϕ(y)
= lim sup

y↓α

v(y)

ϕ(y)

(3.22)
= lim sup

y↓α

f(y)

ϕ(y)
.

We can establish the second identity in (6.9) similarly.
With each initial condition x ∈ int I, we associate any monotone sequences (αn),

(βn) in I such that (6.11)–(6.14) hold true. If α (resp., β) is absorbing and αn = α (resp.,
βn = β), then (6.9)–(6.10) and (6.13)–(6.14) imply that

v(α) = lim
y∈int I, y↓α

v(y)

(
resp., v(β) = lim

y∈int I, y↑β
v(y)

)
.

This observation, the definition of ṽ in (6.21) and (6.20) imply that

Ex

[
e−Λτ∧Tαn∧Tβn v(Xτ∧Tαn∧Tβn )

]
= v(x) + Ex

[∫ τ∧Tαn∧Tβn

0

e−Λu dALvu

]
(6.22)

for every stopping strategy (Sx, τ) ∈ Tx. Furthermore, (6.9) and (6.12) imply that

lim
n→∞

v(αn)

ϕ(αn)
= lim
n→∞

f(αn)

ϕ(αn)
= lim
n→∞

f(αn)

ϕ(αn)
(6.23)
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and

lim
n→∞

v(βn)

ψ(βn)
= lim
n→∞

f(βn)

ψ(βn)
= lim
n→∞

f(βn)

ψ(βn)
. (6.24)

Given a stopping strategy (Sx, τ) ∈ Tx such that τ = τ ∧ Tα ∧ Tβ , we can use (2.11)–
(2.12) to calculate

Ex

[
e−Λτ∧Tαn∧Tβn

[
v(Xτ∧Tαn∧Tβn )− f(Xτ∧Tαn∧Tβn )

]]
= Ex

[
e−Λτ

[
v(Xτ )− f(Xτ )

]
1{τ≤Tαn∧Tβn}

]
+
[
v(αn)− f(αn)

]
Ex
[
e−ΛTαn 1{Tαn<τ∧Tβn}

]
+
[
v(βn)− f(βn)

]
Ex

[
e−ΛTβn 1{Tβn<τ∧Tαn}

]
= Ex

[
e−Λτ

[
v(Xτ )− f(Xτ )

]
1{τ≤Tαn∧Tβn}

]
+ ϕ(x)

v(αn)− f(αn)

ϕ(αn)

Ex
[
e−ΛTαn 1{Tαn<τ∧Tβn}

]
Ex
[
e−ΛTαn

]
+ ψ(x)

v(βn)− f(βn)

ψ(βn)

Ex

[
e−ΛTβn 1{Tβn<τ∧Tαn}

]
Ex

[
e−ΛTβn

] .

Combining this calculation with (6.23)–(6.24) and the monotone convergence theorem,
we can see that

lim
n→∞

Ex

[
e−Λτ∧Tαn∧Tβn

[
v(Xτ∧Tαn∧Tβn )− f(Xτ∧Tαn∧Tβn )

]]
= Ex

[
e−Λτ

[
v(Xτ )− f(Xτ )

]
1Γ(τ)

]
, (6.25)

where

Γ(τ) =


{τ < Tα ∧ Tβ}, if α < αn < βn < β,

{τ < Tβ}, if αn = α and βn < β,

{τ < Tα}, if α < αn and βn = β,

Ω, if αn = α and βn = β,

(see also (6.13)–(6.14)).

With each initial condition x ∈ int I, we associate any sequence of stopping strate-
gies (S`x, τ`) ∈ Tx such that τ` = τ` ∧ Tα ∧ Tβ and

v(x)− 1

2`
≤ E`x

[
e−Λτ` f(Xτ`)1{τ`<∞}

]
for all ` ≥ 1

(see (6.2) in Lemma 6.1). If α is absorbing and α < αn (see (6.13)), then we may
assume without loss of generality that τ` < Tα, P`x-a.s.. To see this claim, suppose
that α is absorbing and α < αn, which is the case when f(α) < lim supy↓α f(y). Since
τ` = τ` ∧ Tα ∧ Tβ ,

∞⋂
n=1

{Tαn < τ`} =

∞⋂
n=1

{Tαn < τ` ∧ Tα} ∩ {Tαn < Tβ}

= {Tα ≤ τ` ∧ Tα} ∩ {Tα < Tβ}
= {τ` = Tα} ∩ {Tα < Tβ}.
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In view of this observation and the dominated convergence theorem, we can see that

lim
n→∞

E
[
e−Λτ`

[
f(αn)− f(Xτ`)

]
1{Tαn<τ`}1{τ`<∞}

]
=

[
lim sup
y↓α

f(y)− f(α)

]
E
[
e−Λτ`1{τ`=Tα}∩{Tα<Tβ}

]
.

If P`x(τ` = Tα) > 0, then the right-hand side of this identity is strictly positive, and there
exists k ≥ 1 such that

f(αk)E
[
e−Λτ`1{Tαk<τ`}

]
≥ E

[
e−Λτ` f(Xτ`)1{Tαk<τ`}1{τ`<∞}

]
.

Given such a k, we can see that

E
[
e−Λτ`∧Tαk f(Xτ`∧Tαk )1{τ`∧Tαk<∞}

]
= E

[
e−Λτ` f(Xτ`)1{τ`≤Tαk}∩{τ`<∞}

]
+ f(αk)E

[
e−ΛTαk 1{Tαk<τ`}

]
≥ E

[
e−Λτ` f(Xτ`)1{τ`≤Tαk}∩{τ`<∞}

]
+ E

[
e−Λτ` f(Xτ`)1{Tαk<τ`}1{τ`<∞}

]
= E

[
e−Λτ` f(Xτ`)1{τ`<∞}

]
,

and the claim follows. Similarly, we may assume that τ` < Tβ , P`x-a.s., if β is absorbing
and βn < β.

In light of the above observations and (6.13)–(6.14), we can use the monotone con-
vergence theorem to calculate

lim inf
n→∞

E`x

[
e−Λτ`∧Tαn∧Tβn f(Xτ`∧Tαn∧Tβn )

]
≥ lim
n→∞

E`x
[
e−Λτ` f(Xτ`)1{τ`≤Tαn∧Tβn}

]
= E`x

[
e−Λτ` f(Xτ`)1{τ`<∞}

]
,

which implies that, for all ` ≥ 1, there exists n` such that

E`x
[
e−Λτ` f(Xτ`)1{τ`<∞}

]
≤ E`x

[
e
−Λτ`∧Tαn`

∧Tβn` f(Xτ`∧Tαn`∧Tβn`
)
]

+
1

2`
.

It follows that, if we define
τ◦` = τ` ∧ Tαn` ∧ Tβn` , (6.26)

then the stopping strategy (S`x, τ
◦
` ) ∈ Tx satisfies

v(x)− E`x
[
e
−Λτ◦

` f(Xτ◦`
)
]
≤ 1

`
. (6.27)

In view of (6.22) and (6.26), we can see that

v(x)− E`x
[
e
−Λτ◦

` f(Xτ◦`
)
]

= E`x

[
e
−Λτ◦

`

[
v(Xτ◦`

)− f(Xτ◦`
)
]]

+ E`x

[
−
∫ τ◦`

0

e−Λu dALvu

]
. (6.28)

The first term on the right-hand side of this identity is clearly positive, while, the second
one is positive because −Lv is a positive measure and −ALv is an increasing process
(see also (3.6) in Lemma 3.1). This observation and (6.27)–(6.28) imply that

lim
`→∞

E`x

[
e
−Λτ◦

`

[
v(Xτ◦`

)− f(Xτ◦`
)
]]

= lim
`→∞

E`x

[
−
∫ τ◦`

0

e−Λu dALvu

]
= 0. (6.29)
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Proof of (II). To prove that v satisfies the variational inequality (6.4) in the sense of
Definition 6.2, and thus complete the proof of part (II) of the theorem, we have to show
that (6.7) holds true because v ≥ f and −Lv is a positive measure. To this end, we
consider any interval [α̃, β̃] ⊆ {x ∈ int I | v(x) > f(x)} and we note that there exists
ξ > 0 such that

ξ ≤ min
x∈[α̃,β̃]

[
v(x)− f(x)

]
≤ max
x∈[α̃,β̃]

v(x) ≤ ξ−1

because the restrictions of v−f and v in int I are lower semicontinuous and continuous,
respectively. In view of this observation, we can see that

e
−Λτ◦

`

[
v(Xτ◦`

)− f(Xτ◦`
)
]
≥ ξe−Λτ◦

` 1{τ◦` <Tα̃∧Tβ̃}

≥ ξe−ΛTα̃1{τ◦` <Tα̃<Tβ̃} + ξe
−ΛT

β̃ 1{τ◦` <Tβ̃<Tα̃}

and

e
−Λτ◦

`

[
v(Xτ◦`

)− f(Xτ◦`
)
]
≥ ξe−Λτ◦

` 1{τ◦` <Tα̃∧Tβ̃} ≥ ξ
2e
−Λτ◦

` v(Xτ◦`
)1{τ◦` <Tα̃∧Tβ̃}.

These inequalities and (6.29) imply that

lim
`→∞

E`x

[
e−ΛTα̃1{τ◦` <Tα̃<Tβ̃}

]
= 0, lim

`→∞
E`x

[
e
−ΛT

β̃ 1{τ◦` <Tβ̃<Tα̃}

]
= 0,

lim
`→∞

E`x

[
e
−Λτ◦

` v(Xτ◦`
)1{τ◦` <Tα̃∧Tβ̃}

]
= 0 and lim

`→∞
E`x

[
−
∫ τ◦` ∧Tα̃∧Tβ̃

0

e−Λu dALvu

]
= 0.

(6.30)

The first of these limits implies that

lim
`→∞

E`x

[
e−ΛTα̃1{Tα̃≤τ◦` ∧Tβ̃}

]
= lim
`→∞

E`x

[
e−ΛTα̃1{Tα̃<Tβ̃}

]
(6.31)

because {τ◦` < Tα̃ < Tβ̃} = {Tα̃ < Tβ̃} \ {Tα̃ ≤ τ◦` ∧ Tβ̃}. Similarly, the second limit
implies that

lim
`→∞

E`x

[
e
−ΛT

β̃ 1{Tβ̃≤τ◦` ∧Tα̃}

]
= lim
`→∞

E`x

[
e
−ΛT

β̃ 1{Tβ̃<Tα̃}

]
. (6.32)

Now, (6.22) and (6.26) imply that

v(x) = E`x

[
e
−Λτ◦

`
∧Tα̃∧Tβ̃ v(Xτ◦` ∧Tα̃∧Tβ̃ )

]
+ E`x

[
−
∫ τ◦` ∧Tα̃∧Tβ̃

0

e−Λu dALvu

]
= E`x

[
e
−Λτ◦

` v(Xτ◦`
)1{τ◦` <Tα̃∧Tβ̃}

]
+ v(α̃)E`x

[
e−ΛTα̃1{Tα̃≤τ◦` ∧Tβ̃}

]
+ v(β̃)E`x

[
e
−ΛT

β̃ 1{Tβ̃≤τ◦` ∧Tα̃}

]
+ E`x

[
−
∫ τ◦` ∧Tα̃∧Tβ̃

0

e−Λu dALvu

]
.

In view of (6.30)–(6.32), we can pass to the limit as `→∞ to obtain

v(x) = lim
`→∞

{
v(α̃)E`x

[
e−ΛTα̃1{Tα̃<Tβ̃}

]
+ v(β̃)E`x

[
e
−ΛT

β̃ 1{Tβ̃<Tα̃}

]}
= v(α̃)

ϕ(β̃)ψ(x)− ϕ(x)ψ(β̃)

ϕ(β̃)ψ(α̃)− ϕ(α̃)ψ(β̃)
+ v(β̃)

ϕ(x)ψ(α̃)− ϕ(α̃)ψ(x)

ϕ(β̃)ψ(α̃)− ϕ(α̃)ψ(β̃)
,

the second identity following from (3.18)–(3.19) in Lemma 3.3. Since this identity is
true for all x ∈ ]α̃, β̃[ and Lϕ = Lψ = 0, it follows that the restriction of the measure Lv
in x ∈ ]α̃, β̃[ vanishes, which establishes (6.7).
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Proof of (III). We now assume that f = f and we consider the stopping times τ? and
τ?n that are defined by (6.15) on any given weak solution Sx to (1.1). In view of (6.22)
and the fact that v satisfies (6.7), we can see that

v(x)− Ex
[
e−Λτ?n f(Xτ?n

)
]

= Ex

[
e−Λτ?n

[
v(Xτ?n

)− f(Xτ?n
)
]]
.

Combining this result with the identities

lim
n→∞

Ex
[
e−Λτ?n

[
v(Xτ?n

)− f(Xτ?n
)
]] (6.25)

= Ex
[
e−Λτ? [v(Xτ?)− f(Xτ?)]1Γ(τ?)

]
= 0,

we obtain (6.16).
To establish the optimality of (Sx, τ

?) if f = f and (6.17)–(6.18) are satisfied, we first
note that if α is inaccessible, then

0 ≤ lim
n→∞

f(αn)Ex
[
e−ΛTαn 1{Tαn<τ?∧Tβn}

]
≤ lim
n→∞

f(αn)Ex
[
e−ΛTαn

] (2.11)
= lim

n→∞

f(αn)ϕ(x)

ϕ(αn)
= 0.

Similarly, if β is inaccessible, then

lim
n→∞

f(βn)Ex

[
e−ΛTβn 1{Tβn<τ?∧Tαn}

]
= 0.

In view of (6.13)–(6.14) and (6.18), we can see that, if α (resp., β) is absorbing, then
αn = α (resp., βn = β) and

{Tαn < τ∗ ∧ Tβn} = {Tα < τ∗ ∧ Tβn} = ∅
(
resp., {Tβn < τ? ∧ Tαn} = ∅

)
.

In light of these observations and the monotone convergence theorem, we can see that

lim
n→∞

Ex

[
e−Λτ?n f(Xτ?n

)
]

= lim
n→∞

(
Ex
[
e−Λτ? f(Xτ?)1{τ?≤Tαn∧Tβn}

]
+ f(αn)Ex

[
e−ΛTαn 1{Tαn<τ?∧Tβn}

]
+ f(βn)Ex

[
e−ΛTβn 1{Tβn<τ?∧Tαn}

])
= Ex

[
e−Λτ? f(Xτ?)1{τ?<∞}

]
,

and the optimality of (Sx, τ
?) follows thanks to (6.16).

It is straightforward to see that the variational inequality (6.4) does not have a
unique solution. In the previous result, we proved that the value function v satisfies
(6.4) as well as the boundary / growth conditions (6.9). We now establish a converse
result, namely a verification theorem, which shows that v is the minimal solution to
(6.4).

Theorem 6.4. Consider the optimal stopping problem formulated in Section 2 and
suppose that (6.8) holds true. The following statements are true.
(I) If a function w : int I → R+ is the difference of two convex functions such that −Lw
is a positive measure, w(x) ≥ f(x) for all x ∈ int I,

lim sup
y↓α

w(y)

ϕ(y)
<∞ and lim sup

y↑β

w(y)

ψ(y)
<∞,

then v(x) ≤ w(x) for all x ∈ int I.
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(II) If a function w : int I → R+ is a solution to the variational inequality (6.4) in the
sense of Definition 6.2 that satisfies

lim sup
y∈int I, y↓α

w(y)

ϕ(y)
= lim sup
y∈I, y↓α

f(y)

ϕ(y)
and lim sup

y∈int I, y↑β

w(y)

ψ(y)
= lim sup
y∈I, y↑β

f(y)

ψ(y)
, (6.33)

then v(x) = w(x) for all x ∈ int I.
(III) The value function v admits the characterisation

v(x) = inf
{
Aϕ(x)+Bψ(x) | A,B ≥ 0 and Aϕ(y)+Bψ(y) ≥ f(y) for all y ∈ int I

}
(6.34)

for all x ∈ int I. Furthermore, if c < d are any points in I such that v(x) > f(x) for all
x ∈ ]c, d[, then there exist constants Ã, B̃ such that

v(x) = Ãϕ(x) + B̃ψ(x) and Ãϕ(y) + B̃ψ(y) ≥ f(y) for all x ∈ ]c, d[ and y ∈ int I. (6.35)

Proof. A function w : int I → R+ that is as in the statement of part (I) of the theorem
satisfies all of the requirements of Theorem 4.3. Therefore, if I is not open and we
identify w with its extension on I that is given by w(α) = limy↓α w(y) (resp., w(β) =

limy↑β w(y)) if α (resp., β) is absorbing, then

Ex

[
e−Λτ∧Tαn∧Tβnw(Xτ∧Tαn∧Tβn )

]
= w(x) + Ex

[∫ τ∧Tαn∧Tβn

0

e−Λu dALwu

]
(6.36)

for every stopping strategy (Sx, τ) ∈ Tx, where (αn), (βn) are any monotone sequences
in I satisfying (6.11). Combining this identity with the fact that −Lw is a positive
measure, which implies that −ALw is an increasing process, we can see that

Ex

[
e−Λτ∧Tαn∧Tβnw(Xτ∧Tαn∧Tβn )

]
≤ w(x). (6.37)

This inequality and Fatou’s lemma imply that

Ex

[
e−Λτ∧Tα∧Tβw(Xτ∧Tα∧Tβ )

]
≤ lim inf

n→∞
Ex

[
e−Λτ∧Tαn∧Tβnw(Xτ∧Tαn∧Tβn )

]
≤ w(x),

which, combined with the inequality w ≥ f , proves that v(x) ≤ w(x).
If the function w satisfies (6.33) as well, then we choose any monotone sequences

(αn), (βn) as in (6.11)–(6.14) and we note that (6.23)–(6.24) hold true with the extension
of w on I considered at the beginning of the proof in place of v. If we consider the
stopping strategies (Sx, τ

?
n) ∈ Tx, where

τ?n =
(
inf
{
t ≥ 0 | w(Xt) = f(Xt)

})
∧ Tαn ∧ Tβn ,

then we can see that (6.25) with w in place of v and (6.36) imply that

lim
n→∞

Ex

[
e−Λτ?n f(Xτ?n

)
]

= w(x) + lim
n→∞

Ex

[
e−Λτ?n

[
f(Xτ?n

)− w(Xτ?n
)
]]

= w(x) + Ex
[
e−Λτ?

[
f(Xτ?)− w(Xτ?)

]
1Γ(τ?)

]
= w(x).

It follows that v(x) ≥ w(x) thanks to (6.2) in Lemma 6.1, which, combined with the
inequality v(x) ≤ w(x) that we have established above, implies that v(x) = w(x).

To show part (III) of the theorem, we first note that, given any constants A,B ∈ R,
the function Aϕ+Bψ satisfies the variational inequality (6.4) if and only if Aϕ+Bψ ≥ f .
Combining this observation with part (I) of the theorem, we can see that v(x) is less than
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or equal to the right-hand side of (6.34). To establish the reverse inequality, we first use
(3.17) in Lemma 3.3 and (6.22) with τ ≡ ∞ to obtain

Ex̄

[
e
−ΛTᾱ∧Tβ̄

[
v(XTᾱ∧Tβ̄ )−Aϕ(XTᾱ∧Tβ̄ )−Bψ(XTᾱ∧Tβ̄ )

]]
= v(x̄)−Aϕ(x̄)−Bψ(x̄) + Ex̄

[∫ Tᾱ∧Tβ̄

0

e−Λu dALvu

]
(6.38)

for all points ᾱ < x̄ < β̄ in int I and all constants A,B ∈ R. Also, we fix any point
x ∈ int I and we consider any monotone sequences (αn), (βn) in int I such that

αn < x < βn for all n ≥ 1 and lim
n→∞

αn = lim
n→∞

βn = x. (6.39)

If we define

An =
v(βn)ψ(αn)− v(αn)ψ(βn)

ϕ(βn)ψ(αn)− ϕ(αn)ψ(βn)
and Bn =

ϕ(βn)v(αn)− ϕ(αn)v(βn)

ϕ(βn)ψ(αn)− ϕ(αn)ψ(βn)
,

then we can check that

Anϕ(αn) +Bnψ(αn) = v(αn) and Anϕ(βn) +Bnψ(βn) = v(βn),

and observe that the identity

0 = v(x)−Anϕ(x)−Bnψ(x) + Ex

[∫ Tαn∧Tβn

0

e−Λu dALvu

]

follows immediately from (6.38) for ᾱ = αn, x̄ = x and β̄ = βn. Since −ALv = A−Lv

is a continuous increasing process, this identity, (6.39) and the dominated convergence
theorem imply that

v(x) ≥ Anϕ(x) +Bnψ(x) and v(x) = lim
n→∞

[
Anϕ(x) +Bnψ(x)

]
. (6.40)

Also, given any y ∈ ]βn, β[, we can see that (6.38) with ᾱ = αn, x̄ = βn and β̄ = y yields

[
v(y)−Anϕ(y)−Bnψ(y)

]
Eβn

[
e−ΛTy1{Ty<Tαn}

]
= Eβn

[∫ Tαn∧Ty

0

e−Λu dALvu

]
,

which implies that

Anϕ(y) +Bnψ(y) ≥ v(y) for all y ∈ ]βn, β[. (6.41)

Similarly,
Anϕ(y) +Bnψ(y) ≥ v(y) for all y ∈ ]α, αn[. (6.42)

Combining these results with (2.16), we can see that

An ≥ lim
y∈int I, y↓α

v(y)

ϕ(y)
≥ 0 and Bn ≥ lim

y∈int I, y↑β

v(y)

ψ(y)
≥ 0 for all n ≥ 1.

If we consider any sequence (n`) such that lim`→∞An` exists, then the positivity of the
constants An, Bn and (6.40) imply that lim`→∞Bn` also exists and that both limits are
positive and finite. In particular, (6.40) and (6.41)–(6.42) imply that

v(x) = lim
`→∞

An`ϕ(x) + lim
`→∞

Bn`ψ(x)
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and

v(y) ≤ lim
`→∞

An`ϕ(y) + lim
`→∞

Bn`ψ(y) for all y ∈ int I \ {x}.

It follows that v(x) is greater than or equal to the right-hand side of (6.34).
The existence of constants Ã, B̃ such that the identity in (6.35) holds true follows

from the fact that the measure Lv does not charge the interval ]c, d[. If [d, β[ is not
empty, then, given any ᾱ < x̄ in ]c, d[ and y ∈ [d, β[, we can see that (6.38) with β̄ = y

yields

[
v(y)− Ãϕ(y)− B̃ψ(y)

]
Ex̄
[
e−ΛTy1{Ty<Tᾱ}

]
= Ex̄

[∫ Tᾱ∧Ty

0

e−Λu dALvu

]
.

It follows that Ãϕ(y) + B̃ψ(y) ≥ v(y) ≥ f(y) because −ALv = A−Lv is a continuous
increasing process. We can show that Ãϕ(y)+ B̃ψ(y) ≥ f(y) for all y ∈ ]α, c], if ]α, c] 6= ∅,
similarly, and the inequality in (6.35) has been established.

7 Ramifications including a generalisation of the “principle of
smooth fit”

Throughout the section, we assume that (6.8) is true, so that the value function
is real-valued, and that f = f . We can express the so-called waiting region W as a
countable union of pairwise disjoint open intervals because it is an open subset of int I.
In particular, we write

W = {x ∈ I | v(x) > f(x)} =

∞⋃
`=1

W`, (7.1)

where

W` = ]c`, d`[, for some c`, d` ∈ I ∪ {α, β} such that c` ≤ d`,

and we adopt the usual convention that ]c, c[ = ∅ for c ∈ I ∪ {α, β}. Since the measure
Lv does not charge the waiting regionW,

v(x) = A`ϕ(x) +B`ψ(x) for all x ∈ W`, (7.2)

for some constants A` and B`.
Our first result in this section is concerned with a characterisation of the value

function if the problem data is such that W = int I. Example 8.1 in Section 8 provides
an illustration of this case.

Corollary 7.1. Consider the optimal stopping problem formulated in Section 2, and
suppose that (6.8) is true and f = f . IfW1 = ]α, β[ andW` = ∅ for ` > 1, then

A1 = lim sup
y↓α

f(y)

ϕ(y)
and B1 = lim sup

y↑β

f(y)

ψ(y)
. (7.3)

Proof. The result follows immediately from the fact that v(x) = A1ϕ(x) +B1ψ(x) for all
x ∈ int I, (2.16) and (6.9).

We next study the special case that arises when a portion of the general problem’s
value function has the features of the value function of a perpetual American call option,
which has been extensively studied in the literature.
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Corollary 7.2. Consider the optimal stopping problem formulated in Section 2, and
suppose that (6.8) is true and f = f . IfW` = ]α, d`[, for some ` ≥ 1 and d` ∈ int I, then

A` = lim sup
y↓α

f(y)

ϕ(y)
, B` =

1

ψ(d`)

[
f(d`)−A`ϕ(d`)

]
(7.4)

and

f(x)

A`ϕ(x) +B`ψ(x)


< 1 for all x ∈ ]α, d`[,

= 1 for x = d`,

≤ 1 for all x > d`.

(7.5)

Proof. The identities in (7.4) follow immediately from the fact that v(x) is given by (7.2)
for all x ∈ W` = ]α, d`[, (2.16) and (6.9). The first two inequalities in (7.5) are trivial.
Given any x ∈ ]α, d`[, the fact that v(x) is given by (7.2) and part (III) of Theorem 6.4
imply that

A`ϕ(x) +B`ψ(x) ≥ f(y) for all y ∈ int I,

and the last inequality in (7.5) follows.

Using similar symmetric arguments, we can establish the following result that arises
in the context of a perpetual American put option.

Corollary 7.3. Consider the optimal stopping problem formulated in Section 2, and
suppose that (6.8) is true and f = f . IfW` = ]c`, β[, for some ` ≥ 1 and c` ∈ int I, then

A` =
1

ϕ(c`)

[
f(c`)−B`ψ(c`)

]
, B` = lim sup

y↑β

f(y)

ψ(y)
(7.6)

and

f(x)

A`ϕ(x) +B`ψ(x)


≤ 1 for all x < c`,

= 1 for x = c`,

< 1 for all x ∈ ]c`, β[.

(7.7)

The next result focuses on a special case in which a component of the waiting region
W has compact closure in int I, which is a case that can arise in the context of the
valuation of a perpetual American straddle option.

Corollary 7.4. Consider the optimal stopping problem formulated in Section 2, and
suppose that (6.8) is true and f = f . If W` = ]c`, d`[, for some ` ≥ 1 and c`, d` ∈ int I,
then

A` =
f(d`)ψ(c`)− f(c`)ψ(d`)

ϕ(d`)ψ(c`)− ϕ(c`)ψ(d`)
, B` =

ϕ(d`)f(c`)− ϕ(c`)f(d`)

ϕ(d`)ψ(c`)− ϕ(c`)ψ(d`)
(7.8)

and

f(x)

A`ϕ(x) +B`ψ(x)


< 1 for all x ∈ ]c`, d`[,

= 1 for x = c` and x = d`,

≤ 1 for all x ≤ c` and x ≥ d`.
(7.9)

Proof. The expressions in (7.8) follow immediately from the continuity of the value func-
tion. The first two inequalities in (7.9) are a consequence of the definition of the wait-
ing region W, while the last one is an immediate consequence of part (II) of Theo-
rem 6.4.

EJP 18 (2013), paper 34.
Page 38/49

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2182
http://ejp.ejpecp.org/


Optimal stopping of a one-dimensional diffusion

Our final result is concerned with a generalisation of the “principle of smooth fit”.

Corollary 7.5. Consider the optimal stopping problem formulated in Section 2, and
suppose that (6.8) is true and f = f . Also, consider any point y ∈ int I such that y /∈ W.
If f admits right and left-hand derivatives at y, then

f ′+(y) ≤ v′+(y) ≤ v′−(y) ≤ f ′−(y). (7.10)

Proof. The inequality v′+(y) ≤ v′−(y) is an immediate consequence of the fact that Lv ≤
0. The inequalities f ′+(y) ≤ v′+(y) and v′−(y) ≤ f ′−(y) follow from the fact that v − f has
a local minimum at y.

8 Examples

We assume that an appropriate weak solution Sx to (1.1) has been associated with
each initial condition x ∈ int I in all of the examples that we discuss in this section. The
following example shows that an optimal stopping time may not exist if (6.17) is not
satisfied. In this example, the stopping region I \W is empty.

Example 8.1. Suppose that I = ]0,∞[ and X is a geometric Brownian motion, so that

dXt = bXt dt+ σXt dWt,

for some constants b and σ. Also, suppose that r is a constant. In this case, it is well-
known that

ϕ(x) = xm and ψ(x) = xn,

where m < 0 < n are the solutions to the quadratic equation

1

2
σ2k2 +

(
b− 1

2
σ2

)
k − r = 0. (8.1)

In this context, if the reward function f is given by

f(x) =

{
κ(xm − x), if x ∈ ]0, 1],

λ(xn − x−1), if x > 1,

for some constants κ, λ > 0, then

v(x) = κxm + λxn

= lim
j→∞

Ex

[
e−r(Tαj∧Tβj )f(XTαj∧Tβj )

]
for all x > 0, (8.2)

where (αj) and (βj) are any sequences in ]0,∞[ such that

αj < x < βj for all j, lim
j→∞

αj = 0 and lim
j→∞

βj =∞. (8.3)

In particular, there exists no optimal stopping time. 2

The next example shows that an optimal stopping time may not exist if (6.17) is not
satisfied, while the stopping region I \W is not empty.

Example 8.2. In the context of the previous example, suppose that the reward function
f is given by

f(x) =


0, if x ∈ ]0, 1[,

1, if x = 1,

xn − x−1, if x > 1.
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In view of straightforward considerations, we can see that

v(x) = xn for all x > 0.

In this case,
τ? ≡ inf {t ≥ 0 | v(Xt) = f(Xt)} = T1,

i.e., τ? is the first hitting time of {1}, and

v(x) = lim
j→∞

Ex

[
e−r(T1∧Tβj )f(XT1∧Tβj )

]
> xm = Ex

[
e−rτ?f(Xτ?)

]
for all x > 1,

where (βj) is any sequence in ]x,∞[ such that limj→∞ βj =∞. 2

The following example shows that an optimal stopping time may not exist if (6.18) is
not satisfied. In this example, the stopping region I \W is empty.

Example 8.3. Suppose that I = R+, X is a standard one-dimensional Brownian motion
starting from x > 0 and absorbed at 0 and r is a constant. In this case, we can see that

ϕ(x) = e−
√

2rx and ψ(x) = e
√

2rx − e−
√

2rx.

If the reward function f is given by

f(x) =

{
0, if x = 0,

e−2
√

2rx, if x > 0,

then we can see that

v(x) =

{
0, if x = 0,

e−
√

2rx, if x > 0.

In particular,

v(x) = lim
j→∞

Ex

[
e−r(Tαj∧Tβj )f(XTαj∧Tβj )

]
for all x > 0,

where (αj), (βj) are any sequences in ]0,∞[ satisfying (8.3), and there exists no optimal
stopping time. 2

The following example shows that an optimal stopping time may not exist if f 6= f .
In particular, the first hitting time τ? of the stopping region I \W may not be optimal.

Example 8.4. Suppose that X is a standard Brownian motion, namely, I = R and
dXt = dWt, and that r = 1

2 . In this context, it is straightforward to verify that

ϕ(x) = e−x and ψ(x) = ex.

Also, consider the reward function

f(x) =


0, if x ≤ 0,

1, if x ∈ ]0, 1],

2, if x > 1,

which is not upper semicontinuous. In this case, we can see that

v(x) =


ex, if x ≤ 0,
e−2
e−e−1 e

−x + 2−e−1

e−e−1 e
x, if x ∈ ]0, 1],

2, if x > 1.
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Given an initial condition x < 1 and an associated solution Sx to (1.1), we note that

τ? ≡ inf
{
t ≥ 0 | v(Xt) = f(Xt)

}
= inf

{
t ≥ 0 | Xt > 1

}
defines an (Ft)-stopping time because we have assumed that the filtration in Sx satisfies
the usual conditions. However, Xτ? = 1, Px-a.s., and

Ex

[
e−rτ

?

f(Xτ?)
]

= ex−1 < v(x) for all x < 1.

In view of these considerations, we can see that there is no optimal stopping time for
initial conditions x < 1. 2

The final example that we consider illustrates that a characterisation such as the
one provided by (7.5) in Corollary 7.2 has a local rather than global character.

Example 8.5. In the context of the previous example, we consider the reward function

f(x) =


e2x, if x < 0,

1, if x ∈ [0, 1],

1 + (x− 1)2, if x > 1,

and we note that the calculation

d

dx

f(x)

ψ(x)
=


ex, if x < 0,

−e−x, if x ∈ [0, 1],

−(x− 2)2e−x, if x > 1

implies that the function f/ψ is strictly increasing in ]−∞, 0[ and strictly decreasing in
]0,∞[. A first consideration of the associated optimal stopping problem suggests that
the value function v could identify with the function u given by

u(x) =


ex, if x < 0,

1, if x ∈ [0, 1],

1 + (x− 1)2, if x > 1.

In particular, we can check that

u(x)

u(y)
≥ min

{
ϕ(x)

ϕ(y)
,
ψ(x)

ψ(y)

}
for all x, y ∈ R.

However, the function u is not excessive because

Lu(dx) ≡ 1

2
u′′(dx)− 1

2
u(x) dx = −δ0(dx)− 1

2

(
1[0,1](x) + x(x− 2)1[1,∞[(x)

)
dx,

where δ0 is the Dirac probability measure that assigns mass 1 on the set {0}, which
implies that

Lu
(
[c, d]

)
> 0 for all 1 ≤ c < d ≤ 2,

and suggests that [1, 2] should be a subset of the waiting regionW. In this example, the
value function v is given by

v(x) =


ex, if x < 0,

1, if x ∈ [0, al],
1
2e
al−x + 1

2e
−al+x, if x ∈ ]al, ar[,

1 + (x− 1)2, if x > ar,

(8.4)
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where
al = 1 +

√
2 + 2 ln

(√
2− 1

)
' 0.651 and ar = 1 +

√
2 ' 2.414.

These values for the boundary points al, ar arise by the requirements that al ∈ ]0, 1[,
ar > 2 and v should be C1 along al, ar (see Corollary 7.5), which are associated with the
system of equations

al = ar + 2 ln (ar − 2) ,

a4
r − 4a3

r + 4a2
r − 1 ≡ (ar − 1)2

(
ar − 1−

√
2
)(

ar − 1 +
√

2
)

= 0.

In particular, we can check that the function given by the right-hand side of (8.4) satis-
fies all of the requirements of the verification Theorem 6.4.(II) and therefore identifies
with the value function v. 2

Appendix: pasting weak solutions of SDEs

The next result is concerned with aggregating two filtrations, one of which “switches
on” at a stopping time of the other one.

Theorem 8.6. Consider a measurable space (Ω,F) and two filtrations (Ht), (Gt) such
that H∞ ∪ G∞ ⊆ F . Also, suppose that (Gt) is right-continuous and let τ be an (Ht)-
stopping time. If we define

Ft =
{
A ∈ H∞ ∨ G∞ | A ∩ {t < τ} ∈ Ht ∨ G0 and

A ∩ {s ≤ τ} ∈ Ht ∨ Gt−s for all s ∈ [0, t]
}
, (8.5)

then (Ft) is a filtration such that

Fτ+t = Hτ+t ∨ Gt for all t ≥ 0 (8.6)

and

Ft∧τ = Ht∧τ ∨ G0 for all t ≥ 0. (8.7)

Proof. First, it is straightforward to verify that

Ht ⊆ Ft and G0 ⊆ Ft for all t ≥ 0. (8.8)

To prove that (Ft) is indeed a filtration, we consider any times u < t and any event
A ∈ Fu. Using the definition of Fu, we can see that

A ∩ {t < τ} = A ∩ {u < τ} ∩ {t < τ} ∈ Hu ∨ G0 ∨Ht ⊆ Ht ∨ G0,

A ∩ {s ≤ τ} ∈ Hu ∨ Gu−s ⊆ Ht ∨ Gt−s for all s ∈ [0, u],

and

A ∩ {s ≤ τ} = A ∩ {u ≤ τ} ∩ {s ≤ τ} ∈ Hu ∨ G0 ∨Hs ⊆ Ht ∨ Gt−s for all s ∈ [u, t].

It follows that A ∈ Ft.
To establish (8.6), we first show that Gt ⊆ Fτ+t, which amounts to proving that,

given any t ≥ 0 and A ∈ Gt,

A ∩ {τ + t ≤ u} = A ∩ {τ ≤ u− t} ∈ Fu for all u ≥ 0. (8.9)
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To this end, we note that

A ∩ {τ ≤ u− t} ∩ {u < τ} = ∅ ∈ Hu ∨ G0 for all u ≥ 0.

Also, given any s, u ≥ 0 such that s ∈ ]u− t, u],

A ∩ {τ ≤ u− t} ∩ {s ≤ τ} = ∅ ∈ Hu ∨ Gu−s,

while, given any s, u ≥ 0 such that s ∈ [0, u− t],

A ∩ {τ ≤ u− t} ∩ {s ≤ τ} = A ∩ {s ≤ τ ≤ u− t} ∈ Hu−t ∨ Gt ⊆ Hu ∨ Gu−s.

These observations and the definition (8.5) of (Ft) imply that (8.9) holds true and Gt ⊆
Fτ+t. Combining this result with the fact that Hτ+t ⊆ Fτ+t, which follows from (8.8),
we can see that Hτ+t ∨ Gt ⊆ Fτ+t.

To prove that Fτ+t ⊆ Hτ+t ∨ Gt, we consider any A ∈ Fτ+t and we show that

A ∩ {τ + t ≤ u} ∈ Hu ∨ Gt for all u ≥ 0. (8.10)

Since A ∩ {τ + t ≤ ū} ∈ Fū for all ū ≥ 0, A ∩ {τ ≤ ū} ∈ Fū+t for all ū ≥ 0. Combining
this observation with the definition (8.5) of (Ft) we can see that

A ∩ {τ ≤ ū} ∩ {s ≤ τ} ∈ Hū+t ∨ Gū+t−s for all ū ≥ 0 and s ≤ ū+ t. (8.11)

In particular,

A ∩ {ū− ε ≤ τ ≤ ū} ∈ Hū+t ∨ Gt+ε for all ū > 0 and ε ∈ [0, ū].

In view of this result, we can see that, given any u > t,

A ∩ {τ + t ≤ u} =

n−1⋃
j=0

A ∩
{
j(u− t)

n
≤ τ ≤ (j + 1)(u− t)

n

}
∈ Hu ∨ Gt+ (u−t)

n
.

It follows that

A ∩ {τ + t ≤ u} ∈
∞⋂
n=1

Hu ∨ Gt+ (u−t)
n

= Hu ∨ Gt for all u > t,

the equality being true thanks to the right continuity of (Gt). Combining this result with
the fact that

A ∩ {τ + t ≤ t} ∈ Ht ∨ Gt,

which follows from (8.11) for ū = s = 0, we obtain (8.10).
To prove (8.7), we first note that (8.8) implies that Ht∧τ ∨G0 ⊆ Ft∧τ . To establish the

reverse inclusion, we consider any A ∈ Ft∧τ and we show that

A ∩ {t ∧ τ ≤ u} ∈ Hu ∨ G0 for all u ≥ 0.

Since A ∩ {t ∧ τ ≤ ū} ∈ Fū for all ū ≥ 0, the definition (8.5) of (Ft) implies that

A ∩ {t ∧ τ ≤ ū} ∩ {s ≤ τ} ∈ Hū ∨ Gū−s for all ū ≥ 0 and s ∈ [0, ū]. (8.12)

For ū = s = 0, this implies immediately that

A ∩ {t ∧ τ ≤ 0} ∈ H0 ∨ G0. (8.13)
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Also, it implies that

A ∩ {ū− ε ≤ τ ≤ ū} ∈ Hū ∨ Gε for all ū ∈ [0, t[ and ε ∈ [0, ū].

In view of this observation, we can see that

A ∩ {t ∧ τ ≤ u} =

n−1⋃
j=0

A ∩
{
ju

n
≤ τ ≤ (j + 1)u

n

}
∈ Hu ∨ G un for all u ∈ ]0, t[.

It follows that

A ∩ {t ∧ τ ≤ u} ≡ A ∩ {τ ≤ u} ∈
∞⋂
n=1

Hu ∨ G un = Hu ∨ G0 for all u ∈ ]0, t[

because (Gt) is right-continuous. In particular, this implies that

A ∩ {τ < t} =

∞⋃
n=1

A ∩
{
τ ≤ n

n+ 1
t

}
∈ Ht ∨ G0.

Combining this observation with the fact that

A ∩ {t ≤ τ} ∈ Ht ∨ G0,

which follows from (8.12) for ū = s = t, we can see that

A∩{t∧ τ ≤ u} = A = A∩{τ < t}∪A∩{t ≤ τ} ∈ Ht∨G0 ⊆ Hu∨G0 for all u ≥ t. (8.14)

From (8.13)–(8.14), it follows that A ∈ Ht∧τ ∨ G0.

The following result is concerned with the pasting of two stopping strategies, in
particular, two weak solutions to (1.1), at an appropriate stopping time.

Theorem 8.7. Consider initial conditions x0, x1 ∈ int I and stopping strategies

(S0
x0
, τ0) =

((
Ω0,F0,F0

t ,P
0
x0
,W 0, X0

)
, τ0
)

and (S1
x1
, τ1) =

((
Ω1,F1,F1

t ,P
1
x1
,W 1, X1

)
, τ1
)
.

Given any event A ∈ F0
τ0 such that A ⊆ {X0

τ01{τ
0 < ∞} = x1}, there exists a stopping

strategy (Sx0
, τ0,1) =

((
Ω,F ,Ft,Px0

,W,X
)
, τ0,1

)
∈ Tx0

such that

J(Sx0
, τ0,1) = J(S0

x0
, τ0
Ac) + E0

x0

[
e−Λτ0 (X0)1A

]
J(Sx1

, τ1), (8.15)

where τ0
Ac is the (F0

t )-stopping time defined by τ0
Ac = τ01Ac +∞1A.

Proof. Without loss of generality, we assume that {X0
τ0 = x1} 6= ∅. For j = 0, 1,

we define on the product space
(
Ω,F ,Px0

)
=
(
Ω0 × Ω1,F0 ⊗ F1,P0

x0
⊗ P1

x1

)
the in-

dependent filtrations (F̃ jt ) given by F̃0
t = F0

t ⊗
{

Ω1, ∅
}

and F̃1
t =

{
Ω0, ∅

}
⊗ F1

t , the

(F̃ jt )-stopping times τ̃ j given by τ̃ j(ω0, ω1) = τ j(ωj), the (F̃ jt )-Brownian motions W̃ j

given by W̃ j
t (ω0, ω1) = W j

t (ωj), and the continuous (F̃ jt )-adapted processes X̃j given by
X̃j
t (ω0, ω1) = Xj

t (ωj). Also, we denote by T̃ jy the first hitting time of {y} by X̃j , for y ∈ I
and j = 0, 1. In particular, we note that each of the collections

(
Ω,F , F̃ j ,Px0 , W̃

j , X̃j
)

is a weak solution to the SDE (1.1) with initial condition xj .
We next consider the filtration (Ft) that is defined by (8.5) in Proposition 8.6 above

with (Ht) = (F̃0
t ), (Gt) = (F̃1

t ) and τ = τ̃0, so that

Fτ̃0+t = F̃0
τ̃0+t ∨ F̃1

t and Ft∧τ̃0 = F̃0
t∧τ̃0 ∨ F̃1

0 , (8.16)
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and we define
Ã = A× Ω1 and Ãc = Ac × Ω1. (8.17)

The independence of (F̃0
t ), (F̃1

t ) and (8.7) imply that the processes
(
W̃ 0
t∧τ̃0 , t ≥ 0

)
and

(
(W̃ 0

t∧τ̃0)2 − t ∧ τ̃0, t ≥ 0
)

are (Ft)-martingales. On the other hand, (8.16) and

the fact that (F̃0
t ), (F̃1

t ) are independent imply that W̃ 1 is an (Fτ̃0+t)-Brownian motion.
Since (t − τ̃0)+ is an (Fτ̃0+t)-stopping time for all t ≥ 0 and τ̃0 + (t − τ̃0)+ = τ̃0 ∨ t,
the time-changed processes

(
W̃ 1

(t−τ̃0)+ , t ≥ 0
)

and
(
(W̃ 1

(t−τ̃0)+)2 − (t − τ̃0)+, t ≥ 0
)

are

(Fτ̃0∨t)-martingales, while the (Fτ̃0∨t)-adapted process
(
X̃1

(t−τ̃0)+ , t ≥ 0
)

satisfies

X̃1
(t−τ̃0)+ = x1 +

∫ (t−τ̃0)+

0

b
(
X̃1
s

)
ds+

∫ (t−τ̃0)+

0

σ
(
X̃1
s

)
dW̃ 1

s

= x1 +

∫ t

0

b
(
X̃1

(s−τ̃0)+

)
d(s− τ̃0)+ +

∫ t

0

σ
(
X̃1

(s−τ̃0)+

)
dW̃ 1

(s−τ̃0)+

= x1 +

∫ t

0

1{τ̃0≤s}b
(
X̃1

(s−τ̃0)+

)
ds+

∫ t

0

1{τ̃0≤s}σ
(
X̃1

(s−τ̃0)+

)
dW̃ 1

s . (8.18)

In fact, all of these processes are (Ft)-adapted. To see this, we consider, e.g., the
process

(
X̃1

(t−τ̃0)+ , t ≥ 0), and we note that
{
X̃1

(t−τ̃0)+ ∈ C} ∈ Fτ̃0∨t implies that{
X̃1

(t−τ̃0)+ ∈ C} ∩ {τ̃0 ∨ t ≤ u} ∈ Fu for all u ≥ 0.

Therefore,

{
X̃1

(t−τ̃0)+ ∈ C} ∩ {τ̃0 < t} =

∞⋃
n=1

{
X̃1

(t−τ̃0)+ ∈ C} ∩
{
τ̃0 ∨ t ≤ nt

n+ 1

}
∈ Ft.

It follows that{
X̃1

(t−τ̃0)+ ∈ C} =
{
X̃1

0 ∈ C} ∩ {t ≤ τ̃0} ∪
{
X̃1

(t−τ̃0)+ ∈ C} ∩ {τ̃0 < t} ∈ Ft,

because X̃1
0 = x1 is a constant, which establishes the claim. Furthermore,

(
W̃ 1

(t−τ̃0)+ , t ≥
0
)

and
(
(W̃ 1

(t−τ̃0)+)2 − (t− τ̃0)+, t ≥ 0
)

are in fact (Ft)-martingales. Indeed, given s < t,
we can check, e.g., that

Ex0

[
W̃ 1

(t−τ̃0)+ | Fs
]

= Ex0

[
Ex0

[
W̃ 1

(t−τ̃0)+ | Fτ̃0∨s

]
| Fs

]
= Ex0

[
W̃ 1

(s−τ̃0)+ | Fs
]

= W̃ 1
(s−τ̃0)+ , (8.19)

the last equality following because
(
W̃ 1

(t−τ̃0)+ , t ≥ 0
)

is (Ft)-adapted. For future refer-
ence, we also note that

Ex0

[
W̃ 0
t∧τ̃0W̃ 1

(t−τ̃0)+ | Fs
]

= Ex0

[
Ex0

[
W̃ 0
τ̃0W̃ 1

(t−τ̃0)+ | Fτ̃0∨s

]
| Fs

]
= Ex0

[
W̃ 0
τ̃0W̃ 1

(s−τ̃0)+ | Fs
]

= W̃ 0
s∧τ̃0W̃ 1

(s−τ̃0)+ . (8.20)

In view of (8.16) and (8.17), the process Y defined by Yt = 1Ã1{τ̃1<t} is (Fτ̃0+t)-
adapted. Using arguments similar to the ones we developed above, we can see that the
time-changed process given by

Y(t−τ̃0)+ = 1Ã1{τ̃0+τ̃1<t}, t ≥ 0,
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is (Ft)-adapted, which proves that the random variable (τ̃0 + τ̃1)1Ã +∞1Ãc is an (Ft)-
stopping time. It follows that the random variable

τ0,1 = min
{
τ̃01Ãc +∞1Ã, (τ̃0 + τ̃1)1Ã +∞1Ãc

}
= τ̃01Ãc + (τ̃0 + τ̃1)1Ã (8.21)

is an (Ft)-stopping time.
To proceed further, we define

Wt = W̃ 0
t∧τ̃0 + W̃ 1

(t−τ̃0)+

and

Xt = X̃0
t∧τ̃0 +

(
X̃0
t − X̃0

τ̃0

)
1Ãc1{τ̃0≤t} +

(
X̃1

(t−τ̃0)+ − x1

)
1Ã1{τ̃0≤t}

≡ X̃0
t 1{t<τ̃0} + X̃0

t 1Ãc1{τ̃0≤t} + X̃1
(t−τ̃0)+1Ã1{τ̃0≤t}, (8.22)

and we note that
Xτ0,1 = X̃0

τ̃01Ãc + X̃1
τ̃11Ã. (8.23)

Given y ∈ I, if we denote by Ty the first hitting time of {y} by X, then

Tα1Ãc = T̃ 0
α1Ãc , Tβ1Ãc = T̃ 0

β1Ãc , (8.24)

Tα1Ã =
(
τ̃0 + T̃ 1

α

)
1Ã and Tβ1Ã =

(
τ̃0 + T̃ 1

β

)
1Ã (8.25)

because τ̃01Ã <
(
T̃ 0
α + T̃ 1

β

)
1Ã. Since W is the sum of two (Ft)-martingales, it is an

(Ft)-martingale. Furthermore, since

W 2
t − t =

{(
W̃ 0
t∧τ̃0

)2

− t ∧ τ̃0

}
+

{(
W̃ 1

(t−τ̃0)+

)2

− (t− τ̃0)+

}
+ 2W̃ 0

t∧τ̃0W̃ 1
(t−τ̃0)+ ,

and the three processes identified on the right-hand side of this identity are (Ft)-
martingales (see (8.19)–(8.20)), the process (W 2

t − t) is an (Ft)-martingale. From Lévy’s
characterisation theorem, it follows that W is an (Ft)-Brownian motion. Also, combin-
ing (8.22) with (8.18) and the fact that X̃0 satisfies the SDE (1.1), we can see that

Xt = x0 +

∫ t

0

1{s<τ̃0}b
(
X̃0
s

)
ds+

∫ t

0

1{s<τ̃0}σ
(
X̃0
s

)
dW̃ 0

s

+ 1Ãc

∫ t

0

1{τ̃0≤s}b
(
X̃0
s

)
ds+ 1Ãc

∫ t

0

1{τ̃0≤s}σ
(
X̃0
s

)
dW̃ 0

s

+ 1Ã

∫ t

0

1{τ̃0≤s}b
(
X̃1

(s−τ̃0)+

)
ds+ 1Ã

∫ t

0

1{τ̃0≤s}σ
(
X̃1

(s−τ̃0)+

)
dW̃ 1

s

= x0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dWs.

This calculation and the preceding considerations show that

(Sx0
, τ0,1) =

((
Ω,F ,Ft,Px0

,W,X
)
, τ0,1

)
∈ Tx0

.

To complete the proof, we use the definition (1.3) of Λ, (8.21)–(8.22) and (8.24)–
(8.25) to calculate

1ÃΛτ0,1∧Tα∧Tβ (X) = 1Ã

∫ (τ̃0+τ̃1)∧(τ̃0+T̃ 1
α)∧(τ̃0+T̃ 1

β)

0

r(Xs) ds

= 1Ã

[
Λτ̃0(X̃0) + Λτ̃1∧T̃ 1

α∧T̃ 1
β
(X̃1)

]
.
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In view of this observation, (8.16)–(8.17), (8.21)–(8.25) and the independence of (F̃0
t ),

(F̃1
t ), we can see that

J(Sx0
,τ0,1)

= Ex0

[
e
−Λτ0,1∧Tα∧Tβ

(X)
f(Xτ0,1∧Tα∧Tβ )1{τ0,1<∞}

]
= Ex0

[
e
−Λ

τ̃0∧T̃0
α∧T̃

0
β

(X̃0)
f(X̃0

τ̃0∧T̃ 0
α∧T̃ 0

β

)1Ãc1{τ̃0<∞}

]
+ Ex0

[
e−Λτ̃0 (X̃0)Ex0

[
e
−Λ

τ̃1∧T̃1
α∧T̃

1
β

(X̃1)
f(X̃1

τ̃1∧T̃ 1
α∧T̃ 1

β

)1{τ̃1<∞} | F̃0
τ̃0 ∨ F̃1

0

]
1Ã

]
= E0

x0

[
e
−Λ

τ0∧T0
α∧T

0
β

(X0)
f(X0

τ0∧T 0
α∧T 0

β
)1Ac1{τ0<∞}

]
+ Ex0

[
e−Λτ̃0 (X̃0)Ex0

[
e
−Λ

τ̃1∧T̃1
α∧T̃

1
β

(X̃1)
f(X̃1

τ̃1∧T̃ 1
α∧T̃ 1

β

)1{τ̃1<∞} | F̃1
0

]
1Ã

]
= J(S0

x0
, τ0
Ac) + Ex0

[
e−Λτ̃0 (X̃0)1Ã

]
Ex0

[
e
−Λ

τ̃1∧T̃1
α∧T̃

1
β

(X̃1)
f(X̃1

τ̃1∧T̃ 1
α∧T̃ 1

β

)1{τ̃1<∞}

]
= J(S0

x0
, τ0
Ac) + E0

x0

[
e−Λτ0 (X0)1A

]
E1
x1

[
e
−Λ

τ1∧T1
α∧T

1
β

(X1)
f(X1

τ1∧T 1
α∧T 1

β
)1{τ1<∞}

]
,

and (8.15) follows.

Iterating the construction above, we obtain the following result.

Corollary 8.8. Fix an initial condition x ∈ int I and any distinct points a1, . . . , an ∈ int I.
Given stopping strategies

(S0
x, τ

0) =
((

Ω0,F0,F0
t ,P

0
x,W

0, X0
)
, τ0
)

and (Siai , τ
i) =

((
Ωi,F i,F it ,Piai ,W

i, Xi
)
, τ i
)
,

i = 1, . . . , n, define A =
{
X0
τ01{τ0<∞} ∈ {a1, . . . , an}

}
∈ F0

τ0 . Then, there exists a stop-
ping strategy (Sx, τ) ∈ Tx such that

J(Sx, τ) = J(S0
x, τ

0
Ac) +

n∑
i=1

E0
x

[
e−Λτ0 (X0)1{X0

τ0=ai}

]
J(Siai , τ

i),

where τ0
Ac is the (F0

t )-stopping time defined by τ0
Ac = τ01Ac +∞1A.
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