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Abstract. We consider three optimisation problems faced by a company that can control
their liquid reserves by paying dividends and by issuing new equity. The first of these
problems involves no issuance of new equity and has been considered by several authors
in the literature. The second one aims at maximising the expected discounted dividend
payments minus the expected discounted costs of issuing new equity over all strategies
associated with positive reserves at all times. The third problem has the same objective as
the second one, but with no constraints on the reserves. Assuming proportional issuance
of equity costs, we derive closed form solutions and we completely characterise the optimal
strategies. We also provide a relationship between the three problems.

1. Introduction

Diffusion models for companies that can control their risk exposure by means of their
dividend payments have attracted significant interest in the recent literature. Jeanblanc
and Shiryaev [10], Radner and Shepp [12] and Boguslavskaya [2] model the liquid reserves
of a company by means of a Brownian motion with drift, while Asmussen, Højgaard and
Taksar [1], Choulli, Taksar and Zhou [3] and Højgaard and Taksar [4, 5, 6] consider more
general diffusions. A typical application appearing in these references, considers the divi-
dend flow as a controlled process and aims at maximising the expected discounted dividends
that are payed up to the company’s bankruptcy, which is taken to be the time at which
the reserves process hits 0. In a recent paper, Sethi and Taksar [13] consider a model for
a company that can control their risk exposure by issuing new equity as well as by paying
dividends. These authors consider dynamics for the reserves process that, if uncontrolled,
never hit 0 that signals bankruptcy.

The objective of this paper is to study a model for a company that can control their
reserves process dynamics as in Sethi and Taksar [13], while still facing the possibility
of bankruptcy as in the other references mentioned above. In particular, we model the
uncontrolled reserves dynamics by a Brownian motion with drift and we assume that
dividend payments and issuance of new equity take the form of “singular” controls. As in
Sethi and Taksar [13], the aim is to maximise the expected discounted dividend payments
minus the expected discounted costs of issuing new equity. For the resulting optimisation
problem to lead to results that have nice economic interpretations, it turns out that we
have to define bankruptcy as the time at which the reserves process hits (−∞, 0) instead
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of (−∞, 0] because, otherwise, there may exist no optimal strategy. It is worth noting that
this definition leads to a problem that is non-standard in control theory where, typically,
the objective is to control a process up to the exit time from an open domain instead of a
closed one.

It turns out that our control problem is associated with qualitatively different optimal
strategies, depending on the problem’s data, and requires the consideration of two auxiliary
control problems. The first one is essentially the same as the one solved by Jeanblanc and
Shiryaev [10], which allows for no issuance of new equity. The associated optimal dividend
strategy reflects the state process at an appropriate level x∗∗ and bankruptcy eventually
occurs (see Section 3). The second one aims at maximising the expected discounted divi-
dend payments minus the expected discounted costs of new equity issuance subject to the
constraint that bankruptcy never occurs, i.e., subject to the constraint that the associ-
ated reserves process remains positive at all times. This problem is interesting on its own.
Indeed, banks and insurance companies are restricted by regulations to maintain positive
reserves at all times in order to operate. The issuance of new equity provides a strategy
that can be used by such institutions in meeting their regulatory requirements, ideally in
an optimal way. In this problem, it is optimal to issue minimal new equity so as to reflect
the reserves process at 0 and make minimal dividend payments so as to reflect the reserves
process at a certain level x∗ (see Section 4). With regard to the general problem, it turns
out that its value function and its optimal strategy identify with the corresponding ones
in either the first auxiliary control problem or the second one, depending on the problem’s
data (see Section 5). Thus, under the optimal strategy, 0 acts either as an absorbing or as
a reflecting boundary point in the reserves process’ state space.

The paper is organised as follows. Section 2 is concerned with the formulation of the
three stochastic control problems that we solve. In Section 3, we review the solution to the
control problem that allows for no issuance of new equity, which was derived by Jeanblanc
and Shiryaev [10], and we prove some of its properties that we use later. In Section 4,
we solve the control problem that arises when the admissible strategies are constrained
to allow for no bankruptcy, while Section 5 is concerned with the solution to the general
control problem that involves no constraints on the issuance of new equity or the reserves.

2. Formulation of the control problems

Fix a filtered probability space (Ω,F ,Ft, P ) satisfying the usual conditions and sup-
porting a standard, one-dimensional (Ft)-Brownian motion W . We consider a company
with an established and stationary cash flow. The company’s management can control the
reserves by paying out dividends and by raising capital by issuing equity. We denote by Lt

the cumulative amount of dividends paid from time zero up to time t, and by Gt the total
amount raised by issuing equity from time zero up to time t. We assume that both L and
G are increasing, (Ft)-adapted processes and their sample paths are left-continuous with
right limits. Given a dividend process L and an issuance of equity process G, we assume
that the liquid reserves of the company are modelled by the stochastic differential equation

dXt = µ dt + σ dWt − dLt + dGt, X0 = x,
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where x ≥ 0 is the reserves at time zero, and µ and σ are parameters describing the
growth rate and the volatility of the reserves process, respectively. Note that, contrary to
Jeanblanc and Shiryaev [10] and other references discussed in the introduction that assume
that µ > 0, we allow for the possibility µ ≤ 0.

We make the assumption that the company needs positive reserves in order to operate
and the company is considered bankrupt as soon as the reserves become strictly negative.
Accordingly, we define the bankruptcy time τ by

τ = inf
{
t ≥ 0 : Xt < 0

}
.

Noting the strict inequality in this definition, we should remark that the random time τ is
indeed an (Ft)-stopping time (e.g., see Theorem 1.1.27 Jacod and Shiryaev [9]).

Following Sethi and Taksar [13], our objective is to maximise the performance index J
given by

J(x; L, G) = Ex

[
lim sup

t→∞

(∫
[0,t∧τ ]

e−rt dLt − β

∫
[0,t∧τ ]

e−rt dGt

)]
,(2.1)

where the discount factor r can be the risk free interest rate and the constant β > 1 provides
a measure for the proportional costs arising from the issuance of equity. Note that β = 1
corresponds to no costs, while high values of β correspond to high costs associated with
raising capital in the market. Also, the purpose of the “lim sup” in (2.1) is to guarantee
that the random variable inside the expectation is well defined on the event {τ = ∞}.

We consider three distinct optimisation problems, each corresponding to the maximisa-
tion of the performance index J over a set of appropriate admissible dividend and issuance
of equity strategies.

Definition 2.1. (No restrictions on the issuance of equity or the reserves.) Given an initial
condition x ≥ 0, we denote by A(x) the set of all dividend and issuance of equity processes
(L, G) such that:

(i) L and G are (Ft)-adapted, increasing and càglàd processes,
(ii) L0 = G0 = 0, and
(iii) 4Lt ≤ Xt, for all t ≥ 0, P -a.s..

We define the corresponding value function V by

V (x) = sup
(L,G)∈A(x)

J(x; L, G), x ≥ 0.(2.2)

Here, as well as in the following definitions, we impose the condition 4L ≤ X to rule out
the possibility of making dividend payments greater than the company’s reserves. Such
a condition is essential, because in its absence, the company’s management could realise
arbitrarily high payoffs by making arbitrarily high dividend payments at time 0, which is
plainly unrealistic.

The optimisation problem associated with the following definition corresponds to the
problem of maximising the expected discounted dividends paid until default in the ab-
sence of an equity issuance possibility, which is a problem addressed by Jeanblanc and
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Shiryaev [10], Radner and Shepp [12] and Boguslavskaya [2]. However, note that our ver-
sion of the problem is slightly different from the one that these authors consider because we
have defined the bankruptcy time τ to be the hitting time of (−∞, 0) instead of (−∞, 0].

Definition 2.2. (Issuance of equity not permitted.) Given an initial condition x ≥ 0,
denote by Ad(x) ⊆ A(x) the set of all dividend and issuance of equity processes (L, G)
such that:

(i) L is (Ft)-adapted, increasing and càglàd,
(ii) L0 = 0,
(iii) 4Lt ≤ Xt, for all t ≥ 0, P -a.s., and
(iv) Gt = 0, for all t ≥ 0, P -a.s..

We define the associated value function Vd by

Vd(x) = sup
(L,G)∈Ad(x)

J(x; L, G), x ≥ 0.(2.3)

The next definition is concerned with the optimisation problem that aims at maximis-
ing the performance index J over all dividend and issuance of equity strategies that are
associated with a positive reserves process. This problem corresponds to maximising the
performance index J over all dividend and issuance of equity strategies satisfying the ad-
ditional condition that the default time τ is infinite.

Definition 2.3. (Restrictions on the reserves.) Given an initial condition x ≥ 0, denote
by Ac(x) ⊆ A(x) the set of all dividend and issuance of equity processes (L, G) such that:

(i) L and G are (Ft)-adapted, increasing and càglàd,
(ii) L0 = G0 = 0,
(iii) 4Lt ≤ Xt, for all t ≥ 0, P -a.s., and
(iv) Xt ≥ 0, for all t ≥ 0, P -a.s..

We define the value function Vc by

Vc(x) = sup
(L,G)∈Ac(x)

J(x; L, G), x ≥ 0.(2.4)

Remark 2.1. Since the families of the admissible decision strategies appearing in these
definitions satisfy Ad(x),Ac(x) ⊆ A(x),

V (x) ≥ max
{
Vd(x), Vc(x)

}
, for all x ≥ 0.(2.5)

This inequality has played an important role in our discovering the optimal strategy of the
optimisation problem that involves no constraints (see also Section 5).

Remark 2.2. At this point, we should note that our analysis in the following sections
also establishes the fact that the expectation in (2.1) is well defined and takes values
in [−∞,∞) for any admissible strategy as in Definitions 2.1–2.3. Therefore, the three
optimisation problems that we consider are well defined.
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3. The solution to the problem that involves no issuance of new equity

The solution to the singular control problem arising when µ > 0 and the admissible
strategies are as in Definition 2.2 was obtained in Jeanblanc and Shiryaev [10]. With refer-
ence to standard theory of optimal control, the Hamilton-Jacobi-Bellman (HJB) equation
corresponding to this problem is given by

max

{
1

2
σ2w′′(x) + µw′(x)− rw(x), − w′(x) + 1

}
= 0, x > 0,(3.1)

w(0) = 0.(3.2)

The boundary condition here arises naturally once we observe that the value function is
zero at default. With regard to simple economic considerations, we can conjecture that
the value function Vd identifies with a solution w to this HJB equation satisfying

1

2
σ2w′′(x) + µw′(x)− rw(x) = 0, for x < x∗∗,

−w′(x) + 1 = 0, for x ≥ x∗∗,

for some constant x∗∗ > 0. To proceed further, we observe that the general solution to the
ordinary differential equation

1

2
σ2w′′(x) + µw′(x)− rw(x) = 0,(3.3)

is given by

w(x) = c1e
α1x + c2e

α2x,(3.4)

where, c1, c2 ∈ R are constants and the real numbers α1, α2 are given by

α1 =
1

σ2

(
−µ +

√
µ2 + 2σ2r

)
,(3.5)

α2 =
1

σ2

(
−µ−

√
µ2 + 2σ2r

)
.(3.6)

Since every solution to (3.4) that satisfies the boundary condition w(0) = 0 is associated
with the relation c1 + c2 = 0, it follows that we should consider a solution to the HJB
equation (3.1)–(3.2) of the form

w(x) =

c1

(
eα1x − eα2x

)
, for 0 ≤ x < x∗∗,

x− x∗∗ + w(x∗∗), for x ≥ x∗∗.
(3.7)

To specify the parameters c1 and x∗∗, we appeal to the so-called “smooth-pasting condition”
of singular control, which dictates that the value function should be C2, in particular, at
the free boundary point x∗∗. This condition gives rise to the system of equations

c1α1e
α1x∗∗ − c1α2e

α2x∗∗ = 1,(3.8)

c1α
2
1e

α1x∗∗ − c1α
2
2e

α2x∗∗ = 0.(3.9)
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which is equivalent to

x∗∗ = − ln(α2
1)− ln(α2

2)

α1 − α2

,(3.10)

and

c1 =

[
α1

α2

α1


2α1

α1−α2

− α2

α2

α1


2α2

α1−α2

]−1

> 0,(3.11)

the inequality following thanks to the fact that α2 < 0 < α1.
Now, it is a straightforward exercise to show that

(3.12) x∗∗ > 0 ⇔ µ > 0.

In view of this observation, the function w given by (3.7) is is well-defined if and only if
µ > 0, in which case, it is concave. Indeed, the calculation

w′′′(x) = c1

(
α3

1e
α1x − α3

2e
α2x

)
> 0, for x < x∗∗,

proves that w′′ is increasing in [0, x∗∗]. This observation and the boundary condition
w′′(x∗∗) = 0 imply that w′′(x) ≤ 0, for all x > 0, which establishes the claim. However,
the concavity of w and the free-boundary condition w′(x∗∗) = 1 imply

−w′(x) + 1 ≤ 0, for all x ∈ [0, x∗∗],

while the fact that w is strictly increasing and the identity µw′(x∗∗)− rw(x∗∗) = 0, which
follows from the construction of w, imply

1

2
σ2w′′(x) + µw′(x)− rw(x) ≤ 0, for all x ≥ x∗∗.

It follows that, when µ > 0, the function w given by (3.7) is well-defined and satisfies the
HJB equation (3.1).

In view of (3.12), we conjecture that it is optimal to liquidate the company at time 0
when µ ≤ 0. With regard to this possibility, it is straightforward to check that the function
defined by

(3.13) w(x) = x, for all x ≥ 0,

satisfies the HJB equation (3.1) if and only if µ ≤ 0.
For future reference, let us consider the case associated with µ > 0. In this context, we

can use (3.10) to see that e(α1−α2)x∗∗ =
(
α2/α1

)2
. In view of this calculation, it follows that(

α1e
−α2x∗∗ − α2e

−α1x∗∗
)(

α1e
α1x∗∗ − α2e

α2x∗∗
)

= (α1 − α2)
2,

which implies

α1 − α2

α1eα1x∗∗ − α2eα2x∗∗
=

α1e
−α2x∗∗ − α2e

−α1x∗∗

α1 − α2

.(3.14)
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Now, the concavity of w implies that w′(x) ≤ β, for all x ≥ 0, if and only if w′(0) =
limx↓0 w′(0) ≤ β. However, combining this observation with (3.14), we can see that, if
µ > 0, then

w′(x) ≤ β, for all x ≥ 0 ⇔ α1e
−α2x∗∗ − α2e

−α1x∗∗ ≤ β(α1 − α2).(3.15)

The following result, the proof of which can be developed following a straightforward
modification of the proof of Theorem 5.1, provides the solution to the optimisation problem
that we consider in this section.

Theorem 3.1. Consider the problem of maximising the performance criterion J(x; L, G)
over all strategies (L, G) in the set Ad(x) provided by Definition 2.2. The following cases
hold:

(i) If µ > 0, then the value function Vd identifies with the concave solution w to the
HJB equation (3.1)–(3.2) given by (3.7), where the constants c1, x∗∗ are as in
(3.10) and (3.11), respectively.

(ii) If µ ≤ 0, then the value function is given by Vd(x) = x, for all x ≥ 0.

4. The solution to the problem that does not allow for bankruptcy

We now address the problem that arises in the context of Definition 2.3 and aims at
maximising the expected discounted dividend flow minus the expected discounted costs of
issuing equity over all dividend and issuance of equity strategies associated with a positive
reserves process. With reference to standard theory of singular control, the associated
Hamilton-Jacobi-Bellman (HJB) equation takes the form

max

{
1

2
σ2v′′(x) + µv′(x)− rv(x), −v′(x) + 1, v′(x)− β

}
= 0, x ≥ 0.(4.1)

Remark 4.1. In our analysis below, we are going to consider C2 solutions to this equation
with bounded first and second derivatives. Therefore, we are going to consider functions v
that satisfy (4.1) for all x, rather than for all x, Lebesgue-a.e., which is often the case in
stochastic control. In particular, we are going to consider solutions that satisfy (4.1) for
x = 0 as well, with v(0) = limx↓0 v(x), v′(0) = limx↓0 v′(x) and v′′(0) = limx↓0 v′′(x).

Now, considering the time value of money can lead us to the conclusion that it is optimal
to postpone the issuance of new equity for as long as possible. We therefore conjecture
that it is optimal to issue equity only when the reserves become zero. Such a conjecture
indicates that it is optimal for the company’s management to take no action as long as the
reserves process takes values in (0, x∗), for some x∗ > 0, take minimal action by issuing new
equity so as to prevent the reserves process X from entering (−∞, 0), and take minimal
action to keep X below x∗. With regard to the results discussed in Section 3, this strategy
is associated with a solution to the HJB equation (4.1) that is characterised by

v′(0)− β = 0,(4.2)

1

2
σ2v′′(x) + µv′(x)− rv(x) = 0, for 0 < x < x∗,(4.3)
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−v′(x) + 1 = 0, for x ≥ x∗.(4.4)

Recalling that the solution to the ordinary differential equation (3.3) is given by (3.4) for
some constants c1, c2 ∈ R and for α1, α2 being as in (3.5), (3.6), respectively, every function
v satisfying (4.3) and (4.4) is given by

v(x) =

{
c1e

α1x + c2e
α2x, 0 ≤ x < x∗,

x− x∗ + c1e
α1x∗ + c2e

α2x∗ , x ≥ x∗.
(4.5)

To specify the parameters c1, c2 and the free boundary point x∗, we use (4.2) and assume
that v is C2 at x∗, which is suggested by the “smooth pasting condition” of singular control.
Thus, we obtain the system of equations

c1α1 + c2α2 = β,(4.6)

c1α1e
α1x∗ + c2α2e

α2x∗ = 1,(4.7)

c1α
2
1e

α1x∗ + c2α
2
2e

α2x∗ = 0,(4.8)

which is equivalent to

α1e
−α2x∗ − α2e

−α1x∗ = β(α1 − α2),(4.9)

c1 =
−α2

α1(α1 − α2)
e−α1x∗ and c2 =

α1

α2(α1 − α2)
e−α2x∗ .(4.10)

The next result is concerned with showing that the HJB equation (4.1) has a unique
solution conforming with the considerations above.

Lemma 4.1. Equation (4.9) has a unique solution x∗ > 0. The function v defined by (4.5)
with x∗ being the unique solution to (4.9) and with c1, c2 being given by (4.10) is increasing
and concave in [0,∞), and satisfies the HJB equation (4.1) with boundary condition (4.2).
Moreover, v(0) ≥ 0 if and only if

µ > 0 and α1e
−α2x∗∗ − α2e

−α1x∗∗ ≥ β
(
α1 − α2

)
,(4.11)

where x∗∗ is given by (3.10).

Proof. To prove that (4.9) has a unique solution, we define

f(x) = α1e
−α2x − α2e

−α1x.(4.12)

Since α2 < 0 < α1,

f ′′(x) = −α2α
2
1e
−α1x + α1α

2
2e
−α2x > 0.

This inequality and the calculation f ′(0) = 0 imply that f ′(x) > 0, for all x > 0. It follows
that f is strictly increasing in (0,∞), which, combined with the observation

f(0) = α1 − α2 < β(α1 − α2),

implies that the equation f(x) = β(α1 − α2) has a unique solution x∗ > 0. Moreover,

α1e
−α2x − α2e

−α1x > β(α1 − α2) ⇔ x∗ < x.(4.13)
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With regard to the calculation

v(0) =
1

α1 − α2

[
α1

α2

e−α2x∗ − α2

α1

e−α1x∗
]
,

we can see that v(0) > 0 if and only if the point x∗ > 0 satisfies

x∗ <
ln(α2

2)− ln(α2
1)

α1 − α2

= x∗∗,

where x∗∗ is as in Section 3. However, combining this inequality with (3.12) and (4.13)
above, we can see that (4.11) is true.

Now, we calculate

v′′(x) = − α1α2

α1 − α2

[
eα1(x−x∗) − eα2(x−x∗)

]
< 0, for x ∈ (0, x∗),(4.14)

with the inequality following because α2 < 0 < α1. However, this shows that v is concave.
Moreover, combining this observation with the boundary condition v′(0) = β > 1 and
v′(x) = 1, for x ≥ x∗, we can see that v′(x) ≥ 1, for all x ≥ 0, which proves that v is
strictly increasing.

By construction, we will prove that v satisfies the HJB equation (4.1) if we show that

v′(x) ≤ β, for x ≤ x∗,(4.15)

v′(x) ≥ 1, for x < x∗,(4.16)

1

2
σ2v′′(x) + µv′(x)− rv(x) ≤ 0, for x ≥ x∗.(4.17)

The concavity of v and the boundary conditions v′(0) = β and v′(x∗) = 1 establish
(4.15) and (4.16), while the fact that v′(x) = 1, for x ≥ x∗, and the observation that

1

2
σ2v′′(x∗) + µv′(x∗)− rv(x∗) = µ− rv(x∗) = 0

imply (4.17), and the proof is complete. �

In view of the analysis above, the following result, the proof of which can be developed
by a straightforward modification of the arguments used to establish Theorem 5.1 below,
provides the solution to the optimisation problem considered in this section

Theorem 4.2. Consider the problem of maximising the performance index J(x; L, G) over
all strategies (L, G) within the class Ac(x) provided by Definition 2.3. The value function
Vc identifies with the increasing and concave solution v to the HJB equation (4.1) given by
(4.5), where the constants x∗ and c1, c2 are as in (4.9) and (4.10), respectively.

5. The solution to the general problem

We now address the problem of maximising the expected discounted dividend flow minus
the expected discounted costs of issuing equity over all admissible dividend and issuance of
equity strategies when there are no restrictions on the issuance of equity or the reserves (see
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Definition 2.1). With reference to the theory of singular stochastic control the associated
Hamilton-Jacobi-Bellman equation takes the form

max

{
1

2
σ2h′′(x) + µh′(x)− rh(x), −h′(x) + 1, h′(x)− β

}
= 0, x ≥ 0.(5.1)

With regard to the solvability of this equation, we assume in our discussion below that
comments similar to the ones made in Remark 4.1 apply.

Now, in view of the Markovian structure of the problem that we study, we can expect
that the optimal strategy should either allow for the reserves process to hit (−∞, 0) by
issuing no new equity at any time, which corresponds to the boundary condition h(0) = 0
(see Section 3), or should keep the reserves process outside the interval (−∞, 0), which
corresponds to the boundary condition h′(0) = β (see Section 4). If this is indeed the case,
then we should complement (5.1) with the boundary condition

max
{
−h(0), h′(0)− β

}
= 0.(5.2)

Moreover, this observation suggests that the value function V should identify with either
Vd ≡ w or Vc ≡ v (see Theorem 3.1 and Theorem 4.2).

With regard to Lemma 4.1, the function v considered in Section 4 satisfies the HJB
equation (5.1) with boundary condition (5.2) if and only if (4.11) is true, which in view of
the expression for x∗∗ provided by (4.9) is equivalent to the inequality

µ > 0 and
µ + δ

2δ

µ− δ

µ + δ

1−µ/δ

− µ− δ

2δ

µ− δ

µ + δ

−1−µ/δ

≥ β,(5.3)

with δ =
√

µ2 + 2σ2r, which involves only the problem’s original data. Also, when µ > 0,
(3.15) implies that the function w defined by (3.7) satisfies the HJB equation (5.1) with
the boundary condition (5.2) if and only if

µ + δ

2δ

µ− δ

µ + δ

1−µ/δ

− µ− δ

2δ

µ− δ

µ + δ

−1−µ/δ

≤ β,(5.4)

while the function w defined by (3.13) satisfies the HJB equation (5.1) with the boundary
condition (5.2) if and only if µ ≤ 0 because β > 1.

The arguments above suggest that we should identify the value function V with the
function v given by (4.5) if (5.3) is true, with w given by (3.7) if µ > 0 and (5.4) is true,
and with w given by (3.13) if µ ≤ 0. The following result proves that such an identification
indeed provides the solution to the optimisation problem considered.

Theorem 5.1. Fix any initial condition x ≥ 0, and consider the problem of maximising
the performance criterion J(x; L, G) over all dividend and issuance of equity strategies
(L, G) ∈ A(x). Also, let w be the solution to the HJB equation (3.1) considered in Theorem
3.1, and let v be the solution to the HJB equation (4.1) appearing in Lemma 4.1. The value
function V is increasing and concave, and the following cases provide the solution to the
control problem:
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(i) If µ ≤ 0, then v(x) ≤ w(x) ≡ x = V (x), the optimal dividend and issuance of
equity strategy (Lo, Go) consists of paying a dividend of size x at time 0, i.e. Lo

has a jump of size x at time 0 and Go
t = 0, for all t > 0, and bankruptcy occurs at

time τ o = 0.
(ii) If µ > 0 and condition (5.4) is true, then v(x) ≤ w(x) = V (x). The optimal

dividend strategy Lo has a jump of size (x− x∗∗)+ at time 0 and then reflects the
reserves process X at x∗∗, where x∗∗ is as in (3.10), while the optimal issuance of
equity strategy Go ≡ 0.

(iii) If condition (5.3) holds true, then w(x) ≤ v(x) = V (x), and the optimal dividend
and issuance of equity strategy (Lo, Go) reflects the reserves process X at the end-
points of the interval [0, x∗], where x∗ is given by (4.9), with Lo having a jump of
size (x− x∗)+ at time 0. In this case, τ = ∞, P -a.s..

Proof. Fix any initial condition x ≥ 0 and any admissible strategy (L, G) ∈ A(x), and let τ
be the first time that the corresponding reserves process X hits the set (−∞, 0). Also, let
h be the solution to the HJB equation (5.1) with boundary condition (5.2), depending on
which of the conditions distinguishing the three cases of the theorem holds. We consider
any C2 continuation of h in R with bounded first derivative and we use Itô-Tanaka’s formula
to obtain

e−r(t∧τ)h(X(t∧τ)+) = v(x) +

∫ t∧τ

0

e−rs

[
1

2
σ2h′′(Xs) + µh′(Xs)− rh(Xs)

]
ds

+ Mt∧τ −
∫ t∧τ

0

e−rsh′(Xs) dLc
s +

∫ t∧τ

0

e−rsh′(Xs) dGc
s

+
∑

0≤s≤t∧τ

e−rs
[
h(Xs −4Ls)− h(Xs)

]
+

∑
0≤s≤t∧τ

e−rs
[
h(Xs +4Gs)− h(Xs)

]
,

where Mt = σ
∫ t

0
e−rsh′(Xs) dWs. Here, we denote by Lc, Gc the continuous parts of the

processes L, G, respectively, and we have used the fact that 4Xt = −4Lt + 4Gt. It
follows that∫

[0,t∧τ ]

e−rs

(
dLs − β dGs

)
= −e−r(t∧τ)h

(
X(t∧τ)+

)
+ h(x) +

∫ t∧τ

0

e−rs

[
1

2
σ2h′′(Xs) + µh′(Xs)− rh(Xs)

]
ds

+ Mt∧τ +

∫ t∧τ

0

e−rs
[
1− h′(Xs)

]
dLc

s

+

∫ t∧τ

0

e−rs
[
h′(Xs)− β

]
dGc

s
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+
∑

0≤s≤t∧τ

e−rs

∫ 4Ls

0

[
1− h′(Xs + z)

]
dz

+
∑

0≤s≤t∧τ

e−rs

∫ 4Gs

0

[
h′(Xs − z)− β

]
dz.

(5.5)

Since h satisfies the HJB equation (5.1) and the boundary condition (5.2), this expression
implies ∫

[0,t∧τ ]

e−rs

(
dLs − β dGs

)
≤ −e−r(t∧τ)h

(
X(t∧τ)+

)
+ h(x) + Mt∧τ .(5.6)

With regard to the restriction on the dividend process L provided by (iii) in Definition
2.1, X enters the set (−∞, 0) in a “continuous” way. Therefore,

lim inf
t→∞

e−r(t∧τ)h
(
X(t∧τ)+

)
= e−rτh(0)1{τ<∞} + lim inf

t→∞
e−rth

(
Xt

)
1{τ=∞}

≥ e−rτh(0)1{τ<∞},(5.7)

the inequality following because h is bounded from below in [0,∞). The boundedness of
h′ in R implies that

lim
t→∞

〈M〉t = lim
t→∞

∫ t

0

e−rsh′(Xs) ds < ∞, P -a.s..(5.8)

It follows that M converges P -a.s. and in L1 to an integrable random variable M∞, and
M is a uniformly integrable martingale on [0,∞]. In view of this observation, inequality
(5.7) and the fact that h(0) ≥ 0, we can take limits in (5.6) and then take expectations,
using Doob’s optional sampling theorem, to conclude that

J(x; L, G) ≤ h(x).(5.9)

Now, consider case (i) of the theorem, and let Lo, Go be as in the statement. Since
h(x) ≡ x and τ o = 0, (5.5) implies

J(x; Lo, Go) = ∆Lo
0 = x,

which, combined with (5.9), implies the optimality of the strategy (Lo, Go).
To proceed further, consider case (ii) of the theorem, and let Lo, Go be as in the state-

ment. Apart from a possible jump at time 0, the dividend process Lo has continuous
sample paths, its pathwise construction can be found, e.g., in Karatzas and Shreve [8,
Lemma 3.6.14], and satisfies

Lo
t = (x− x∗)+1{t>0} +

∫
(0,t]

1{Xs=x∗∗} dLo
s.(5.10)

Combining this expression with the fact that the associated reserves process X takes values
outside (x∗∗,∞), we can see that (5.6) holds with equality and

lim
t→∞

e−r(t∧τ)h
(
X(t∧τ)+

)
= e−rτh(0)1{τ<∞}.(5.11)
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However, these observations and the fact that h(0) = w(0) = 0 imply

lim
t→∞

∫
[0,t∧τ ]

e−rs

(
dLs − β dGs

)
= h(x) + Mτ .(5.12)

With regard to case (iii), we can appeal to a simple inductive argument to construct
pathwisely the processes Lo and Go starting from the solution to Skorohod’s equation
provided, e.g., by Lemma 3.6.14 in Karatzas and Shreve [8] (note that such a construction
can be found, under much more general assumptions on the dynamics of the reserves
process X in El Karoui [7]). Apart from a possible jump of Lo at time 0, these processes
have continuous sample paths and satisfy

Go
t =

∫
[0,t]

1{Xs=0} dGo
s and Lo

t = (x− x∗)+1{t>0} +

∫
(0,t]

1{Xs=x∗} dLo
s.(5.13)

In view of these expressions and the fact that the associated reserves process X takes values
outside (x∗,∞) and is reflected at 0, we can see that (5.6) holds with equality, τ = ∞ and

lim
t→∞

e−r(t∧τ)h
(
X(t∧τ)+

)
= lim

t→∞
e−rth

(
Xt

)
= 0.

It follows that

lim
t→∞

∫
[0,t∧τ ]

e−rs

(
dLs − β dGs

)
= h(x) + M∞.(5.14)

Finally, we can take expectations in (5.12) and (5.14) to conclude that J(x; Lo, Go) =
h(x), which combined with (5.9), establish the optimality of the corresponding strategy
(Lo, Go). �

Remark 5.1. With reference to the inequality h(0) ≥ 0 implied by boundary condition
(5.2) and the fact that h is increasing, we can see that (5.5) implies∫

[0,t∧τ ]

e−rs

(
dLs − β dGs

)
≤ h(x) + Mt∧τ

instead of just (5.6). We adopted a slightly more complicated analysis because we wanted
to develop a proof that can trivially be modified to establish Theorem 4.2. In the context
of that result, h(0) is not necessarily positive, but every admissible strategy is associated
with τ = ∞.
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