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Abstract. We consider the problem of determining in a dynamical way the optimal
capacity level of an investment project that operates within a random economic environ-
ment. In particular, we consider an investment project that yields payoff at a rate that
depends on its installed capacity level and on a random economic indicator such as the
price of the project’s output commodity. We model this economic indicator by means
of a general one-dimensional ergodic diffusion. At any time, the project’s capacity level
can be increased or decreased at given proportional costs. The aim is to maximise an
ergodic performance criterion that reflects the long-term average payoff resulting from
the project’s management. We solve this genuinely two-dimensional stochastic control
problem by constructing an explicit solution to an appropriate Hamilton-Jacobi-Bellman
equation and by fully characterising an optimal investment strategy.

Dedicated to Professor Ioannis Karatzas on the occasion of his 60th birthday.

1. Introduction

We consider an investment project in a random environment that yields a payoff rate
that depends on its installed capacity and on a stochastic economic indicator such as the
price of or the demand for one unit of the project’s output. We model this economic
indicator by the one-dimensional diffusion

(1) dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x > 0,

where W is a standard one-dimensional Brownian motion. We assume that the functions
b and σ satisfy general assumptions such that (1) has a unique solution X in R+ that is
ergodic as well as recurrent. We denote by Yt the project’s installed capacity at time t,
and we assume that this can be increased or decreased dynamically over time. Also, we
assume that there is no capital depreciation, so

Yt = y + Y +
t − Y −

t ≥ 0,(2)

where y ≥ 0 is the project’s initial capital invested at time 0, while Y +
t (resp., Y −

t ) is the
total additional capital that has been invested (resp., disinvested) by time t. The objective
of the optimisation problem that we study is to maximise the long-term average payoff
resulting from the management of the project, which is given by

Jx,y(Y ) = lim sup
T→∞

1

T
E
x

[
∫ T

0

h(Xt, Yt) dt−K+Y +
T +K−Y −

T

]

,(3)
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where h models the running payoff resulting from the project’s operation, K+ > 0 is the
cost of increasing the capacity by one unit and K− ∈ [0, K+) is the return of capital
resulting from reducing the capacity by one unit.

Irreversible capacity expansion models have attracted considerable interest in the liter-
ature and can be traced beck to Manne [38]; see Van Mieghem [47] for a survey. Relevant
models that have been studied in the mathematics literature include Davis, Dempster,
Sethi and Vermes [15], Davis [14], Kobila [32], Øksendal [41], Wang [48], Chiarolla and
Haussmann [13], Bank [6], Alvarez [2, 3], and references therein. The first reversible ca-
pacity expansion model was studied by Abel and Eberly [1] who considered the discounted
version of (3) that arises when X is a geometric Brownian motion and h(x, y) = xµyν , for
some constants µ, ν > 0. Later, Merhi and Zervos [40] solved the problem that arises when
X is a geometric Brownian motion and (3) takes the form of a discounted criterion with a
general running payoff function h. In the context of such models, Guo and Tomecek [22, 23]
and Guo, Kaminsky, Tomecek and Yuen [20] established interesting connections between
singular control and sequential switching. Another related model of partially reversible
investment was studied by Guo and Pham [21].

All of the above references consider expected discounted performance indices. By their
nature, such indices attach higher values to payoffs realised in the shorter term horizon,
which may be associated with unfairness if one considers the payoffs received by successive
generations. The use of exponential discounting can make this criticism appear as a non-
issue because it typically results in stationary optimal strategies. However, this approach
to modelling assumes that all generations agree on the same discounting rate. Moreover,
recent economics theory has questioned the appropriateness of exponential discounting in
the timeframe of a single generation (e.g., see Haldane [25]). Long-term average perfor-
mance criteria could be considered as an alternative that bypasses such issues regarding
discounting choices. In particular, they could be considered as better suited to decision
making in the context of sustainable development because they assign the same values to
payoffs enjoyed by present and future generations.

Recently, Løkka and Zervos [37] studied an ergodic irreversible capacity expansion model.
In this paper, we solve the first reversible capacity expansion problem with an ergodic
performance criterion that has appeared in the literature. In particular, we consider state
dynamics that are modelled by a general one-dimensional diffusion rather than a geometric
Brownian motion, which is more appropriate for several practical applications. Indeed, it
has been well-documented in the economics and finance literature that a range of economic
indicators are more realistically modelled by means of mean-reverting processes rather than
a geometric Brownian motion (e.g., see Geman [18] and references therein). Also, it is
worth noting that we could replace the assumption K− ∈ [0, K+) with the more general
K+−K− > 0 in all of our analysis with the exception of just one point, which would require
restricting the set of admissible investment strategies to ergodic ones (see Remark 3).

Models involving the ergodic control of one-dimensional diffusions have been studied
by Bensoussan and Borkar [7, 8], who consider absolutely continuous control of the drift,
Karatzas [30], who considers singular stochastic control, Jack and Zervos [28, 29], who con-
sider impulse and absolutely continuous control, Bronstein and Zervos [12], who consider a
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sequential entry and exit decision model, and Irle and Sass [27], who consider the problem
of maximising the asymptotic growth rate of a portfolio in the presence of fixed and pro-
portional costs. For further general theory of stochastic optimal ergodic control, the reader
is referred to Kushner [36], Gatarek and Stettner [17], Borkar and Gosh [11], Bensoussan
and Frehse [9], Menaldi, Robin and Taksar [39], Ghosh, Arapostathis and Marcus [19],
Duncan, Maslowski and Pasik-Duncan [16], Kurtz and Stockbridge [34, 35], Borkar [10],
Kruk [33], Sadowy and Stettner [46], Arapostathis and Borkar [4], the recent monograph
by Arapostathis, Borkar and Ghosh [5], and several references therein.

From a control theoretic perspective, the singular stochastic control problem that we
solve presents an addition to a rather small list of explicitly solvable genuinely two-
dimensional stochastic control problems. This list includes the problems arising in the
context of the capacity expansion models discussed above as well as certain optimal stop-
ping problems involving the running maximum of the state process (e.g., see Peskir [43],
Pedersen [42], Hobson [26], Guo and Zervos [24], and references therein). To the best of
our knowledge, we derive here the first explicit solution to a genuinely two-dimensional
non-trivial problem involving the ergodic control of a diffusion process. Furthermore, we
allow for general state process dynamics and we do not make any Lipschitz assumptions.

By their nature, ergodic performance criteria result in non-unique optimal strategies.
Indeed, any two decision strategies that differ on an arbitrary long, but finite, time period
are associated with the same value of the performance index. From an applications’ per-
spective, this observation presents a real issue. However, this can be addressed in practice
by means of appropriate levels of regulation and transparency, which are fundamental in
the context of sustainable development. From a theoretical point of view, this observation
renders Bellman’s principle of optimality and the use of dynamic programming techniques
inapplicable. As a result, different methodologies have been devised to solve ergodic con-
trol problems. The more recent one is based on reformulating the control problem at hand
as an infinite dimensional linear program and then devising numerical schemes by means
of appropriate finite-dimensional relaxations (see Kurtz and Stockbridge [35] for the anal-
ysis of ergodic singular stochastic control problems following this approach). The so-called
“vanishing discounting” approach analyses ergodic control problems by considering them
as limiting cases of appropriate infinite time horizon discounted problems as the discount-
ing rate tends to 0 (see Menaldi, Robin and Taksar [39] for the analysis of ergodic singular
stochastic control problems by means of this approach, as well as Arapostathis, Borkar
and Ghosh [5, Chapter 3] for other general theory). The approach that we follow here is
better suited to problems that admit explicit solutions and is closely related to part of the
analysis in Karatzas [30] as well as in Menaldi, Robin and Taksar [39]: we construct an
explicit solution to the Hamilton-Jacobi-Bellman (HJB) equation suggested by the “van-
ishing discounting” approach and we use this to identify a strategy that we prove to be
optimal by means of a “verification theorem”.

The paper is organised as follows. In Section 2, we formulate the problem that we study
and we list all of the assumptions that we make. We construct an appropriate solution to
an associated HJB equation in Section 3 and we derive the solution of the control problem
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in Section 4. Finally, we consider a number of special cases in Section 5. To focus on the
main results of the paper, we include most proofs in Appendices I–III.

2. Problem formulation

We start with the following assumption on the functions b, σ : R∗
+ → R that define

the one-dimensional diffusion given by (1)1. The inequalities (6)–(7) may appear involved
at first glance. However, they are quite general and easy to verify in practice (see also
Remark 1 at the end of this section as well as the examples in Section 5).

Assumption 1. The functions b, σ : R∗
+ → R are continuous and

σ2(x) > 0 for all x ∈ R
∗
+.(4)

Also, there exist constants

ε0 ∈ (0, 1), C0 > 0 and 0 < χ < 1 < χ(5)

such that2

2b(x)

σ2(x)
≥ 1 + ε0

x
− C0 and σ2(x) ≥ ε0x

2 for all x ≤ χ,(6)

−2b(x)

σ2(x)
≥ 2ε0

ln x

x
and σ2(x) ≥ ε0

xC0
for all x ≥ χ.(7)

✷

The continuity of b, σ and (4) are sufficient conditions for (1) to have a solution that is
unique in the sense of probability law (e.g., see Karatzas and Shreve [31, Section 5.5]).
Given an initial condition x > 0, we assume such a weak solution (Ω,F ,Ft,Px,W,X) fixed
throughout the paper. Also, the continuity of b, σ and (4) ensure that the scale function
p and the speed measure m, given by

p(1) = 0 and p′(x) = exp

(

−
∫ x

1

2b(s)

σ2(s)
ds

)

, for x ∈ (0,∞),(8)

and

m(dx) =
2

σ2(x)p′(x)
dx,(9)

respectively, are well-defined.
We can check that the estimates (119) and (120) in Appendix I imply that

lim
x↓0

p(x) = −∞ and lim
x→∞

p(x) = ∞,

which are sufficient for the solution of (1) to be non-explosive as well as recurrent (see
Karatzas and Shreve [31, Proposition 5.5.22]). Also, (118) in Appendix I with n = 0 yields

1Throughout the paper, we use the notation R+ = [0,∞) and R
∗

+ = (0,∞).
2In practice, we can verify each of the inequalities in (6)–(7) independently of each other: if we then

take the smallest (resp., largest) value of ε0 (resp., C0), then they all hold for the same ε0 and C0.
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m
(

R
∗
+

)

< ∞, which implies that the process X is ergodic. This observation, (118) in
Appendix I and Exercise X.3.18 in Revuz and Yor [45] imply that

lim
T→∞

1

T
E
x

[
∫ T

0

Xn
t dt

]

=
1

m
(

R
∗
+

)

∫ ∞

0

xn m(dx) < ∞(10)

for every constant n ≥ 0.
We will use the following result, which we consider in slightly greater generality than we

actually need and we prove in Appendix II.

Lemma 1. Consider the one-dimensional diffusion given by (1) and suppose that the func-
tions b, σ : R∗

+ → R are continuous, σ2(x) > 0 for all x ∈ R
∗
+ and

−2b(x)

σ2(x)
≥ 2ε0

ln x

x
for all x ≥ χ,(11)

for some constants ε0 ∈ (0, 1) and χ > 1. Then

lim
T→∞

1

T
E
x

[

sup
0≤t≤T

Xη
t

]

= 0(12)

for every constant η ≥ 1.

We now introduce the family of all admissible investment strategies.

Definition 1. Given an initial condition (x, y) ∈ R
∗
+ × R+, an investment strategy is any

(Ft)-adapted càglàd finite-variation process Y such that Y0 = y and YT ≥ 0 for all T ≥ 0,
Px-a.s.. An investment strategy is admissible if

E
x
[

Y +
T + Y −

T

]

< ∞ for all T ≥ 0,(13)

where, if we denote by Y̌ is the total variation process of Y , then Y +, Y − are the unique
(Ft)-adapted càglàd increasing processes satisfying

Y = y + Y + − Y − and Y̌ = Y + + Y −.(14)

We denote by Yx,y the set of all such admissible investment strategies. ✷

The aim of our optimisation problem is to determine the strategy that maximises the
performance index defined by (3). To this end, we define the problem’s value function V
by

V (x, y) = sup
Y ∈Yx,y

Jx,y(Y ),(15)

which turns out to be identically equal to a constant (see Theorem 6, our main result).
For the optimisation problem defined by (1)–(3) to be well-posed and admit a solution

that conforms with economic intuition, we need to make additional assumptions. If we
define

H(x, y) =
∂h

∂y
(x, y),(16)
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then, for ∆y > 0 small, H(x, y)∆y represents the additional running payoff rate that the
project yields if the underlying economic indicator takes the value x and the project’s
capacity level is y + ∆y instead of y. If the economic indicator process X is interpreted
as “price” or “demand”, then it is reasonable to assume that this additional payoff rate is
increasing as a function of x and becomes strictly positive, if not tend to ∞, as x tends to
∞. On the other hand, this additional payoff rate should be decreasing as a function of y
and should become strictly negative as y tends to ∞. These considerations are reflected by
(17), (18) and (20) below, provided we assume that, whatever the value x of the underlying
economic indicator is, it is always profitable to marginally increase the project’s capacity
from 0 to a strictly positive value. In fact, we can dispense of this last requirement by
introducing a point x∗

0 and replacing the function y∗ : R∗
+ → R

∗
+ appearing in (19)–(20)

by a function ỹ∗ : (x∗
0,∞) → R

∗
+ having the same properties otherwise; the analysis that

we develop can easily be modified to account for such a relaxation, but this would involve
extra notational complexity and would make the paper significantly longer. We also need
to make the additional technical assumptions (21)–(22) (see also Remark 2 below).

Assumption 2. The inequalities K+ > K− ≥ 0 hold true, the function h is C2,2,

h(x, ·) is strictly concave for all x > 0,(17)

lim
x→∞

H(x, y) > 0 for all y > 0,(18)

and there exists a continuous strictly increasing function y∗ : R∗
+ → R

∗
+ of polynomial

growth, i.e.,

0 < y∗(x) ≤ η
(

1 + xη
)

for all x > 0,(19)

for some constant η ≥ 1, such that

H(x, y)











> 0, if y < y∗(x),

= 0, if y = y∗(x),

< 0, if y > y∗(x).

(20)

Also, there exist constants C1, µ, ζ, ε1 > 0 and ν ∈ (0, 1) such that

−C1(1 + y) ≤ h(x, y) ≤ C1

(

1 + xµyν + xζ
)

− ε1y for all (x, y) ∈ R
∗
+ × R+,(21)

−C1(1 + y) ≤ H(x, y) ≤ C1

(

1 + y−C1
) (

1 + xC1
)

for all (x, y) ∈ R
∗
+
2.(22)

✷

For future reference, we note that, if we define

y∗0 = lim
x↓0

y∗(x) and y∗∞ = lim
x↑∞

y∗(x),(23)

and we let x∗ : (y∗0, y
∗
∞) → R

∗
+ be the inverse function of y∗, then x∗ is strictly increasing,

lim
y↓y∗0

x∗(y) = 0 and lim
y↑y∗∞

x∗(y) = ∞.(24)

Combining the assumption that H is a continuous function satisfying the integrability
condition (117) in Lemma 7 in Appendix I, which our assumptions thus far imply, with (17)
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and the monotone and the dominated convergence theorems, we can see that the function
y 7→

∫∞

0
H(u, y)m(du) is continuous and strictly decreasing in (0,∞). To simplify our

analysis and keep the paper within a reasonable size, we make the following additional
assumption, which rules out the possibility for never decreasing or never increasing the
project’s capacity to be optimal (such an assumption can easily be relaxed).

Assumption 3. The function H defined by (16) satisfies

lim
y→∞

∫ ∞

0

H(x, y)m(dx) < 0 < lim
y↓0

∫ ∞

0

H(x, y)m(dx).(25)

✷

For future reference, we note that this assumption and its preceding discussion imply that
there exists a unique point y† ∈ (y∗0, y

∗
∞) such that

∫ ∞

0

H(u, y)m(du)











> 0, for y < y†,

= 0, for y = y†,

< 0, for y > y†.

(26)

The following result, which we prove in Appendix II, is concerned with the well-posedness
of the control problem that we study as well as with certain estimates that we will need.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Given any initial condition (x, y) ∈
R

∗
+ × R+, the following statements are true:

(I) −∞ < V (x, y) < ∞;

(II) every investment strategy Y satisfying E
x
[

∫ T

0
Yt dt

]

< ∞ for all T ≥ 0 is such that

E
x

[
∫ T

0

|h(Xt, Yt)| dt
]

< ∞;(27)

(III) every admissible investment strategy Y ∈ Yx,y such that Jx,y(Y ) > −∞ satisfies

lim inf
T→∞

E
x
[

YT

]

T
= 0.(28)

Remark 1. The diffusion Z = p(X) satisfies the SDE

dZt = σ
(

p−1(Zt)
)

p′
(

p−1(Zt)
)

dWt,(29)

where p−1 is the inverse of the scale function p. Since the performance index Jx,y(Y )
depends on X only through the running payoff function h, we can make the state space
transformation associated with (29) to derive an equivalent model with the underlying dif-
fusion being in natural scale. Starting from such an equivalent setting would have simplified
the assumptions that we have made by making redundant the first inequalities in (6) and
(7), which are needed to derive the estimates (119) and (120) in Appendix I. However, we
would still need assumptions on the volatility function, which would require considerable
analysis to verify for standard diffusions such as the ones we consider in Section 5, which
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have been extensively studied in the context of several applications, because this would
involve their scale functions (see (29)). On the other hand, appropriate state space trans-
formations can in principle be used to study examples with state spaces other than R

∗
+ by

means of the analysis that we develop, though, one has to be careful because state space
transformations other than the one we have discussed above do not necessarily preserve
ergodicity. ✷

Remark 2. Among the technical assumptions (21)–(22), the upper bound of h is the
strongest one. The first term of this upper bound is quite general and consistent with
(17). On the other hand, we need its second term to exclude the possibility for the value
function V to be identically equal to ∞. Indeed, if we allow for ε1 = 0 and we choose
h(x, y) = xµyν, for some µ > 0 and ν ∈ (0, 1), then the strategy that increases the project’s
capacity by ℓ > 0 at time 0 and then makes no further adjustments has payoff

lim
T→∞

1

T
E
x

[
∫ T

0

Xµ
t (y + ℓ)ν dt−K+ℓ

]

=
(y + ℓ)ν

m
(

R∗
+

)

∫ ∞

0

xµm(dx),

the equality being true thanks to (10). It follows that V (x, y) = ∞ for every initial
condition (x, y) ∈ R

∗
+ × R+. ✷

3. The Hamilton-Jacobi-Bellman (HJB) equation

We will solve the stochastic control problem formulated in the previous section by first
constructing an appropriate solution to the HJB equation

max

{

1

2
σ2wxx + bwx + h, wy −K+, −wy +K−

}

= 0(30)

(see Proposition 5 below, which is the main result of this section). This HJB equation
is suggested by the so-called “vanishing discounting” approach, which we have discussed
at the end of the penultimate paragraph of the introduction: it arises by setting the
discounting rate equal to 0 in the HJB equation of the corresponding problem with expected
discounting criterion.

Motivated by Merhi and Zervos [40], we look for a solution to this equation that is
characterised by two strictly increasing continuous functions F : (y

F
, yF ) → R+ and G :

(y
G
, yG) → R+ that divide R

∗
+ × R+ into three connected subsets (see Figure 1). In the

presence of the assumptions that we have made, it turns out that the points defining the
domains of F and G satisfy

y∗0 = y
G
≤ y

F
≤ y† ≤ yG ≤ yF = y∗∞,

where y∗0, y
∗
∞ and y† are as in Assumptions 2 and 3, while,

{

G(y) : y ∈ (y
G
, yG)

}

=
{

F (y) : y ∈ (y
F
, yF )

}

= R
∗
+.

In this context, the solution of (30) satisfies

−wy(x, y) +K− = 0, for (x, y) ∈ D,(31)
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1

2
σ2(x)wxx(x, y) + b(x)wx(x, y) + h(x, y) = 0, for (x, y) ∈ C = C1 ∪ C2 ∪ C3,(32)

wy(x, y)−K+ = 0, for (x, y) ∈ I,(33)

where the disinvestment region D, the continuation region C = C1 ∪ C2 ∪ C3 and the
investment region I are given by

D =
{

(x, y) ∈ R
∗
+ × R+ : y ≥ F−1(x)

}

(34)

C1 =
{

∅, if y
G
= y

F
,

{

(x, y) ∈ R
∗
+ × R+ : y ∈ (y

G
, y

F
] and x < G(y)

}

, if y
G
< y

F
,

(35)

C2 =
{

∅, if y
F
= yG,

{

(x, y) ∈ R
∗
+ × R+ : y ∈ (y

F
, yG) and x ∈ (F (y), G(y))

}

, if y
F
< yG,

(36)

C3 =
{

∅, if yG = yF ,
{

(x, y) ∈ R
∗
+ × R+ : y ∈ [yG, yF ) and x > F (y)

}

, if yG < yF ,
(37)

I =
{

(x, y) ∈ R
∗
+ × R+ : y ≤ G−1(x)

}

.(38)

In view of the calculation

p′′(x) = −2b(x)

σ2(x)
p′(x),(39)

which follows from the definition (8) of the scale function p, we can verify that every
solution to the ordinary differential equation

1

2
σ2(x)vxx(x, y) + b(x)vx(x, y) + h(x, y) = 0(40)

that w should satisfy inside the waiting region C is given by

v(x, y) = B(y) +

∫ x

1

p′(s)

[

A(y)−
∫ s

1

h(u, y)m(du)

]

ds,(41)

for some functions A and B. Combining this observation with (31) and (33), we can see
that a solution w to the HJB equation (30) having the form that we have discussed above
should be given by

w(x, y) =











v(x,G−1(x))−K+
[

G−1(x)− y
]

, if (x, y) ∈ I,
v(x, y), if (x, y) ∈ C,
v(x, F−1(x)) +K−

[

y − F−1(x)
]

, if (x, y) ∈ D.

(42)

To determine the functions A, B and the free-boundary functions F , G, we require that w
is C2,1. In particular, we require that

lim
x↓F (y)

vy(x, y) ≡ lim
x↓F (y)

wy(x, y) = lim
x↑F (y)

wy(x, y) = K−, if y ∈ (y
F
, yF ),(43)

lim
x↑G(y)

vy(x, y) = lim
x↑G(y)

wy(x, y) = lim
x↓G(y)

wy(x, y) = K+, if y ∈ (y
G
, yG),(44)
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lim
x↓F (y)

vxy(x, y) ≡ lim
x↓F (y)

wxy(x, y) = lim
x↑F (y)

wxy(x, y) = 0, if y ∈ (y
F
, yF ),(45)

lim
x↑G(y)

vxy(x, y) ≡ lim
x↑G(y)

wxy(x, y) = lim
x↓G(y)

wxy(x, y) = 0, if y ∈ (y
G
, yG).(46)

If the problem data is such that C1 6= ∅, then it turns out that, given any y ∈ (y
G
, y

F
],

A(y) = −
∫ 1

0

h(u, y)m(du)

is the appropriate choice for A (see also (116) in Appendix I), which results in the expression

v(x, y) = B(y)−
∫ x

1

p′(s)

∫ s

0

h(u, y)m(du) ds, for (x, y) ∈ C1.(47)

This expression and (46) imply that G should satisfy
∫ G(y)

0

H(u, y)m(du) = 0 for all y ∈ (y
G
, y

F
].(48)

Also, (44) and (47) imply that

B′(y) = K+ +

∫ G(y)

1

p′(s)

∫ s

0

H(u, y)m(du) ds,

which, combined with (47), yields

vy(x, y) = K+ +

∫ G(y)

x

p′(s)

∫ s

0

H(u, y)m(du) ds, for (x, y) ∈ C1.(49)

If the problem data is such that C3 6= ∅, then we can argue in the same way to see that
F should satisfy

∫ ∞

F (y)

H(u, y)m(du) = 0 for all y ∈ [yG, yF ),(50)

and derive the expression

vy(x, y) = K− +

∫ x

F (y)

p′(s)

∫ ∞

s

H(u, y)m(du) ds, for (x, y) ∈ C3.(51)

The following result, which we prove in Appendix III, is concerned with the solvability
of (48) and (50).

Lemma 3. There exist strictly increasing C1 functions β : (y∗0, y
†) → R

∗
+ and α :

(y†, y∗∞) → R
∗
+ such that

∫ x

0

H(u, y)m(du)











< 0, if x < β(y),

= 0, if x = β(y),

> 0, if x > β(y),

for all y ∈ (y∗0, y
†).(52)
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and

∫ ∞

x

H(u, y)m(du)











< 0, if x < α(y),

= 0, if x = α(y),

> 0, if x > α(y),

for all y ∈ (y†, y∗∞),(53)

Also, these functions satisfy

x∗(y) < β(y) for all y ∈ (y∗0, y
†),(54)

α(y) < x∗(y) for all y ∈ (y†, y∗∞),(55)

lim
y↓y∗0

β(y) = lim
y↓y†

α(y) = 0 and lim
y↑y†

β(y) = lim
y↑y∗∞

α(y) = ∞,(56)

where x∗ is the strictly increasing inverse of the function y∗ appearing in Assumption 2.

If the problem data is such that C2 6= ∅, then, given any y ∈ (y
F
, yG), we can see that

(45)–(46) are equivalent to

A′(y) =

∫ F (y)

1

H(u, y)m(du) and A′(y) =

∫ G(y)

1

H(u, y)m(du),(57)

respectively, which imply that F and G should satisfy
∫ G(y)

F (y)

H(u, y)m(du) = 0 for all y ∈ (y
F
, yG).(58)

Using the first identity in (57) to substitute for A′ in the expression for vy resulting from
(41), we can see that (43), (44) imply that

B′(y) +

∫ F (y)

1

p′(s)

∫ F (y)

s

H(u, y)m(du) ds = K−,(59)

B′(y) +

∫ G(y)

1

p′(s)

∫ F (y)

s

H(u, y)m(du) ds = K+,(60)

respectively. Combining these identities with (58) and (122) in Appendix I, we obtain
∫ G(y)

F (y)

p(u)H(u, y)m(du) = −
∫ G(y)

F (y)

p′(s)

∫ s

F (y)

H(u, y)m(du) ds

= K+ −K− for all y ∈ (y
F
, yG).(61)

Furthermore, we note that this equation, the expression (41) for v and the expressions (57)
and (59)–(60) for the functions A′ and B′ imply that

vy(x, y) = K+ +

∫ G(y)

x

p′(s)

∫ s

F (y)

H(u, y)m(du) ds

= K− −
∫ x

F (y)

p′(s)

∫ s

F (y)

H(u, y)m(du) ds, for (x, y) ∈ C2.(62)
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To determine the solvability of the system of equations (58) and (61), we need to consider
the functions Qβ : (y∗0, y

†) → (−∞,∞] and Qα : (y†, y∗∞) → (−∞,∞] defined by

Qβ(y) =

∫ β(y)

0

p(u)H(u, y)m(du)−
(

K+ −K−
)

= −
∫ β(y)

0

p′(s)

∫ s

0

H(u, y)m(du) ds−
(

K+ −K−
)

, for y ∈ (y∗0, y
†),(63)

Qα(y) =

∫ ∞

α(y)

p(u)H(u, y)m(du)−
(

K+ −K−
)

=

∫ ∞

α(y)

p′(s)

∫ ∞

s

H(u, y)m(du) ds−
(

K+ −K−
)

, for y ∈ (y†, y∗∞),(64)

where the identities follow from Lemma 3 above and Lemma 8 in Appendix I. It is worth
noting that the integrals appearing in this definition can indeed be equal to ∞ because
limx↓0 p(x) = −∞, limx→∞ p(x) = ∞ and H satisfies (20) in Assumption 2 (see also special
cases considered in Section 5).

We prove the following result in Appendix III.

Lemma 4. The function Qβ defined by (63) is increasing, while, the function Qα defined
by (64) is decreasing. In particular, if the strict inequality

lim
y↑y†

Qβ(y) = lim
y↓y†

Qα(y) =

∫ ∞

0

p(u)H(u, y†)m(du)− (K+ −K−) > 0(65)

is true, then there exist unique y
F
∈ [y∗0, y

†) and yG ∈ (y†, y∗∞] such that

Qβ(y)











< 0, if y
F
> y∗0 and y ∈ (y∗0, yF ),

= 0, if y
F
> y∗0 and y = y

F
,

> 0, if y ∈ (y
F
, y†),

(66)

Qα(y)











> 0, if y ∈ (y†, yG),

= 0, if yG < y∗∞ and y = yG,

< 0, if yG < y∗∞ and y ∈ (yG, y
∗
∞).

(67)

The system of equations (58) and (61) has a unique solution F (y) < G(y) if and only if
(65) is true and y ∈ (y

F
, yG), in which case

0 < F (y) < x∗(y) < G(y) < β(y) for all y ∈ (y
F
, y†),(68)

α(y) < F (y) < x∗(y) < G(y) < ∞ for all y ∈ (y†, yG),(69)

where β, α are as in Lemma 3. Furthermore, if (65) is true, then the resulting functions
F,G : (y

F
, yG) → R

∗
+ are C1 and strictly increasing,
∫ x

F (y)

H(u, y)m(du) < 0 for all x ∈
(

F (y), G(y)
)

,(70)
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lim
y↓y

F

F (y) = 0, lim
y↑yG

G(y) = ∞,(71)

lim
y↑yG

F (y) = ∞, if yG = y∗∞, lim
y↓y

F

G(y) = 0, if y
F
= y∗0,(72)

lim
y↓y

F

G(y) = β(y
F
) and lim

y↓y
F

G′(y) = β ′(y
F
), if y

F
> y∗0,(73)

lim
y↑yG

F (y) = α(yG) and lim
y↑yG

F ′(y) = α′(yG), if yG < y∗∞.(74)

If (65) is true, then we define y
G

= y∗0 and yF = y∗∞, we extend the functions F :

(y
F
, yG) → R

∗
+ and G : (y

F
, yG) → R

∗
+ given by the previous lemma to (y

F
, yF ) and

(y
G
, yG) by defining

F (y) = α(y) for all y ∈ [yG, yF ), if yG < yF ,(75)

and

G(y) = β(y) for all y ∈ (y
G
, y

F
], if y

G
< y

F
,(76)

respectively, and we note that these extensions are strictly increasing C1 functions thanks to
Lemmas 3 and 4. On the other hand, if (65) is false, then we define y

G
= y∗0, yG = y

F
= y†

and yF = y∗∞, and we set

F (y) = α(y) for all y ∈ (y
F
, yF ) and G(y) = β(y) for all y ∈ (y

G
, yG),(77)

The following result, which we prove in Appendix III, is concerned with the solution to
the HJB equation (30).

Proposition 5. Consider the control problem formulated in Section 2, let

y∗0 = y
G
≤ y

F
≤ y† ≤ yG ≤ yF = y∗∞(78)

be as in Lemma 4 and the discussion above, and let G : (y
G
, yG) → R and F : (y

F
, yF ) → R

be the strictly increasing C1 functions that are given by Lemma 4 and (75)–(77). The
functions F and G satisfy

lim
y↓y

F

F (y) = lim
y↓y

G

G(y) = 0 and lim
y↑yF

F (y) = lim
y↑yG

G(y) = ∞,

and they partition R
∗
+ ×R+ into the regions D, C1 ∪ C2 ∪ C3, I defined by (34)–(38). Also,

the function vy : R
∗
+× (y∗0, y

∗
∞) → R defined by (49) if y

G
< y

F
and y ∈ (y

G
, y

F
], by (51) if

yG < yF and y ∈ [yG, yF ), and by (62) if y
F
< yG and y ∈ (y

F
, yG), is C

2,1. Furthermore,
if we define

v(x, y) =

∫ y

y†
vy(x, r) dr, for (x, y) ∈ R

∗
+ × (y∗0, y

∗
∞),

then the function w : R∗
+ × R+ → R given by (42) is a C2,1 solution to the HJB equation

(30).
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4. The solution to the control problem

The solution to the HJB equation (30) that we constructed in Proposition 5 suggests
the investment strategy introduced by the following definition, which we will prove to be
optimal.

Definition 2. Consider the functions F , G and the associated domains D, C = C1∪C2∪C3,
I appearing in Proposition 5. Given an initial condition (x, y) ∈ R

∗
+×R+, we denote by Y ◦

the investment strategy that instantaneously increases or decreases the project’s capacity
to the closest boundary point of C if (x, y) /∈ C, and then takes minimal action so as to
reflect the process (X, Y ◦) in the boundary G of C along the positive y-direction and in
the boundary F of C along the negative y-direction. In particular, the process Y ◦ has a
positive jump of size G−1(x) − y, if G−1(x) > y, and a negative jump of size y − F−1(x),
if y > F−1(x), at time 0, and satisfies

dY ◦
t =

[

1{Y ◦
t =G−1(Xt)} − 1{Y ◦

t =F−1(Xt)}

]

dY ◦
t for all t > 0.(79)

✷

Motivated by the solution to Skorokhod’s equation (e.g., see Karatzas and Shreve [31,
Lemma 3.6.C.14], we can construct such a process Y ◦ iteratively in a pathwise sense as
follows. First, we fix a sample path X(ω) of any continuous positive stochastic process X
such that X(ω) is “recurrent”, namely, infu≥tXu(ω) = 0 and supu≥tXu(ω) = ∞ for all
t ≥ 0, and we drop the argument “ω” for notational simplicity. We then define the times

τ+0 = inf
{

t ≥ 0 : (Xt, y) ∈ int I
}

and τ−0 = inf
{

t ≥ 0 : (Xt, y) ∈ intD
}

,

and we assume that τ+0 < τ−0 in what follows; if τ−0 < τ+0 , then only straightforward
revisions of the arguments are required. We define

Y
(1)+
t =

[

G−1

(

sup
u≤t

Xu

)

− y

]+

1{0<t}, Y
(1)−
t = 0, Y

(1)
t = y + Y

(1)+
t − Y

(1)−
t ,

τ1 = inf
{

t ≥ 0 :
(

Xt, Y
(1)
t

)

∈ intD
}

> τ+0 ,

and we note that (X, Y (1)) is reflecting in G in the positive y-direction,

(Xt, Y
(1)
t ) ∈ cl C for all t ≤ τ1 and Y (1)

τ1 = F−1(Xτ1),

where cl C is the closure of C in R
∗
+ × R+.

If y
F
= y† = yG, then the free-boundaries F , G identify with the functions α, β depicted

by Figure 2, τ1 = ∞ and the construction is complete. On the other hand, if y
F
< y† < yG,

then τ1 < ∞ and we continue the construction as follows (see also Figure 1 depicting this
generic case).

We define

Y
(2)+
t = Y

(1)+
t∧τ1 , Y

(2)−
t =

[

Y (1)
τ1

− F−1

(

inf
τ1≤u≤t

Xu

)]

1{τ1≤t},

Y
(2)
t = y + Y

(2)+
t − Y

(2)−
t and τ2 = inf

{

t ≥ 0 :
(

Xt, Y
(2)
t

)

∈ int I
}

> τ1.
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An inspection of these definitions reveals that (X, Y (2)) is reflecting in G in the positive
y-direction and in F in the negative y-direction up to time τ2,

Y
(2)
t = Y

(1)
t for all t ≤ τ1,

(Xt, Y
(2)
t ) ∈ cl C for all t ≤ τ2 and Y (2)

τ2
= G−1(Xτ2).

We then iterate these constructions by defining

Y
(2n+1)+
t = Y

(2n)+
t∧τ2n +

[

G−1

(

sup
τ2n≤u≤t

Xu

)

− Y (2n)+
τ2n

]

1{τ2n≤t}, Y
(2n+1)−
t = Y

(2n)−
t∧τ2n ,

Y
(2n+1)
t = y + Y

(2n+1)+
t − Y

(2n+1)−
t , τ2n+1 = inf

{

t ≥ 0 :
(

Xt, Y
(2n+1)
t

)

∈ intD
}

> τ2n,

Y
(2n)+
t = Y

(2n−1)+
t∧τ2n−1

, Y
(2n)−
t = Y

(2n−1)−
t∧τ2n−1

+

[

Y (2n−1)+
τ2n−1

− F−1

(

inf
τ2n−1≤u≤t

Xu

)]

1{τ2n−1≤t},

Y
(2n)
t = y + Y

(2n)+
t − Y

(2n)−
t and τ2n = inf

{

t ≥ 0 :
(

Xt, Y
(2n)
t

)

∈ int I
}

> τ2n−1,

for n ≥ 1, and we note that, given any m, ℓ ≥ 1,

Y
(m+ℓ)
t = Y

(m)
t = y + Y

(m)+
t − Y

(m)−
t and (Xt, Y

(m)
t ) ∈ cl C for all t ≤ τm.

The recurrence of the sample path X that we have considered implies that limn→∞ τn = ∞.
Therefore, we can define (Y ◦)+, (Y ◦)− and Y ◦ by

(Y ◦)+t = Y
(m)+
t , (Y ◦)−t = Y

(m)−
t and Y ◦

t = Y
(m)
t

for any m ≥ 1 such that t < τm. The finite variation function Y ◦ thus constructed satisfies
(79) because this is true for all of the functions Y (n). Indeed, an inspection of the iterative
algorithm that we have developed reveals that Y (n) increases (resp., decreases) on the set

{

t ≥ 0 : Y
(n)
t = G−1(Xt) and Xt = sup

0≤u≤t
Xu

}

(

resp.,

{

t ≥ 0 : Y
(n)
t = F−1(Xt) and Xt = inf

0≤u≤t
Xu

})

.

This construction defines operators F+(·; y), F−(·; y) and F(·; y) mapping the set Cr
+(R+)

of all continuous functions g : R+ → R
∗
+ that are recurrent into the set of all càglàd finite

variation functions that are continuous in R
∗
+. In particular, given an initial condition

(x, y) ∈ R
∗
+ ×R+ and the solution (Ω,F ,Ft,Px,W,X) of (1) that we have associated with

it, a process Y ◦ that is as in Definition 2 is given by

Y ◦
t = Ft(X ; y) = y + F

+
t (X ; y)− F

−
t (X ; y) for all t ≥ 0,(80)

where, e.g., Ft(g; y) is the evaluation of the function F(g; y) at t, for g ∈ Cr
+(R+).

We can now prove the main result of the paper.

Theorem 6. Consider the stochastic control problem formulated in Section 2. Given any
initial condition (x, y) ∈ R

∗
+ × R+, the associated investment strategy Y ◦ ∈ Yx,y given by
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Definition 2 is optimal, namely, V (x, y) = Jx,y(Y
◦). Furthermore, the value function V is

constant, i.e., V does not depend on the initial condition (x, y).

Proof. Consider any initial condition (x, y) ∈ R
∗
+ × R+ fixed. In view of the fact that

x∗(y) < G(y) for all y ∈ (y
G
, yG), we can see that

G−1(x) ≤ y∗(x) ≤ η
(

1 + xη
)

,(81)

where η ≥ 1 is as in (19) in Assumption 2. Combining this estimate with the fact that Y ◦

increases through reflection of the process (X, Y ◦) in the boundary function G, we can see
that

Y ◦
T = FT (X ; y) ≤ sup

0≤t≤T
Ft(X ; y)

≤ y +

[

G−1

(

sup
0≤t≤T

Xt

)

− y

]+

≤ y + η + η sup
0≤t≤T

Xη
t .(82)

These inequalities and Lemma 1 imply that

lim
T→∞

1

T
E
x

[

sup
0≤t≤T

Y ◦
t

]

= lim
T→∞

1

T
E
x

[

sup
0≤t≤T

Ft(X ; y)

]

= 0.(83)

Given any admissible investment strategy Y ∈ Yx,y, an application of Itô’s formula yields

w(XT , YT ) = w(x, y) +

∫ T

0

[

1

2
σ2(Xt)wxx(Xt, Yt) + b(Xt)wx(Xt, Yt)

]

dt

+

∫ T

0

wy(Xt, Yt) d(Y
+)ct −

∫ T

0

wy(Xt, Yt) d(Y
−)ct

+
∑

0≤t<T

[

w
(

Xt, Yt +△(Y +)t
)

− w(Xt, Yt)
]

+
∑

0≤t<T

[

w
(

Xt, Yt −△(Y −)t
)

− w(Xt, Yt)
]

+

∫ T

0

σ(Xt)wx(Xt, Yt) dWt,

where the process (Y +)c (resp., (Y −)c) is the continuous part of Y + (resp., Y −) and the
process △(Y +) (resp., △(Y −)) is the jump part of Y + (resp., Y −). This identity implies
that

∫ T

0

h(Xt, Yt) dt−K+Y +
T +K−Y −

T

= w(x, y)− w(XT , YT )

+

∫ T

0

[

1

2
σ2(Xt)wxx(Xt, Yt) + b(Xt)wx(Xt, Yt) + h(Xt, Yt)

]

dt

+

∫ T

0

[

wy(Xt, Yt)−K+
]

d(Y +
t )c −

∫ T

0

[

wy(Xt, Yt)−K−
]

d(Y −
t )c
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+
∑

0≤t<T

∫ △(Y +)t

0

[

wy(Xt, Yt + u)−K+
]

du

−
∑

0≤t<T

∫ 0

−△(Y −)t

[

wy(Xt, Yt + u)−K−
]

du+

∫ T

0

σ(Xt)wx(Xt, Yt) dWt

≤ w(x, y)− w(XT , YT ) +

∫ T

0

σ(Xt)wx(Xt, Yt) dWt,

the inequality following because w satisfies the HJB equation (30). In light of the con-
struction of the strategy Y ◦, we can see that the same calculations yield

∫ T

0

h(Xt, Y
◦
t ) dt−K+(Y ◦)+T +K−(Y ◦)−T

= w(x, y)− w(XT , Y
◦
T ) +

∫ T

0

σ(Xt)wx(Xt, Y
◦
t ) dWt.

From these inequalities, it follows that

∫ T

0

h(Xt, Yt) dt−K+Y +
T +K−Y −

T

≤
∫ T

0

h(Xt, Y
◦
t ) dt−K+(Y ◦)+T +K−(Y ◦)−T

+ w(XT , Y
◦
T )− w(XT , YT ) +

∫ T

0

σ(Xt)
[

wx(Xt, Yt)− wx(Xt, Y
◦
t )
]

dWt.(84)

Since w satisfies the HJB equation (30) and K+ > K− ≥ 0, we can see that

∣

∣w(XT , Y
◦
T )− w(XT , YT )

∣

∣ =

∣

∣

∣

∣

∫ Y ◦
T

YT

wy(XT , y) dy

∣

∣

∣

∣

≤ K+
∣

∣Y ◦
T − YT

∣

∣ ≤ K+ (Y ◦
T + YT ) .(85)

This estimate implies that

E
x

[

sup
t∈[0,T ]

∣

∣w(Xt, Y
◦
t )− w(Xt, Yt)

∣

∣

]

≤ K+
E
x

[

sup
0≤t≤T

Y ◦
t + Y +

T + Y −
T

]

< ∞,(86)

the second inequality following thanks to the admissibility condition (13) that the process
Y satisfies and (83). Similarly, we can see that

w(XT , Y
◦
T )− w(XT , YT ) = 1{YT<Y ◦

T }

∫ Y ◦
T

YT

wy(XT , y) dy − 1{YT≥Y ◦
T }

∫ YT

Y ◦
T

wy(XT , y) dy

≤ K+
(

Y ◦
T − YT

)

1{YT<Y ◦
T } −K−

(

YT − Y ◦
T

)

1{YT≥Y ◦
T }

≤ K+Y ◦
T .
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Combining these inequalities with (83), we can see that

lim sup
T→∞

1

T
E
x
[

w(XT , Y
◦
T )− w(XT , YT )

]

≤ K+ lim
T→∞

E
x
[

Y ◦
T

]

T
= 0.(87)

In view of the inequality
∫ T

0

σ(Xt)
[

wx(Xt, Yt)− wx(Xt, Y
◦
t )
]

dWt

≥
∫ T

0

h(Xt, Yt) dt−
∫ T

0

h(Xt, Y
◦
t ) dt−K+Y +

T +K−Y −
T − w(XT , Y

◦
T ) + w(XT , YT ),

which follows from (84) and the fact that K− < K+, we can see that (13), which the
admissible process Y satisfies, part (II) of Lemma 2, (83) and (86) imply that the process

t 7→
∫ t

0

σ(Xr)
[

wx(Xr, Yr)− wx(Xr, Y
◦
r )
]

dWr, t ∈ [0, T ],

is bounded from below by an integrable random variable. Therefore, if (τn) is a localising
sequence for this stochastic integral, then Fatou’s lemma implies that

E
x

[
∫ T

0

σ(Xt)
[

wx(Xt, Yt)− wx(Xt, Y
◦
t )
]

dWt

]

≤ lim inf
n→∞

E
x

[
∫ T∧τn

0

σ(Xt)
[

wx(Xt, Yt)− wx(Xt, Y
◦
t )
]

dWt

]

= 0.(88)

Also, the inequality

(K+ −K−)(Y ◦)+T ≤
∫ T

0

h(Xt, Y
◦
t ) dt−

∫ T

0

h(Xt, Yt) dt+K+Y +
T −K−Y ◦

T

+ w(XT , Y
◦
T )− w(XT , YT ) +

∫ T

0

σ(Xt)
[

wx(Xt, Yt)− wx(Xt, Y
◦
t )
]

dWt,

which follows from (84), (13), part (II) of Lemma 2, (86), (83) and (88) imply that
E
x
[

(Y ◦)+T
]

< ∞. It follows that Y ◦ is admissible because it satisfies (13). Furthermore,
we can take expectations in (84) and use (87) to obtain

Jx,y(Y ) = lim sup
T→∞

1

T
E
x

[
∫ T

0

h(Xt, Yt) dt−K+Y +
T +K−Y −

T

]

≤ lim sup
T→∞

1

T
E
x

[
∫ T

0

h(Xt, Y
◦
t ) dt−K+(Y ◦)+T +K−(Y ◦)−T

]

+ lim sup
T→∞

1

T
E
x
[

w(XT , Y
◦
T )− w(XT , YT )

]

= lim sup
T→∞

1

T
E
x

[
∫ T

0

h(Xt, Y
◦
t ) dt−K+(Y ◦)+T +K−(Y ◦)−T

]

= Jx,y(Y
◦),
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which establishes the optimality of Y ◦.
To prove that V is constant, we consider any initial conditions (x, y), (x̄, ȳ) ∈ R

∗
+ × R+,

we denote by (Ω,F ,Ft,Px,W,X), (Ω̄, F̄ , F̄t,Px̄, W̄ , X̄) the weak solutions to (1) that we
have associated with the initial conditions x, x̄, and we let Y ◦ = F(X ; y) ∈ Yx,y, Ȳ

◦ =
F(X̄ ; ȳ) ∈ Yx̄,ȳ be the associated optimal investment strategies, where the operators F(·; y),
F(·; ȳ) are as in (80). The recurrence of the diffusion X implies that the (Ft)-stopping time
τx̄ defined by

τx̄ = inf{t ≥ 0 : Xt = x̄} > 0,(89)

is finite Px-a.s. and E
x[τx̄] < ∞. On the stochastic basis (Ω,F ,Ft,Px,W,X), we consider

the investment strategy Y ‡ ∈ Yx,y that involves no capacity adjustments up to time τx̄,
adjusts the capacity level from y to ȳ at time τx̄, and then replicates Ȳ ◦. In particular, we
recall (80) and we define

Y ‡
t = y1{t≤τx̄} + Ft−τx̄(θτx̄X ; ȳ)1{τx̄<t}

= y1{t≤τx̄} +
(

ȳ + F
+
t−τx̄(θτx̄X ; ȳ)− F

−
t−τx̄(θτx̄X ; ȳ)

)

1{τx̄<t},

where θs : C(R+) → C(R+) is the shift operator defined by (θsg)t = g(s+ t) for g ∈ C(R+)
and s, t ≥ 0. Next, we calculate

V (x, y) ≥ Jx,y(Y
‡)

= lim sup
T→∞

1

T
E
x

[
∫ τx̄∧T

0

h(Xt, y) dt+ 1{τx̄<T}

∫ T

τx̄

h
(

Xt,Ft−τx̄(θτx̄X ; ȳ)
)

dt

−K+
F
+
T−τx̄

(θτx̄X ; ȳ)1{τx̄<T} +K−
F
−
T−τx̄

(θτx̄X ; ȳ)1{τx̄<T}

]

= lim sup
T→∞

1

T
E
x

[
∫ τx̄∧T

0

h(Xt, y) dt− 1{τx̄<T}

∫ T

T−τx̄

h
(

(θτx̄X)t,Ft(θτx̄X ; ȳ)
)

dt

+ 1{τx̄<T}

(
∫ T

0

h
(

(θτx̄X)t,Ft(θτx̄X ; ȳ)
)

dt−K+
F
+
T (θτx̄X ; ȳ) +K−

F
−
T (θτx̄X ; ȳ)

)

+K+
[

F
+
T (θτx̄X ; ȳ)− F

+
T−τx̄

(θτx̄X ; ȳ)
]

1{τx̄<T}

−K−
[

F
−
T (θτx̄X ; ȳ)− F

−
T−τx̄

(θτx̄X ; ȳ)
]

1{τx̄<T}

]

.(90)

In view of (21) in Assumption 2, we can see that
∫ τx̄∧T

0

h(Xt, y) dt ≥ −C1(1 + y)(τx̄ ∧ T ).(91)

Also, we can use the inequality K+ > K− ≥ 0, (80) and (82) to obtain

K+
[

F
+
T (θτx̄X ; ȳ)− F

+
T−τx̄

(θτx̄X ; ȳ)
]

1{τx̄<T} −K−
[

F
−
T (θτx̄X ; ȳ)− F

−
T−τx̄

(θτx̄X ; ȳ)
]

1{τx̄<T}

≥ K+
[

[

F
+
T (θτx̄X ; ȳ)− F

+
T−τx̄

(θτx̄X ; ȳ)
]

−
[

F
−
T (θτx̄X ; ȳ)− F

−
T−τx̄

(θτx̄X ; ȳ)
]

]

1{τx̄<T}
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= K+
[

FT (θτx̄X ; ȳ)− FT−τx̄(θτx̄X ; ȳ)
]

1{τx̄<T}

≥ −K+
FT−τx̄(θτx̄X ; ȳ)1{τx̄<T}

≥ −K+

(

ȳ + η + η sup
0≤t≤T

(θτx̄X)ηt

)

,(92)

as well as

1{τx̄<T}

∫ T

T−τx̄

Ft(θτx̄X ; ȳ) dt ≤ τx̄

(

ȳ + η + η sup
0≤t≤T

(θτx̄X)ηt

)

.(93)

In light of the estimates (91)–(92), we can see that (90) implies that

V (x, y) ≥ lim sup
T→∞

1

T
E
x

[

−C1(1 + y)(τx̄ ∧ T )

+ 1{τx̄<T}

(
∫ T

0

h
(

(θτx̄X)t,Ft(θτx̄X ; ȳ)
)

dt−K+
F
+
T (θτx̄X ; ȳ) +K−

F
−
T (θτx̄X ; ȳ)

)

− 1{τx̄<T}

∫ T

T−τx̄

h
(

(θτx̄X)t,Ft(θτx̄X ; ȳ)
)

dt−K+

(

ȳ + η + η sup
0≤t≤T

(θτx̄X)ηt

)]

.(94)

To proceed further, we note that the definition (89) of τx̄ implies that

(θτx̄X)T ≡ Xτx̄+T = x̄+

∫ τx̄+T

τx̄

b(Xt) dt+

∫ τx̄+T

τx̄

σ(Xt) dWt

= x̄+

∫ T

0

b
(

(θτx̄X)t
)

dt+

∫ T

0

σ
(

(θτx̄X)t
)

dWτx̄+t,

where the second identity follows from the time change formulae in Revuz and Yor [45,
Propositions V.1.4, V.1.5]. Recalling that the process (Wτx̄+t −Wτx̄ , t ≥ 0) is a standard
Brownian motion that is independent of Fτx̄ (e.g., see Revuz and Yor [45, Exercise IV.3.21]),
we can see that this observation implies that the process θτx̄X is independent of Fτx̄ and
has the same distribution under Px as the process X̄ under Px̄, thanks to the uniqueness
in distribution of the solution to the SDE (1). It follows that

E
x

[

1{τx̄<T}

(
∫ T

0

h
(

(θτx̄X)t,Ft(θτx̄X ; ȳ)
)

dt−K+
F
+
T (θτx̄X ; ȳ) +K−

F
−
T (θτx̄X ; ȳ)

)]

= Px

(

τx̄ < T
)

E
x̄

[
∫ T

0

h
(

X̄t,Ft(X̄ ; ȳ)
)

dt−K+
F
+
T (X̄; ȳ) +K−

F
−
T (X̄ ; ȳ)

]

= Px

(

τx̄ < T
)

E
x̄

[
∫ T

0

h(X̄t, Ȳ
◦
t ) dt−K+(Ȳ ◦)+T +K−(Ȳ ◦)−T

]

.(95)

Also, since E
x[τx̄] < ∞, (93) and Lemma 1 imply that

0 ≤ lim
T→∞

1

T
E
x

[

1{τx̄<T}

∫ T

T−τx̄

Ft(θτx̄X ; ȳ) dt

]
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≤ lim
T→∞

1

T
E
x
[

τx̄
]

(

ȳ + η + ηEx

[

sup
0≤t≤T

(θτx̄X)ηt

])

= lim
T→∞

1

T
E
x
[

τx̄
]

(

ȳ + η + ηEx̄

[

sup
0≤t≤T

X̄η
t

])

= 0.(96)

and

lim
T→∞

1

T
E
x

[

−C1(1 + y)(τx̄ ∧ T )−K+

(

ȳ + η + η sup
0≤t≤T

(θτx̄X)ηt

)]

= 0.(97)

Using the upper bound in (21) of Assumption 1, (135), (96) and Hölder’s inequality, we
can calculate

E
x

[

1{τx̄<T}

∫ T

T−τx̄

h
(

(θτx̄X)t,Ft(θτx̄X ; ȳ)
)

dt

]

≤ C1E
x
[

1{τx̄<T}τx̄
]

+ C1E
x

[

1{τx̄<T}

∫ T

T−τx̄

(θτx̄X)ζt dt

]

+ C1E
x

[
∫ T

0

(

1{0<T−τx̄≤t}(θτx̄X)t
)µ(

1{0<T−τx̄≤t}Ft(θτx̄X ; ȳ)
)ν

dt

]

− ε1E
x

[

1{τx̄<T}

∫ T

T−τx̄

Ft(θτx̄X ; ȳ)
)

dt

]

≤ C1E
x[τx̄] + C1E

x

[

1{τx̄<T}

∫ T

T−τx̄

(θτx̄X)ζt dt

]

− ε1E
x

[

1{τx̄<T}

∫ T

T−τx̄

Ft(θτx̄X ; ȳ)
)

dt

]

+ C1

(

E
x

[

1{τx̄<T}

∫ T

T−τx̄

(θτx̄X)
µ/(1−ν)
t dt

])1−ν (

E
x

[

1{τx̄<T}

∫ T

T−τx̄

Ft(θτx̄X ; ȳ) dt

])ν

≤ C1E
x[τx̄] + C1E

x

[

1{τx̄<T}

∫ T

T−τx̄

(θτx̄X)ζt dt

]

+
ε1(1− ν)

ν

(

νC1

ε1

)1/(1−ν)

E
x

[

1{τx̄<T}

∫ T

T−τx̄

(θτx̄X)
µ/(1−ν)
t dt

]

.

(98)

Also, given any constants δ ∈ (0, 1) and n ≥ 0, we can use Hölder’s inequality to obtain

E
x

[

1{τx̄<T}

∫ T

T−τx̄

(θτx̄X)nt dt

]

= E
x

[
∫ T

0

1{0<T−τx̄≤t}(θτx̄X)nt dt

]

≤
(

E
x

[
∫ T

0

1
1/δ
{0<T−τx̄≤t} dt

])δ (

E
x

[
∫ T

0

(θτx̄X)
n/(1−δ)
t dt

])1−δ
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≤
(

E
x[τx̄]

)δ
(

E
x̄

[
∫ T

0

X̄
n/(1−δ)
t dt

])1−δ

.

Since E
x[τx̄] < ∞, these inequalities, (98) and (10) imply that

lim sup
T→∞

1

T
E
x

[

1{τx̄<T}

∫ T

T−τx̄

h
(

(θτx̄X)t,Ft(θτx̄X ; ȳ)
)

dt

]

≤ 0.(99)

On the other hand, we can see that the lower bound in (21) of Assumption 1 and (96)
imply that

lim inf
T→∞

1

T
E
x

[

1{τx̄<T}

∫ T

T−τx̄

h
(

(θτx̄X)t,Ft(θτx̄X ; ȳ)
)

dt

]

≥ −C1 lim
T→∞

1

T

(

E
x[τx̄] + E

x

[

1{τx̄<T}

∫ T

T−τx̄

Ft(θτx̄X ; ȳ) dt

])

= 0.(100)

Combining (94) with (95), (97) and (99)–(100), we obtain

V (x, y) ≥ lim sup
T→∞

1

T
Px

(

τx̄ < T
)

E
x̄

[
∫ T

0

h(X̄t, Ȳ
◦
t ) dt−K+(Ȳ ◦)+T +K−(Ȳ ◦)−T

]

= V (x̄, ȳ),

which establishes the independence of V from the initial condition (x, y) because the initial
conditions (x, y), (x̄, ȳ) ∈ R

∗
+ × R+ have been arbitrary. ✷

Remark 3. The validity of (87) is the only reason we have assumed that K+ > K− ≥ 0
rather than the more general inequalities K+, K+ − K− > 0. To relax the assumption
K+ > K− ≥ 0 to K+, K+ −K− > 0 in a straightforward way, we have to restrict the set
of admissible strategies to ergodic ones, namely, to strategies Y ∈ Yx,y such that

the limit lim
T→∞

Ex[YT ]

T
exists.(101)

Indeed, we can combine (83) and (85) with part (III) of Lemma 2 and (101) to see that,
given any Y ∈ Yx,y such that Jx,y(Y ) > −∞,

lim sup
T→∞

1

T
E
x
[
∣

∣w(XT , Y
◦
T )− w(XT , YT )

∣

∣

]

≤ K+ lim
T→∞

E
x
[

Y ◦
T

]

T
+K+ lim

T→∞

E
x
[

YT

]

T
= 0,

which can substitute for (87) in the proof of Theorem 6, our main result. ✷

5. Special cases

It is straightforward to check that any of the diffusions that we now consider satisfies all
of the conditions in Assumption 1. The solution to the SDE

dXt = k(ϑ−Xt) dt+ σ
√

Xt dWt,(102)
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where k, ϑ, σ > 0 are constants such that kϑ− 1
2
σ2 > 0, is the mean-reverting square-root

process that identifies with the short interest rate process in the Cox-Ingersoll-Ross model.
In this case, the derivative of the scale function p is given by

p′(x) = x−2kϑ/σ2

e2k(x−1)/σ2

.

We can check that the derivative of the scale function of the constant-elasticity-of-variance
(CEV) process, which is the solution to the SDE

dXt = k(ϑ−Xt) dt+ σXℓ
t dWt,

for some constants k, ϑ, σ > 0 and ℓ ∈ (1
2
, 1), is given by

p′(x) = exp

(

2k

σ2

{

x2(1−ℓ)

2(1− ℓ)
+

ϑx−(2ℓ−1)

2ℓ− 1
− ϑ

2ℓ− 1
− 1

2(1− ℓ)

})

.

Also, the stochastic logistic equation

dXt = k
(

ϑ−Xt

)

Xt dt+ σXt dWt,(103)

where k, ϑ, σ > 0 are constants such that kϑ − 1
2
σ2 > 0, defines a diffusion that has the

same scale function as the square-root mean-reverting process given by (102).
The running payoff function given by

h(x, y) = C1x
µyν − ε1y,(104)

for some constants C1, µ, ε1 > 0 and ν ∈ (0, 1), is a modification of the so-called Cobb-
Douglas production function (x, y) 7→ xµyν that is appropriate for the problem that we
study here. We can check that such a choice satisfies all of the requirements in Assump-
tion 2. In particular, the functions y∗ and x∗ are given by

y∗(x) =

(

C1ν

ε1

)1/(1−ν)

xµ/(1−ν) and x∗(y) =

(

ε1
C1ν

)1/µ

y(1−ν)/µ,

and therefore, y∗0 = 0 and y∗∞ = ∞.
In the special cases that we consider below, we show that the inequalities in (78) that the

points defining the domains of the free-boundaries F and G satisfy may be strict. Indeed,
we show that the points y

F
< yF and y

G
< yG may satisfy (106), (110), (112)–(113)

or (115), which reveal that our general assumptions give rise to a rich family of optimal
investment strategies. In particular, we show that (65) in Lemma 4 may be false, in which
case, the free-boundaries F , G identify with the functions α, β, respectively.

5.1. The case of the mean-reverting square-root process given by (102) and the
running payoff function given by (104). In this case, the point y† associated with
(26) in Assumption 3 is given by

y† =

[

νC1

ε1

(

σ2

2k

)µ Γ
(

2kϑ
σ2 + µ

)

Γ
(

2kϑ
σ2

)

]1/(1−ν)

,
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where Γ is the Gamma function defined by Γ(a) =
∫∞

0
ua−1e−u du. We used matlab to

compute y† = 4.214 if

k = 1, ϑ = 5, σ = 0.8, C1 = 1, µ = 1,

ν = 0.8, ε1 = 3 and K+ −K− = 1.(105)

Also, we plot the results of an unsophisticated simulation that calculated the free-
boundaries F and G for this data in Figure 3.

For any appropriate values of the parameters in (102) and (104), the points defining the
domains of the free-boundaries F and G satisfy

0 = y∗0 = y
G
< y

F
< y† < yG = yF = ∞.(106)

To see this claim, we first consider any λ ≥ 0 and we calculate
∫ x

0

p′(s)

∫ s

0

uλm(du) ds =
2

σ2

∫ x

0

s−
2kϑ
σ2 e

2k
σ2 s

∫ s

0

uλ+ 2kϑ
σ2 −1e−

2k
σ2 u du ds

≤ 2

σ2(λ+ 1)(λ+ 2kϑ
σ2 )

xλ+1e
2k
σ2 x.(107)

Using this inequality with λ = 0 and λ = µ, respectively, we can see that the function Qβ

defined by (63) is real-valued,

lim
y↓0

Qβ(y) ≤
ε1
kϑ

lim
y↓0

β(y)e
2k
σ2 β(y) − (K+ −K−)

= −(K+ −K−),

and

lim
y↓0

Qβ(y) ≥ − 2νC1

σ2(µ+ 1)(µ+ 2kϑ
σ2 )

lim
y↓0

yν−1βµ+1(y)e
2k
σ2 β(y) − (K+ −K−)

≥ − 2νC1

σ2(µ+ 1)(µ+ 2kϑ
σ2 )

lim
y↓0

yν−1
[

x∗(y)
]µ+1

e
2k
σ2 x

∗(y) − (K+ −K−)

= −(K+ −K−).

It follows that

Qβ(y) ∈ R for all y ∈ (0, y†) and lim
y↓0

Qβ(y) = −(K+ −K−).(108)

On the other hand, an application of L’Hôpital’s rule yields

lim
s→∞

∫∞

s
uλ+ 2kϑ

σ2 −1e−
2k
σ2 udu

sλ+
2kϑ
σ2 −1e−

2k
σ2 s

= lim
s→∞

−sλ+
2kϑ
σ2 −1e−

2k
σ2 s

(λ+ 2kϑ
σ2 − 1)sλ+

2kϑ
σ2 −2e−

2k
σ2 s − 2k

σ2 s
λ+ 2kϑ

σ2 −1e−
2k
σ2 s

=
σ2

2k
,(109)
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which, for λ = 0, implies that
∫ ∞

x

p′(s)

∫ ∞

s

m(du) ds =
2

σ2

∫ ∞

x

s−1

∫∞

s
u

2kϑ
σ2 −1e−

2k
σ2 u du

s
2kϑ
σ2 −1e−

2k
σ2 s

ds = ∞.

Therefore, the function Qα defined by (64) is identically equal to ∞ thanks to the fact that
limx→∞H(x, y) = ∞ for all y ∈ R

∗
+ ⊇ (y†,∞). The inequalities in (106) now follow from

this observation, (108), Lemma 4 and the discussion after that result.

5.2. Further special cases. By means of calculations similar to the ones in (107)–(109),
we can show that the case arising when X solves the stochastic logistic equation (103) and
h is given by (104), give rise to free-boundaries F , G such that

0 = y∗0 = y
G
= y

F
< y† < yG < yF = ∞.(110)

Instead of pursuing further this case, we consider the diffusion with data

b(x) =

{

k(ϑ− x), if x ≤ 1,

k(ϑ− x)x, if x ≥ 1,
and σ(x) =

{

σ
√
x, if x ≤ 1,

σx, if x ≥ 1.
(111)

for some constants k, ϑ, σ > 0 such that kϑ− 1
2
σ2 > 0, which is a hybrid of the square-root

mean-reverting process given by (102) and the stochastic logistic equation given by (103).
To reduce the number of possible forms that the optimal strategy can take, we consider
the running payoff function given by (104) for µ ∈ (0, 1).

An interesting feature of this special case is that the optimal strategy takes qualitatively
different forms, depending on parameter values. To see this claim, we consider (107), (123)
and the fact that p(1) = 0 (see (8)), and we calculate

0 ≤ −
∫ 1

0

p(u)|H(u, y)|m(du) =

∫ 1

0

p′(s)

∫ s

0

|H(u, y)|m(du) ds < ∞.

Also, we use (109) with λ = µ− 1 ∈ (−1, 0) and λ = −1 together with (122) to obtain

0 ≤
∫ ∞

1

p(u)|H(u, y)|m(du) =

∫ ∞

1

p′(s)

∫ ∞

s

|H(u, y)|m(du) ds

≤ 2νC1y
ν−1

σ2

∫ ∞

1

sµ−2

∫∞

s
uµ+ 2kϑ

σ2 −2e−
2k
σ2 u du

sµ+
2kϑ
σ2 −2e−

2k
σ2 s

ds

+
2ε1
σ2

∫ ∞

1

s−2

∫∞

s
u

2kϑ
σ2 −2e−

2k
σ2 u du

s
2kϑ
σ2 −2e−

2k
σ2 s

ds < ∞.

These calculations imply that
∫ ∞

0

|p(u)H(u, y)|m(du) < ∞ for all y > 0.

It follows that (65) may be false, in which case,

0 = y
G
< yG = y† = y

F
< yF = ∞(112)
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and the free-boundaries F , G identify with the functions α, β, respectively, or it may be
true, in which case,

0 = y
G
< y

F
< y† < yG < yF = ∞.(113)

In the latter case, we can show that the inequalities y
G
< y

F
and yG < yF are indeed true

using arguments similar to the ones that we considered in the previous subsection.
Finally, we note that the diffusion with data

b(x) =

{

k(ϑ− x)x, if x ≤ 1,

k(ϑ− x), if x ≥ 1,
and σ(x) =

{

σx, if x ≤ 1,

σ
√
x, if x ≥ 1.

(114)

for some constants k, ϑ, σ > 0 such that kϑ − 1
2
σ2 > 0, and the running payoff function

given by (104) is associated with free-boundaries F , G such that

0 = y∗0 = y
G
= y

F
< y† < yG = yF = ∞.(115)
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Appendix I: analytic estimates and identities

Lemma 7. In the presence of Assumptions 1 and 2,
∫ ∞

0

|h(s, y)|m(ds) < ∞ for all y ≥ 0,(116)

∫ ∞

0

|H(s, y)|m(ds) < ∞ for all y > 0,(117)

and
∫ ∞

0

sn m(ds) < ∞,(118)

for all constants n ≥ 0.

Proof. We first use the inequalities in (6)–(7) to calculate

p′(x1)

p′(x2)
≥ exp

(
∫ x2

x1

[

1 + ε0
s

− C0

]

ds

)

= x
−(1+ε0)
1 x1+ε0

2 e−C0(x2−x1) for all 0 < x1 < x2 < χ,(119)

and

p′(x2)

p′(x1)
≥ exp

(

2ε0

∫ x2

x1

ln s

s
ds

)

= x−ε0 lnx1
1 xε0 lnx2

2 for all χ < x1 < x2.(120)
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We now fix any y > 0; (116) for y = 0 involves no additional arguments. The inequalities
(21) and (22) in Assumption 1 imply that there exist constants K1 = K1(n, y) > 0 and
ℓ = ℓ(n) > 0 such that

xn + |h(x, y)|+ |H(x, y)| ≤ K1 for all x ≤ χ,

xn + |h(x, y)|+ |H(x, y)| ≤ K1x
ℓ for all x ≥ χ,

where 0 < χ < 1 < χ are as in Assumption 2. The first of these estimates, the bound of

σ2 in (6) and (119) imply that
∫ χ

0

[

sn + |h(s, y)|+ |H(s, y)|
]

m(ds) ≤ 2K1

ε0

1

p′(χ)

∫ χ

0

s−2
p′(χ)

p′(s)
ds

≤ 2K1e
C0χ

ε0

χ−(1+ε0)

p′(χ)

∫ χ

0

s−2e−C0ss1+ε0 ds

< ∞,

while, the second one, the bound of σ2 in (7) and (120) imply that
∫ ∞

χ

[

sn + |h(s, y)|+ |H(s, y)|
]

m(ds)

≤ 2K1

ε0

1

p′(χ)

∫ ∞

χ

sC0+ℓp
′(χ)

p′(s)
ds

≤ 2K1

ε0

χε0 lnχ

p′(χ)

∫ ∞

χ

s−ε0 ln s+C0+ℓ ds

< ∞.

Combining these results with the inequality
∫ χ

χ

[

sn + |h(s, y)|+ |H(s, y)|
]

m(ds) < ∞,

which follows from the fact that m is a locally finite measure and the continuity of the
functions |h| and |H|, we obtain (116), (117) as well as (118). ✷

Lemma 8. In the presence of Assumption 1, if g : R∗
+ → R is any function such that

∫ ∞

0

|g(s)| ds < ∞ and g(x)

{

≤ 0, if x < x‡,

≥ 0, if x > x‡,
(121)

for some x‡ > 0, then
∫ z

x

p′(s)

∫ s

x

g(u)m(du) ds = p(z)

∫ z

x

g(u)m(du)−
∫ z

x

p(u)g(u)m(du) ∈ [−∞,∞)(122)

for all 0 ≤ x < z < ∞ and y > 0, and
∫ z

x

p′(s)

∫ z

s

g(u)m(du)ds
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= −p(x)

∫ z

x

g(u)m(du) +

∫ z

x

p(u)g(u)m(du) ∈ (−∞,∞](123)

for all 0 < x < z ≤ ∞ and y > 0, in which identities all integrals are well-defined.

Proof. Using Fubini’s theorem, we can see that
∫ z

x

∫ z

x

p′(s)g(u)1{u≤s}m(du) ds =

∫ z

x

(
∫ z

x

p′(s)1{u≤s} ds

)

g(u)m(du),

which implies the identity in (122) for every 0 < x < z < ∞. The monotone convergence
theorem and the last set of inequalities in (121) imply that the last integral in (122) is
well-defined and takes values in [−∞,∞) if x = 0. It follows that the identity is true if
x = 0 because the second integral remains finite as x tends to 0, thanks to the integrability
condition in (121).

Similarly, we use Fubini’s theorem to establish the identity in (123) when 0 < x < z < ∞.
The monotone convergence theorem and (121) then imply that the third integral in this
identity is well-defined and takes values in (−∞,∞] for z = ∞. As a consequence, the
identity is true for z = ∞ because the second integral remains finite as z tends to ∞,
thanks to (121). ✷

Appendix II: proofs of results in Section 2

We will need the following result for the proof of Lemma 1.

Lemma 9. Consider the function Φ : R∗
+ → R

∗
+ given by

Φ(x) =

∫ x

1

m̃
(

[1, s]
)

p̃′(s) ds,(124)

where p̃, m̃ are defined as in (8), (9) for some continuous functions b̃, σ̃ : R∗
+ → R such

that σ̃2(z) > 0 for all z > 0 and

−2b̃(z)

σ̃2(z)
≥ 2ε̃

ln z

z
for all z ≥ χ̃,(125)

for some constants ε̃ ∈ (0, 1) and χ̃ > 1. Then,

sup
z>1

{

Φ(z)

z

∫ ∞

z

ds

Φ(s)

}

< ∞,(126)

and

lim
u→∞

Φ−1(u)

u
= 0,(127)

where Φ−1 is the inverse of Φ, so that Φ ◦ Φ−1(u) = u and Φ−1 ◦ Φ(z) = z.
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Proof. The estimate (120) in Appendix I follows from the lower bound in the first set
of inequalities in (7) in Assumption 1, which is the same as (125). Therefore, we can use
(120) with the appropriate changes in notation and L’Hôpital’s rule to calculate

lim
z→∞

p̃(z)

zp̃′(z)
= lim

z→∞

p̃(χ̃)

zp̃′(z)
+ lim

z→∞

1

z

∫ z

χ̃

p̃′(s)

p̃′(z)
ds ≤ lim

z→∞

∫ z

χ̃
sε0 ln s ds

z1+ε0 ln z
= 0.

In light of this result, we can use the definition of Φ to obtain

lim
z→∞

zΦ′(z)

Φ(z)
≥ lim

z→∞

zp̃′(z)
∫ z

1
p̃′(s) ds

= lim
z→∞

zp̃′(z)

p̃(z)
= ∞.(128)

Therefore, given any n > 0, there exists a constant χ̂ = χ̂(n) > 0 such that Φ′(z)/Φ(z) ≥
(n+ 1)/z for all z ≥ χ̂, which implies that

lnΦ(z)− ln Φ(χ̂) ≥ ln zn+1 − ln χ̂n+1.

It follows that

lim
z→∞

Φ(z)

zn
≥ lim

z→∞

Φ(χ̂)

χ̂n+1
z = ∞.(129)

For n = 2, this limit implies that

0 ≤
∫ ∞

z

ds

Φ(s)
≤
(

min
s≥z

Φ(s)

s2

)−1 ∫ ∞

z

s−2 ds < ∞ for all z > 1.(130)

Using the definition (9) of the speed measure m̃, we can see that

Φ(x) ≤ sup
s,u∈[1,2]

p̃′(s)

σ̃2(u)p̃′(u)
(x− 1)2 for all x ∈ [1, 2],

which implies that

lim
z↓1

∫ ∞

z

ds

Φ(s)
≥
(

sup
s,u∈[1,2]

p̃′(s)

σ̃2(u)p̃′(u)

)−1
∫ 2

1

ds

(s− 1)2
= ∞.

Therefore, we use L’Hôpital’s rule and the identity

Φ′′(z) = p̃′′(z)m̃
(

[1, z]
)

+
2

σ̃2(z)

to calculate

lim
z↓1

(

Φ(z)

z

∫ ∞

z

ds

Φ(s)

)

= lim
z↓1

∫∞

z
ds

Φ(s)

z
Φ(z)

= lim
z↓1

Φ(z)

zΦ′(z)− Φ(z)
= lim

z↓1

Φ′(z)

zΦ′′(z)
= 0,(131)

Furthermore, we can use (128) and L’Hôpital’s rule to obtain

lim
z→∞

(

Φ(z)

z

∫ ∞

z

ds

Φ(s)

)

= lim
z→∞

∫∞

z
ds

Φ(s)

z
Φ(z)

= lim
z→∞

1
zΦ′(z)
Φ(z)

− 1
= 0.

Combining this limit with (130) and (131), we derive (126).
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Finally, (129) with n = 1 implies that

lim
u→∞

u

Φ−1(u)
= lim

u→∞

Φ(Φ−1(u))

Φ−1(u)
= ∞,(132)

and (127) has been established. ✷

Proof of Lemma 1. Given any constant η ≥ 1 fixed, we consider the process Z = Xη

and we use Itô’s formula to calculate

dZt = b̃(Zt) dt+ σ̃(Zt) dWt,

where

b̃(z) = ηz(η−1)/ηb(z1/η) +
η(η − 1)

2
z(η−2)/ησ2(z1/η) and σ̃(z) = ηz(η−1)/ησ(z1/η).

Using (11), we can see that

−2b̃(z)

σ̃2(z)
= −z(1−η)/η

η

2b(z1/η)

σ2(z1/η)
− η − 1

η
z−1 ≥

(

2ε0
η2

ln z − η − 1

η

)

1

z
.

It follows that b̃, σ̃ satisfy (125) in Lemma 9 if we choose any

ε̃ ∈ (0, ε0/η
2) and χ̃ > exp

(

η(η − 1)

2(ε0 − ε̃η2)

)

.

The result now follows from Lemma 9 and Theorem 2.5 in Peskir [44]. ✷

Proof of Lemma 2. The lower bound in (21) of Assumption 2 imply that Jx,y(Y
0) ≥

−C1(1 + y), where Y 0 is the strategy that involves no adjustments, namely, the strategy
defined by Y + = Y − = 0, and the inequality −∞ < V (x, y) follows.

The inequality E
x
[

∫ T

0
Yt dt

]

< ∞, which an admissible investment strategy Y must

satisfy, Hölder’s inequality and (10) imply that

E
x

[
∫ T

0

Xµ
t Y

ν
t dt

]

≤
(

E
x

[
∫ T

0

X
µ/(1−ν)
t dt

])1−ν (

E
x

[
∫ T

0

Yt dt

])ν

< ∞,(133)

where µ > 0 and ν ∈ (0, 1) are the constants appearing in Assumption 2. In view of these
observations and (21) in Assumption 2, we can see that

E
x

[
∫ T

0

|h(Xt, Yt)| dt
]

≤ C1E
x

[
∫ T

0

[

1 +Xµ
t Y

ν
t +Xζ

t + Yt

]

dt

]

< ∞,

which establishes part (II) of the lemma.
In view of (21) in Assumption 1, we can see that

E
x

[
∫ T

0

h(Xt, Yt) dt

]

≤ C1T + E
x

[
∫ T

0

[

C1X
µ
t Y

ν
t + C1X

ζ
t − ε1Yt

]

dt

]

.(134)
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Also, given any constants Q, ε > 0, we can verify that

Qzν − εz ≤ ε(1− ν)

ν

(ν

ε

)1/(1−ν)

Q1/(1−ν) for all z ≥ 0.(135)

Combining these calculations with (133), we obtain

E
x

[
∫ T

0

h(Xt, Yt) dt

]

≤ C1T + C1E
x

[
∫ T

0

Xζ
t dt

]

+ C1

(

E
x

[
∫ T

0

X
µ/(1−ν)
t dt

])1−ν (

E
x

[
∫ T

0

Yt dt

])ν

− ε1E
x

[
∫ T

0

Yt dt

]

≤ C1T + C1E
x

[
∫ T

0

Xζ
t dt

]

+
ε1(1− ν)

ν

(

νC1

ε1

)1/(1−ν)

E
x

[
∫ T

0

X
µ/(1−ν)
t dt

]

.(136)

This estimate, the inequalities

−K+Y +
T +K−Y −

T ≤ −K+
(

Y +
T − Y −

T

)

= −K+YT +K+y,

which follow from (14) and the inequality K+ > K− ≥ 0, and (10) imply that

Jx,y(Y ) ≤ lim sup
T→∞

1

T

{

K+y + E
x

[
∫ T

0

h(Xt, Yt) dt−K+YT

]}

≤ C1 +
1

m
(

R∗
+

)

∫ ∞

0

[

C1x
ζ +

ε1(1− ν)

ν

(

νC1

ε1

)1/(1−ν)

xµ/(1−ν)

]

m(dx).

These inequalities and (118) in Lemma 7 prove that V (x, y) < ∞, and part (I) of the
lemma follows.

To establish part (III) of the lemma, we first consider any strategy Y ∈ Yx,y that is
associated with

lim
T→∞

1

T
E
x

[
∫ T

0

Yt dt

]

= ∞.(137)

Since µ > 0 and ν < 1, (10) implies that, given any constant ξ > 0,

lim sup
T→∞

1

T
E
x

[
∫ T

0

Yt1{

Yt<ξX
µ/(1−ν)
t

} dt

]

≤ ξ lim
T→∞

1

T
E
x

[
∫ T

0

X
µ/(1−ν)
t dt

]

< ∞.

Therefore, (137) is true if and only if

lim inf
T→∞

1

T
E
x

[
∫ T

0

Yt1{

Yt≥ξX
µ/(1−ν)
t

} dt

]

≥ lim
T→∞

1

T
E
x

[
∫ T

0

Yt dt

]

− lim sup
T→∞

1

T
E
x

[
∫ T

0

Yt1{

Yt<ξX
µ/(1−ν)
t

} dt

]

= ∞.(138)
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Now, we choose any ξ > 0 such that ε1 − C1ξ
−(1−ν) > 0, and we note that

E
x

[
∫ T

0

[C1X
µ
t Y

ν
t − ε1Yt] dt

]

= C1E
x

[
∫ T

0

Xµ
t Y

ν
t 1

{

Yt<ξX
µ/(1−ν)
t

} dt

]

+ C1E
x

[
∫ T

0

Xµ
t Y

ν
t 1

{

Yt≥ξX
µ/(1−ν)
t

} dt

]

− ε1E
x

[
∫ T

0

Yt dt

]

≤ C1ξ
ν
E
x

[
∫ T

0

X
µ/(1−ν)
t 1{

Yt<ξX
µ/(1−ν)
t

} dt

]

−
(

ε1 − C1ξ
−(1−ν)

)

E
x

[
∫ T

0

Yt1{

Yt≥ξX
µ/(1−ν)
t

} dt

]

≤ C1ξ
ν
E
x

[
∫ T

0

X
µ/(1−ν)
t dt

]

−
(

ε1 − C1ξ
−(1−ν)

)

E
x

[
∫ T

0

Yt1{

Yt≥ξX
µ/(1−ν)
t

} dt

]

.

Combining this inequality with (10), (134) and (138), we can see that

Jx,y(Y ) ≤ C1 + lim sup
T→∞

1

T
E
x

[
∫ T

0

[

C1X
µ
t Y

ν
t + C1X

ζ
t − ε1Yt

]

dt

]

= −∞.

Therefore, a strategy Y ∈ Yx,y satisfies Jx,y(Y ) > −∞ only if

lim inf
T→∞

1

T
E
x

[
∫ T

0

Yt dt

]

< ∞,(139)

which implies (28). To see the latter claim, we argue by contradiction and we assume that
lim infT→∞

1
T
E
x
[

YT

]

≥ ε, for some ε > 0, which implies that there exists a constant C > 0

such that Ex
[

Yt

]

≥ εt for all t ≥ C. In this context, we can calculate

lim inf
T→∞

1

T
E
x

[
∫ T

0

Yt dt

]

≥ lim inf
T→∞

1

T

∫ T

C

E
x
[

Yt

]

dt ≥ lim
T→∞

ε

T

∫ T

C

t dt = ∞,

which contradicts (139). ✷

Appendix III: proofs of results in Section 3

Proof of Lemma 3. The existence of functions α and β satisfying (53) and (52) as well
as (55)–(54) follows immediately from an inspection of the inequalities (20) and (26). By
continuity, (20) and (26) also imply that limy↓y† α(y) = 0 and limy↑y† β(y) = ∞. In view
of the first of the limits in (24) and the lower bound in (22), we can see that

lim
y↓y∗0

∫ x∗(y)

0

H(u, y)m(du) ≥ −C1 lim
y↓y∗0

(1 + y)

∫ x∗(y)

0

m(du) = 0.
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This observation, (52) and (54) imply that

0 = lim
y↓y∗0

∫ β(y)

0

H(u, y)m(du) ≥ lim
y↓y∗0

∫ x∗(y)

0

H(u, y)m(du) ≥ 0.

It follows that limy↓y∗0
β(y) = 0 because limy↓y∗0

H(u, y) > 0 for all u > limy↓y∗0
x∗(y) = 0.

Similarly, we can use the second limit in (24), the upper bound in (22), (53) and (55) to
calculate

0 = lim
y↑y∗∞

∫ ∞

α(y)

H(u, y)m(du) ≤ lim
y↑y∗∞

∫ ∞

x∗(y)

H(u, y)m(du)

≤ C1 lim
y↑y∗∞

(

1 + y−C1
)

∫ ∞

x∗(y)

(

1 + uC1
)

m(du) = 0.

Therefore, limy↑y∗∞ α(y) = ∞ because limy↑y∗∞ H(u, y) < 0 for all u < limy↑y∗∞ x∗(y) = ∞.
Differentiating the identities in (52) and (53) with respect to y, we obtain

β ′(y) = −σ2
(

β(y)
)

p′
(

β(y)
)

2H
(

β(y), y
)

∫ β(y)

0

∂H

∂y
(u, y)m(du) > 0 for all y ∈ (y∗0, y

†)(140)

and

α′(y) =
σ2
(

α(y)
)

p′
(

α(y)
)

2H
(

α(y), y
)

∫ ∞

α(y)

∂H

∂y
(u, y)m(du) > 0 for all y ∈ (y†, y∗∞).(141)

We can see the inequalities here once we combine the strict positivity of p′ with (17) in
Assumption 2 and the observations that

H
(

β(y), y
)

> 0 for all y ∈ (y∗0, y
†) and H

(

α(y), y
)

< 0 for all y ∈ (y†, y∗∞),

which follow from (52), (53) and (20) in Assumption 2. ✷

Proof of Lemma 4. Combining (20) in Assumption 2 with (52) and (54), we can see that,
for all y ∈ (y∗0, y

†) and z ∈ (0, x∗(y)), there exists a unique point L(z, y) ∈ (x∗(y), β(y))
such that

∫ x

z

H(u, y)m(du)











< 0, if x ∈
(

z, L(z, y)
)

,

= 0, if x = L(z, y),

> 0, if x > L(z, y).

(142)

The resulting function L(·, y) satisfies
lim
z↓0

L(z, y) = β(y) and lim
z↑x∗(y)

L(z, y) = x∗(y).(143)

Similarly, we can combine (20) in Assumption 2 with (53) and (55) to see that, for all
y ∈ (y†, y∗∞) and z ∈ (α(y), x∗(y)), there exists a unique point L(z, y) ∈ (x∗(y),∞) such
that (142) is true. In this case,

lim
z↓α(y)

L(z, y) = ∞ and lim
z↑x∗(y)

L(z, y) = x∗(y).(144)
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Furthermore, (20) and (26) imply that, for y = y† and all z ∈ (0, x∗(y†), there exists a
unique point L(z, y†) ∈ (x∗(y†),∞) such that (142) is true, in which case,

lim
z↓0

L(z, y†) = ∞ and lim
z↑x∗(y†)

L(z, y†) = x∗(y†).(145)

For future reference, we note that differentiation of the identity in (142) yields

∂L

∂z
(z, y) =

H(z, y)σ2
(

L(z, y)
)

p′
(

L(z, y)
)

H
(

L(z, y), y
)

σ2(z)p′(z)
(146)

and

∂L

∂y
(z, y) = −σ2

(

L(z, y)
)

p′
(

L(z, y)
)

2H
(

L(z, y), y
)

∫ L(z,y)

z

∂H

∂y
(u, y)m(du) > 0,(147)

the inequality following because ∂H/∂y < 0 (see (17) in Assumption 2), p′ is strictly
positive and H(z, y) > 0 for all z > x∗(y). Also, we note that for no values of z, y other
than the ones we have considered above does there exist a point L(z, y) > z satisfying
(142).

Given y ∈ (y∗0, y
∗
∞), the analysis thus far implies that the system of equations (58) and

(61) has a unique solution
(

F (y), G(y)
)

such that F (y) < G(y) if and only if there exists
a unique point F (y) such that

F (y) ∈
(

0, x∗(y)
)

if y ∈ (y∗0, y
†], F (y) ∈

(

α(y), x∗(y)
)

if y ∈ (y†, y∗∞)(148)

and
∫ L(F (y),y)

F (y)

p(u)H(u, y)m(du) = K+ −K−,(149)

in which case, G(y) = L(F (y), y) ∈ (x∗(y),∞) and (68)–(70) are true.
Using (146), we calculate

∂

∂z

(

∫ L(z,y)

z

p(u)H(u, y)m(du)

)

=
2H(z, y)

σ2(z)p′(z)

[

p
(

L(z, y)
)

− p(z)
]

< 0,

the inequality following because p is strictly increasing, z < L(z, y) and H(z, y) < 0. In
view of this result and (143)–(145), we can see that, given y ∈ (y∗0, y

∗
∞), there exists F (y)

satisfying (148)–(149) if and only if

(65) is true if y = y†,

Qβ(y) > 0 if y ∈ (y∗0, y
†) and Qα(y) > 0 if y ∈ (y†, y∗∞),

where Qβ, Qα are defined by (63)–(64). It follows that we will establish all our claims
regarding the solvability of the system of equations (58) and (61) if we show that, if (65)
is false, then Qβ(y) < 0 for all y ∈ (y∗0, y

†) and Qα(y) < 0 for all y ∈ (y†, y∗∞), while, if (65)
is true, then there exist unique y

F
∈ [y∗0, y

†) and yG ∈ (y†, y∗∞] such that the inequalities

(66)–(67) hold.
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If Qβ(y) = ∞ for all y ∈ (y†, y∗∞), then Qβ plainly satisfies (66) for y
F
= y∗0. Given any

y in the open set in which Qβ is real-valued, we use (140), the fact that the scale function
p is strictly increasing and (17) in Assumption 2 to calculate

Q′
β(y) =

∫ β(y)

0

[

p(u)− p
(

β(y)
)]∂H

∂y
(u, y)m(du) > 0 for all y ∈ (y∗0, y

†).

In view of this calculation, we can see that Qβ is increasing, which implies that, if (65) is
false, then Qβ(y) < 0 for all y ∈ (y∗0, y

†), while, if (65) is true, then there exists a unique
y
F
∈ [y∗0, y

†) such Qβ satisfies the inequalities in (66).

If Qα(y) = ∞ for all y ∈ (y†, y∗∞), then Qα satisfies (67) for yG = y∗∞. Given any y in
the open set in which Qα is real-valued, we use (141), the fact that the scale function p is
strictly increasing and (17) in Assumption 2 to calculate

Q′
α(y) =

∫ ∞

α(y)

[

p(u)− p
(

α(y)
)]∂H

∂y
(u, y)m(du) < 0.

This calculation implies that Qα is decreasing. Therefore, if (65) is false, then Qα(y) < 0
for all y ∈ (y†, y∗∞), while, if (65) is true, then there exists a unique yG ∈ (y†, y∗∞] such Qα

satisfies (67).
We assume that (65) is true in what follows. To prove that the functions F and G are

C1 and strictly increasing, we differentiate (149) with respect to y and use (146) and (147)
to obtain

F ′(y) =
σ2
(

F (y)
)

p′
(

F (y)
) ∫ L(F (y),y)

F (y)

[

p
(

L(F (y), y)
)

− p(u)
]

∂H
∂y

(u, y)m(du)

2H
(

F (y), y
)[

p
(

L(F (y), y)
)

− p
(

F (y)
)]

=
σ2
(

F (y)
)

p′
(

F (y)
)

2H
(

F (y), y
)

∫ L(F (y),y)

F (y)

[

1 +
p
(

F (y)
)

− p(u)

p
(

L(F (y), y)
)

− p
(

F (y)
)

]

∂H

∂y
(u, y)m(du)

> 0,(150)

the inequality following because ∂H/∂y < 0, p is strictly increasing and H(z, y) < 0 for all
z < x∗(y). Also, we calculate

G′(y) =
∂L

∂z
(F (y), y)F ′(y) +

∂L

∂y
(F (y), y)

= −
σ2
(

L(F (y), y)
)

p′
(

L(F (y), y)
) ∫ L(F (y),y)

F (y)

[

p(u)− p
(

F (y)
)]

∂H
∂y

(u, y)m(du)

2H
(

L(F (y), y), y
)[

p
(

L(F (y), y)
)

− p
(

F (y)
)]

=
σ2
(

G(y)
)

p′
(

G(y)
)

2H
(

G(y), y
)

∫ G(y)

F (y)

[

p
(

G(y)
)

− p(u)

p
(

G(y)
)

− p
(

F (y)
) − 1

]

∂H

∂y
(u, y)m(du)

> 0.(151)

To complete the proof, we still need to show (71)–(74). To this end, we combine the fact
that F (y) and G(y) satisfy the system of equations (58) and (61) with (52) and (66) to see
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that limy↓y
F
F (y) = 0 and limy↓y

F
G(y) = β(y

F
) if y

F
> y∗0. Similarly, we use (53) and (67)

to see that limy↑yG F (y) = α(y) and limy↑yG G(y) = ∞ if yG < y∗∞. On the other hand,
if y

F
= y∗0, then the inequalities F (y) < G(y) < β(y) and the fact that limy↓y∗0

β(y) = 0

(see (56) in Lemma 3) imply that limy↓y
F
F (y) = limy↓y

F
G(y) = 0, while, if yG = y∗∞,

then the inequalities α(y) < F (y) < G(y) and the fact that limy↑y∗∞ α(y) = ∞ imply that
limy↑yG F (y) = limy↑yG G(y) = ∞.

If y
F
> y∗0, then we combine the limits limy↓y

F
F (y) = 0 and limy↓y

F
G(y) = β(y

F
) with

the fact that limx↓0 p(x) = −∞ and (151) to obtain

lim
y↓y

F

G′(y) = −
σ2
(

β(y
F
)
)

p′
(

β(y
F
)
)

2H
(

β(y
F
), y

F

)

∫ β(y
F
)

0

∂H

∂y
(u, y

F
)m(du)

(140)
= β ′(y).

Finally, if yG < y∗∞, then we can use the limits limy↑yG F (y) = α(y), limy↑yG G(y) = ∞, the
fact that limx→∞ p(x) = ∞ and (150) to calculate

lim
y↑yG

F ′(y) =
σ2
(

α(yG)
)

p′
(

α(yG)
)

2H
(

α(yG), yG
)

∫ ∞

α(yG)

∂H

∂y
(u, yG)m(du)

(141)
= α′(y),

and the proof is complete. ✷

Proof of Proposition 5. First, we note that the existence and the claimed properties
of the functions F and G follow from Lemmas 3 and 4 and (75)–(77). Also, we can check
that the C1 continuity of the functions p′, F and G, the limits (71)–(74) in Lemma 4 and
the definition of vy imply that this function is C2,1.

By construction, the function w as well as its derivatives wy and wxy are well-defined
and continuous (see (43)–(46)). Using the definition of w and (44), (46), we can see that,
given any (x, y) ∈ I,

wx(x, y) = vx
(

x,G−1(x)
)

+
[

vy
(

x,G−1(x)
)

−K+
]dG−1

dx
(x) = vx

(

x,G−1(x)
)

(152)

and

wxx(x, y) = vxx
(

x,G−1(x)
)

+ vxy
(

x,G−1(x)
)dG−1

dx
(x) = vxx

(

x,G−1(x)
)

.(153)

Similarly we can show that

wx(x, y) = vx
(

x, F−1(x)
)

and wxx(x, y) = vxx
(

x, F−1(x)
)

for all (x, y) ∈ D.

In light of these considerations, we deduce the C2,1 continuity of w.
By construction, we will prove that w satisfies the HJB equation (30) if we show that

K− ≤ wy(x, y) ≤ K+ for all (x, y) ∈ C(154)

and

1

2
σ2(x)wxx(x, y) + b(x)wx(x, y) + h(x, y) ≤ 0 for all (x, y) ∈ D ∪ I.(155)
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In view of (152) and (153), we can calculate

1

2
σ2(x)wxx(x, y) + b(x)wx(x, y) + h(x, y)

=
1

2
σ2(x)vxx

(

x,G−1(x)
)

+ b(x)vx
(

x,G−1(x)
)

+ h(x, y)

= −
∫ G−1(x)

y

H(x, s) ds

≤ 0 for all (x, y) ∈ I,
the inequality following because H(x, y) > 0 for all (x, y) ∈ I (see (20) in Assumption 2
and (68)–(69) in Lemma 4). Similarly, we can see that

1

2
σ2(x)wxx(x, y) + b(x)wx(x, y) + h(x, y) =

∫ y

F−1(x)

H(x, s) ds ≤ 0 for all (x, y) ∈ D,

and (155) has been established.
If y

G
< y

F
and C2 6= ∅, then we combine (49) with the inequalities (52) in Lemma 3 and

the fact that G(y) = β(y) for all y ∈ (y
G
, y

F
] to see that wy(x, y) < K+ for all (x, y) ∈ C1,

and that K− ≤ wy(x, y) for all (x, y) ∈ C1 if and only if

K+ +

∫ β(y)

0

p′(s)

∫ s

0

H(u, y)m(du) ds ≥ K− for all y ∈ (y∗0, yF ].

In view of the identity (122), this inequality is equivalent to Qβ(y) ≤ 0 for all y ∈ (y∗0, yF ],

where Qβ is defined by (63), which is true thanks to (66) in Lemma 4. It follows that (154)
is satisfied in C1. If yG < yF and C3 6= ∅, then we can see that (154) is satisfied in C3 using
the same arguments with (51), (53), (67) and (123).

Finally, if y
F
< yG and C2 6= ∅, then (70) in Lemma 4 and the first expression in (62)

imply that wy(x, y) ≤ K+ for all (x, y) ∈ C2, while (70) and the second expression in (62)
imply that wy(x, y) ≥ K− for all (x, y) ∈ C2. ✷
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Figure 1. Graph of the functions F and G in the general context.
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Figure 2. Graph of the functions α and β in the general context.
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Figure 3. Simulation results for the special case considered in Section 5.1 with data given
by (105).
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