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Abstract

We formulate and solve a problem that combines the features of the so-called mono-

tone follower of singular stochastic control theory with optimal stopping. In particular,

we consider a stochastic system whose uncontrolled state dynamics are modelled by

a general one-dimensional Itô diffusion. The aim of the problem that we solve is to

maximise the utility derived from the system’s state at the discretionary time when the

system’s control is terminated. This objective is reflected by the performance criterion

that we maximise, which also penalises control expenditure as well as waiting. The

model that we study is motivated by the so-called goodwill problem, a variant of which

is concerned with how to optimally raise a new product’s image, e.g., through adver-

tising, and with determining the best time to launch the product in the market. In

the presence of the rather general assumptions that we make, we fully characterise the

optimal strategy, which can take one of three qualitatively different forms, depending

on the problem data.
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1 Introduction

We consider a stochastic system whose state is modelled by the controlled one-dimensional
positive Itô diffusion

dXt = b(Xt) dt+ dZt + σ(Xt) dWt, X0 = x > 0, (1)

where W is a standard one-dimensional Brownian motion, and the controlled process Z is
an adapted càglàd increasing process. The objective of the optimisation problem that we
solve is to maximise the performance criterion

Jx(Z, τ) = E

[
∫ τ

0

e−ΛtH(Xt) dt−

∫ τ

0

e−ΛtK ′(Xt) ◦ dZt + e−ΛτU(Xτ+)1{τ<∞}

]

, (2)

over all admissible choices of Z and all stopping times τ , where

Λt =

∫ t

0

r(Xu) du, (3)

and

∫ τ

0

e−ΛtK ′(Xt) ◦ dZt =

∫ τ

0

e−ΛtK ′(Xt) dZ
c
t +

∑

0≤t≤τ

∫ ∆Zt

0

e−ΛtK ′(Xt + s) ds, (4)

in which expression, Zc is the continuous part of the increasing process Z. It is worth noting
that the integral given by (4), which we use to penalise control expenditure, was introduced
by Zhu [32] and is now standard in the singular stochastic control literature.

This stochastic control problem is motivated by the following application that arises in
the context of the so-called goodwill problem. A company considers the timing of launching a
new product that they have developed. Prior to launching it in a given market, the company
attribute an image to the product based on the market’s attitudes to similar products, the
new product’s quality differences from existing products, and the company’s own image in
the market. We use X to model the evolution in time of the product’s image. In this context,
Z represents the effect of costly interventions, such as advertising, that the company can
make to raise the product’s image. The company’s objective is to maximise their utility from
launching the product minus their “dis-utility” associated with the cost of intervention and
the cost of waiting. In particular, the company aims at maximising the performance index
defined by (2)–(4) over all intervention strategies Z and launching times τ .

Optimal control problems addressing this type of application have attracted significant
interest in the literature for about half a century. Most of the models that have been
studied in this area involve deterministic control and can be traced back to Nerlove and
Arrow [27] (see Buratto and Viscolani [14] and the references therein). More realistic models
in which the product’s image evolves randomly over time have also been proposed and
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studied (see Feichtinger, Hartl and Sethi [18] for a review and Marinelli [25] for some more
recent references). In particular, Marinelli [25] considers extensions of the classical Nerlove
and Arrow model, and studies a class of problems that involve linear dynamics of the state
process, absolutely continuous control and linear or quadratic payoff functions. Also, Jack,
Johnson and Zervos [19] study a related model involving singular control only, in which, the
product is assumed launched at time 0 and the objective is to select an advertising strategy
that maximises the expected payoff resulting from its marketing.

The problem that we solve combines the features of the so-called monotone follower of the
singular stochastic control theory with optimal stopping. Singular stochastic control, which
was introduced by Bather and Chernoff [7] and Beneš, Shepp and Witsenhausen [12], has
a well-developed body of theory, and we do not attempt a comprehensive literature survey.
Also, we refer the interested reader to Peskir and Shiryaev [28] for a recent exposition
of the theory of optimal stopping. Models that combine singular control with discretionary
stopping were introduced by Davis and Zervos [15] who assumed that the uncontrolled system
dynamics follow a standard Brownian motion and considered quadratic cost functions. In
the same context, Karatzas, Ocone, Wang and Zervos [21] solved the problem that arises
if an additional finite-fuel constraint is incorporated. A problem combining the singular
control of a Brownian motion with drift with optimal stopping was later studied by Ly
Vath, Pham and Villeneuve [24]. More recently, Morimoto [26] studied a model similar to
the one in Davis and Zervos [15] but with a controlled geometric Brownian motion instead of
a controlled standard Brownian motion. Also, Bayraktar and Egami [9], motivated by issues
in initial public offerings rather than the goodwill problem, solved a problem that has the
same general structure as the one of the problem we consider here. These authors assumed
that the uncontrolled state dynamics are given by a Brownian motion with drift added to
a compound Poisson process with exponentially distributed jump sizes, and that H(x) = 0,
K ′(x) = 1, r(x) = ̺ and U(x) = λx for all x, for some constants ̺, λ > 0. It is of interest
to observe that the optimal strategy derived in that paper has a qualitatively different form
from the one we obtain here. In particular, reflecting the state process at a given level figures
among the optimal tactics in Bayraktar and Egami [9] but is never optimal in the problem
we study here (see also the discussion of our main results below).

The control of one-dimensional Itô diffusions such as the one we considered here has
recently attracted considerable interest in the literature. The optimal stopping of such pro-
cesses has been studied by Salminen [31], Alvarez [2, 3], Beibel and Lerche [11], Dayanik
and Karatzas [17], Dayanik [16] and Lamberton and Zervos [23], among others. Also, Al-
varez [1, 4], Bayraktar and Egami [8], and Jack, Johnson and Zervos [19] have studied several
singular control problems, Alvarez [5], and Alvarez and Lempa [6] have studied models with
impulse control, while Bayraktar and Egami [10], Pham, Ly Vath and Zhou [30] and John-
son and Zervos [20] have analysed models with sequential switching (see also Pham [29]).
In the spirit of certain references in this rather incomplete list, we solve the problem we
consider by constructing an appropriate solution of the associated Hamilton-Jacobi-Bellman
(HJB) equation. To the best of our knowledge, the model that we study here is the first one
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that combines the singular control of a general one-dimensional Itô diffusion with optimal
stopping.

It turns out that the optimal strategy of the problem that we solve here may involve
only a single impulse applied to the state process. In particular, the optimal strategy does
not involve reflecting the state process in the boundary of a state space’s subset, which
characterises singular stochastic control problems. Beyond this observation, the optimal
strategy can take one of three different possible forms, depending on parameter values.
These forms involve combinations of the following three tactics: wait, move (i.e., advertise
the product), and stop (i.e., launch the product). Specifically, it is optimal either to move
and stop, or to wait and stop, or to wait, move and stop, in which list, we order the sequence
of optimal tactics according to small, moderate and large values of the underlying state
process X (see Theorem 1, which is our main result).

We illustrate our main result by means of several special cases. Apart from an inde-
pendent interest that each of these has, they reveal that the form of the optimal strategy is
dependent on the functional form of the problem data as well as on parameter values. Indeed,
if the uncontrolled system dynamics are modelled by a geometric Brownian motion, then
the move and stop strategy is always optimal if the terminal payoff function U is a power
utility function, while the move and stop strategy is never optimal if U is the logarithmic
utility function. On the other hand, if the uncontrolled system dynamics are modelled by
a mean-reverting square-root process, such as the one appearing in the Cox-Ingersoll-Ross
model, then the optimal strategy can take any of the three different possible forms, whether
U is a power or the logarithmic utility function.

At this point, we should make a comment on two possible generalisations of the model
that we study. The first one arises if we slightly relaxed our assumptions so that never
advertising and/or launching the product could be optimal. We decided against including
the relevant analysis partly because this case never arises in the context of the examples
we consider and partly to limit the paper’s size. The second generalisation arises if we
assume that the product’s image is only partially observable. In this case, we would have
to modify our analysis by expressing the performance criterion given by (2) in terms of
a sufficient statistic for the process X, the dynamics of which should satisfy appropriate
filtering equations. Exploring such an interesting generalisation would go well beyond the
scope of this paper, and it could be a topic for future research.

The paper is organised as follows. In Section 2, we formulate the control problem that we
solve and list all of the assumptions that we make. Section 3 is concerned with the solution
of the problem. In Section 4, we study a number of special cases, which illustrate the full
spectrum of the possible optimal scenarios, and which show that our general assumptions
are easy to verify in practice. Finally, in the Appendix, we review a number of results on
the solvability of a second order linear ODE that our analysis uses.
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2 Problem formulation

We fix a filtered probability space (Ω,F ,Ft,P) satisfying the usual conditions and carrying
a standard one-dimensional (Ft)-Brownian motion W . We consider a stochastic system
whose uncontrolled dynamics are modelled by the Itô diffusion associated with the stochastic
differential equation

dX0
t = b(X0

t ) dt+ σ(X0
t ) dWt, X0

0 = x > 0, (5)

and we make the following assumption.

Assumption 1 The functions b, σ : ]0,∞[→ R are locally Lipschitz, and σ2(x) > 0 for all
x > 0. �

This assumption implies that (5) has a unique strong solution. It also implies that, given
any c > 0, the scale function pc, given by

pc(c) = 0, p′c(x) = exp

(

−2

∫ x

c

b(s)

σ2(s)
ds

)

, (6)

is well-defined, and the speed measure mc, given by

mc(dx) =
2

σ2(x)p′c(x)
dx,

is a Radon measure. Additionally, we assume that the solution of (5) is non-explosive, so
that, given any initial condition x, X0

t ∈ ]0,∞[ for all t ≥ 0, with probability 1 (see Karatzas
and Shreve [22, Theorem 5.5.29] for appropriate necessary and sufficient analytic conditions).

Assumption 2 The Itô diffusion X0 defined by (5) is non-explosive. �

We model the system’s controlled dynamics by the SDE (1). With each admissible
intervention strategy, we associate the performance criterion defined by (2)–(4).

Definition 1 The set A of all admissible strategies is the set of all pairs (Z, τ) where τ is
an (Ft)-stopping time and Z is an (Ft)-adapted increasing càglàd process such that Z0 = 0,

E

[
∫ ∞

0

e−ΛtK ′(Xt) ◦ dZt

]

<∞ and E
[

e−ΛτU−(Xτ+)1{τ<∞}

]

<∞, (7)

where U−(x) = −min{0, U(x)}. �

The objective of our control problem is to maximise Jx over all admissible strategies. Ac-
cordingly, we define the problem’s value function v by

v(x) = sup
(Z,τ)∈A

Jx(Z, τ), for x > 0.

For our optimisation problem to be well-posed, we need additional assumptions.
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Assumption 3 The discounting rate function r is absolutely continuous. Also, there exists
a constant r0 > 0 such that r(x) ≥ r0 for all x > 0. �

Assumption 4 The functions K and U are C2 with absolutely continuous second deriva-
tives, and the function H is absolutely continuous. There exists a point β > 0 such that

K ′(x) − U ′(x) =

{

≤ 0, for x < β,

≥ 0, for x > β.
(8)

Also, the function H/r is bounded, and K ′(x) remains bounded as x ↓ 0. �

In the context of the goodwill problem that has motivated this paper, it is worth noting that
(8) in this assumption has a simple economic interpretation. In view of (4), which provides
the cost of an intervention strategy Z, K ′(x) ε is the cost of raising the product’s image from
x to x+ε, for small ε > 0. Also, U ′(x) ε is the change in the utility that the company derives
if the product is launched when its image is x+ ε rather than x, for small ε > 0. In light of
these observations, assumption (8) captures the idea that the marginal cost of advertising
is less (resp., greater) than the marginal utility derived from the product’s launch when the
product’s image is low (resp., high), which is a rather natural one.

In the presence of Assumption 4, we can see that, if we define

Θ(x) =

{

U(β) −
∫ β

x
K ′(s) ds, for x < β,

U(x), for x ≥ β,
(9)

then the function Θ is C1 in ]0,∞[ and C2 with absolutely continuous second derivative in
]0, β[∪ ]β,∞[, and it satisfies

max{Θ′(x) −K ′(x), U(x) − Θ(x)} = 0. (10)

In the context of the goodwill problem, Θ would be the value function of the control problem
if advertise and launch immediately were the only tactics available to the decision maker,
i.e., if waiting for any amount of time were not a possibility.

We need to make additional assumptions. To this end, we consider the operator L acting
on C1 functions with absolutely continuous first derivatives that is defined by

Lw(x) =
1

2
σ2(x)w′′(x) + b(x)w′(x) − r(x)w(x), (11)

and the operator Dr acting on absolutely continuous functions that is defined by

Drw(x) =
r(x)w′(x) − r′(x)w(x)

r(x)
≡ r(x)

(w

r

)′

(x). (12)

At first glance, the conditions in the following assumption may appear involved. However,
they are quite general, and, apart from a growth and an integrability condition, they have
a natural economic interpretation (see the discussion below). Furthermore, they are rather
easy to verify in practice, as we will see in Section 4.
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Assumption 5 The function Θ satisfies

lim
x↓0

Θ(x)

ϕ(x)
= lim

x→∞

Θ(x)

ψ(x)
= 0, (13)

where the functions ϕ and ψ span the solution space of the homogeneous ODE Lw(x) = 0
and satisfy (49)–(51) in the Appendix. Furthermore, Θ satisfies

E

[
∫ ∞

0

e−Λt|LΘ(X0
t )| dt

]

<∞. (14)

There exists a point x∗ ≥ 0 such that

[LΘ +H ](x−) =

{

> 0, for x < x∗, if x∗ > 0,

≤ 0, for x > x∗.
(15)

Furthermore,

[LΘ +H ](β−) ≥ [LΘ +H ](β+), (16)

Dr[LΘ +H ](x) ≤ 0 Lebesgue-a.e. in ]0, β[∪ ]β,∞[, (17)

[LΘ +H ](x)

r(x)
remains bounded as x ↓ 0, (18)

lim inf
x→∞

[Θ − RH ](x) > 0, (19)

where RH is defined by (58) in the Appendix for F = H . �

The operator L is the infinitesimal generator of the uncontrolled diffusion X0 killed at a rate
given by the discounting rate function r. Also, as we have discussed after Assumption 4, Θ
is the best value that the company can get from just advertising and launching the product,
while H is the running payoff that the company accumulates by delaying the product’s
launch. Therefore, [LΘ + H ](x) ∆t is the expected payoff associated with the company’s
waiting for a small amount of time ∆t > 0 before advertising and launching. In view of
this observation, (15)–(16) capture the following natural idea: if the product’s image is low
(resp., high), then waiting may be a good (resp., bad) choice because the product’s image
may improve (resp., deteriorate) due to its stochastic dynamics.

Building on the above ideas, we can view the function [LΘ +H ]/r as the expected rate
at which the company’s payoff from advertising and launching changes by delaying taking
action, measured in units of time that are proportional to the discounting rate r. In light of
this interpretation and the definition (12) of the operator Dr, (17) reflects the idea that the
expected rate at which the best payoff resulting from “pure” action changes by waiting is
decreasing as the product’s image increases. Furthermore, (18) reflects the idea that waiting
cannot be associated with an infinite expected rate of improvement.
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In view of (57) in the Appendix, the function RH identifies with the expected payoff
that the company face if they exert no advertising effort and they never launch the product.
Combining this observation with the interpretation of the function Θ as the optimal payoff
that the company can receive if advertising and launching were the only available tactics,
we can see that (19) is a necessary condition for guaranteeing that waiting forever and never
taking any action is not an optimal strategy.

Remark 1 The conditions (13)–(14) in the previous assumption imply that the function Θ
admits the representation

Θ(x) = R−LΘ(x) for all x > 0, (20)

where R−LΘ is defined by (57) or (58) in the Appendix with F = −LΘ (see also the discussion
at the end of the Appendix). The boundedness of H/r (see Assumption 4) and the definition
(3) of Λ imply that

E

[
∫ ∞

0

e−Λt|H(X0
t )| dt

]

= −E

[
∫ ∞

0

|H(X0
t )|

r(X0
t )

de−Λt

]

≤ sup
x>0

|H(x)|

r(x)
<∞.

This observation and (56) in the Appendix imply that the function RH given by (57)–(58)
with F = H is well-defined and satisfies

LRH(x) +H(x) = 0 for all x > 0. (21)

�

3 The solution of the control problem

In light of the general theory of stochastic optimal control and optimal stopping, we expect
that the value function v of our control problem identifies with a solution w of the HJB
equation

max {Lw(x) +H(x), w′(x) −K ′(x), U(x) − w(x)} = 0. (22)

A function w is a solution of this equation if it is C1 with absolutely continuous first deriva-
tive, and it satisfies

Lw(x) +H(x) ≤ 0 Lebesgue-a.e. in ]0,∞[,

w′(x) ≤ K ′(x) and U(x) ≤ w(x) for all x > 0,

[Lw(x) +H(x)] [w′(x) −K ′(x)] [U(x) − w(x)] = 0 Lebesgue-a.e. in ]0,∞[.

We now solve the control problem by constructing an appropriate solution of this equa-
tion. To this end, we have to consider two possibilities. The first one arises when it is
optimal to move and stop immediately.
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Lemma 1 In the presence of Assumptions 1–5, the function Θ defined by (9) satisfies the
HJB equation (10) if and only if x∗ = 0, where x∗ is the point in (15) of Assumption 5.

Proof. In view of (10), we can see that Θ satisfies the HJB equation of (22) if and only if
LΘ(x) +H(x) ≤ 0 Lebesgue-a.e. in ]0,∞[, which is true if and only if x∗ = 0. �

The second possibility arises when waiting enters the set of optimal tactics. In this case,
we postulate that it is optimal to wait for as long as the state process X takes values below
a given threshold level, and move and stop as soon as the state process exceeds the threshold
level. If we denote by α this threshold level, then we look for a solution w of the HJB
equation (22) that satisfies the ODE Lw(x) +H(x) = 0 Lebesgue-a.e. in ]0, α[, and is such
that max {w′(x) −K ′(x), U(x) − w(x)} = 0 for all x ≥ α. In view of (10) and (21), we
therefore look for a solution of the form

w(x) =

{

Aψ(x) +RH(x), for x < α,

Θ(x), for x ≥ α,
(23)

where A is an appropriate constant, ψ is as in (50)–(51), and RH is defined by (57)–(58)
with F = H (see also Remark 1).

To specify the parameter A and the free-boundary point α, we postulate that w satisfies
the so-called “principle of smooth fit”. In particular, we assume that w is C1 at α, which
gives rise to the system of equations

Aψ(α) +RH(α) = Θ(α) and Aψ′(α) +R′
H(α) = Θ′(α),

which is equivalent to

A =
Θ(α) −RH(α)

ψ(α)
=

Θ′(α) − R′
H(α)

ψ′(α)
. (24)

In view of the fact that

Θ − RH = −RLΘ+H , (25)

which follows from (20) and (62) with F = LΘ +H , we can check that the second identity
in (24) is equivalent to (RLΘ+H/ψ)′(α) = 0. It follows that the free-boundary point α should
satisfy the equation

q(α) :=

∫ α

0

[LΘ +H ](s)ψ(s)

σ2(s)p′c(s)
ds = 0, (26)

because (60) in the Appendix with F = LΘ +H implies the expression
(

RLΘ+H

ψ

)′

(x) = −
2p′c(x)

ψ2(x)

∫ x

0

[LΘ +H ](s)ψ(s)

σ2(s)p′c(s)
ds = −

2p′c(x)

ψ2(x)
q(x). (27)

The following result is concerned with the solvability of this equation and with the asso-
ciated solution of the HJB equation (22).
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Lemma 2 In the presence of Assumptions 1–5, equation (26) has a unique solution α > 0
if and only if x∗ > 0, where x∗ is the point appearing in (15) of Assumption 5. In this case,
α > x∗, and the function w defined by (23), where A is given by (24), is C1 with absolutely
continuous first derivative and satisfies the HJB equation (22).

Proof. In view of (15), we can see that the left-hand derivative q′(x−) of q at x > 0 satisfies

q′(x−) =
[LΘ +H ](x−)ψ(x)

σ2(x)p′c(x)

{

> 0, for x < x∗, if x∗ > 0,

≤ 0, for x > x∗.
(28)

Combining this observation with the fact that q(0) = 0, we can see that the equation q(α) = 0
has a unique solution α > 0 if and only if x∗ > 0 and limx→∞ q(x) < 0. Furthermore, this
solution is such that

x∗ < α and q(x) =

{

> 0, for x < α,

< 0, for x > α.
(29)

To see that the inequality limx→∞ q(x) < 0 is indeed true, we first note that (27)–(28)
imply that the function RLΘ+H/ψ is monotone as x → ∞. This observation, the fact that
limx→∞RLΘ+H(x)/ψ(x) = 0 (see (59) in the Appendix) and (27) imply that limx→∞ q(x) < 0
if and only if RLΘ+H(x) ≡ −[Θ − RH ](x) < 0 for all x sufficient large, which is true thanks
to (19) in Assumption 5.

In view of the construction of w and the fact that Θ satisfies (10), we will prove that w
satisfies the HJB equation (22) if we show that

LΘ +H(x) ≤ 0 Lebesgue-a.e. in ]α,∞[, (30)

Aψ(x) +RH(x) ≥ U(x) for all x ≤ α, (31)

Aψ′(x) +R′
H(x) ≤ K ′(x) for all x ≤ α. (32)

To this end, we note that (30) follows immediately from (15) in Assumption 5 and the first
inequality in (29). To establish (31), it suffices to show that Aψ(x) +RH(x) ≥ Θ(x) for all
x < α, because Θ ≥ U (see (10)). In view of (24), (25) and the fact that ψ > 0, we can see
that this inequality is equivalent to (RLΘ+H/ψ)(x) ≥ (RLΘ+H/ψ)(α) for all x < α, which is
true thanks to (27) and (29).

Finally, (32) will follow if we prove that Aψ′(x) + R′
H(x) ≤ Θ′(x) for all x < α, because

Θ′ ≤ K ′ (see (10)). Combining (24) with (25) and the strict positivity of ψ′, we can see that
this inequality is equivalent to

R′
LΘ+H(x)

ψ′(x)
≤
R′

LΘ+H(α)

ψ′(α)
for all x < α. (33)

Using the identity (61) in the Appendix with F = [LΘ +H ] and the definition (26) of q, we
can see that the left-hand derivative (R′

LΘ+H/ψ
′)′(x−) exists for all x > 0, and is given by

(

R′
LΘ+H

ψ′

)′

(x−) =
2r(x)p′c(x)

[σ(x)ψ′(x)]2

[

2q(x) −
[LΘ +H ](x−)

r(x)

ψ′(x)

p′c(x)

]

. (34)
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Furthermore, recalling that the function LΘ +H is absolutely continuous in ]0, β[∪ ]β,∞[,
we can use the integration by parts formula, the expression (55) in the Appendix and the
definition (12) of the operator Dr to calculate

[LΘ +H ](x−)

r(x)

ψ′(x)

p′c(x)

=
[LΘ +H ](x0−)

r(x0)

ψ′(x0)

p′c(x0)
+

[LΘ +H ](β+) − [LΘ +H ](β−)

r(β)

ψ′(β)

p′c(β)
1[x0,x[(β)

+

∫ x

x0

Dr[LΘ +H ](s)ψ′(s)

r(s)p′c(s)
1[x0,x]\{β}(s) ds+ 2

∫ x

x0

[LΘ +H ](s)ψ(s)

σ2(s)p′c(s)
ds. (35)

The limits (54) in the Appendix and (18) in Assumption 5 imply that

lim
x0↓0

[LΘ +H ](x0)

r(x0)

ψ′(x0)

p′c(x0)
= 0.

In light of (15)–(17) in Assumption 5, we can use the monotone convergence theorem and
this observation to pass to the limit x0 ↓ 0 in (35) to obtain

[LΘ +H ](x−)

r(x)

ψ′(x)

p′c(x)
=

∫ x

0

Dr[LΘ +H ](s)ψ′(s)

r(s)p′c(s)
1[0,x]\{β}(s) ds+ 2q(x)

+
[LΘ +H ](β+) − [LΘ +H ](β−)

r(β)

ψ′(β)

p′c(β)
1]0,x[(β).

This calculation and (34) imply that

(

R′
LΘ+H

ψ′

)′

(x−) = −
2r(x)p′c(x)

[σ(x)ψ′(x)]2

(
∫ x

0

Dr[LΘ +H ](s)ψ′(s)

r(s)p′c(s)
1[0,x]\{β}(s) ds

+
[LΘ +H ](β+) − [LΘ +H ](β−)

r(β)

ψ′(β)

p′c(β)
1]0,x[(β)

)

≥ 0,

the inequality following thanks to (16) and (17) in Assumption 5. It follows that the function
R′

LΘ+H/ψ
′ is increasing, which establishes (33). �

We can now prove our main result.

Theorem 1 Consider the stochastic control problem formulated in Section 2 and suppose
that Assumptions 1–5 hold true. The optimal strategy takes the form of one of the following
mutually exclusive cases, which are characterised by the point β > 0 appearing in (8) of
Assumption 4, the point x∗ ≥ 0 appearing in (15) of Assumption 5, and the solution α > x∗

of equation (26):
(I) If x∗ = 0, then it is optimal to move and stop, and the optimal strategy is given by τ ∗ = 0
and Z∗

t = (β − x)+1]0,∞[(t).

11



(II) If x∗ > 0 and α < β, then it is optimal to wait, move and stop, and the optimal strategy
is given by τ ∗ = inf{t ≥ 0 | X0

t ≥ α} and Z∗
t = (β − α ∨ x)+1]τ∗,∞[(t).

(III) If x∗ > 0 and α ≥ β, then it is optimal to wait and stop, and the optimal strategy is
given by τ ∗ = inf{t ≥ 0 | X0

t ≥ α} and Z∗ ≡ 0.
In the first case, the value function v identifies with the function Θ defined by (9), while,
in cases (II) and (III), the value function v identifies with the function w constructed in
Lemma 2.

Proof. Throughout the proof, we consider the solution w of the HJB equation (22) that
is as in Lemma 1 or in Lemma 2, depending on whether x∗ = 0 or not, and we fix any
initial condition x > 0 and any admissible strategy (Z, τ) ∈ A. Also, we consider the local

martingale defined by MT =
∫ T

0
e−Λtσ(Xt)w

′(Xt) dWt, and we let (τn) be any localising
sequence of (Ft)-stopping times such that τn ≤ n, for all n ≥ 1. Using Itô’s formula and the
fact that ∆Xt = ∆Zt, we calculate

e−Λτ∧τnw(Xτ∧τn+) = w(x) +

∫ τ∧τn

0

e−ΛtLw(Xt) dt+

∫ τ∧τn

0

e−Λtw′(Xt) dZ
c
t

+
∑

0≤t≤τ∧τn

e−Λt [w(Xt + ∆Zt) − w(Xt)] +Mτ∧τn
,

where the operator L is defined by (11) and Zc is the continuous part of the process Z. In
view of (4) and the fact that w satisfies the HJB equation (22), we can therefore see that

∫ τ∧τn

0

e−ΛtH(Xt) dt−

∫ τ∧τn

0

e−ΛtK ′(Xt) ◦ dZt + e−ΛτU(Xτ+)1{τ≤τn}

= w(x) + e−Λτ [U(Xτ+) − w(Xτ+)] 1{τ≤τn} − e−Λτnw(Xτn+)1{τn<τ}

+

∫ τ∧τn

0

e−Λt [Lw(Xt) +H(Xt)] dt+

∫ τ∧τn

0

e−Λt [w′(Xt) −K ′(Xt)] dZ
c
t

+
∑

0≤t≤τ∧τn

e−Λt

∫ ∆Zt

0

[w′(Xt + s) −K ′(Xt + s)] ds+Mτ∧τn

≤ w(x) + e−Λτnw−(Xτn+)1{τn<τ} +Mτ∧τn
, (36)

where w−(x) = −min{0, w(x)}. Taking expectation, we obtain

E

[
∫ τ∧τn

0

e−ΛtH(Xt) dt−

∫ τ∧τn

0

e−ΛtK ′(Xt) ◦ dZt + e−ΛτU(Xτ+)1{τ<τn}

]

≤ w(x) + E
[

eΛτnw−(Xτn+)1{τn<τ}

]

. (37)

The assumption thatH/r is bounded, the fact that the process E defined byEt = − exp(−Λt)
is increasing and the dominated convergence theorem imply that

lim
n→∞

E

[
∫ τ∧τn

0

e−ΛtH(Xt) dt

]

= lim
n→∞

E

[
∫ τ∧τn

0

H(Xt)

r(Xt)
dEt

]

= E

[
∫ τ

0

e−ΛtH(Xt) dt

]

, (38)

12



while the monotone convergence theorem implies that

lim
n→∞

E

[
∫ τ∧τn

0

e−ΛtK ′(Xt) ◦ dZt

]

= E

[
∫ τ

0

e−ΛtK ′(Xt) ◦ dZt

]

.

The admissibility condition (7) and the monotone convergence theorem imply that

lim
n→∞

E
[

e−ΛτU(Xτ+)1{τ≤τn}

]

= E
[

e−ΛτU(Xτ+)1{τ<∞}

]

. (39)

Also, since w− is bounded, which follows from the inequality w ≥ Θ and the fact that Θ is
bounded from below (see (9) and the last claim in Assumption 4), we can use the dominated
convergence theorem and Assumption 3 to obtain

lim
n→∞

E
[

e−Λτnw−(Xτn+)1{τn<τ}

]

= 0.

In view of these observations, we can pass to the limit as n→ ∞ in (37) to obtain Jx(Z, τ) ≤
w(x), which implies that v(x) ≤ w(x).

In each of the cases (I)–(III) in the theorem’s statement, we can check that the strategy
(Z∗, τ ∗) is admissible in the sense of Definition 1 because the process Z∗ has at most one
jump and because U(X∗

τ∗) = U(α) ∈ R. Furthermore, we can check that (36) and (37) both
hold with equality, which, combined with (38)–(39), implies that Jx(Z

∗, τ ∗) = w(x). This
conclusion and the inequality v(x) ≤ w(x), which we have established above, imply that
v(x) = w(x) and that (Z∗, τ ∗) is optimal. �

4 Special cases

We now consider a number of special cases that arise when the uncontrolled system’s dy-
namics are modelled by a geometric Brownian motion (Section 4.1) or by a mean-reverting
square-root process such as the one in the Cox-Ingersoll-Ross interest rate model (Section
4.2). In these special cases, we assume that

H(x) = −γ, K ′(x) = κ and r(x) = ̺ for all x > 0,

where γ ≥ 0 and κ, ̺ > 0 are constants. Also, we assume that the terminal payoff function
U is a power utility function, given by

U(x) =
xp

p
for all x > 0, (40)

for some p ∈ ]0, 1[, in which case, the function Θ defined by (9) takes the form

Θ(x) =

{

1−p

p
κ−

p

1−p + κx, for x < κ−
1

1−p ≡ β,
xp

p
, for x ≥ κ−

1

1−p ≡ β,
(41)

13



or the logarithmic utility function, namely

U(x) = ln x for all x > 0, (42)

in which case,

Θ(x) =

{

κx− 1 − lnκ, for x < κ−1 ≡ β,

lnx, for x > κ−1 ≡ β.
(43)

It is straightforward to verify that these choices satisfy all of the conditions appearing in
Assumptions 3 and 4.

4.1 Geometric Brownian motion

Suppose that X0 is a geometric Brownian motion, so that

dX0
t = bX0

t dt+ σX0
t dWt, X0

0 = x > 0,

for some constants b and σ 6= 0, and assume that ̺ > b. In this case, Assumptions 1 and 2
both hold true, and it is a standard exercise to verify that, if we choose c = 1, then

ϕ(x) = xm, ψ(x) = xn and p′c(x) = xn+m−1, (44)

for some appropriate constants m < 0 < n. Also, it is well-known that n > 1 if and only if
̺ > b, in which case,

E

[
∫ ∞

0

e−̺tX0
t dt

]

=
x

̺− b
<∞. (45)

Since there exists a constant C1 > 0 such that |LΘ(x)| ≤ C1(1+x) for all x > 0, whether Θ is
given by (41) or (43), it follows from (44)–(45) that conditions (13) and (14) in Assumption 5
hold true. Also, we can use (57) in the Appendix with F = H ≡ −γ to calculate RH = −γ/̺,
which implies that (19) in Assumption 5 is satisfied, whether Θ is given by (41) or (43).

In the following two subsections, we show that the choices for the problem data that we
have made satisfy the remaining conditions (15)–(18) in Assumption 5, and we discuss the
possible forms that the optimal strategy takes.

4.1.1 Power utility function UUU

If the terminal payoff function U is the power utility function given by (40), then we can
check that the function Θ defined by (41) satisfies

[LΘ +H ](x) =







−(̺− b)κx− ̺1−p

p
κ−

p

1−p − γ, for x < κ−
1

1−p ≡ β

−
[

(1 − p)1
2
σ2 + ̺

p
− b

]

xp − γ, for x > κ−
1

1−p ≡ β







< 0,

14



where the inequality follows from the assumption that ̺ > b and the fact that p ∈ ]0, 1[. It
follows that (15) is satisfied with x∗ = 0 and that (18) holds true. We can also calculate

[LΘ +H ](β−) = −

[

̺

p
− b

]

κ−
p

1−p − γ

> −

[

(1 − p)
1

2
σ2 +

̺

p
− b

]

κ−
p

1−p − γ = [LΘ +H ](β+),

which establishes (16), and

Dr[LΘ +H ](x) =

{

−(̺− b)κ, for x < κ−
1

1−p ≡ β

−
[

(1 − p)1
2
σ2 + ̺

p
− b

]

px−(1−p), for x > κ−
1

1−p ≡ β

}

< 0,

which implies that (17) is also true. Finally, the fact that x∗ = 0 puts us in the context of
case (I) of Theorem 1, so the move-and-stop strategy is the optimal strategy.

4.1.2 Logarithmic utility function UUU

If the terminal payoff function U is the logarithmic utility function given by (42), then we
can check that the function Θ defined by (43) satisfies

[LΘ +H ](x) =

{

−(̺− b)κx+ ̺ lnκ+ ̺− γ, for x < κ−1 ≡ β,

−̺ ln x− 1
2
σ2 + b− γ, for x > κ−1 ≡ β,

[LΘ +H ](β−) = ̺ lnκ + b− γ > ̺ lnκ−
1

2
σ2 + b− γ = [LΘ +H ](β+),

Dr[LΘ +H ](x) =

{

−(̺− b)κ, for x < κ−1 ≡ β

−̺x−1, for x > κ−1 ≡ β

}

< 0.

These calculations imply that (17)–(18) hold true, and that (15) is satisfied with

x∗ =



















̺+̺ lnκ−γ

(̺−b)κ
, if ̺ lnκ < −b + γ,

β, if − b+ γ ≤ ̺ lnκ ≤ 1
2
σ2 − b+ γ,

exp

(

− 1

2
σ2+b−γ

̺

)

, if 1
2
σ2 − b+ γ < ̺ lnκ.

In this case x∗ > 0, so “waiting” belongs to the set of optimal tactics. To obtain the
free-boundary point α > 0 that determines the waiting region, we use (26) and (44) to
calculate

q(α) =







− (̺−b)κ
σ2(1−m)αm

[

α− (1−m)(̺+̺ ln κ−γ)
−m(̺−b)κ

]

, if α ≤ κ−1 ≡ β,

̺

σ2mαm

[

lnα+ 1
m
− ̺+̺ ln κ−γ

̺
+ (ακ)m

(

lnκ− 1
m
− m(̺−b)

(1−m)̺

)]

, if α > κ−1 ≡ β.
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From these calculations, it follows that the unique solution α > 0 of the equation q(α) = 0
is strictly less than β ≡ κ−1 if and only if

̺ lnκ <
−m

−m+ 1
(̺− b) − ̺+ γ. (46)

In light of this analysis, we can see that the optimal strategy takes one of the following
forms. If the parameter values are such that (46) is true, then we are in the context of case
(II) of Theorem 1, and the wait-move-and-stop strategy is optimal. Otherwise, we are in the
context of case (III) of Theorem 1, and the wait-and-stop strategy is optimal.

4.2 Mean-reverting square-root process

Suppose that X0 is a mean-reverting square-root process, so that

dX0
t = ζ(ϑ−X0

t ) dt+ σ
√

X0
t dWt, X0

0 = x > 0,

for some constants ζ, ϑ, σ > 0, and assume that ζϑ− 1
2
σ2 > 0, which is a necessary and suffi-

cient condition for X0 to be non-explosive. In this context, Assumptions 1 and 2 are plainly
satisfied. Also, the functions ϕ and ψ identify with confluent hypergeometric functions (see
Jack, Johnson and Zervos [19, Section 5.2] for precise expressions) and ψ has exponential
growth as x tends to ∞. Also, the calculation

E

[
∫ ∞

0

e−̺tX0
t dt

]

=

∫ ∞

0

e−̺t
[

ϑ+ (x− ϑ)e−ζt
]

dt =
ζϑ+ ̺x

̺(ζ + ̺)
<∞

is a standard exercise in financial mathematics. This calculation implies that Θ satisfies (14)
in Assumption 5 because there exists a constant C2 > 0 such that |LΘ(x)| ≤ C2(1 + x) for
all x > 0, whether Θ is given by (41) or (43) (see also (47) and (48) below). Such a bound of
Θ also implies that (13) in Assumption 5 holds true because limx↓0 ϕ(x) = ∞ and ψ(x) has
exponential growth as x tends to ∞. Furthermore, the fact that RH ≡ −γ/̺, which follows
from (57), implies that (19) in Assumption 5 holds true, whether Θ is given by (41) or (43).

In the following two subsections, we verify that conditions (15)–(18) of Assumption 5 are
satisfied as well, and we discuss the possible forms that the optimal strategy takes.
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4.2.1 Power utility function UUU

If the terminal payoff function U is the power utility function given by (40), then we can
check that the function Θ defined by (41) satisfies

[LΘ +H ](x) =







−(̺+ ζ)κx+ ζϑκ− (1 − p)̺

p
κ

−p

1−p − γ, for x < κ
−1

1−p ≡ β,
[

ζϑ− 1
2
σ2(1 − p)

]

x−(1−p) −
(

ζ + ̺

p

)

xp − γ, for x > κ
−1

1−p ≡ β,
(47)

[LΘ +H ](β−) = −

(

ζ +
̺

p

)

κ
−p

1−p + ζϑκ− γ

> −

(

ζ +
̺

p

)

κ
−p

1−p +

[

ζϑ−
1

2
(1 − p)σ2

]

κ− γ = [LΘ +H ](β+)

Dr[LΘ +H ](x)

=

{

−(̺+ ζ)κ, for x < κ
−1

1−p ≡ β

−
[

ζϑ− 1
2
σ2(1 − p)

]

(1 − p)x−(2−p) −
(

ζ + ̺

p

)

px−(1−p), for x > κ
−1

1−p ≡ β

}

< 0,

where the inequality follows from the assumption that ζϑ − 1
2
σ2 > 0 and the fact that

p ∈ ]0, 1[. These calculations imply immediately that (17)–(18) hold true. Also, these calcu-
lations imply that there exists a unique point x∗ such that (15) in Assumption 5 is true. In
particular,

x∗ = 0, if ζϑκ− (1 − p)
̺

p
κ

−p

1−p ≤ γ,

x∗ ∈ ]0, β[, if ζϑκ−

(

ζ +
̺

p

)

κ
−p

1−p < γ < ζϑκ− (1 − p)
̺

p
κ

−p

1−p ,

x∗ = β, if

[

ζϑ−
1

2
(1 − p)σ2

]

κ−

(

ζ +
̺

p

)

κ
−p

1−p ≤ γ ≤ ζϑκ−

(

ζ +
̺

p

)

κ
−p

1−p ,

x∗ > β, if γ <

[

ζϑ−
1

2
(1 − p)σ2

]

κ−

(

ζ +
̺

p

)

κ
−p

1−p .

In view of Lemmas 1 and 2, we conclude that, in the special case of the general problem
that we consider here, the optimal strategy can take the form of any of the cases (I)–(III) of
Theorem 1, depending on parameter values.
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4.2.2 Logarithmic utility function UUU

If the terminal payoff function U is the logarithmic utility function given by (42), then we
can calculate

[LΘ +H ](x) =

{

−(ζ + ̺)κx+ ζϑκ+ ̺ lnκ+ ̺− γ, for x < κ−1 ≡ β,
[

ζϑ− 1
2
σ2

]

x−1 − ζ − ̺ ln x− γ, for x > κ−1 ≡ β,
(48)

[LΘ +H ](β−) = −ζ + ζϑκ+ ̺ lnκ− γ > −ζ + ζϑκ+ ̺ lnκ−
1

2
σ2κ− γ = [LΘ +H ](β+),

Dr[LΘ +H ](x) =

{

−(ζ + ̺)κ, for x < κ−1 ≡ β

−
[

ζϑ− 1
2
σ2

]

x−2 − ̺x−1, for x > κ−1 ≡ β

}

< 0,

where the inequality follows from the assumption that ζϑ − 1
2
σ2 > 0. These calculations

imply immediately that (17)–(18) are satisfied and that there exists a unique point x∗ such
that (15) is true. In particular,

x∗ = 0, if ζϑκ+ ̺ lnκ + ̺ ≤ γ,

x∗ ∈ ]0, β[, if − ζ + ζϑκ+ ̺ lnκ < γ < ζϑκ+ ̺ lnκ+ ̺,

x∗ = β, if − ζ + ζϑκ+ ̺ lnκ−
1

2
σ2κ ≤ γ ≤ −ζ + ζϑκ+ ̺ lnκ,

x∗ > β, if γ < −ζ + ζϑκ+ ̺ lnκ−
1

2
σ2κ.

As in the previous case, the optimal strategy can be as in any of the cases (I)–(III) of
Theorem 1, depending on parameter values.

Appendix: a second order linear ODE

In this section, we review a range of results regarding the solvability of a second order linear
ODE on which part of our analysis has been based. All of the claims that we do not prove
here are standard, and can be found in various forms in several references (e.g., see Borodin
and Salminen [13, Chapter II]).

In the presence of Assumptions 1, 2 and 3, the general solution of the second-order linear
homogeneous ODE

Lw(x) ≡
1

2
σ2(x)w′′(x) + b(x)w′(x) − r(x)w(x) = 0, for x > 0,

is given by

w(x) = Aϕ(x) +Bψ(x),
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for some constants A,B ∈ R. The functions ϕ and ψ are C2,

0 < ϕ(x) and ϕ′(x) < 0 for all x > 0, (49)

0 < ψ(x) and ψ′(x) > 0 for all x > 0, (50)

lim
x↓0

ϕ(x) = lim
x→∞

ψ(x) = ∞. (51)

In this context, ϕ and ψ are unique, modulo multiplicative constants. To simplify the
notation we assume, without loss of generality, that ϕ(c) = ψ(c) = 1, where c > 0 is the
same constant as the one that we used in the definition (6) of the scale function pc. Also,
these functions satisfy

ϕ(x)ψ′(x) − ϕ′(x)ψ(x) = Cp′c(x), (52)

where C := [ψ′(c) − ϕ′(c)] > 0. Furthermore, the identity

ϕ′′(x)ψ′(x) − ϕ′(x)ψ′′(x) =
2Cr(x)

σ2(x)
p′c(x), (53)

follows immediately from the fact that ϕ and ψ satisfy the ODE Lf(x) = 0 and (52).
Combining the inequalities

0 <
ϕ(x)ψ′(x)

Cp′c(x)
< 1 and 0 < −

ϕ′(x)ψ(x)

Cp′c(x)
< 1,

which follow from (49)–(50) and (52), with (51), we can see that

lim
x↓0

ψ′(x)

p′c(x)
= lim

x→∞

ϕ′(x)

p′c(x)
= 0. (54)

Also, the calculation

d

dx

(

1

p′c(x)

)

=
2b(x)

σ2(x)p′c(x)
,

and the fact that ψ satisfies the ODE Lw(x) = 0, imply that

d

dx

(

ψ′(x)

p′c(x)

)

=
2

σ2(x)p′c(x)

[

1

2
σ2(x)ψ′′(x) + b(x)ψ′(x)

]

=
2r(x)ψ(x)

σ2(x)p′c(x)
. (55)

Now, we consider any Borel measurable function F such that

∫ x

0

|F (s)|ψ(s)

σ2(s)p′c(s)
ds+

∫ ∞

x

|F (s)|ϕ(s)

σ2(s)p′c(s)
ds <∞ for all x > 0.
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A function F satisfies this integrability condition if and only if

E

[
∫ ∞

0

e−Λt |F (X0
t )| dt

]

<∞ (56)

for every initial condition x > 0 of the SDE (5). Given such F , the function RF defined by

RF (x) = E

[
∫ ∞

0

e−ΛtF (X0
t ) dt

]

, for x > 0, (57)

admits the analytic representation

RF (x) =
2

C
ϕ(x)

∫ x

0

F (s)ψ(s)

σ2(s)p′c(s)
ds+

2

C
ψ(x)

∫ ∞

x

F (s)ϕ(s)

σ2(s)p′c(s)
ds, (58)

and satisfies the ODE LRF (x) + F (x) = 0, Lebesgue-a.e., as well as

lim
x↓0

|RF (x)|

ϕ(x)
= lim

x→∞

|RF (x)|

ψ(x)
= 0. (59)

In view of (52)–(53) and (58), we can calculate

(

RF

ψ

)′

(x) =
R′

F (x)ψ(x) −RF (x)ψ′(x)

ψ2(x)
= −

2p′c(x)

ψ2(x)

∫ x

0

F (s)ψ(s)

σ2(s)p′c(s)
ds, (60)

and we can check that the function R′
F/ψ

′ is absolutely continuous with derivative

(

R′
F

ψ′

)′

(x) =
4r(x)p′c(x)

[σ(x)ψ′(x)]2

∫ x

0

F (s)ψ(s)

σ2(s)p′c(s)
ds−

2F (x)

σ2(x)ψ′(x)
. (61)

Noting that −LRF = F , we can see that, if R−LF (resp., RLF ) is defined as in (57)–(58)
with −LF (resp., LF ) in the place of F , then

RF = R−LRF
= −RLRF

. (62)

Also, if Θ is a C1 function with absolutely continuous first derivative that satisfies (13) and
(14) then Θ satisfies (20).
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