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Abstract

We consider the problem of determining the optimal investment level that a firm
should maintain in the presence of random price and/or demand fluctuations. We
model market uncertainty by means of a geometric Brownian motion, and we consider
general running payoff functions. Our model allows for capacity expansion as well as
for capacity reduction, with each of these actions being associated with proportional
costs. The resulting optimisation problem takes the form of a singular stochastic control
problem that we solve explicitly. We illustrate our results by means of the so-called
Cobb-Douglas production function. The problem that we study presents a model, the
associated Hamilton-Jacobi-Bellman equation of which admits a classical solution that
conforms with the underlying economic intuition but does not necessarily identify with
the corresponding value function, which may be identically equal to ∞. Thus, our
model provides a situation that highlights the need for rigorous mathematical analysis
when addressing stochastic optimisation applications in finance and economics, as well
as in other fields.

1 Introduction

We consider the problem of determining in a dynamical way the optimal capacity level of a
given investment project operating within a random economic environment. In particular,
we consider an investment project that yields payoff at a rate that is dependent on its

∗Research supported by EPSRC grant no. GR/S22998/01 and the Isaac Newton Institute, Cambridge
†amal.merhi@googlemail.com
‡Corresponding author. m.zervos@lse.ac.uk

1



installed capacity level and on an underlying economic indicator such as the price of or
the demand for the project’s unique output commodity, which we model by a geometric
Brownian motion. The project’s capacity level can be increased or decreased at any time
and at given proportional costs. The objective is to determine the project’s capacity level
that maximises the associated expected, discounted payoff flow.

Irreversible capacity expansion models have attracted considerable interest in the liter-
ature, e.g., see Davis, Dempster, Sethi and Vermes [DDSV87] (see also Davis [D93]), Ko-
bila [K93], Øksendal [Ø00], Wang [W03], Chiarolla and Haussmann [CH05], Bank [B05], and
references therein. Recently, Bentolila and Bertola [BB90], and Abel and Eberly [AE96] con-
sidered models involving both expansion and reduction of a project’s capacity level. These
authors assume that the rate at which the project yields payoff is modelled by a constant elas-
ticity Cobb-Douglas production function. Our model considers much more general running
payoff functions that include the whole family of the Cobb-Douglas production functions as
special cases, and allow for the situation where a running cost proportional to the project’s
installed capacity (reflecting, e.g., labour costs) is also included (see Examples 1 and 2).
Also, Guo and Pham [GP05] consider a related partially reversible investment model with
entry decisions and a general running payoff function. The model that these authors consider
is fundamentally different from the ones considered by Bentolila and Bertola [BB90], and
Abel and Eberly [AE96], or the one that we study here because, e.g., it is one-dimensional
instead of two-dimensional.

Our analysis, which leads to results of an explicit analytic nature, involves the derivation
of tight conditions for the project’s value function to be finite. The fact that simple choices
for the project’s running payoff function lead to unique solutions to the associated free-
boundary problem that conform with standard economic intuition but are associated with
value functions that are identically equal to infinity presents a most interesting feature of
our analysis (see Remark 3; also, note that this pathological situation does not arise in
the context of the special cases studied by Bentolila and Bertola [BB90], and by Abel and
Eberly [AE96]). Indeed, this possibility stresses the fact that treating optimisation models
related to investment decision making in a “formal” way, which is often the case in the
economics literature, can lead to erroneous conclusions and can suggest the adoption of
potentially disastrous policies.

The paper is organised as follows. Section 2 is concerned with a rigorous formulation
of the investment decision model that we study. In Section 3, we derive tight sufficient
conditions, which conform with economic intuition, for the associated optimisation problem
to possess a finite value function. Assumptions 1 and 2 summarise all of the assumptions
that we make about the problem data in the paper. We also establish a number of estimates
that we use in our subsequent analysis. Section 4 is concerned with the proof of a verification
theorem that provides sufficient conditions for the value function of our control problem to
be identified with a solution to the associated dynamic programming or Hamilton-Jacobi-
Bellman equation. In Section 5, we solve the optimisation problem considered. Finally, we
illustrate our results by a number of examples in Section 6.
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2 Problem formulation

We fix a probability space (Ω,F , P ) equipped with a filtration (Ft) satisfying the usual
conditions of right continuity and augmentation by P -negligible sets, and carrying a stan-
dard, one-dimensional (Ft)-Brownian motion W . We denote by A the family of all càglàd,
(Ft)-adapted, increasing processes ξ such that ξ0 = 0.

We consider an investment project that produces a given commodity, and we assume that
the project’s capacity, namely its rate of output, can be controlled at any given time. We
denote by Yt the project’s capacity at time t, and we model cumulative capacity increases
(resp., decreases) by a process ξ+ ∈ A (resp., ξ− ∈ A). In particular, given any times
0 ≤ s ≤ t, ξ+

t+ − ξ+
s and ξ−t+ − ξ−s are the total capacity increase and decrease, respectively,

incurred by the project management’s decisions during the time interval [s, t]. The project’s
capacity process Y is therefore given by

Yt = y + ξ+
t − ξ−t , Y0 = y ≥ 0, (1)

where y ≥ 0 is the project’s initial capacity. Note that project’s capacity process Y is a
finite variation process because it is the difference of two increasing processes. Also, the
assumptions that the processes ξ± are càglàd and ξ±0 = 0 imply that Y0 = y. We make
the assumption that the project’s management controls only the project’s capacity level.
Accordingly, we denote by Πy the set of all admissible decision strategies, which is defined
by

Πy =
{

(ξ+, ξ−) : ξ+, ξ− ∈ A, and Yt ≥ 0, for all t ≥ 0
}

.

We assume that all randomness associated with the project’s operation can be captured
by a state process X that satisfies the SDE

dXt = bXt dt +
√

2σXt dWt, X0 = x > 0, (2)

for some constants b and σ. In practice, Xt can be the price of one unit of the output
commodity or an economic indicator reflecting, e.g., the output commodity’s demand, at
time t.

To simplify the notation, we define

S =
{

(x, y) ∈ R
2 : x > 0, y ≥ 0

}

,

so that S is the set of all possible initial conditions.
With each decision policy (ξ+, ξ−) ∈ Πy we associate the performance criterion

Jx,y(ξ
+, ξ−) = E

[
∫ ∞

0

e−rth(Xt, Yt) dt − K+

∫

[0,∞[

e−rt dξ+
t − K−

∫

[0,∞[

e−rt dξ−t

]

, (3)
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where h : S → R is a given function, and r > 0 and K+, K− are constants. Here, h models
the running payoff resulting from the project’s operation, and K+ (resp., K−) models the
costs associated with increasing (resp., decreasing) the project’s capacity level.

As it stands in (3), the performance index Jx,y is not necessarily well-defined because
the random variable inside the expectation may not be integrable or even well-defined. To
address this issue, we define

UT =

∫ T

0

e−rth(Xt, Yt) dt− K+

∫

[0,T ]

e−rt dξ+
t − K−

∫

[0,T ]

e−rt dξ−t , for T ≥ 0. (4)

In the next section (see Lemma 4, in particular), we are going to impose assumptions on h
such that UT is well-defined, for all T > 0, and either

U∞ = lim
T→∞

UT exists in R, P -a.s., and U∞ ∈ L1(Ω,F , P ), (5)

in which case, we naturally define

Jx,y(ξ
+, ξ−) = E [U∞] , (6)

as in (3), or there exists an (Ft)-adapted process Z such that

UT ≤ ZT , for all T ≥ 0, and lim sup
T→∞

E [ZT ] = −∞, (7)

in which case, we define

Jx,y(ξ
+, ξ−) = −∞. (8)

The objective is to maximise the performance index Jx,y thus defined over all admissible
decision strategies (ξ+, ξ−) ∈ Πy. The value function of the resulting optimisation problem
is defined by

v(x, y) = sup
(ξ+,ξ−)∈Πy

Jx,y(ξ
+, ξ−). (9)

3 Assumptions and preliminary estimates

The purpose of this section is to establish conditions on the problem data under which our
control problem is well-posed and its value function is finite, and to prove certain estimates
that we will need. Before we address these issues, we first discuss an ODE that will play an
instrumental role in the solution of our control problem.

Every solution of the homogeneous ODE

σ2x2u′′(x) + bxu′(x) − rw(x) = 0
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is given by

u(x) = Axn + Bxm,

for some A, B ∈ R. Here, the constants m < 0 < n are the solutions of the quadratic
equation

σ2λ2 + (b − σ2)λ − r = 0, (10)

given by

m, n =
−(b − σ2) ±

√

(b − σ2)2 + 4σ2r

2σ2
. (11)

Now, let k : ]0,∞[→ R be any measurable function such that

E

[
∫ ∞

0

e−rt |k(Xt)| dt

]

< ∞, for all x > 0. (12)

This integrability condition is equivalent to

∫ x

0

s−m−1|k(s)| ds +

∫ ∞

x

s−n−1|k(s)| ds < ∞, for all x > 0,

and the function R[k] : ]0,∞[→ R defined by

R[k](x) =
1

σ2(n − m)

[

xm

∫ x

0

s−m−1k(s) ds + xn

∫ ∞

x

s−n−1k(s) ds

]

(13)

is a special solution to the non-homogeneous ODE

σ2x2u′′(x) + bxu′(x) − rw(x) + k(x) = 0, (14)

and satisfies

R[k](x) = E

[
∫ ∞

0

e−rtk(Xt) dt

]

. (15)

Furthermore,

if k is increasing, then R[k] is increasing, (16)

and

if k is increasing, then lim
x↓0

k(x)

r
≥ 0 ⇔ lim

x↓0
R[k](x) ≥ 0. (17)
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All of these results are proved in Knudsen, Meister and Zervos [KMZ98]. For future reference,
we also note that, given any λ ∈ R,

E

[
∫ ∞

0

e−rtXλ
t dt

]

= xλ

∫ ∞

0

e[σ
2λ2+(b−σ2)λ−r]tE

[

e−σ2λ2t+
√

2σλWt

]

dt

=

{

∞, if λ ≤ m or λ ≥ n,

−xλ/ [σ2λ2 + (b − σ2)λ − r] , if λ ∈ ]m, n[.
(18)

We are going to need the following estimate that is related with the definitions above.

Lemma 1 Given any λ ∈ ]0, n[, there exist constants ε1, ε2 > 0 such that

E
[

e−rtX̄λ
t

]

≤ σ2λ2 + ε2

ε2
xλe−ε1t and E

[

sup
t≥0

e−rtX̄λ
t

]

≤ σ2λ2 + ε2

ε2
xλ,

where X̄t = sups≤t Xs.

Proof. Since n is the positive solution of the quadratic equation (10), it follows that there
exist ε1, ε2 > 0 such that

r − ε1 > 0 and σ2λ2 + (b − σ2)λ − (r − ε1) = −ε2.

Given such parameters, we define

V = sup
t≥0

[

−σ2λ2 + ε2√
2|σ|λ

t + Wt

]

,

we calculate

e−rtX̄λ
t = xλe−ε1te−(r−ε1)t sup

s≤t
exp
(

(r − ε1)s − (σ2λ2 + ε2)s +
√

2σλWs

)

= xλe−ε1t sup
s≤t

[

exp
(

−(r − ε1)(t − s)
)

exp
(

−(σ2λ2 + ε2)s +
√

2σλWs

)]

≤ xλe−ε1te
√

2|σ|λV ,

and we observe that

sup
t≥0

e−rtX̄λ
t ≤ xλe

√
2|σ|λV .

Since V is exponentially distributed with parameter 2 (σ2λ2 + ε2) /
(√

2|σ|λ
)

(see Karatzas
and Shreve [KS88, Exercise 3.5.9]), the two bounds follow by a simple integration. �

The following assumptions on the data of the control problem formulated in Section 2
will ensure that the associated free-boundary problem has a unique solution that conforms
with economical intuition.
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Assumption 1 r > 0, and the function h is C3 and satisfies
∫ x

0

s−m−1|h(s, y)| ds +

∫ ∞

x

s−n−1|h(s, y)| ds < ∞,

for all (x, y) ∈ S. If we define

H(x, y) = hy(x, y), for x, y > 0, (19)

then, given any y > 0,

Hx(x, y) > 0, for all x > 0, and lim
x→∞

H(x, y) = ∞, (20)

and, given any x > 0,

Hy(x, y) < 0, for all y > 0. (21)

Also, K+ + K− > 0, and
∫ x

0

s−m−1 [|H(s, y)|+ |Hy(s, y)|] ds +

∫ ∞

x

s−n−1 [|H(s, y)|+ |Hy(s, y)|] ds < ∞,

for all x, y > 0. �

It is worth observing that (20) and (21) in this assumption have a natural economic inter-
pretation. Indeed, we can think of H(x, y)∆y as the additional running payoff that we are
faced with if we increase the project’s capacity level from y to y +∆y, for small ∆y, and the
underlying state process X assumes the value x. In view of this observation, (20) reflects
the idea that, given y, a small amount of extra capacity should be associated with increasing
values of additional running payoff as the value of x, which, e.g., models the price of or the
demand for the project’s output commodity, is increasing. Similarly, (21) reflects the fact
that, for a given value x of the underlying state process, the extra running payoff resulting
from a small amount of additional capacity is decreasing as the level of the already installed
capacity y increases. Also, the assumption that K+ + K− > 0, which is an indispensable
one, is a most realistic one. Indeed, the inequality K+ +K− < 0 gives rise to the unrealistic
scenario where the project’s management can realise arbitrarily high profits by just sequen-
tially increasing and then decreasing the project’s capacity by the same amount sufficiently
fast.

At this point, we should also observe that (20) and (21) in Assumption 1 exclude the
special case that arises when the running payoff function h does not depend on the capacity
level y, i.e., when h(x, y) = h̃(x), for some function h̃. In this case, it is plainly optimal to
never change the project’s capacity level. However, the qualitative nature of this strategy
is fundamentally different from any of the forms that our analysis allows for the optimal
strategy to have, which is reflected in our assumptions.
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The following additional assumptions will ensure that the value function of the control
problem considered is finite and identifies with the solution of the associated Hamilton-
Jacobi-Bellman equation. Apart from (26), which can be justified by straightforward eco-
nomics considerations such as the ones discussed above, the conditions in the assumption
are of a technical nature.

Assumption 2 K+ > 0, and there exist constants

α > 0, β ∈ ]0, 1[, ϑ ∈ ]0, K+ ∧ (K+ + K−) ∧ n[ and C > 0, (22)

where n > 0 is as in (11), such that

α

1 − β
< n, (23)

−C(1 + y) ≤ h(x, y) ≤ C(1 + xn−ϑ + xαyβ) + r(K+ − ϑ)y, for all (x, y) ∈ S, (24)

−C ≤ H(x, y) ≡ hy(x, y) ≤ βCxαy−(1−β) + r(K+ − ϑ), for all x, y > 0. (25)

Also,

hx(x, y) ≥ 0, for all (x, y) ∈ S. (26)

�

Remark 1 Note that we could have replaced the upper bound in (25) by

H(x, y) ≤
{

C
(

1 + xαy−(1−β)
)

, for all x > 0 and y < y1,

βCxαy−(1−β) + r(K+ − ϑ), for all x > 0 and y ≥ y1,

for some constant y1 > 0. Depending on the problem data, such a significant relaxation could
result in optimal policies such as the one depicted by Figure 5 that would enrich qualitatively
the class of optimal capacity control strategies (see also Example 3 in Section 6). However,
we decided against such a relaxation because this would complicate both the presentation
and the analysis of our results. �

Example 1 A choice for the running payoff function h that has been widely considered in
the literature is the so-called Cobb-Douglas production function given by

h(x, y) = xαyβ, for some constants α > 0 and β ∈ ]0, 1[. (27)

It is straightforward to verify that this function satisfy all of our assumptions if and only if
the parameters α and β satisfy the inequality (23). �
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Example 2 A choice for the running payoff function h that is a variation of the Cobb-
Douglas function and incorporates a running cost proportional to the project’s installed
capacity is given by

h(x, y) = (x + η)α(y + ζ)β − Ky, for some constants α, β, η, ζ, K > 0. (28)

This choice satisfies our assumptions if and only if

α, β ∈ ]0, 1[,
α

1 − β
< n and βηαζ−(1−β) < K + rK+. (29)

To see this claim, fix any ϑ > 0 such that

α < n − ϑ and βηαζ−(1−β) < K + r(K+ − ϑ),

and observe that there exist constants Γ1, Γ2, Γ3 > 1 such that

(x + η)α ≤ Γ1(1 + xα), (y + ζ)β ≤ Γ2(1 + yβ) and Γ1Γ2y
β < Γ3 + r(K+ − ϑ)y,

because α, β ∈ ]0, 1[. In view of these inequalities, we can see that

h(x, y) ≤ Γ1Γ2

(

1 + xα + xαyβ
)

+ Γ1Γ2y
β

≤ Γ1Γ2Γ3

(

1 + xα + xαyβ
)

+ r(K+ − ϑ)y,

and check that Assumption 1, and (23), (24) and (26) in Assumption 2 all hold true. To
verify (25) in Assumption 2, we note that, given a constant C > 1,

∂

∂x

[

H(x, y)− βCxαy−(1−β)
]

< 0

is equivalent to

(

x

x + η

)1−α

< C

(

y + ζ

y

)1−β

,

which is true for all x, y > 0. It follows that (25) is satisfied if it is true for x = 0, i.e., if

βηα(y + ζ)−(1−β) ≤ K + r(K+ − ϑ), for all y ≥ 0,

which is true when the associated parameters satisfy (29).
To see that, if the last inequality in (29) is not true, then the upper bound in (25) does

not hold, we argue by contradiction. Indeed, if there are constants C, ϑ > 0 such that (25)
is satisfied, then we can pass to the limit as x ↓ 0 to obtain

βηα(y + ζ)−(1−β) ≤ K + r(K+ − ϑ), for all y > 0.

However, this inequality cannot be true for all y > 0 if the last inequality in (29) above does
not hold. �
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It is a straightforward exercise to show that the bounds in (24)–(25) imply the following
estimates.

Lemma 2 With reference to the notation in (13), the bounds provided by (24) and (25) in
Assumption 2 imply that there exists a constant C1 > 0 such that

−C1(1 + y) ≤ R[h(·,y)](x) ≤ C1

(

1 + y + xn−ϑ + xαyβ
)

, for all (x, y) ∈ S,

−C1 ≤ R[H(·,y)](x) ≤ C1

(

1 + xαy−(1−β)
)

, for all (x, y) ∈ S.

As we have remarked above, bounds such as the ones appearing in Assumption 2 are
essential for the value function to be finite. Indeed, we can prove the following result.

Lemma 3 Consider the control problem formulated in Section 2 that arises if the running
payoff function h is defined by (27) in Example 1, and suppose that α

1−β
> n > α. Then,

under any well-posed definition of the performance index Jx,y that is consistent with (3),
v(x, y) = ∞, for every initial condition (x, y) ∈ S.

Proof. Consider the strategy defined by

ξ̃+
t = X̄

(n−α)/β
t and ξ̃−t = 0, for all t ≥ 0, (30)

where X̄t = sups≤t Xs. With regard to (18), we can see that this strategy is associated with

E

[
∫ ∞

0

e−rtXα
t Ỹ β

t dt

]

≥ E

[
∫ ∞

0

e−rtXn
t dt

]

= ∞. (31)

Now, let us assume that α
1−β

> n > α. If we define λ = n−α
β

> 0, then such an assumption
implies λ < n. In view of this observation, we can use the first estimate in Lemma 1, the
monotone convergence theorem and the integration by parts formula to see that the strategy
given by (30) satisfies

E

[
∫

[0,∞[

e−rt dξ̃+
t

]

= lim
T→∞

E

[

r

∫ T

0

e−rtξ̃+
t dt + e−rT ξ̃+

T+

]

= lim
T→∞

(

r

∫ T

0

E
[

e−rtX̄λ
t

]

dt + E
[

e−rT X̄λ
T

]

)

≤ r
σ2λ2 + ε2

ε1ε2
xλ

< ∞.
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However, this calculation, (30) and (31) imply that

E

[
∫ ∞

0

e−rtXα
t Ỹ β

t dt −
∫

[0,∞[

e−rt dξ̃+
t −

∫

[0,∞[

e−rt dξ̃−t

]

is well-defined and equal to ∞, which proves the result. �

We can now prove that our assumptions are sufficient for the optimisation problem con-
sidered to be well-posed and for its value function to be finite.

Lemma 4 Suppose that the running payoff function h satisfies (24) in Assumption 2 and
that K+, K+ + K− > 0. Given any initial condition (x, y) ∈ S, (5)–(8) provide a well-posed
definition of the performance criterion Jx,y, and the following statements hold true:

(a) Given any admissible strategy (ξ+, ξ−) ∈ Πy, Jx,y(ξ
+, ξ−) ∈ R if and only if

E

[
∫ ∞

0

e−rtYt dt + K+

∫

[0,∞[

e−rt dξ+
t + |K−|

∫

[0,∞[

e−rt dξ−t

]

< ∞. (32)

(b) Condition (32) implies

lim inf
T→∞

e−rT E [YT+] = 0. (33)

(c) v(x, y) ∈ R.

Proof. Fix any initial condition (x, y) ∈ S and any admissible strategy (ξ+, ξ−) ∈ Πy. Since
ξ+, ξ− are increasing càglàd processes with ξ+

0 = ξ−0 = 0, we can use the integration by parts
formula to calculate

−K+

∫

[0,T ]

e−rt dξ+
t − K−

∫

[0,T ]

e−rt dξ−t

= −r

∫ T

0

e−rt
[

K+ξ+
t + K−ξ−t

]

dt − e−rT
[

K+ξ+
T+ + K−ξ−T+

]

. (34)

With regard to (1) and the inequality K+ + K− > 0, we can see that

−K+ξ+
t − K−ξ−t ≤ −K+

(

ξ+
t − ξ−t

)

= −K+Yt + K+y, (35)

which, combined with (34), implies

−K+

∫

[0,T ]

e−rt dξ+
t − K−

∫

[0,T ]

e−rt dξ−t ≤ −rK+

∫ T

0

e−rtYt dt − e−rT K+YT+ + K+y. (36)
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However, this inequality and (24) in Assumption 2 imply that the random variables UT

defined by (4) satisfy

UT ≤ K+y +

∫ T

0

e−rt
[

h(Xt, Yt) − rK+Yt

]

dt

≤ K+y + C

∫ T

0

e−rt
(

1 + Xn−ϑ
t

)

− ẐT , (37)

where

ẐT =

∫ T

0

e−rt
[

rϑYt − CXα
t Y β

t

]

dt, for T ≥ 0.

With reference to (18), we note that

I1(x) := E

[

C

∫ ∞

0

e−rt
(

1 + Xn−ϑ
t

)

dt

]

=
C

r
− Cxn−ϑ

σ2(n − ϑ)2 + (b − σ2)(n − ϑ) − r
∈ ]0,∞[. (38)

Now, suppose that the strategy strategy (ξ+, ξ−) ∈ Πy is associated with

E

[
∫ ∞

0

e−rtYt dt

]

= ∞. (39)

With regard to (23) in Assumption 2 and (18), we observe that

I2(x) := E

[
∫ ∞

0

e−rtX
α/(1−β)
t dt

]

< ∞. (40)

Therefore, given any constant µ > 0,

E

[
∫ ∞

0

e−rtYt1n

Yt<µX
α/(1−β)
t

o dt

]

≤ µI2(x) < ∞. (41)

It follows that (39) is true if and only if

E

[
∫ ∞

0

e−rtYt1n

Yt≥µX
α/(1−β)
t

o dt

]

= ∞. (42)

Now, let any µ > 0 such that rϑ−Cµ−(1−β) > 0, where the constants ϑ, C > 0 and β ∈ ]0, 1[
are as in Assumption 2, and note that

E
[

ẐT

]

≥ − CµβE

[
∫ T

0

e−rtX
α/(1−β)
t 1n

Yt<µX
α/(1−β)
t

o dt

]

+
(

rϑ − Cµ−(1−β)
)

E

[
∫ T

0

e−rtYt1n

Yt≥µX
α/(1−β)
t

o dt

]

.
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In view of (41)–(42) and the monotone convergence theorem, the right hand side of this
inequality tends to ∞ as T → ∞, which implies that limT→∞ E[ẐT ] = ∞. However, this
conclusion, (37) and (38) imply that there exists a process Z such that (7) is satisfied and,
therefore, Jx,y(ξ

+, ξ−) = −∞.
To proceed further, let us assume that

E

[
∫ ∞

0

e−rtYt dt

]

< ∞, (43)

which is necessary for condition (32) to be satisfied. Since Y is a finite variation process, its
sample paths can have at most countable discontinuities. Using Fubini’s theorem, we can
see that this observation and (43) imply

∫ ∞

0

e−rtE [Yt+] dt = E

[
∫ ∞

0

e−rtYt+ dt

]

= E

[
∫ ∞

0

e−rtYt dt

]

< ∞,

which proves that (32) implies (33), and establishes part (b) of the lemma.
Now, using Hölder’s inequality, we calculate

E

[
∫ ∞

0

e−rtXα
t Y β

t dt

]

≤ I1−β
2 (x)

(

E

[
∫ ∞

0

e−rtYt dt

])β

< ∞, (44)

where I2(x) is given by (40). This inequality, (38), (43) and the bounds in (24) in Assump-
tion 2 imply

E

[
∫ ∞

0

e−rt |h(Xt, Yt)| dt

]

≤ E

[
∫ ∞

0

e−rt
[

C
(

1 + Xn−ϑ
t + Xα

t Y β
t

)

+
{

r(K+ − ϑ) ∨ C
}

Yt

]

dt

]

< ∞,

which, combined with the dominated convergence theorem, implies

lim
T→∞

E

[
∫ T

0

e−rth(Xt, Yt) dt

]

= E

[
∫ ∞

0

e−rth(Xt, Yt) dt

]

∈ R. (45)

This observation gives rise to two possibilities. The first one is associated with the inequality

E

[
∫

[0,∞[

e−rt dξ+
t +

∫

[0,∞[

e−rt dξ−t

]

< ∞.

In this case, limT→∞ UT exists, P -a.s., and belongs to L1(Ω,F , P ), so Jx,y(ξ
+, ξ−) is finite

and is given by (6). The second possibility is associated with

E

[
∫

[0,∞[

e−rt dξ+
t +

∫

[0,∞[

e−rt dξ−t

]

= ∞,
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which, combined with (43) and (33), implies

E

[
∫

[0,∞[

e−rt dξ+
t

]

= E

[
∫

[0,∞[

e−rt dξ−t

]

= ∞. (46)

If K− < 0, then we can use (1) and the integration by parts formula to calculate

K−
∫

[0,T ]

e−rt dξ−t = K−
∫

[0,T ]

e−rt dξ+
t + |K−|

∫

[0,T ]

e−rt dYt

= K−
∫

[0,T ]

e−rt dξ+
t + r|K−|

∫ T

0

e−rtYt dt + |K−|e−rTYT+ − |K−|y

≥ K−
∫

[0,T ]

e−rt dξ+
t − |K−|y,

which implies

E

[

K+

∫

[0,T ]

e−rt dξ+
t + K−

∫

[0,T ]

e−rt dξ−t

]

≥ (K+ + K−)E

[
∫

[0,T ]

e−rt dξ+
t

]

− |K−|y.

This inequality, the assumption that K+ + K− > 0, (46) and the monotone convergence
theorem imply

lim
T→∞

E

[

K+

∫

[0,T ]

e−rt dξ+
t + K−

∫

[0,T ]

e−rt dξ−t

]

= ∞ (47)

On the other hand, if K− ≥ 0, then (46) plainly implies (47). However, (45) and (47) imply
that limT→∞ E[UT ] = −∞, so (7) is satisfied for Z = U and Jx,y(ξ

+, ξ−) = −∞.
The analysis above establishes the well-posedness of the definition of Jx,y given by (5)–(8)

as well as parts (a) and (b) of the lemma. To prove part (c) of the lemma, we first note that
the first bound in Lemma 2 and (18) imply

R[h(·,y)](x) = E

[
∫ ∞

0

e−rth(Xt, y) dt

]

∈ R.

However, this shows that our performance criterion is finite for the strategy that involves no
capacity changes at any time, which proves that v(x, y) > −∞. To show that v(x, y) < ∞,
consider any admissible decision strategy (ξ+, ξ−) ∈ Πy such that Jx,y(ξ

+, ξ−) > −∞. With
reference to (43) and (44),

E

[
∫ ∞

0

e−rt
[

rϑYt − CXα
t Y β

t

]

dt

]

≥ rϑE

[
∫ ∞

0

e−rtYt dt

]

− CI1−β
2 (x)

(

E

[
∫ ∞

0

e−rtYt dt

])β

≥ −(1 − β)rϑ

β

(

βC

rϑ

)1/(1−β)

I2(x), for all T > 0, (48)
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the second inequality following because, given any constants κ, λ > 0 and β ∈ ]0, 1[,

κQ − λQβ ≥ −(1 − β)κ

β

(

βλ

κ

)1/(1−β)

, for all Q ≥ 0,

in particular, for Q = E
[∫∞

0
e−rtYt dt

]

. However, (37), (38) and (48) imply

Jx,y(ξ
+, ξ−) ≤ I1(x) + K+y +

(1 − β)rϑ

β

(

βC

rϑ

)1/(1−β)

I2(x),

which proves that v(x, y) < ∞ because the right hand side of this inequality is finite and
independent of ξ+ and ξ−. �

4 The Hamilton-Jacobi-Bellman (HJB) equation

The problem described in the previous section has the structure of a singular stochastic
control problem. With regard to standard theory of singular control, we expect that its
value function can be identified with a solution w : S → R to the HJB quasi-variational
inequalities

max
{

σ2x2wxx(x, y) + bxwx(x, y)−rw(x, y) + h(x, y),

wy(x, y) − K+, −wy(x, y) − K−} = 0, x, y > 0, (49)

max
{

σ2x2wxx(x, 0) + bxwx(x, 0)−rw(x, 0) + h(x, 0), wy(x, 0) − K+
}

= 0, x > 0, (50)

where wy(x, 0) := limy↓0 wy(x, y).
To obtain some qualitative understanding of the origins of this equation, we observe that,

at time 0, the project’s management has to choose between three options. The first one is to
wait for a short time ∆t, and then continue optimally. With respect to Bellman’s principle
of optimality, this option is associated with the inequality

v(x, y) ≥ E

[
∫ ∆t

0

e−rth(Xt, y) dt + e−r∆tv(X∆t, y)

]

.

Applying Itô’s formula to the second term in the expectation, and dividing by ∆t before
letting ∆t ↓ 0, we obtain

σ2x2vxx(x, y) + bxvx(x, y) − rv(x, y) + h(x, y) ≤ 0. (51)

The second option is to increase capacity immediately by ε > 0, and then continue
optimally. This action is associated with the inequality

v(x, y) ≥ v(x, y + ε) − K+ε.
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Rearranging terms and letting ε ↓ 0, we obtain

vy(x, y) − K+ ≤ 0. (52)

Assuming that y > 0, the final option is to decrease capacity immediately by ε > 0, and
then continue optimally. This option yields the inequality

v(x, y) ≥ v(x, y − ε) − K−ε,

which, in the limit as ε ↓ 0, implies

−vy(x, y) − K− ≤ 0. (53)

Since these three are the only options available, we expect that one of them should be
optimal, so that one of the inequalities (51)–(53) should hold with equality if y > 0, while,
one of the inequalities (51)–(52) should hold with equality if y = 0. However, this observation
combined with (51)–(53) implies that the value function v should identify with a solution w
to (49)–(50).

The following result is concerned with sufficient conditions under which the value function
v of the control problem considered identifies with a solution to (49)–(50). We impose some
of these conditions, (58)–(59) in particular, which are not standard in similar “verification”
theorems, with a hindsight relative to our analysis in the next section.

Theorem 5 Suppose that the running payoff function h satisfies (24) in Assumption 2 and
that K+, K+ + K− > 0. Also, assume that the HJB equation (49)–(50) has a C2 solution
w : S → R such that

−C2

(

1 + y + xα/(1−β)
)

≤ w(x, y), for all (x, y) ∈ S, (54)

for some constant C2 > 0. The following statements hold true:
(a) v(x, y) ≤ w(x, y), for all initial conditions (x, y) ∈ S.
(b) Given any initial condition (x, y) ∈ S, suppose that there exists a decision strategy

(ξo+, ξo−) ∈ Πy such that, if Y o is the associated capacity process, then

(Xt, Y
o
t ) ∈

{

(x, y) ∈ S : σ2x2wxx(x, y) + bxwx(x, y) − rw(x, y) + h(x, y) = 0
}

, (55)

Lebesgue-a.e., P -a.s.,

∫

[0,T ]

e−rs
[

wy(Xt, Yt) − K+
]

dξo+
s = 0, for all T ≥ 0, P -a.s., (56)

∫

[0,T ]

e−rs
[

wy(Xt, Yt) + K−] dξo−
s = 0, for all T ≥ 0, P -a.s., (57)
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and

Y o
t + Xα

t (Y o
t )β + ξo+

t ≤ C3(y)
(

1 + X̄n−ε3
t

)

, for all t ≥ 0, P -a.s., (58)

w(Xt, Y
o
t ) ≤ C3(y)

(

1 + X̄n−ε3
t

)

, for all t ≥ 0, P -a.s., (59)

where X̄t = sups≤t Xs, ε3 ∈ ]0, ϑ[ is a constant, and C3(y) > 0 is a constant depending on
the initial condition y only. Then v(x, y) = w(x, y) and (ξo+, ξo−) is the optimal strategy.

Proof. (a) Fix any initial condition (x, y) and any admissible strategy (ξ+, ξ−) ∈ Πy such
that Jx,y(ξ

+, ξ−) > −∞, so that Jx,y(ξ
+, ξ−) = E[U∞] (see (5)–(6)). Using Itô’s formula and

the fact that X has continuous sample paths, we obtain

e−rT w(XT , YT+) = w(x, y) +

∫ T

0

e−rt
[

σ2X2
t wxx(Xt, Yt) + bXtwx(Xt, Yt) − rw(Xt, Yt)

]

dt

+

∫

[0,T ]

e−rt
[

wy(Xt, Yt) dξ+
t − wy(Xt, Yt) dξ−t

]

+ MT

+
∑

0≤t≤T

e−rt [w(Xt, Yt+) − w(Xt, Yt) − wy(Xt, Yt)∆Yt] ,

where

MT =
√

2σ

∫ T

0

e−rtXtwx(Xt, Yt) dWt, T ≥ 0. (60)

Recalling the definition of UT in (4), this implies

UT + e−rT w(XT , YT+)

= w(x, y) +

∫ T

0

e−rt
[

σ2X2
t wxx(Xt, Yt) + bXtwx(Xt, Yt) − rw(Xt, Yt) + h(Xt, Yt)

]

dt

+

∫

[0,T ]

e−rt
[

wy(Xt, Yt) − K+
]

d
(

ξ+
)c

t
+

∫

[0,T ]

e−rt
[

−wy(Xt, Yt) − K−] d
(

ξ−
)c

t

+ MT +
∑

0≤t≤T

e−rt
[

w(Xt, Yt+) − w(Xt, Yt) − K+∆Yt

]

1{∆Yt>0}

+
∑

0≤t≤T

e−rt
[

w(Xt, Yt+) − w(Xt, Yt) + K−∆Yt

]

1{∆Yt<0}.

Observing that

[

w(Xt, Yt+) − w(Xt, Yt) − K+∆Yt

]

1{∆Yt>0} = 1{∆Yt>0}

∫ ∆Yt

0

[

wy(Xt, Yt + u) − K+
]

du,

[

w(Xt, Yt+) − w(Xt, Yt) + K−∆Yt

]

1{∆Yt<0}

= 1{∆Yt<0}

∫ |∆Yt|

0

[

−wy (Xt, Yt − |∆Yt| + u) − K−] du,

17



we can see that, since w satisfies the HJB equation (49)–(50),

UT + e−rT w(XT , YT+) ≤ w(x, y) + MT . (61)

Now, in view of (36) and the assumption K+ > 0,

−e−rT YT+ ≥ −
∫

[0,T ]

e−rt dξ+
t − |K−|

K+

∫

[0,T ]

e−rt dξ−t − y,

which, combined with assumption (54), implies

e−rT w(XT , YT+) ≥ −C21

(

1 +

∫

[0,T ]

e−rt dξ+
t +

∫

[0,T ]

e−rt dξ−t + e−rT X
α/(1−β)
T

)

,

for some constant C21 = C21(y) > 0. Combining this inequality with
∫ T

0

e−rth(Xt, Yt) dt ≥ −C

∫ T

0

e−rtYt dt − C

r

(

1 − e−rT
)

,

which follows from (24) in Assumption 2, we can see that (61) implies

inf
T≥0

MT ≥ −C22

(

1 +

∫ ∞

0

e−rtYt dt +

∫

[0,∞[

e−rt dξ+
t +

∫

[0,∞[

e−rt dξ−t + sup
T≥0

e−rT X̄
α/(1−β)
T

)

,

where C22 = C22(x, y) > 0 is a constant and X̄t = sups≤t Xs. Recalling the assumption that
α

1−β
∈ ]0, n[, we can see that the second bound in Lemma 1 and (32) in Lemma 4 imply

that the random variable on the right hand side of this inequality has finite expectation. It
follows that the stochastic integral M defined by (60) is a supermartingale, and therefore,
E [MT ] ≤ 0, for all T > 0. Taking expectations in (61), we therefore obtain

E [UT ] ≤ w(x, y) + e−rT E [−w(XT , YT+)] . (62)

Furthermore, since

UT ≥ −C22

(

1 +

∫ ∞

0

e−rtYt dt +

∫

[0,∞[

e−rt dξ+
t +

∫

[0,∞[

e−rt dξ−t

)

, for all T ≥ 0,

and the random variable on the right hand side of this inequality has finite expectation,
Fatou’s lemma implies

Jx,y(ξ
+, ξ−) ≤ lim inf

T→∞
E [UT ] , (63)

while (54) implies

lim inf
T→∞

e−rT E [−w(XT , YT+)] ≤ lim
T→∞

e−rTC2 + C2 lim inf
T→∞

e−rT E [YT+]

+ C2 lim
T→∞

e−rT E
[

X̄
α/(1−β)
T

]

= 0, (64)
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the equality being true thanks to the first bound in Lemma 1 and (33). However, (62)–(64)
imply that Jx,y(ξ

+, ξ−) ≤ w(x, y), which establishes part (a) of the theorem.
(b) If (ξo+, ξo−) is as in the statement of the theorem, then we can see that the mono-

tone convergence theorem, the integration by parts formula, (58) and the first estimate in
Lemma 1 imply

E

[
∫ ∞

0

e−rtY o
t dt +

∫

[0,∞[

e−rt dξo+
t

]

= lim
T→∞

E

[
∫ T

0

e−rtY o
t dt + r

∫ T

0

e−rtξo+
t dt + e−rT ξo+

T+

]

≤ (1 + r)C3(y)

(

1

r
+

∫ ∞

0

e−rtE
[

X̄n−ε3
t

]

dt

)

+ lim
T→∞

e−rT E
[

X̄n−ε3
T

]

< ∞,

which, combined with (1), implies that (32) in Lemma 4 is satisfied, and, therefore,

Jx,y(ξ
o+, ξo−) = E

[

lim
T→∞

Uo
T

]

∈ R, (65)

where Uo is defined as in (4). Furthermore, we can verify that (61) holds with equality, i.e.,

Uo
T + e−rT w(XT , Y o

T+) = w(x, y) + Mo
T , (66)

where the stochastic integral Mo is defined as in (60). In view of (24) in Assumption 2 and
(58), there exist constants C31 > 0 and C32 = C32(y) > 0 such that

sup
T≥0

∫ T

0

e−rth(Xt, Y
o
t ) dt ≤ C31

(

1 +

∫ ∞

0

e−rt
[

Xn−ϑ
t + Xα

t (Y o
t )β + Y o

t

]

dt

)

≤ C32

(

1 +

∫ ∞

0

e−rtX̄n−ε3
t dt

)

. (67)

With reference to (1), the assumption K+ + K− > 0, the integration by parts formula and
(58), we can see that there exists a constant C33 = C33(y) > 0 such that

sup
T≥0

(

−K+

∫

[0,T ]

e−rt dξo+
t − K−

∫

[0,T ]

e−rt dξo−
t

)

≤ sup
T≥0

K−
(
∫

[0,T ]

e−rt dξo+
t −

∫

[0,T ]

e−rt dξo−
t

)

≤ |K−| sup
T≥0

∫

[0,T ]

e−rt dY o
t

≤ |K−| sup
T≥0

e−rT Y o
T+ + r|K−|

∫ ∞

0

e−rtY o
t dt

≤ |K−| sup
T≥0

e−rT Y o
T+ + C33

(

1 +

∫ ∞

0

e−rtX̄n−ε3
t dt

)

. (68)
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Moreover, (58)–(59) imply

sup
T≥0

e−rT Y o
T+ + sup

T≥0
e−rT w(XT , Y o

T+) ≤ 2C3(y)

(

1 + sup
T≥0

e−rT X̄n−ε3
T

)

. (69)

Now, (18) implies

E

[
∫ ∞

0

e−rtX̄n−ε3
t dt

]

< ∞, (70)

while the second estimate in Lemma 1 implies

E

[

sup
T≥0

e−rT X̄n−ε3
T

]

< ∞. (71)

However, (66) and the estimates (67)–(71) imply that E
[

supT≥0 Mo
T

]

< ∞, which proves
that the stochastic integral Mo is a submartingale. Taking expectations in (66), we therefore
obtain

E [Uo
T ] ≥ w(x, y) + e−rT E [−w(XT , Y o

T )] . (72)

Furthermore, the estimates (67)–(71) imply that the random variables Uo
T , indexed by T ≥ 0,

are all bounded from above by a random variable with finite expectation. This observation,
(65) and Fatou’s lemma imply

Jx,y(ξ
o+, ξo−) ≥ lim sup

T→∞
E [Uo

T ] . (73)

Finally, (59) and the first estimate in Lemma 1 imply

lim sup
T→∞

e−rT E [−w(XT , Y o
T )] ≥ − lim

T→∞
C3(y)

(

e−rT + E
[

e−rT X̄n−ε3
T

])

= 0,

which, combined with (72) and (73), implies Jx,y(ξ
o+, ξo−) ≥ w(x, y). However, this inequal-

ity and part (a) of this theorem complete the proof. �

5 The solution of the control problem

We can now derive an explicit solution to the control problem formulated in Section 2 by
constructing an appropriate solution w to the HJB equation (49)–(50). With respect to
the heuristic arguments in Section 4 that led to the derivation of this equation, we start
by conjecturing that the optimal strategy is characterised by three disjoint open subsets of
]0,∞[×R+: the “wait” region W where (51) holds with equality, the “investment” region
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I where (52) holds with equality, and the “disinvestment” region D where (53) holds with
equality. Also, we conjecture that each of the regions W, I, D is connected. In particular,
we expect that, depending on the problem data, the optimal strategy can take any of the
forms depicted by Figures 1–4. Note that one can envisage other possibilities such as the
one depicted by Figure 5. However, our assumptions do not allow for the optimality of such
other cases under any admissible choice of the problem data (see also Remark 1 in Section 3
and Example 3 in Section 6).

With regard to Figures 1–4, we denote by F and G the boundaries separating the regions
D, W and W, I, respectively, so that

F = D ∩W and G = W ∩ I,

where W, I and D are the closures of W, I and D in R2
+, respectively. Furthermore, we

define

y∗ = inf {y ≥ 0 : there exists x > 0 such that (x, y) ∈ F} , (74)

with the usual convention that inf ∅ = ∞. We will prove that

there exists an increasing function G : [0,∞[→ [0,∞[ such that
(75)

G = {(G(y), y) : y ≥ 0} ,

and, if y∗ < ∞, then

there exists an increasing function F : [y∗,∞[→ [0,∞[ such that
(76)

F ∩ (R+ \ {0})2 = {(F (y), y) : y > y∗} .

Given such a characterisation of F and G,

W =
{

(x, y) ∈ R
2
+ : y ≤ y∗ and x ∈ [0, G(y)]

}

∪
{

(x, y) ∈ R
2
+ : y > y∗ and x ∈ [F (y), G(y)]

}

,

I =
{

(x, y) ∈ R
2
+ : G(y) ≤ x

}

,

while, if y∗ < ∞, then

D =
{

(x, y) ∈ R
2
+ : y ≥ y∗ and x ∈ [0, F (y)]

}

.

In view of this structure, it is worth noting that, if y∗ = 0 and 0 < F (0) < G(0) (see
Figure 3), then {(x, 0) : x < G(0)} ⊂ W, so that the segment ]0, F (0)] is part of the “wait”
region W.

Inside the region W, w satisfies the differential equation

σ2x2wxx(x, y) + bxwx(x, y) − rw(x, y) + h(x, y) = 0. (77)
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In view of the discussion regarding the solvability of (14) in Section 3, every solution to this
equation is given by

w(x, y) = A(y)xn + B(y)xm + R(x, y), (78)

for some functions A and B. Here, the constants m < 0 < n are given by (11), while the
function R ≡ R[h(·,y)] is given by

R(x, y) =
1

σ2(n − m)

[

xm

∫ x

0

s−m−1h(s, y) ds + xn

∫ ∞

x

s−n−1h(s, y) ds

]

. (79)

For y ∈ [0, y∗] ∩ R, we must have B(y) = 0. This choice is supported by the heuristic
observation that, for fixed capacity level y ≥ 0, the problem’s value function should remain
bounded as the value x of the underlying state process tends to 0. Also, it eventually turns
out that (58)–(59) in the verification Theorem 5 cannot be satisfied if B(y) 6= 0. To determine
A(y) and G(y) when y ∈ [0, y∗] ∩ R, we postulate that w(·, y) is C2 at the free-boundary
point G(y). In particular, we postulate that

lim
x↑G(y)

wy(x, y) = lim
x↓G(y)

wy(x, y) and lim
x↑G(y)

wyx(x, y) = lim
x↓G(y)

wyx(x, y). (80)

Since w satisfies

wy(x, y) = K+, for (x, y) ∈ I, (81)

which implies

wxy(x, y) = 0, for (x, y) ∈ I, (82)

this requirement yields the system of equations

A′(y)Gn(y) = K+ − Ry(G(y), y), (83)

A′(y)Gn(y) = −1

n
G(y)Rxy(G(y), y). (84)

Equating the right-hand sides of these equations and using the definition of R in (79), we
obtain

Gm(y)

∫ G(y)

0

s−m−1H(s, y) ds− σ2nK+ = 0, (85)

where H is the function defined by (19). Using the identity σ2mn = −r, which follows from
the definition of the constants m, n in (11), we can see that G(y) should satisfy

q(G(y), y) = 0, (86)
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where

q(x, y) =

∫ x

0

s−m−1
[

H(s, y)− rK+
]

ds, (x, y) ∈ S. (87)

Furthermore, adding (83) and (84) side by side and using (79) and (85), we obtain

A′(y) =
1

2
G−n(y)

[

K+ − Ry(G(y), y)− 1

n
G(y)Rxy(G(y), y)

]

= − 1

σ2(n − m)

∫ ∞

G(y)

s−n−1
[

H(s, y) − rK+
]

ds. (88)

The following result, whose proof is developed in the Appendix, is concerned with the
solvability of equation (86).

Lemma 6 Suppose that Assumption 1 is true. Given any y ≥ 0, the equation q(x, y) = 0
has a unique solution x = x(y) > 0 if and only if infx>0 H(x, y) < rK+. If we define

ỹ∗ = inf
{

y ≥ 0 : inf
x>0

H(x, y) < rK+
}

, (89)

then equation (86) defines uniquely a function G̃ : ]ỹ∗,∞[→ ]0,∞[ that is C1, strictly in-
creasing, and satisfies

H(G̃(y), y)− rK+ > 0, for all y > ỹ∗. (90)

Furthermore, if (25) in Assumption 2 is also true, then ỹ∗ = 0 and

C
− 1−β

α
4 y

1−β
α ≤ G̃(y), for all y ≥ 0 ⇔ G̃[−1](x) ≤ C4x

α
1−β , for all x ≥ G̃(0), (91)

where G̃(0) := limy↓0 G̃(y), G̃[−1] : [G̃(0),∞[→ R+ is the inverse function of G̃, and C4 > 0
is a constant.

Now, let us consider the case where D 6= ∅ and the point y∗ defined by (74) is finite (see
Figures 2–4). For y > y∗, w is given by (77) for x such that (x, y) ∈ W, by (81) for x such
that (x, y) ∈ I, and by

wy(x, y) = −K−, (92)

for x such that (x, y) ∈ D. Plainly, C2 continuity of w inside D implies

wxy(x, y) = 0, for (x, y) ∈ D. (93)
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To determine A(y), B(y), F (y) and G(y), we postulate that w(·, y) is C2 at both of the free-
boundary points F (y) and G(y). With regard to (78), (81)–(82), (92)–(93), the definition
(79) of R(x, y) and the identity σ2mn = −r, this requirement yields

A′(y) = − 1

σ2(n − m)

∫ ∞

F (y)

s−n−1
[

H(s, y) + rK−] ds, (94)

A′(y) = − 1

σ2(n − m)

∫ ∞

G(y)

s−n−1
[

H(s, y) − rK+
]

ds, (95)

B′(y) = − 1

σ2(n − m)

∫ F (y)

0

s−m−1
[

H(s, y) + rK−] ds, (96)

B′(y) = − 1

σ2(n − m)

∫ G(y)

0

s−m−1
[

H(s, y) − rK+
]

ds, (97)

where H is defined by (19). These calculations imply that the points F (y) and G(y) should
satisfy the system of equations

f(F (y), G(y), y) = 0, (98)

g(F (y), G(y), y) = 0, (99)

where

f(x1, x2, y) =

∫ x1

0

s−m−1
[

H(s, y) + rK−] ds −
∫ x2

0

s−m−1
[

H(s, y)− rK+
]

ds, (100)

g(x1, x2, y) =

∫ ∞

x1

s−n−1
[

H(s, y) + rK−] ds −
∫ ∞

x2

s−n−1
[

H(s, y)− rK+
]

ds. (101)

In the Appendix, we prove the following result that is concerned with the solvability of
the system of equations (98) and (99).

Lemma 7 Suppose that Assumption 1 holds. Given y ≥ 0, the system of equations (98)
and (99) has a unique solution (x1, x2) = (x1(y), x2(y)) such that 0 < x1 < x2 if and only if
infx>0 H(x, y) < −rK−. Moreover, if we define

ȳ∗ = inf
{

y ≥ 0 : inf
x>0

H(x, y) < −rK−
}

, (102)

with the usual convention that inf ∅ = ∞, then, if ȳ∗ < ∞, the system of equations (98) and
(99) defines uniquely two functions F̄ , Ḡ : ]ȳ∗,∞[→ ]0,∞[ that are C1, strictly increasing,
and satisfy F̄ (y) < Ḡ(y), for all y > ȳ∗,

F̄ (ȳ∗) := lim
y↓ȳ∗

F̄ (y) = 0, if ȳ∗ > 0, (103)

F̄ (0) := lim
y↓0

F̄ (y) ≤ lim
y↓0

Ḡ(y) =: Ḡ(0), if ȳ∗ = 0, (104)

H(F̄ (y), y) + rK− < 0 and H(Ḡ(y), y)− rK+ > 0, for all y > ȳ∗. (105)
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Furthermore, if (25) in Assumption 2 also holds, then

C
− 1−β

α
4 y

1−β
α ≤ Ḡ(y), for all y ≥ ȳ∗ ⇔ Ḡ[−1](x) ≤ C4x

α
1−β , for all x ≥ Ḡ(ȳ∗), (106)

where Ḡ[−1] : [Ḡ(0),∞[→ R+ is the inverse function of Ḡ and the constant C4 > 0 is the
same constant as in Lemma 6.

In light of the results above, and in the presence of (25) in Assumption 2, ỹ∗ = ∞, where
ỹ∗ is defined by (89), and the point ȳ∗ defined by (102) identifies with the point y∗ in (74).
Also, the functions F : [y∗,∞[→ [0,∞[ and G : [0,∞[→ [0,∞[ separating the three possible
regions, as conjectured in (75)–(76), are given by

F = F̄ , if y∗ < ∞, (107)

G = G̃, if y∗ = ∞, and G(y) =

{

G̃(y), for y ∈ [0, y∗],

Ḡ(y), for y > y∗,
if y∗ < ∞, (108)

where G̃ is as in Lemma 6, F̄ , Ḡ are as in Lemma 7, and y∗ ≡ ȳ∗, where ȳ∗ is given by (102).
The results above determine completely the boundaries of the three possible regions. To

specify w inside the “wait” region W, we still have to solve (88) and (94)–(97). To this end,
it is straightforward to see that, if the associated integrals are finite, then the function

A(y) =
1

σ2(n − m)

∫ ∞

y

∫ ∞

G(u)

s−n−1
[

H(s, u)− rK+
]

ds du > 0, y ≥ 0, (109)

satisfies (88) as well as (94) and (95). In this expression, the inequality follows thanks to (90)
or the second inequality in (105), depending on the case, and the assumption that H(·, y) is
increasing. It is worth noting that adding a constant on the right hand side of (109) would
yield a further solution to (88). However, it turns out that (109) gives the only solution of
(88) that renders w compatible with the requirements of the verification theorem that we
proved in Section 4.

If y∗ < ∞, then

B(y) = − 1

σ2(n − m)

∫ y

y∗

∫ F (u)

0

s−m−1
[

H(s, u) + rK−] ds du > 0, y > y∗, (110)

satisfies (96) or (97). Here, the positivity of B follows from the first inequality in (105) and
the assumption that H(·, y) is increasing. As above, we have set a possible additive constant
to zero because for no other choice can the resulting function w be identified with the value
function of the control problem.

With reference to (81), w must satisfy

w(x, y) = w(x, G[−1](x)) − K+
(

G[−1](x) − y
)

, for (x, y) ∈ I,
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where G[−1] : [G(0),∞[→ R+ is the inverse function of G. Also, if D 6= ∅, then (92) implies
that w should satisfy

w(x, y) = w(x, Φ(x)) − K−(y − Φ(x)), for (x, y) ∈ D,

where the function Φ : ]0,∞[→ R+ is defined by

Φ(x) =

{

F [−1](x), if x ≥ F (y∗),

0, if y∗ = 0 and F (0) > x,
(111)

in which expression, F [−1] : [F (y∗),∞[→ R+ is the inverse function of F . Summarising, we
have two possibilities. If the point y∗ ≡ ȳ∗ as in (74) or (102) is equal to ∞, then

w(x, y) =

{

A(y)xn + R(x, y), for (x, y) such that 0 < x ≤ G(y),

w(x, G[−1](x)) − K+(G[−1](x) − y), for (x, y) such that G(y) < x.
(112)

On the other hand, if y∗ < ∞, then

w(x, y) =



















w(x, Φ(x)) − K−(y − Φ(x)), for (x, y) s. t. y > y∗, x < F (y),

A(y)xn + R(x, y), for (x, y) s. t. y ∈ [0, y∗] ∩ R, x ≤ G(y),

A(y)xn + B(y)xm + R(x, y), for (x, y) s. t. y > y∗, F (y) ≤ x ≤ G(y),

w(x, G[−1](x)) − K+(G[−1](x) − y), for (x, y) s. t. G(y) < x.

(113)

It is worth noting that, if y∗ = 0 and F (0) > 0, then (78) and (110) imply

w(x, 0) = A(0)xn + R(x, 0), for 0 < x ≤ G(0),

which is consistent with the associated expression resulting from (113).
The next result, which we prove in the Appendix, is concerned with proving that the

construction above indeed provides a solution to the HJB equation (49)–(50), as well as with
certain estimates that we will need.

Lemma 8 Suppose that Assumptions 1 and 2 hold. The function w given by (112)–(113),
where F , G and A, B are as in (107), (108) and (109), (110), respectively, is C2 and satisfies
the HJB equation (49)–(50). Also, w satisfies

w(x, y) ≤ C5

(

1 + y + Gn−ε4(y) + Gα(y)yβ + xn−ε4
)

, for all (x, y) ∈ S, (114)

for some constants C5 > 0 and ε4 ∈ ]0, n[, as well as (54) in the verification Theorem 5.
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Remark 2 A careful inspection of the proof of this result reveals that, had we perturbed the
expressions on the right hand sides of (109) and (110) by additive constants, we would still
have obtained a further solution to the HJB equation (49)–(50). However, such a solution
would not satisfy an estimate such as the one provided by (114) that plays a fundamental
role in the proof of the verification Theorem 5. �

We can now prove the main result of the paper.

Theorem 9 Consider the capacity control problem formulated in Section 2, and suppose
that Assumptions 1 and 2 hold. The value function v identifies with the function w given
by (112)–(113), where F , G and A, B are as in (107), (108) and (109), (110), respectively.
The optimal capacity process Y o reflects the joint process (X, Y o) along the boundaries G
and F in the positive and in the negative y-direction, respectively, and can be constructed as
follows.

(a) If y∗ = ∞, then Y o is given by

Y o
t = y1{t≤τ0} + G[−1]

(

sup
s≤t

Xs

)

1{τ0<t},

where τ0 = inf {t ≥ 0 : Xt ≥ G(y)} and G[−1] : [G(0),∞[→ R+ is the inverse function of G.
(b) If y∗ < ∞, we first define

ŷ =

{

Φ(x), if y > Φ(x),

y, otherwise,
τ0 = inf {t ≥ 0 : Xt ≥ G(ŷ)}

and

Y
(1)
t = y1{t=0} + ŷ1{0<t≤τ0} + G[−1]

(

sup
s≤t

Xs

)

1{τ0<t},

where Φ is defined by (111). We then define recursively the (Ft)-stopping times τn and the
processes Y (n) by

τ2k+1 = inf
{

t > 0 : Xt < F̂
(

Y
(2k+1)
t

)}

,

Y
(2k+2)
t = Y

(2k+1)
t 1{t≤τ2k+1} + Φ

(

inf
τ2k+1<s≤t

Xs

)

1{τ2k+1<t},

for k = 0, 1, . . ., where

F̂ (y) =

{

0, if y < y∗,

F (y), if y ≥ y∗,
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and by

τ2k = inf
{

t > 0 : Xt > G
(

Y
(2k)
t

)}

,

Y
(2k+1)
t = Y

(2k)
t 1{t≤τ2k} + G[−1]

(

sup
τ2k<s≤t

Xs

)

1{τ2k<t},

for k = 1, 2, . . .. The optimal capacity process Y o is given by Y o
t = Y

(n)
t , for t < τn and

n ≥ 1.

Proof. In view of Lemma 8, we only have to show that the process Y o satisfies (55)–(59)
in the verification Theorem 5. To this end, we first make the following comments on the
construction of Y o. If y∗ = ∞, then the boundary F does not exist and Y o = Y (1) is all
we need because it reflects the joint process (X, Y (1)) along the boundary G in the positive
y-direction. On the other hand, if y∗ < ∞, then the boundary F becomes part of the picture
and we need to define Y o in a recursive way. If the initial condition (x, y) is in the interior of
the “disinvestment” region D, then the process Y (1) has a jump of size −(y −Φ(x)) at time
0, which instantaneously repositions the joint process (X, Y (1)) in the closure of the “wait”
region W. Similarly, if the initial condition (x, y) is in the interior of the “investment” region
I, then the process Y (1) has a jump of size G[−1](x) − y at time 0, which instantaneously
repositions (X, Y (1)) in the closure of the “wait” region. After time 0, the process Y (1) reflects
the joint process (X, Y (1)) along the boundary G in the positive y-direction, and (X, Y (1))
enters the interior of the “disinvestment” region D after time τ1 with positive probability.
The process Y (2) is the same as Y (1) up to time τ1, Y

(2)
τ1 ≡ Y

(1)
τ1 > y∗ and Xτ1 = F (Y

(2)
τ1 ).

Beyond time τ1, Y (2) reflects the joint process (X, Y (2)) along the boundary F in the negative
y-direction. As a result, the process (X, Y (2)) is kept outside the interior of I ∪ D at all
times up to τ2, after which time, it enters the interior of the “investment” region I with
positive probability. The process Y (3) is the same as Y (2) up to time τ2 and Xτ2 = G(Yτ2).
After τ2, Y (3) reflects (X, Y (3)) along the boundary G in the positive y-direction. It follows
that the process (X, Y (3)) does not enter the interior of I ∪ D up to time τ3. Iterating this

construction, which ensures that Y
(n)
t = Y

(n+1)
t , for all t ∈ [0, τn+1] and n ≥ 1, and observing

that limn→∞ τn = ∞, we can see that Y o
t is defined for all t ≥ 0 and that (55) is satisfied.

Also, if ξo+ and ξo− are the increasing processes providing the minimal decomposition of Y o

into Y o = y + ξo+ − ξo−, then both of (56) and (57) hold.
To proceed further, we note that the construction of Y o implies

Y o
t ≤ y1{X̄t≤G(y)} + G[−1](X̄t)1{X̄t>G(y)}, (115)

where X̄t = sups≤t Xs. Combining this inequality with the definition (108) of G and the
estimates in (91) and (106), we can see that

Y o
t ≤ y1{X̄t≤G(y)} + C4X̄

α/(1−β)
t 1{X̄t>G(y)} (116)
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and

ξo+
t ≤ C4X̄

α/(1−β)
t . (117)

Now, we can use (116), the observation that

G(Y o
t ) ≤ G(y)1{X̄t≤G(y)} + X̄t1{X̄t>G(y)},

which follows immediately from (115), to see that, e.g.,

Gα (Y o
t ) (Y o

t )β ≤ Gα(y)yβ1{X̄t≤G(y)} + Cβ
4 X̄

α/(1−β)
t 1{X̄t>G(y)}

≤ Gα(y)yβ + Cβ
4 X̄

α/(1−β)
t .

In view of this and similar calculations involving the other terms, as well as the estimate
(114) and the fact that α < α

1−β
< n (see Assumption 2), we can conclude that (116)–(117)

imply that the estimates (58)–(59) hold true, and the proof is complete. �

6 Examples

We can illustrate our main results by means of the special cases that we now consider.

Corollary 10 Suppose that h is given by (27) in Example 1, and K+, K+ + K− > 0. If
α

1−β
< n, then v < ∞, while, if α

1−β
> n > α, then v ≡ ∞, where n is the positive solution

of (10). In the former case, the following hold true:
(a) If K− ≥ 0, then y∗ = ∞,

G(y) =

[

−rK+(α − m)

mβ

]1/α

y(1−β)/α, (118)

and the optimal strategy can be depicted by Figure 1.
(b) If K− < 0, then y∗ = 0 and

lim
y↓0

F (y) = lim
y↓0

G(y) = 0. (119)

and the optimal strategy can be depicted by Figure 4.

Proof. As we have observed in Example 1, Assumptions 1 and 2 are satisfied and v < ∞ if
and only if α

1−β
< n. Also, if α

1−β
> n > α, then we have proved in Lemma 3 that v ≡ ∞.

The condition distinguishing the two cases follows from a simple inspection of (102),
while showing (118) involves elementary calculations. To see (119), we observe that the
system of equations (100)–(101), which specifies F and G, is equivalent to

β

α − m
y−(1−β)

[

Gα−m(y) − F α−m(y)
]

= − r

m

[

K+G−m(y) + K−F−m(y)
]

, (120)

β

n − α
y−(1−β)

[

Gα−n(y) − F α−n(y)
]

=
r

n

[

K+G−n(y) + K−F−n(y)
]

. (121)
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Since m < 0 < α, 1 − β and F , G are increasing, the right hand side of (120) remains
bounded as y ↓ 0, and limy↓0 y−(1−β) = ∞. It follows that (120) cannot be true unless (119)
is satisfied, and the proof is complete. �

Remark 3 In the context of the special case considered in Corollary 10, it is worth not-
ing that the solution w to the HJB equation (49)–(50) that we have constructed following
intuition based on economical considerations is finite for all α ∈ ]0, n[ and β ∈ ]0, 1[. Had
we adopted a formal approach, this observation would have suggested the adoption of the
capacity expansion strategy that keeps the process (X, Y ) inside the “wait” region W that
is determined by the functions F and G provided by the unique solution to the associated
free-boundary problem. However, such a formal approach would have lead us to wrong
conclusions because

w(x, y) < ∞ = v(x, y), for all (x, y) ∈ S,

if α
1−β

> n. �

Remark 4 In the special case of Corollary 10 arising when α = 1− β and K− < 0, we can
verify that (120) and (121) are satisfied by the functions

F (y) = κy and G(y) = νy, for y ≥ 0,

where κ and ν are constants satisfying the system of algebraic equations

1 − α

α − m

[

να−m − κα−m
]

= − r

m

[

K+ν−m + K−κ−m
]

, , (122)

1 − α

n − α

[

ν−(n−α) − κ−(n−α)
]

=
r

n

[

K+ν−n + K−κ−n
]

. (123)

Abel and Eberly [AE96] considered this special case with r > b, which satisfies our assump-
tions thanks to the equivalence r > b ⇔ n > 1, and have proved that the system of equations
(122)–(123) has a unique solution such that 0 < κ < ν. �

The following special case follows from our general results and (29).

Corollary 11 Suppose that K+,−K−, K+ + K− > 0, consider the running payoff function
h given by (28) in Example 2, and assume that the associated parameters satisfy (29). The
following cases hold true:

(a) If −rK− ∈
](

βηαζ−(1−β) − K
)

∨ 0, rK+
[

, then y∗ = 0, 0 < limy↓0 F (y) < limy↓0 G(y),
and the optimal strategy can be depicted by Figure 3.

(b) If βηαζ−(1−β) > K and −rK− ∈
]

0, βηαζ−(1−β) − K
[

, then

y∗ =

(

βηα

K − rK−

)
1

1−β

− ζ > 0,

limy↓y∗ F (y) = 0, limy↓0 G(y) > 0, and the optimal strategy can be depicted by Figure 2.
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We conclude with the following example that does not satisfy the requirements imposed
on the problem data by Assumptions 1 and 2.

Example 3 Suppose that the running payoff function h is given by h(x, y) = (x+η)αyβ, for
some constants η > 0 and α, β ∈ ]0, 1[ such that α

1−β
< n. Using the same arguments as the

ones in Example 2, we can check that Assumption 1, and (23), (24) and (26) in Assumption 2
all hold true. However, this payoff function does not satisfy the upper bound required by
(25) in Assumption 2. Furthermore, if we assume that K+,−K−, K+ + K− > 0, then we
can check that the points y∗ and y∗ defined as in Lemma 6 and Lemma 7 are given by

0 < y∗ =

(

βηα

rK+

)
1

1−β

<

(

βηα

−rK−

)
1

1−β

= y∗.

It follows that, at least formally, this example provides a case in which a strategy such as
the one depicted by Figure 5 is optimal.

Appendix: Proof of selected results

Proof of Lemma 6. Suppose that (20) in Assumption 1 is satisfied. Fix any y ≥ 0, and
suppose that infx>0 H(x, y) − rK+ ≥ 0. In this case, H(x, y) − rK+ > 0, for all x > 0,
because H(·, y) is a strictly increasing function. This implies that q(x, y) > 0, for all x > 0,
and, therefore, the equation q(x, y) = 0 has no solution x > 0.

Now, fix any y ≥ 0, and assume that infx>0 H(x, y) < rK+. Recalling the assumption
that H(·, y) is strictly increasing, we define

x† = x†(y) := inf
{

x > 0 : H(x, y) − rK+ > 0
}

> 0,

and we observe that

∂

∂x
q(x, y) = x−m−1

[

H(x, y) − rK+
]

{

< 0, for all x ∈ ]0, x†[,

> 0, for all x > x†.
(124)

Combining the fact that q(·, y) is strictly decreasing in ]0, x†[ and strictly increasing in ]x†,∞[,
with q(0, y) = 0, we can see that q(x, y) < 0, for all x ≤ x†. In particular, q(x†, y) < 0.
Therefore, if q(x, y) = 0 has a solution x > 0 then this must satisfy x > x†. Also, given
that it exists, this solution is unique because q(·, y) is strictly increasing in ]x†,∞[. To prove
that the required solution indeed exists, it suffices to show that limx→∞ q(x, y) = ∞. The
assumption that limx→∞ H(x, y) = ∞ implies that, given any constant M > 0, there exists
γ > x† such that H(x, y)−rK+ ≥ M , for all x ≥ γ. However, given any such choice of these
constants, we calculate

lim
x→∞

q(x, y) = lim
x→∞

[

q(γ, y) +

∫ x

γ

s−m−1
[

H(s, y) − rK+
]

ds

]

≥ lim
x→∞

[

q(γ, y) +
M

m
γ−m − M

m
x−m

]

= ∞.
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If (21) in Assumption 1 also holds and the point ỹ∗ defined as in (89) is finite, then
infx>0 H(x, y) < rK+, for all y > ỹ∗. It follows that equation (86) defines uniquely a contin-
uous function G̃ : ]ỹ∗,∞[→ ]0,∞[. Moreover, the arguments above regarding the solvability
of q(x, y) = 0 imply (90).

To see that G̃ is C1 and strictly increasing, we differentiate q(G̃(y), y) = 0 with respect
to y to obtain

G̃′(y) = −G̃m+1(y)
[

H(G̃(y), y)− rK+
]−1

∫ G̃(y)

0

s−m−1Hy(s, y) ds > 0, (125)

for all y > ỹ∗. The inequality here follows thanks to (90) and (21) in Assumption 1.
Now, suppose that (25) in Assumption 2 also holds and observe that this implies

inf
x>0

H(x, y) < rK+, for all y > 0.

However, this inequality implies that ỹ∗ = 0. Finally, with regard to (25) in Assumption 2
and (124) above, we calculate

∂

∂x
q(x, y) ≤ x−m−1

[

βCxαy−(1−β) − rϑ
]

.

Combining this inequality with q(0, y) = 0, we can see that, given any y > 0, G̃(y) is greater
than or equal to the strictly positive solution of the equation

∫ z

0

s−m−1
[

βCsαy−(1−β) − rϑ
]

ds = 0,

which yields

G̃(y) ≥
(

−rϑ(α − m)

βCm

)
1
α

y
1−β

α , for all y > 0.

However, this implies (91). �

Proof of lemma 7. Suppose that Assumption 1 holds. We develop the proof in a number
of steps.

Step 1. To study the solvability of the system of equations (98) and (99), we first prove
that (98) defines uniquely a mapping L : (R+ \ {0})2 → ]0,∞[ such that

f(x1, L(x1, y), y) = 0 and L(x1, y) > x1. (126)

To this end, fix any x1 > 0, y > 0, and observe that

f(x1, x1, y) = − 1

m
r
(

K+ + K−)x−m
1 > 0. (127)
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Given M > 0, observe that the assumption that limx→∞ H(x, y) = ∞, for all y > 0, implies
that there exists a constant γ > x1 such that H(x, y)− rK+ ≥ M , for all x ≥ γ. For such a
choice of parameters, since m < 0, we calculate

lim
x2→∞

f(x1, x2, y) = lim
x2→∞

[

−
∫ γ

x1

s−m−1
[

H(s, y) − rK+
]

ds

−
∫ x2

γ

s−m−1
[

H(s, y) − rK+
]

ds − r

m

(

K+ + K−)x−m
1

]

≤ lim
x2→∞

[

f(x1, γ, y) − M

∫ x2

γ

s−m−1 ds

]

= lim
x2→∞

[

f(x1, γ, y) − M

m
γ−m +

M

m
x−m

2

]

= −∞. (128)

Also, it is straightforward to calculate

∂f

∂x2
(x1, x2, y) = −x−m−1

2

[

H(x2, y) − rK+
]

{

> 0, for all x2 ∈ ]0, x†[,

< 0, for all x2 > x†,
(129)

where

x† = x†(y) := inf
{

x > 0 : H(x, y)− rK+ > 0
}

.

Combining the fact that f(x1, ·, y) is strictly increasing in the interval [x1, x
†[, if x1 < x†,

and strictly decreasing in the interval ]x† ∨ x1,∞[, with (128) and (127), we can conclude
that the equation f(x1, x2, y) = 0 has a unique solution x2 = L(x1, y) which satisfies (126)
as well as

H(L(x1, y), y)− rK+ > 0. (130)

For future reference, we also note that differentiation of f(x1, L(x1, y), y) = 0 with respect
to x1 yields

∂

∂x1
L(x1, y) =

x−m−1
1 [H(x1, y) + rK−]

L−m−1(x1, y) [H(L(x1, y), y)− rK+]
, (131)

while differentiation of f(x1, L(x1, y), y) = 0 with respect to y gives

∂

∂y
L(x1, y) = −Lm+1(x1, y)

[

H(L(x1, y), y)− rK+
]−1
∫ L(x1,y)

x1

s−m−1Hy(s, y) ds. (132)

Step 2. To prove that the system of equations (98) and (99) has a unique solution
(x1, x2) such that 0 < x1 < x2 we have to show that there exists a unique x1 > 0 such that
g(x1, L(x1, y), y) = 0. To this end, we first observe that the calculation

g(x1, L(x1, y), y) =

∫ L(x1,y)

x1

s−n−1
[

H(s, y)− rK+
]

+
1

n
r
(

K+ + K−)x−n
1
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and the assumptions limx→∞ H(x, y) = ∞, K+ + K− > 0 imply that

there exists a constant N > 0 such that g(x1, L(x1, y), y) > 0, for all x1 ≥ N. (133)

Now, with regard to (131), we calculate

∂

∂x1
g(x1, L(x1, y), y) = x−m−1

1

[

Lm−n(x1, y) − xm−n
1

] [

H(x1, y) + rK−] . (134)

Since L(x1, y) > x1 and m < n, Lm−n(x1, y) − xm−n
1 < 0. Therefore, if infx>0 H(x, y) ≥

−rK−, then g(·, L(·, y), y) is decreasing, which, combined with (133), implies that the
equation g(x1, L(x1, y), y) = 0 cannot have a solution x1 > 0. Therefore, we must have
infx>0 H(x, y) < −rK−. Assuming that this condition holds, we recall that H(·, y) is strictly
increasing, we define

x‡ = x‡(y) := inf
{

x > 0 : H(x, y) + rK− > 0
}

,

and we observe that

g(·, L(·, y), y) is strictly increasing in ]0, x‡[ and strictly decreasing in ]x‡,∞[. (135)

Furthermore, under this condition, there exist ε > 0 and δ < x‡ such that H(x1, y)+ rK− ≤
−ε, for all x1 ≤ δ. For such a choice of parameters, we calculate

lim
x1↓0

∫ ∞

x1

s−n−1
[

H(s, y) + rK−] ds

≤ lim
x1↓0

[

ε

n
δ−n − ε

n
x−n

1 +

∫ ∞

δ

s−n−1
[

H(s, y) + rK−] ds

]

= −∞. (136)

In view of this, (130), and the assumption that H(·, y) is increasing,

lim
x1↓0

g(x1, L(x1, y), y)

= lim
x1↓0

[
∫ ∞

x1

s−n−1
[

H(s, y) + rK−] ds −
∫ ∞

L(x1,y)

s−n−1
[

H(s, y)− rK+
]

ds

]

≤ lim
x1↓0

∫ ∞

x1

s−n−1
[

H(s, y) + rK−] ds

= −∞. (137)

However, combining (133), (135) and (137), we can see that the equation g(x1, L(x1, y), y) =
0 has a unique solution x1 > 0, which also satisfies

H(x1, y) + rK− < 0. (138)
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Step 3. Summarising the analysis above, under the assumption that the point ȳ∗ defined
as in (102) is finite, the system of equations (98) and (99) defines uniquely two continuous
functions F̄ , Ḡ : ]ȳ∗,∞[→ ]0,∞[ that satisfy F̄ (y) < Ḡ(y), for all y > ȳ∗, as well as (105).
Also, (103)–(104) follow from a simple continuity argument combining the definition of ȳ∗

and (138).
Step 4. Now, assuming that ȳ∗ < ∞, we consider any point y > ȳ∗. Differentiating

the equation g(F̄ (y), L(F̄ (y), y), y) = 0 with respect to y, using (131), and observing that
Ḡ(y) = L(F̄ (y), y), we calculate

F̄ ′(y) = − F̄ m+1(y)Ḡ−n
[

Ḡ−(n−m)(y) − F̄−(n−m)(y)
]−1 [

H(F̄ (y), y) + rK−]−1

×
∫ Ḡ(y)

F̄ (y)

[(

Ḡ(y)

s

)n

−
(

Ḡ(y)

s

)m]
1

s
Hy(s, y) ds > 0, (139)

the inequality following thanks to assumption (21), the first inequality in (105) and the fact
that m < 0 < n. Also, differentiating the equation f(F̄ (y), L(F̄ (y), y), y) = 0 with respect
to y, and using (132) and (139), we calculate

Ḡ′(y) = − F̄−n(y)Ḡm+1
[

Ḡ−(n−m)(y) − F̄−(n−m)(y)
]−1 [

H(Ḡ(y), y)− rK+
]−1

×
∫ Ḡ(y)

F̄ (y)

[(

F̄ (y)

s

)n

−
(

F̄ (y)

s

)m]
1

s
Hy(s, y) ds > 0,

the inequality following thanks to (105) and (21). However, these calculations show that
that F̄ and Ḡ both are C1 and strictly increasing.

Step 5. Finally, suppose that (25) in Assumption 2 is also true. With reference to the
equation f(F̄ (y), Ḡ(y), y) = 0, we calculate

0 = −
∫ Ḡ(y)

F̄ (y)

s−m−1
[

H(s, y)− rK+
]

ds − 1

m
r
(

K+ + K−) F̄−m(y)

≥ −
[

βC

α − m
Ḡα−m(y)y−(1−β) +

rϑ

m
Ḡ−m(y)

]

+

[

βC

α − m
F̄ α−m(y)y−(1−β) − 1

m
r
(

K+ + K− − ϑ
)

F̄−m(y)

]

.

Since ϑ < K+ +K− by assumption, the second term on the right hand side of this expression
is strictly positive. Therefore, we must have

βC

α − m
Ḡα−m(y)y−(1−β) +

rϑ

m
Ḡ−m(y) > 0.

This inequality can be true only if Ḡ(y) is strictly greater than the unique strictly positive
solution of the equation

βC

α − m
zα−my−(1−β) +

rϑ

m
z−m = 0,
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which yields

Ḡ(y) ≥
(

−rϑ(α − m)

βCm

)
1
α

y
1−β

α , for all y > ȳ∗.

However, this implies (106). �

Proof of lemma 8. We develop the proof along a series of steps.
Step 1. We first prove (114). Consider (109), and note that the upper bound in (25) in

Assumption 2 implies

0 < A(y) ≤ βC

σ2(n − m)(n − α)

∫ ∞

y

u−(1−β)G−(n−α)(u) du. (140)

Recalling the inequalities α < α
1−β

< n, we fix any ε0 > 0 such that

ε0 < n − α

1 − β
< n − α.

Using the fact that G is increasing and the estimate provided by (91) and (106), we calculate
∫ ∞

y

u−(1−β)G−(n−α)(u) du ≤ G−ε0(y)

∫ ∞

y

u−(1−β)G−(n−α−ε0)(u) du

≤ αC
(1−β)(n−α−ε0)/α
4

(1 − β)(n − ε0) − α
G−ε0(y)y1− (1−β)(n−ε0)

α ,

which implies
∫ ∞

y

u−(1−β)G−(n−α)(u) du ≤ αC
(1−β)(n−α−ε0)/α
4

(1 − β)(n − ε0) − α
G−ε0(y), for all y ≥ 1. (141)

Also, the fact that G is increasing implies that

Gn(y)

∫ 1

y

u−(1−β)G−(n−α)(u) du ≤ Gα(y)

∫ 1

y

u−(1−β) du

≤ 1

β
Gα(1), for all y < 1. (142)

However, (140)–(142) imply

A(y)xn ≤ A(y)Gn(y)

≤ βC

σ2(n − m)(n − α)

[

αC
(1−β)(n−α−ε0)/α
4

(1 − β)(n − ε0) − α
Gn−ε0(y)1{y≥1}

+

(

αC
(1−β)(n−α−ε0)/α
4

(1 − β)(n − ε0) − α
Gn−ε0(1) +

1

β
Gα(1)

)

1{y<1}

]

= C51

(

1 + Gn−ε0(y)
)

, for all y ≥ 0 and x ≤ G(y), (143)
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where C51 > 0 is a constant.
If y∗ < ∞, then (110), the assumption that K+ + K− > 0, the lower bound in (25) in

Assumption 2 and the fact that F is increasing imply that, given any y > y∗,

B(y) ≤ − C + rK+

σ2m(n − m)

∫ y

y∗

F−m(u) du

≤ − C + rK+

σ2m(n − m)
yF−m(y).

In light of this calculation and the fact that m < 0, we can see that

sup
x∈[F (y),G(y)]

B(y)xm ≤ B(y)F m(y) ≤ C52y, for all y > y∗, (144)

where C52 > 0 is a constant. Since R is increasing in x (see (26) in Assumption 2 and (16)),
the upper bound in Lemma 2 implies

sup
x≤G(y)

R(x, y) ≤ R(G(y), y)

≤ C1

(

1 + y + Gn−ϑ(y) + Gα(y)yβ
)

, for all y ≥ 0.

However, combining this estimate with (143) and (144), we can see that w satisfies

w(x, y) ≤ C53

(

1 + y + Gn−ε0∧ϑ(y) + Gα(y)yβ
)

, for all (x, y) ∈ W , (145)

for some constant C53 > 0. With regard to the structure of w provided by (112)–(113), this
inequality and the estimates provided by (91) and (106) imply

w(x, y) ≤ w(x, G[−1](x)) + K+y

≤ C53

(

1 + G[−1](x) + xn−ε0∧ϑ + xα
[

G[−1](x)
]β
)

+ K+y

≤ C54

(

1 + y + xn−ε0∧ϑ + xα/(1−β)
)

, for (x, y) ∈ I, (146)

for some constant C54 > 0. Also, since Φ(x) ≤ y, for all (x, y) ∈ D, and G is increasing,

w(x, y) ≤ w(x, Φ(x)) + |K−|y
≤ C53

(

1 + Φ(x) + Gn−ε0∧ϑ(Φ(x)) + Gα(Φ(x))Φβ(x)
)

+ |K−|y
≤ C55

(

1 + y + Gn−ε0∧ϑ(y) + Gα(y)yβ
)

, for (x, y) ∈ D, (147)

where C55 > 0 is a constant. However, in view of the assumption α
1−β

< n, if we choose any

ε4 ∈
]

0, ε0 ∧ ϑ ∧
(

n − α

1 − β

)[

and C5 ≥ C53 ∨ C54 ∨ C55,
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then we can see that (145)–(147) imply (114).
Step 2. To show that w satisfies (54), we first observe that the positivity of A, B and

the lower bound in Lemma 2 imply that

w(x, y) ≥ −C1(1 + y), for all (x, y) ∈ W. (148)

This estimate and the definition of w in I, provided by (112)–(113), imply

w(x, y) ≥ −(C1 + K+)G[−1](x) − C1

≥ −(C1 + K+)C4x
α/(1−β) − C1, for all (x, y) ∈ I, (149)

the second inequality following thanks to (91) and (106). Also, if y∗ < ∞, then (148) and
the definition of w in D, given by (113), imply

w(x, y) ≥ −C1(1 + Φ(x)) − |K−|max{y, Φ(x)}
≥ −(C1 + |K−|)y − C1. (150)

However, (148)–(150) establish (54).
Step 3. With reference to the construction of w, we will show that w is C2 if we prove

that wx, wxx and wyy are continuous along the free boundaries F and G. To this end, we
calculate

wx(x, y) = wx

(

x, G[−1](x)
)

+
[

wy

(

x, G[−1](x)
)

− K+
] dG[−1](x)

dx
= wx

(

x, G[−1](x)
)

, for (x, y) ∈ I, (151)

and

wxx(x, y) = wxx

(

x, G[−1](x)
)

+ wxy

(

x, G[−1](x)
) dG[−1](x)

dx
= wxx

(

x, G[−1](x)
)

, for (x, y) ∈ I, (152)

the second equalities following thanks to (80) that have been among the requirements leading
to the equations specifying the function G. However, these calculations and the structure of
w provided by (112)–(113) show that wx and wxx are continuous along G.

Now, if y∗ > 0 and y ∈ [0, y∗] ∩ R, we can use (79) and (88) to calculate

lim
x↑G(y)

wyy(x, y) = A′′(y)Gn(y) + Ryy(G(y), y)

=
G−1(y)

σ2(n − m)

[

G′(y)
[

H(G(y), y)− rK+
]

+ Gm+1(y)

∫ G(y)

0

s−m−1Hy(s, y) ds

]

= 0, (153)
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the last equality following thanks to (125). Also, if y∗ < ∞ and y > y∗, we can use (79),
(95) and (97) to calculate

lim
x↑G(y)

wyy(x, y) = A′′(y)Gn(y) + B′′(y)Gm(y) + Ryy(G(y), y)

= 0. (154)

However, combining (153) and (154) with the fact that wyy(x, y) = 0, for (x, y) ∈ I, we
conclude that wyy is continuous along G.

Showing that wx, wxx and wyy are continuous along F involves similar arguments.
Step 4. By construction, we will prove that w satisfies the HJB equation (49)–(50) if

we show that

σ2x2wxx(x, y) + bxwx(x, y) − rw(x, y) + h(x, y) ≤ 0, for (x, y) ∈ I, (155)

wy(x, y) + K− ≥ 0, for (x, y) ∈ I, y > 0, (156)

wy(x, y) − K+ ≤ 0, for (x, y) ∈ W, (157)

wy(x, y) + K− ≥ 0, for (x, y) ∈ W, y > 0, (158)

and, if D 6= ∅,

σ2x2wxx(x, y) + bxwx(x, y) − rw(x, y) + h(x, y) ≤ 0, for (x, y) ∈ D, (159)

wy(x, y) − K+ ≤ 0, for (x, y) ∈ D. (160)

It is straightforward to see that either of (156) or (160) is equivalent to K+ + K− ≥ 0,
which is true by assumption. Recalling that H ≡ hy, we can easily verify that, since
y ≤ G[−1](x), for all (x, y) ∈ I, (151) and (152) imply that (155) is equivalent to

∫ G[−1](x)

y

[

H(x, u) − rK+
]

du ≥ 0, for (x, y) ∈ I.

However, this inequality follows immediately from the assumption that H(x, ·) is strictly
decreasing, for all x, and (90) together with the second inequality in (105). Similarly, we
can show that, if D 6= ∅, then (159) is equivalent to

∫ y

Φ(x)

[

H(x, u) + rK−] du ≤ 0, for (x, y) ∈ D,

where Φ is defined by (111). however, we can see that this inequality is true once we combine
the first inequality in (105) with the assumption that H(x, ·) is strictly decreasing, for all x,
and the assumption that H(·, 0) is strictly increasing.

Now, suppose that y∗ < ∞, and fix any y > y∗. Since wy(F (y), y) = −K− and
wy(G(y), y) = K+, we will prove that both of (157) and (158) are satisfied if we show
that

wyx(x, y) ≥ 0, for all x ∈ ]F (y), G(y)[. (161)
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To this end, we consider the transformation of the independent variable x > 0 provided by
z = ln x, and we write w(x, y) = u(ln x, y) for some function u = u(z, y). It follows that
(161) is true if and only if

uyz(z, y) ≥ 0, for all z ∈ ] lnF (y), lnG(y)[. (162)

Now, since w = w(x, y) satisfies (77) for x ∈ ]F (y), G(y)[, uy satisfies

σ2uyzz(z, y) +
(

b − σ2
)

uyz(z, y) − ruy(z, y) + H(ez, y) = 0, for z ∈ ] lnF (y), lnG(y)[.

Recalling that Hx is continuous and Hx(·, y) ≥ 0 (see Assumption 1), we can differentiate
this equation with respect to z to obtain

σ2(uyz)zz(z, y) +
(

b − σ2
)

(uyz)z(z, y) − ruyz(z, y) = −ezHx(e
z, y),

≤ 0, for z ∈ ] lnF (y), lnG(y)[.

This inequality and the maximum principle imply that uyz(·, y) does not have a negative
minimum in the interval ] ln F (y), lnG(y)[, so

inf
z∈ ] ln F (y),ln G(y)[

uyz(z, y) ≥ min
z=lnF (y),ln G(y)

0 ∧ uyz(z, y)

= min
z=F (y),G(y)

0 ∧ wyx(x, y)

= 0.

However, this calculation implies (162).
To proceed further, fix any y ∈ [0, y∗]∩R. Using the definition of R in (79), the expression

for A′(y) provided by (88) and the fact that G(y) satisfies (86), we can see that, if we define
u(x, y) = wy(x, y) − K+, then

ux(x, y) =
1

σ2(n − m)

[

−mxm−1

∫ G(y)

x

s−m−1
[

H(s, y) − rK+
]

ds

+ nxn−1

∫ G(y)

x

s−n−1
[

H(s, y)− rK+
]

ds

]

, for x ∈ ]0, G(y)[.

This calculation and the assumption that H(·, y) is strictly increasing imply that ux(x, y) =
wyx(x, y) > 0, for all x ∈ [x†(y), G(y)[, where x†(y) ∈ ]0, G(y)[ is the unique point such
that H

(

x†(y), y
)

− rK+ = 0 (see Lemma 6). This observation and the boundary condition
wy (G(y), y) = K+ imply

wy(x, y) − K+ < 0, for all x ∈ [x†(y), G(y)[. (163)

Furthermore, since

σ2x2uxx(x, y) + bxux(x, y) − ru(x, y) = −
[

H(x, y) − rK+
]

≥ 0, for x ∈ ]0, x†(y)[,
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the maximum principle implies that the function x 7→ u(x, y) = wy(x, y)−K+ has no positive
maximum in the interval ]0, x†(y)[, so

sup
x∈ ]0,x†(y)[

[

wy(x, y) − K+
]

≤ max
x=0,x†(y)

0 ∨
[

wy(x, y) − K+
]

= 0, (164)

the equality following thanks to (163) and the fact that

lim
x↓0

wy(x, y) = lim
x↓0

Ry(x, y) = lim
x↓0

H(x, y)

r
∈ [−K−, K+[. (165)

The second equality here holds true because of (17), while the inclusion follows from the
context (see Lemmas 6 and 7). However, (163) and (164) establish (157). Finally, if we
define u(x, y) = wy(x, y) + K−, then (165) and the assumption that H(·, y) is increasing
imply

σ2x2uxx(x, y) + bxux(x, y) − ru(x, y) = −
[

H(x, y) + rK−] ≤ 0, for all x ∈ ]0, G(y)[.

This calculation and the maximum principle imply that the function x 7→ u(x, y) = wy(x, y)+
K− has no negative minimum inside ]0, G(y)[, so

inf
x∈ ]0,G(y)[

[

wy(x, y) + K−] = min
x=0,G(y)

0 ∧
[

wy(x, y) + K−] ,

which, combined with (165) and the boundary condition wy(G(y), y)+K− = K+ +K− > 0,
proves (158), and the proof is complete. �
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Figure 1: A possible optimal capacity control strategy. In this case, it is never optimal to
decrease the project’s capacity.
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Figure 2: A possible optimal capacity control strategy. In this case, increasing the project’s
capacity, waiting and decreasing the project’s capacity are all parts of the optimal strategy.
Also, the point y∗ defined by (74) is strictly positive.
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Figure 3: A possible optimal capacity control strategy. In this case, increasing the project’s
capacity, waiting and decreasing the project’s capacity all belong to the set of optimal tactics.
Also, y∗ = 0, where y∗ is defined by (74), F (0) > 0, and {(x, 0) : x ≤ F (0)} is a subset of
the “wait” region W.
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Figure 4: A possible optimal capacity control strategy. This case arises when the running
payoff function h identifies with the Cobb-Douglas production function and K− < 0.
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Figure 5: A possible optimal capacity control strategy. This case cannot arise under our
assumptions.
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