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Abstract

Buy-low and sell-high investment strategies are a recurrent theme in the considera-
tions of many investors. In this paper, we consider an investor who aims at maximising
the expected discounted cash-flow that can be generated by sequentially buying and
selling one share of a given asset at fixed transaction costs. We model the underlying
asset price by means of a general one-dimensional Itô diffusion X, we solve the resulting
stochastic control problem in a closed analytic form, and we completely characterise the
optimal strategy. In particular, we show that, if 0 is a natural boundary point of X,
e.g., if X is a geometric Brownian motion, then it is never optimal to sequentially buy
and sell. On the other hand, we prove that, if 0 is an entrance point of X, e.g., if X is
a mean-reverting constant elasticity of variance (CEV) process, then it may be optimal
to sequentially buy and sell, depending on the problem data.

Key Words: optimal investment strategies, optimal switching, sequential entry and
exit decisions, variational inequalities.

1 Introduction

We consider an asset with price processX that is modelled by the one-dimensional Itô diffusion

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x > 0, (1)

where W is a standard one-dimensional Brownian motion. An investor follows a strategy that
consists of sequentially buying and selling one share of the asset. We use a controlled finite
variation càglàd process Y that takes values in {0, 1} to model the investor’s position in the
market. In particular, Yt = 1 (resp., Yt = 0) represents the state where the investor holds
(resp., does not hold) the asset, while, the jumps of Y occur at the sequence of times (τn, n ≥ 1)
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at which the investor buys or sells. Given an initial condition (Y0, X0) = (y, x) ∈ {0, 1}× ]0,∞[,
the investor’s objective is to select a strategy Y that maximises the performance criterion

Jy,x(Y ) = lim
n→∞

n
∑

j=1

Ex

[

e−Λτj

[

Hs(Xτj )1{∆Yτj
=−1} −Hb(Xτj )1{∆Yτj

=1}

]

1{τj<∞}

]

, (2)

where
Hb(x) = x+ cb and Hs(x) = x− cs, for x > 0, (3)

the state-dependent discounting factor Λ is defined by

Λt =

∫ t

0

r(Xs) ds, (4)

for some function r > 0, and the constant cb > 0 (resp., cs > 0) represents the transaction cost
of buying (resp., selling) one share of the asset. Accordingly, we define the problem’s value
function v by

v(y, x) = sup
Y ∈Ay,x

Jy,x(Y ), for y ∈ {0, 1} and x > 0, (5)

where Ay,x is the set of admissible investment strategies, which is introduced by Definition 1
in Section 2.

In the presence of the general assumptions that we make on b, σ and r, the optimisation
problem defined by (1)–(5) is well-posed, in particular, the limit in (2) exists (see Theorem 3,
our main result). We solve this problem in a closed analytic form and we characterise fully the
optimal strategy. It turns out that, if 0 is a natural boundary point of the diffusion X, e.g.,
if X is a geometric Brownian motion, then it is optimal to never enter the market, and to sell
the asset as soon as its price exceeds a given level α > 0 if the investor is long in the market at
time 0 (see Remark 2 and Theorem 3). The situation is different if 0 is an entrance boundary
point of the diffusion X. In this case, the strategy of just exiting the market appropriately
may still be optimal. However, depending on the problem data, it may be optimal for the
investor to sequentially buy as soon as the asset price falls below a given level β > 0 and then
sell the asset as soon as its price rises above another level γ > β.

Despite the fundamental nature of buy-low and sell-high investment strategies, there have
been few papers studying models with sequential buying and selling decision strategies. The
reason for this can be attributed to the fact that, as we have briefly discussed above, the prime
example of an asset price process, namely, the geometric Brownian motion, does not allow for
optimal buying and selling strategies that have a sequential nature. The results presented in
Shiryaev, Xu and Zhou (2008) and Dai, Jin, Zhong and Zhou (2010) support such a conclusion:
assuming that a stock price follows a geometric Brownian motion, it is optimal for an investor
to either sell the stock immediately or hold it until their planning horizon. Other related
models involving optimal selling decisions with a geometric Brownian motion type of price
model have been studied by Zhang (2001) and Guo and Zhang (2005).

In the context of one-dimensional Itô diffusions other than a standard geometric Brownian
motion, sequential buying and selling investment strategies can indeed be optimal. Such a re-
sult has already been established by Zhang and Zhang (2008) and Song, Yin and Zhang (2009)
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who model the underlying asset price dynamics by means of a mean-reverting Ornstein-
Uhlenbeck process such as the one appearing in Vasicek’s interest rate model and consider
proportional transaction costs. Apart from highlighting the significance of the classification
of the diffusion’s X boundary point 0 in determining the character of the optimal strategy,
our results have a substantially more general nature. In particular, they can account for a
rather large family of stochastic processes that includes the mean-reverting CEV processes,
which have been proposed in the empirical finance literature as better models for a range of
asset prices, particularly, in the commodity markets (e.g., see Geman and Shih (2009) and the
references therein). Having made this comment, we note that Dai, Zhang and Zhu (2010a)
have studied the interesting case with proportional costs that arises if the underlying asset
price dynamics are modelled by a geometric Brownian motion with drift switching between
two possible values that are not directly observable by the investor. Further in this modelling
direction, Dai, Zhang and Zhu (2010b) have studied the more realistic situation in which the
investor is not restricted to buying and selling just one share of stock at a time but aims at
maximising their portfolio’s expected return.

The problem that we solve has the characteristics of an entry and exit decision problem.
Stochastic optimal control problems involving sequential switching decisions have attracted
considerable interest in the literature, particularly, in relation to the management of commod-
ity production facilities. Following Brennan and Schwartz (1985), Dixit and Pindyck (1994),
and Trigeorgis (1996), who were the first to address this type of a decision problem in the
economics literature, Brekke and Øksendal (1994), Bronstein and Zervos (2006), Costeniuc,
Schnetzer and Taschini (2008), Djehiche and Hamadène (2009), Djehiche, Hamadène and
Popier (2009/10), Duckworth and Zervos (2001), Guo and Pham (2005), Guo and Tomecek
(2008), Hamadène and Jeanblanc (2007), Hamadène and Zhang (2010), Johnson and Zervos
(2010), Lumley and Zervos (2001), Ly Vath and Pham (2007), Pham (2004), Pham, Ly Vath
and Zhou (2009), Tang and Yong (1993), and Zervos (2003), provide an incomplete, alphabeti-
cally ordered, list of authors who have studied a number of related models by means of rigorous
mathematics. The contributions of these authors range from explicit solutions to character-
isations of the associated value functions in terms of classical as well as viscosity solutions
of the corresponding Hamilton-Jacobi-Bellman (HJB) equations, as well as in terms of back-
ward stochastic differential equation characterisations of the optimal strategies. Chapter 5 of
Pham (2009) provides a nice overview of the area.

The paper is organised as follows. Section 2 is concerned with the setting of the problem
that we study. We derive the solution to this problem in Section 3. In Section 4, we consider
a couple of examples that illustrate our results.

2 Problem formulation and assumptions

We assume that the data of the one-dimensional Itô diffusion given by (1) in the introduction
satisfy the following assumption.
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Assumption 1 The functions b, σ : ]0,∞[→ R are Borel-measurable,

σ2(x) > 0 for all x > 0,

and

∫ β

α

1 + |b(s)|

σ2(s)
ds <∞ for all 0 < α < β <∞.

�

The conditions in this assumption are sufficient for the SDE (1) to have a weak solution
(Ω,F ,Ft,Px,W,X) that is unique in the sense of probability law up to a possible explosion
time (e.g., see Section 5.5.C of Karatzas and Shreve (1991)). We assume that such a weak solu-
tion is fixed for each initial condition x > 0 throughout the paper. In particular, Assumption 1
implies that the scale function p, given by

p(x) =

∫ x

1

exp

(

−2

∫ s

1

b(u)

σ2(u)
du

)

ds, for x > 0, (6)

is well-defined, and the speed measure m, given by

m(dx) =
2

σ2(x)p′(x)
dx, (7)

is a Radon measure.
We also assume that the solution of (1) in non-explosive, i.e., the hitting time of the

boundary {0,∞} of the interval ]0,∞[ is infinite with probability 1 (see Theorem 5.5.29 in
Karatzas and Shreve (1991) for appropriate necessary and sufficient analytic conditions).

Assumption 2 The solution of (1) is non-explosive. �

Relative to the discounting factor Λ defined by (4), we make the following assumption.

Assumption 3 The function r : ]0,∞[→ ]0,∞[ is Borel-measurable and uniformly bounded
away from 0, i.e., there exists a constant r0 > 0 such that r(x) ≥ r0 for all x > 0. Also,

∫ β̄

ᾱ

r(s)

σ2(s)
ds <∞ for all 0 < ᾱ < β̄ <∞.

�

In the presence of Assumptions 1–3, there exists a pair of C1 functions ϕ, ψ : ]0,∞[→ ]0,∞[
with absolutely continuous first derivatives and such that

0 < ϕ(x) and ϕ′(x) < 0 for all x > 0, (8)

0 < ψ(x) and ψ′(x) > 0 for all x > 0, (9)

lim
x↓0

ϕ(x) = lim
x→∞

ψ(x) = ∞, (10)

ϕ(x) = ϕ(y)Ex

[

e−ΛTy

]

for all y < x and ψ(x) = ψ(y)Ex

[

e−ΛTy

]

for all x < y, (11)
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where Ty is the first hitting time of {y}, which is defined by Ty = inf {t ≥ 0 | Xt = y}. Also,
the functions ϕ and ψ are classical solutions of the homogeneous ODE

Lg(x) :=
1

2
σ2(x)g′′(x) + b(x)g′(x) − r(x)g(x) = 0, (12)

and satisfy
ϕ(x)ψ′(x) − ϕ′(x)ψ(x) = Cp′(x) for all x > 0, (13)

where C = ϕ(1)ψ′(1) − ϕ′(1)ψ(1) and p is the scale function defined by (6).
Now, let g be a C1 function with absolutely continuous first derivative satisfying

lim
x↓0

g(x)

ϕ(x)
= lim

x→∞

g(x)

ψ(x)
= 0 and Ex

[
∫ ∞

0

e−Λt
∣

∣Lg(Xt)
∣

∣ dt

]

<∞, (14)

where L is the operator defined by (12). Such a function admits the analytic representation

g(x) = −ϕ(x)

∫ x

0

Ψ(s)Lg(s) ds− ψ(x)

∫ ∞

x

Φ(s)Lg(s) ds, (15)

where

Φ(x) =
2ϕ(x)

Cσ2(x)p′(x)
and Ψ(x) =

2ψ(x)

Cσ2(x)p′(x)
. (16)

Furthermore, given any (Ft)-stopping time τ , Dynkin’s formula

Ex

[

e−Λτg(Xτ)1{τ<∞}

]

= g(x) + Ex

[
∫ τ

0

e−ΛtLg(Xt) dt

]

(17)

holds, and
lim
n→∞

Ex

[

e−Λτn |g(Xτn)| 1{τn<∞}

]

= 0, (18)

for every sequence of (Ft)-stopping times (τn) such that τn → ∞, Px-a.s.. The existence of the
functions ϕ, ψ and the various results that we have listed can be found in several references,
including Chapter II of Borodin and Salminen (2002). For future reference, we also note that
a straightforward calculation involving (13) and (15) implies that

(

g

ϕ

)′

(x) = −
Cp′(x)

ϕ2(x)

∫ ∞

x

Φ(s)Lg(s) ds (19)

and

(

g

ψ

)′

(x) =
Cp′(x)

ψ2(x)

∫ x

0

Ψ(s)Lg(s) ds. (20)

We can now complete the set of our assumptions.
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Assumption 4 The problem data is such that

lim
x→∞

H(x)

ψ(x)
= 0 and Ex

[
∫ ∞

0

e−Λt
∣

∣LH(Xt)
∣

∣ dt

]

<∞, (21)

where H is the identity function, i.e., H(x) = x for all x > 0. Also, cb, cs > 0, and there exist
constants 0 ≤ xb < xs such that

LHb(x)

{

> 0, for x < xb if xb > 0,

< 0, for x > xb,
and LHs(x)

{

> 0, for x < xs,

< 0, for x > xs.
(22)

�

The following definition introduces the class of all admissible investment strategies over
which we maximise the performance criterion Jy,x defined by (2).

Definition 1 Given an initial condition (y, x) ∈ {0, 1}× ]0,∞[ and the associated weak solu-
tion (Ω,F ,Ft,Px,W,X) of (1), an admissible investment strategy is any (Ft)-adapted finite-
variation càglàd process Y with values in {0, 1} such that Y0 = y. Given such a process Y ,
we denote by (τn) the strictly increasing sequence of (Ft)-stopping times at which the jumps
of Y occur, which can be defined recursively by

τ1 = inf{t > 0 | Yt 6= y} and τj+1 = inf{t > τj | Yt 6= Yτj}, for j = 1, 2, . . . , (23)

with the usual convention that inf ∅ = ∞. We denote by Ay,x the set of all admissible
strategies. �

We conclude this section with the following remarks.

Remark 1 In view of the definition (12) of the operator L, the definition (3) of the functions
Hb, Hs and the inequality in (21), we can see that

Ex

[
∫ ∞

0

e−Λt
[

|LHb(Xt)| + |LHs(Xt)|
]

dt

]

≤ 2Ex

[
∫ ∞

0

e−Λt |LH(Xt)| dt

]

+ (cb + cs)Ex

[
∫ ∞

0

e−Λtr(Xt) dt

]

= 2Ex

[
∫ ∞

0

e−Λt|LH(Xt)| dt

]

+ (cb + cs)Ex

[
∫ ∞

0

e−Λt dΛt

]

= 2Ex

[
∫ ∞

0

e−Λt|LH(Xt)| dt

]

+ (cb + cs)

<∞.

It follows that the functions Hb, Hs satisfy the corresponding requirements of (14), and,
therefore, they have all of the corresponding properties in (15)–(18). �
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Remark 2 In the context of Assumption 2, 0 can be a natural boundary point of the diffusion
X, in which case, limx↓0 ψ(x) = 0, or an entrance boundary point, in which case, limx↓0 ψ(x) >
0. If 0 is a natural boundary point, then the conditions in Assumption 4 can all be true only
if xb = 0. To see this claim, we argue by contradiction and we assume that 0 is a natural
boundary point and Assumption 4 holds with xb = 0. In view of the strict positivity of cb, we
can see that

∞ = lim
x↓0

Hb(x)

ψ(x)
≤ − lim

x↓0

∫ ∞

x

Φ(s)LHb(s) ds < −

∫ ∞

xb

Φ(s)LHb(s) ds <∞, (24)

which is a contradiction. It follows that Assumption 4 can hold with xb > 0 only if 0 is an
entrance boundary point.

For future reference, we note that, if 0 is an entrance boundary point and xb > 0, then

− lim
x↓0

∫ ∞

x

Φ(s)LHb(s) ds = lim
x↓0

Hb(x)

ψ(x)
. (25)

To see this claim, we argue as in (24) to obtain

0 < lim
x↓0

Hb(x)

ψ(x)
≤ − lim

x↓0

∫ ∞

x

Φ(s)LHb(s) ds <∞,

which implies that

0 <

∫ x

0

Φ(s)LHb(s) ds <∞ for all x ∈ ]0, xb[.

In view of the identity Φ = ϕΨ/ψ, which follows from (16), and the fact that the function
ϕ/ψ is decreasing, we can see that

∞ >

∫ x

0

Φ(s)LHb(s) ds =

∫ x

0

Ψ(s)
ϕ(s)

ψ(s)
LHb(s) ds ≥

ϕ(x)

ψ(x)

∫ x

0

Ψ(s)LHb(s)ds > 0

for all x ∈ ]0, xb[. It follows that

lim
x↓0

ϕ(x)

ψ(x)

∫ x

0

Ψ(s)LHb(s) ds = 0,

which, combined with (15), implies (25). �

3 The solution of the control problem

The existing theory on sequential switching problems suggests that the value function v of our
control problem should identify with a classical solution w of the HJB equation

max

{

1

2
σ2(x)wxx(y, x) + b(x)wx(y, x) − r(x)w(y, x),

w(1 − y, x) − w(y, x) + yHs(x) − (1 − y)Hb(x)

}

= 0, y = 0, 1, (26)
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where Hb and Hs are defined by (3). We now solve our control problem by constructing
an appropriate solution to this equation. To this end, we have to consider two qualitatively
different cases. The first one arises when it is optimal for the investor to sell as soon as the
asset price exceeds a given level α > 0, if y = 1, and never enter the market otherwise. In this
case, we look for a solution of the HJB equation (26) of the form given by

w(0, x) = 0 and w(1, x) =

{

Aψ(x), if x < α,

Hs(x), if x ≥ α,
(27)

for some constant A. To determine the parameter A and the free-boundary point α, we appeal
to the so-called “principle of smooth fit” of sequential switching and we require that w(1, ·) is
C1 along α, which yields the system of equations

Aψ(α) = Hs(α) and Aψ′(α) = H ′
s(α).

This system is equivalent to

A =
Hs(α)

ψ(α)
=
H ′

s(α)

ψ′(α)
. (28)

In view of (20), we can check that these identities imply that α > 0 should satisfy the equation

q(α) = 0, (29)

where

q(x) =

∫ x

0

Ψ(s)LHs(s) ds. (30)

The following result, which we prove in the Appendix, is concerned with the solvability of
(29) as well as with a necessary and sufficient condition for the function w given by (27) to
satisfy the HJB equation (26).

Lemma 1 In the presence of Assumptions 1–4, there exists a unique α > 0 satisfying equation
(29). Furthermore, α > cs and the function w defined by (27), where A > 0 is given by (28),
satisfies the HJB equation (26) if and only if the problem data is such that either xb = 0 or

xb > 0 and cb ≥ (α− cs)
limx↓0 ψ(x)

ψ(α)
. (31)

The second possibility arises when it is optimal for the investor to sequentially enter and
exit the market. In this case, we postulate that the value function of our control problem
should identify with a solution w of the HJB equation (26) that has the form given by the
expressions

w(1, x) =

{

Aψ(x), if x < γ,

Bϕ(x) +Hs(x), if x ≥ γ,
(32)

w(0, x) =

{

Aψ(x) −Hb(x), if x ≤ β,

Bϕ(x), if x > β,
(33)
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for some constants A, B and free-boundary points β, γ such that 0 < β < γ. To determine
these variables, we conjecture that the functions w(1, ·) and w(0, ·) should be C1 at the free-
boundary points γ and β, respectively, which yields the system of equations

Aψ(γ) = Bϕ(γ) +Hs(γ), Aψ(β) −Hb(β) = Bϕ(β), (34)

Aψ′(γ) = Bϕ′(γ) +H ′
s(γ) and Aψ′(β) −H ′

b(β) = Bϕ′(β). (35)

We can check that these equations are equivalent to

A =
H ′

b(β)ϕ(β) −Hb(β)ϕ′(β)

ϕ(β)ψ′(β) − ϕ′(β)ψ(β)
=
H ′

s(γ)ϕ(γ) −Hs(γ)ϕ
′(γ)

ϕ(γ)ψ′(γ) − ϕ′(γ)ψ(γ)
,

B =
H ′

b(β)ψ(β) −Hb(β)ψ′(β)

ϕ(β)ψ′(β) − ϕ′(β)ψ(β)
=
H ′

s(γ)ψ(γ) −Hs(γ)ψ
′(γ)

ϕ(γ)ψ′(γ) − ϕ′(γ)ψ(γ)
,

and then appeal to Remark 1, (13) and (19)–(20) to obtain

A = −

∫ ∞

β

Φ(s)LHb(s) ds = −

∫ ∞

γ

Φ(s)LHs(s) ds, (36)

B =

∫ β

0

Ψ(s)LHb(s) ds =

∫ γ

0

Ψ(s)LHs(s) ds. (37)

It follows that the free-boundary points 0 < β < γ should satisfy the system of equations

qϕ(β, γ) = 0 and qψ(β, γ) = 0, (38)

where

qϕ(x, z) =

∫ ∞

x

Φ(s)LHb(s) ds−

∫ ∞

z

Φ(s)LHs(s) ds (39)

and

qψ(x, z) =

∫ x

0

Ψ(s)LHb(s) ds−

∫ z

0

Ψ(s)LHs(s) ds. (40)

The following result is concerned with conditions, under which, there exist points 0 < β < γ
that satisfy (38) and the corresponding function w defined by (32)–(33) satisfies the HJB
equation (26).

Lemma 2 In the presence of Assumptions 1–4, the system of equations (38) has a unique
solution 0 < β < γ if and only if the problem data is such that

xb > 0 and cb < (α− cs)
limx↓0 ψ(x)

ψ(α)
, (41)

where α > cs is the unique solution of (29). In this case, β < α < γ and the function w
defined by (32)–(33), for A > 0 and B > 0 given by (36) and (37), satisfies the HJB equation
(26).
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We can now establish our main result.

Theorem 3 The stochastic optimisation problem introduced by (1)–(5) and formulated in
Section 2 is well-posed. Furthermore,
(I) if the problem data is such that either xb = 0 or (31) holds true, then v = w, where w is
as in Lemma 1, and the optimal strategy Y ∗ is given by

Y ∗
t = y1[0,τ∗

1
](t), where τ ∗1 = inf{t ≥ 0 | Xt ≥ α}, (42)

with the convention that inf ∅ = ∞, and α > 0 is the unique solution of (29);
(II) if the problem data is such that (41) holds true, then v = w, where w is as in Lemma 2,
and the optimal strategy Y ∗ is characterised by the unique solution 0 < β < γ of the system
of equations (38) and is given by

Y ∗
t = 1{0}(t) +

∞
∑

j=0

1]τ∗
2j ,τ

∗

2j+1
](t), (43)

where τ ∗0 = 0,

τ ∗2j = inf{t ≥ τ ∗2j−1 | Xt ≥ γ} and τ ∗2j−1 = inf{t ≥ τ ∗2j−2 | Xt ≤ β}, for j ≥ 1,

if y = 1, and by

Y ∗
t =

∞
∑

j=0

1]τ∗
2j+1

,τ∗
2j+2

](t), (44)

where τ ∗0 = 0,

τ ∗2j+1 = inf{t ≥ τ ∗2j | Xt ≥ γ} and τ ∗2j = inf{t ≥ τ ∗2j−1 | Xt ≤ β}, for j ≥ 1,

if y = 0.

Proof. We first note that, in view of (8)–(9), there exists a constant K > 0 such that
|w(y, x)| ≤ K(1 + x) for all x > 0 and y = 0, 1. This observation, the calculations

Lw(1, ·)(x) =

{

0, if x < α,

LHs(x), if x > α,
and Lw(0, ·) = 0,

which hold if w is as in Lemma 1, the calculations

Lw(1, ·)(x) =

{

0, if x < γ,

LHs(x), if x > γ,
and Lw(0, ·)(x) =

{

−LHb(x), if x < β,

0, if x > β,

which hold if w is as in Lemma 2, (21) in Assumption 4 and Remark 1 imply that the functions
w(y, ·), y = 0, 1, satisfy the corresponding requirements of (14). It follows that

w(0, ·) and w(1, ·) have all of the corresponding properties in (14)–(18). (45)
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In the rest of the analysis, we may assume that the investor is long in the market at time
0, i.e., that y = 1; the analysis of the case associated with y = 0 follows exactly the same
steps. To start with, we consider any admissible investment strategy Y ∈ A1,x, and we recall
that the jumps of Y occur at the times composing the sequence (τn, n ≥ 1) defined by (23)
in Definition 1. For notational simplicity, we define τ0 = 0, and we note that

τj(ω) < τj+1(ω) for all ω ∈ {τj <∞} and j ≥ 1.

Also, we note that limj→∞ τj = ∞, Px-a.s., because Y is a finite-variation process.
Iterating Dynkin’s formula (17), we obtain

2n−1
∑

j=1

Ex

[

e−Λτj

[

Hs(Xτj )1{∆Yτj
=−1} −Hb(Xτj )1{∆Yτj

=1}

]

1{τj<∞}

]

=

n−1
∑

j=0

Ex

[

e−Λτ2j+1Hs(Xτ2j+1
)1{τ2j+1<∞}

]

−
n−1
∑

j=1

Ex

[

e−Λτ2jHb(Xτ2j
)1{τ2j<∞}

]

= Hs(x) +
n−1
∑

j=1

Ex

[

e−Λτ2j

[

Hs(Xτ2j
) −Hb(Xτ2j

)
]

1{τ2j<∞}

]

+ Ex

[
∫ τ2n

0

e−ΛtYtLHs(Xt) dt

]

(3)
= Hs(x) −

(

cs + cb
)

n−1
∑

j=1

Ex

[

e−Λτ2j 1{τ2j<∞}

]

+ Ex

[
∫ τ2n

0

e−ΛtYtLHs(Xt) dt

]

. (46)

Also, (14) and the dominated convergence theorem imply that

Ex

[
∫ ∞

0

e−ΛtYtLHs(Xt) dt

]

= lim
n→∞

Ex

[
∫ τn

0

e−ΛtYtLHs(Xt) dt

]

∈ R.

Combining these observations with the limit

lim
n→∞

Ex

[

e−Λτ2nHb(Xτ2n
)
]

= 0,

which holds thanks to (18) and the fact that limn→∞ τn = ∞, we can see that

J1,x(Y ) = lim
n→∞

n
∑

j=1

Ex

[

e−Λτj

[

Hs(Xτj)1{∆Yτj
=−1} −Hb(Xτj )1{∆Yτj

=1}

]

1{τj<∞}

]

∈ [−∞,∞[. (47)

It follows that J1,x(Y ) is well-defined and our optimisation problem is well-posed.
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To proceed further, we recall (45) and we iterate Dynkin’s formula (17) to calculate

Ex

[

e−Λτ2nw(0, Xτ2n
)1{τ2n<∞}

]

= w(1, x) +
n−1
∑

j=0

Ex

[

e−Λτ2j+1

[

w(0, Xτ2j+1
) − w(1, Xτ2j+1

)
]

1{τ2j+1<∞}

]

+
n−1
∑

j=1

Ex

[

e−Λτ2j

[

w(1, Xτ2j
) − w(0, Xτ2j

)
]

1{τ2j<∞}

]

+

n−1
∑

j=0

Ex

[

∫ τ2j+1

τ2j

e−ΛtLw(1, Xt) dt

]

+

n−1
∑

j=0

Ex

[

∫ τ2j+2

τ2j+1

e−ΛtLw(0, Xt) dt

]

.

Adding the term

2n−1
∑

j=1

Ex

[

e−Λτj

[

Hs(Xτj )1{∆Yτj
=−1} −Hb(Xτj )1{∆Yτj

=1}

]

1{τj<∞}

]

≡
n−1
∑

j=0

Ex

[

e−Λτ2j+1Hs(Xτ2j+1
)1{τ2j+1<∞}

]

−
n−1
∑

j=1

Ex

[

e−Λτ2jHb(Xτ2j
)1{τ2j<∞}

]

on both sides of this identity, we obtain

2n−1
∑

j=1

Ex

[

e−Λτj

[

Hs(Xτj )1{∆Yτj
=−1} −Hb(Xτj )1{∆Yτj

=1}

]

1{τj<∞}

]

= w(1, x) − Ex

[

e−Λτ2nw(0, Xτ2n
)1{τ2n<∞}

]

+

n−1
∑

j=0

Ex

[

∫ τ2j+1

τ2j

e−ΛtLw(1, Xt) dt

]

+

n−1
∑

j=0

Ex

[

∫ τ2j+2

τ2j+1

e−ΛtLw(0, Xt) dt

]

+
n−1
∑

j=0

Ex

[

e−Λτ2j+1

[

w(0, Xτ2j+1
) − w(1, Xτ2j+1

) +Hs(Xτ2j+1
)
]

1{τ2j+1<∞}

]

+

n−1
∑

j=1

Ex

[

e−Λτ2j

[

w(1, Xτ2j
) − w(0, Xτ2j

) −Hb(Xτ2j
)
]

1{τ2j<∞}

]

.

This calculation and the fact that w satisfies the HJB equation (26), imply that

Ex

[

2n−1
∑

j=1

e−Λτj

[

Hs(Xτj )1{∆Yτj
=−1} −Hb(Xτj )1{∆Yτj

=1}

]

1{τj<∞}

]

≤ w(1, x) − Ex

[

e−Λτ2nw(0, Xτ2n
)1{τ2n<∞}

]

. (48)
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In view of (47) and the fact that

lim
n→∞

Ex

[

e−Λτ2nw(0, Xτ2n
)1{τ2n<∞}

]

= 0,

which follows from (18) and (45), we can pass to the limit n → ∞ in (48) to obtain the
inequality J1,x(Y ) ≤ w(1, x). Therefore, v(1, x) ≤ w(1, x).

The nature of the strategy Y ∗ given by (42) or (43)–(44), depending on the case, is such
that (48) hold with equality. By passing to the limit n → ∞ as above, we therefore obtain
J1,x(Y

∗) = w(1, x), which establishes the inequality v(1, x) ≥ w(1, x).
To complete the proof, we still have to show that the process Y ∗ given by (43)–(44) is a

finite variation process. In particular, we have to show that Px (limn→∞ τ ∗n <∞) = 0. To this
end, we use the definition (4) of the discounting factor Λ, the strong Markov property of the
process X and (11) to obtain

Ex

[

e
−Λτ∗

2n+1

]

= Ex

[

e
−Λτ∗

2n Ex

[

exp

(

−

∫ τ∗2n+1−τ
∗

2n

0

r(Xτ∗
2n+s) ds

)

| Fτ∗
2n

]]

= Ex

[

e
−Λτ∗

2n Eγ

[

exp

(

−

∫ Tβ

0

r(Xs) ds

)]]

=
ϕ(γ)

ϕ(β)
Ex

[

e
−Λτ∗

2n

]

.

Similarly, we can see that

Ex

[

e
−Λτ∗

2n

]

=
ψ(β)

ψ(γ)
Ex

[

e
−Λτ∗

2n−1

]

.

These calculations and the dominated convergence theorem imply that

Ex

[

lim
n→∞

e
−Λτ∗

2n+1

]

= lim
n→∞

Ex

[

e
−Λτ∗

1

]

(

ϕ(γ)ψ(β)

ϕ(β)ψ(γ)

)n

= 0,

the second equality following from the facts that ϕ (resp., ψ) is strictly decreasing (resp.,
increasing) and γ > β. This conclusion contradicts the possibility that Px (limn→∞ τ ∗n <∞) >
0, and the proof is complete. �

4 Examples

4.1 The underlying is a geometric Brownian motion

Suppose that X is a geometric Brownian motion, so that

dXt = bXt dt+ σXt dWt,

for some constants b and σ > 0, and that r > b∨0 is a constant. In this case, Assumptions 1–3
are all satisfied,

ϕ(x) = xm and ψ(x) = xn,

13



where the constants m < 0 and 1 < n are given by

m,n =
−

(

b− 1
2
σ2

)

±
√

(

b− 1
2
σ2

)2
+ 2σ2r

σ2
.

It is straightforward to check that all of the conditions in Assumption 4 hold true with

xb = 0 and xs =
rcs
r − b

.

Since xb = 0, we are in the context of part (I) of Theorem 3. In particular, we can check
that the function q defined by (30) admits the expression

q(x) =
1

n−m

[

r − b

m− 1
x−m+1 −

rcs
m
x−m

]

,

and conclude that the free-boundary point α > 0 determining the optimal strategy is given
by

α =
rcs(m− 1)

(r − b)m
.

4.2 The underlying is a mean-reverting CEV process

Suppose that X is the mean-reverting CEV process given by

dXt = κ(ϑ−Xt) dt+ σXℓ
t dWt.

for some constants κ, ϑ, σ > 0 and ℓ ∈ [1
2
, 1[ such that 2κϑ > σ2 if ℓ = 1

2
, and that r > 0 is

a constant. Assumptions 1–3 are all satisfied, while, the mean-reverting nature of X implies
that (21) in Assumption 4 also holds true. Furthermore, it is straightforward to check that
the inequalities in (22) of Assumption 4 are satisfied with

xb = 0 ∨
κϑ− rcb
κ + r

and xs =
κϑ+ rcs
κ+ r

.

It is well-known that, if ℓ = 1
2
, then

φ(x) = U

(

r

κ
,
2κϑ

σ2
;
2κ

σ2
x

)

and ψ(x) = 1F1

(

r

κ
,
2κϑ

σ2
;
2κ

σ2
x

)

,

where U and 1F1 are confluent hypergeometric functions (see Chapter 13 of Abramowitz and
Stegun (1972)). If ℓ ∈ ]1

2
, 1[, then we are not aware of any similar analytic expressions for

the functions ϕ and ψ. In either case, 0 is an entrance boundary point and limx↓0 ψ(x) > 0.
Therefore, either of (I) or (II) in Theorem 3 can be the case, depending on the problem data.
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Appendix: proof of Lemmas 1 and 2

Proof of Lemma 1. In view of (22) in Assumption 4, we can see that

q′(x) = Ψ(x)LHs(x)

{

> 0, if x < xs,

< 0, if x > xs.
(49)

This observation and the fact that q(0) = 0 imply that there exists a unique α > 0 satisfying
equation (29) if and only if limx→∞ q(x) < 0. To see that this inequality indeed holds, we note
that the definition of Hs and (21) in Assumption 4 imply that

Hs(x)

ψ(x)
≡
x− cs
ψ(x)

> 0 for all x > cs and lim
x→∞

Hs(x)

ψ(x)
= 0,

while (20) and the definition (30) of q imply that

(

Hs

ψ

)′

(x) =
Cp′(x)

ψ2(x)

∫ x

0

Ψ(s)LHs(s) ds =
Cp′(x)

ψ2(x)
q(x). (50)

Since q is strictly decreasing in ]xs,∞[, we can see that these facts can all be true only if
limx→∞ q(x) < 0, as required. For future reference, we also note that this conclusion and (49)
imply that the unique solution α > 0 of the equation q(α) = 0 is such that

xs < α and q(x) =

∫ x

0

Ψ(s)LHs(s) ds > 0 for all x < α. (51)

Since H ′
s(x) = 1 and ψ′(x) > 0 for all x > 0, the second expression in (28) implies that

A > 0. This observation and the first expression in (28) imply that Hs(α) ≡ α− cs > 0.
By construction, we will show that the function w defined by (27) satisfies the HJB equation

(26) if we show that

w(0, x) − w(1, x) +Hs(x) = −Aψ(x) +Hs(x) ≤ 0 for all x < α, (52)

Lw(1, x) = LHs(x) ≤ 0 for all x > α, (53)

w(1, x) − w(0, x) −Hb(x) = Aψ(x) −Hb(x) ≤ 0 for all x < α, (54)

and

w(1, x) − w(0, x) −Hb(x) = x− cs − (x+ cb) ≤ 0 for all x > α. (55)

The last of these inequalities is plainly true, while (53) follows immediately from the first
inequality in (51) and assumption (22). In view of (28), we can see that (52) is equivalent to

Hs(x)

ψ(x)
≡
x− cs
ψ(x)

≤
α− cs
ψ(α)

≡
Hs(α)

ψ(α)
for all x < α,
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which is indeed true, thanks to (50) and (51). Similarly, we can verify that (54) is equivalent
to

Hb(x)

ψ(x)
≡
x+ cb
ψ(x)

≥
α− cs
ψ(α)

≡
Hs(α)

ψ(α)
for all x < α. (56)

In view of the identities
(

Hb

ψ

)′

(x)
(20)
=

Cp′(x)

ψ2(x)

∫ x

0

Ψ(s)LHb(s) ds
(30)
=

Cp′(x)

ψ2(x)

[

q(x) −
(

cb + cs
)

∫ x

0

Ψ(s)r(s) ds

]

,

we can see that, if xb = 0, then the function Hb/ψ is strictly decreasing and (56) is true,
while, if xb > 0, then there exists x̃ ∈ ]xb, α[ such that the function Hb/ψ is strictly increasing
in ]0, x̃[ and strictly decreasing in ]x̃, α], in which case (56) is true if and only if the second
inequality in (31) is true. �

Proof of Lemma 2. We first note that (22) in Assumption 4 implies that

qϕ(x, z) =

∫ z

x

Φ(s)LHb(s) ds+

∫ ∞

z

Φ(s)
[

LHb(s) − LHs(s)
]

ds

=

∫ z

x

Φ(s)LHb(s) ds− (cb + cs)

∫ ∞

z

Φ(s)r(s) ds

< 0 for all xb ≤ x < z. (57)

This observation implies that the system of equations (38) has no solution 0 < β < γ if xb = 0.
Furthermore, if the system of equations (38) has a solution 0 < β < γ, then β ∈ ]0, xb[. We
therefore assume that the problem data is such that xb > 0 in what follows, and we look for
a solution 0 < β < γ of (38) such that β ∈ ]0, xb[.

In view of the equation (29) that α > 0 satisfies and the first inequality in (51), we can see
that

lim
z→∞

qψ(x, z) =

∫ x

0

Ψ(s)LHb(s) ds−

∫ ∞

α

Ψ(s)LHs(s) ds > 0 for all x ≤ xb.

Also, (22) in Assumption 4 implies that

∂qψ
∂z

(x, z) = −Ψ(z)LHs(z)

{

< 0, if z < xs,

> 0, if z > xs.

Combining these observations with the fact that

qψ(x, x) =

∫ x

0

Ψ(s)L
[

Hb(s) −Hs(s)
]

ds = −
(

cb + cs
)

∫ x

0

Ψ(s)r(s) ds < 0,

we can see that there exists a unique function L : ]0, xb[→ R+ such that

xs < L(x) and qψ
(

x, L(x)
)

= 0. (58)
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Furthermore, we can differentiate the identity qψ
(

x, L(x)
)

= 0 with respect to x to obtain

L′(x) =
Ψ(x)LHb(x)

Ψ
(

L(x)
)

LHs

(

L(x)
) > 0 for all x < xb, (59)

and combine the equation (29) that α > 0 satisfies with the definition of qψ to see that

lim
x↓0

L(x) = α. (60)

To proceed further, we calculate

d

dx
qϕ

(

x, L(x)
) (59)

= −
Φ(x)Ψ

(

L(x)
)

− Φ
(

L(x)
)

Ψ(x)

Ψ
(

L(x)
) LHb(x)

(16)
= −

2ψ(x)

Cσ2(x)p′(x)

[

ϕ(x)

ψ(x)
−
ϕ
(

L(x)
)

ψ
(

L(x)
)

]

LHb(x)

< 0 for all x < xb,

the inequality following because the function ϕ/ψ is strictly decreasing. This result and the
observation that limx↑xb

qϕ
(

x, L(x)
)

< 0, which follows from (57), imply that there exists a
unique point β > 0 such that qϕ

(

β, L(β)
)

= 0 if and only if

lim
x↓0

qϕ
(

x, L(x)
)

> 0. (61)

In light of the calculations

lim
x↓0

qϕ
(

x, L(x)
) (60)

= lim
x↓0

∫ ∞

x

Φ(s)LHb(s) ds−

∫ ∞

α

Φ(s)LHs(s) ds

(25),(29)
= − lim

x↓0

Hb(x)

ψ(x)
−
ϕ(α)

ψ(α)

∫ α

0

Ψ(s)LHs(s) ds−

∫ ∞

α

Φ(s)LHs(s) ds

(15)
= − lim

x↓0

Hb(x)

ψ(x)
+
Hs(α)

ψ(α)
, (62)

and the definition (3) of the functions Hb and Hs, we can see that (61) is equivalent to the
second inequality in (41). We conclude this part of the analysis by observing that the system
of equations (38) has a unique solution if and only if (41) is true. In particular, when this
solution exists,

0 < β < xb and γ = L(β) > xs. (63)

Also, the second expression in (36) and the inequality γ > xs imply that A > 0, while the first
expression in (37) and the inequality β < xb imply that B > 0.

By construction, we will show that the function w defined by (32)–(33) satisfies the HJB
equation (26) if we show that

gs(x) := w(0, x) − w(1, x) +Hs(x) ≤ 0 for all x < γ, (64)

Lw(1, x) = LHs(x) ≤ 0 for all x > γ, (65)

Lw(0, x) = −LHb(x) ≤ 0 for all x < β, (66)
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and

gb(x) := w(1, x) − w(0, x) −Hb(x) ≤ 0 for all x > β. (67)

The inequalities (65) and (66) follow immediately from (22) in Assumption 4 and (63). Also,
(64) for x ≤ β, as well as (67) for x > γ, is equivalent to −(cb + cs) ≤ 0, which is true by
assumption. To establish (64) and (67) for x ∈ [β, γ], we use (15) and (36)–(37) to calculate

gs(x) = −Aψ(x) +Bϕ(x) +Hs(x)

= −ψ(x)

∫ γ

x

Φ(s)LHs(s) ds+ ϕ(x)

∫ γ

x

Ψ(s)LHs(s) ds,

gb(x) = Aψ(x) − Bϕ(x) −Hb(x)

= −ψ(x)

∫ x

β

Φ(s)LHb(s) ds+ ϕ(x)

∫ x

β

Ψ(s)LHb(s) ds.

Furthermore, we use the definition (16) of the functions Φ, Ψ to obtain

g′s(x) = −ψ′(x)

∫ γ

x

Φ(s)LHs(s) ds+ ϕ′(x)

∫ γ

x

Ψ(s)LHs(s) ds, (68)

g′b(x) = −ψ′(x)

∫ x

β

Φ(s)LHb(s) ds+ ϕ′(x)

∫ x

β

Ψ(s)LHb(s) ds. (69)

In view of (22) in Assumption 4 and the inequalities ϕ′ < 0 < ψ′, we can see that these
identities imply that

g′s(x) > 0 for all x ∈ [xs, γ[ and g′b(x) < 0 for all x ∈ ]β, xb[.

These inequalities and the fact that gs(γ) = gb(β) = 0 imply that

gs(x) < 0 for all x ∈ [xs, γ[ and gb(x) < 0 for all x ∈ ]β, xb[.

Combining these inequalities with the identities

gs(β) = Hs(β) −Hb(β) = −(cs + cb) and gb(γ) = Hs(γ) −Hb(γ) = −(cs + cb),

which follow from (34), we can see that gs(x), gb(x) ≤ 0 for all x ∈ [β, γ], as required, provided
that gs (resp., gb) does not have a strictly positive local maximum in ]β, xs[ (resp., ]xb, γ[).
We can see that this is indeed the case by noting that

Lgs(x) = LHs(x) > 0 for all x ∈ ]β, xs], Lgb(x) = −LHb(x) > 0 for all x ∈ [xb, γ[,

and then appealing to the maximum principle. �
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