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We present a new methodology for the numerical pricing of a class of exotic
derivatives such as Asian or barrier options when the underlying asset price dynam-
ics are modelled by a geometric Brownian motion or a number of mean-reverting
processes of interest. This methodology identifies derivative prices with infinite-
dimensional linear programming problems involving the moments of appropriate
measures, and then develops suitable finite-dimensional relaxations that take the
form of semi-definite programs (SDP) indexed by the number of moments involved.
By maximising or minimising appropriate criteria, monotone sequences of both up-
per and lower bounds are obtained. Numerical investigation shows that very good
results are obtained with only a small number of moments. Theoretical convergence
results are also established.
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1. INTRODUCTION

We propose a new methodology for calculating the prices of several exotic
options of European type. For concreteness, our analysis focuses on fixed-
strike, arithmetic-average Asian and down-and-out barrier call option payoff
structures. However, it can easily be modified to account for other payoff
structures including double-barrier knockout and Parisian call options, or
their “put” counterparts. The study of exotic options has been a major
research area in mathematical finance, and the literature is abundant in
results such as exact formulas or numerical approximation techniques when
the underlying asset price dynamics are modelled by a geometric Brownian
motion (GBM). The approach that we propose also addresses the cases
arising when the underlying price dynamics are modelled by processes such
as an Ornstein-Uhlenbeck process as in Vasicek’s model, a standard square-
root process with mean-reversion as in the Cox-Ingersoll-Ross (CIR) model,
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and others (see Remark 2.1 in Section 2), which are of particular interest in
the fixed-income and the commodity markets.

The objective of this paper is to introduce the new approach rather than
present an exhaustive study of its range of applicability relative to different
payoff structures or underlying asset price dynamics, which is significantly
large. In fact, encouraged by the quality of our numerical results, we ex-
pect that our approach will become a standard tool in financial engineering.
Therefore, we do not attempt a comprehensive survey of the literature on
the valuation of the options we focus on here, but we restrict ourselves to a
few remarks only. If we assume that the underlying asset follows a GBM,
then there exists a closed form analytic expression for the price of a down-
and-out barrier call option (e.g., see Musiela and Rutkowski (1997, Section
9.6)). On the other hand, this is not the case for arithmetic-average Asian
options. Such options are important for both their practical importance
and their theoretical interest, and their analysis has attracted significant
interest in the literature. Approaches to the approximate pricing of Asian
options when the underlying is modelled by a GBM include quasi-analytic
techniques based on Edgeworth and Taylor expansions, and the like (e.g.,
Turnbull and Wakeman (1991)), methods derived by means of probabilistic
techniques (Curran (1992), Rogers and Shi (1995)), the numerical solution
of appropriate PDE’s (e.g., Rogers and Shi (1995)) and Monte Carlo simu-
lations (e.g., Glasserman, Heidelberger and Shahabuddin (1999)). Most of
these approximation techniques can be adapted to account for the pricing
of Asian options when the underlying follows other diffusion processes such
as a mean-reverting process. However, despite their practical importance,
such extensions are still at their early stages.

The approach that we develop in this paper derives from the methodology
of moments introduced by Dawson (1980) for the analysis of geostochas-
tic systems modelled as solutions, called stochastic measure diffusions, of
measure-valued martingale problems with a view to a range of applications
in areas such as statistical physics, population, ecology, epidemic modelling,
and others. In the present context, the idea can be described informally as
follows. First, one identifies the price of a European style option with a lin-
ear combination of moments of suitably defined measures. One then exploits
the martingale property of certain associated stochastic integrals to derive
an infinite system of linear equations involving the moments of the mea-
sures considered. Thus, one relates the value of an option with the solution
of an infinite-dimensional linear programming (LP) problem the variables of
which identify with the moments of certain measures. The next step is to
obtain finite-dimensional relaxations by restricting the infinite-dimensional
LP problem to one that involves only a finite number of moments. For this
step to make sense, one has to introduce extra constraints, called moment
conditions, that reflect necessary conditions for a set of scalars to be iden-
tified with moments of a measure supported on a given set. Depending on
the choice of moment conditions (see Section 4 below), one can end up with
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an LP problem or a semi-definite programming (SDP) problem. In either
case, by maximising (resp. minimising) the resulting problems, one obtains
upper (resp. lower) bounds for the value of the option under consideration,
the quality of which is enhanced as the number of moments increases.

A similar methodology has been used by Helmes, Röhl and Stockbridge
(2001) to evaluate the moments of certain exit time distribution and change-
point detection problems. These authors used moment conditions that re-
sulted in LP problems, and, although they did not establish the conver-
gence of their algorithm, they obtained very good numerical results. Also,
Schwerer (2001) considered the evaluation of moments of the steady-state
distribution of a reflected Brownian motion. Her analysis provided bounds
by means of appropriate LP relaxations, and established the convergence of
her algorithm.

Recently, a related, though fundamentally different, approach leading
to the computation of bounds for the prices of certain European options
has been proposed by Boyle and Lin (1997), Bertsimas and Popescu (2000,
2002), and Gotoh and Konno (2002). These authors assume a non-paramet-
ric framework in which only the first n moments of the underlying asset’s
distribution at maturity are known. Their work was extended in a more
general framework by Zuluaga and Peña (2005), and by Han, Li, Sun and
Sun (2005) (see also the references therein).

The contributions of this paper are multi-fold, and can be summarised
as follows. First, we introduce the approach described above in the area
of pricing a class of exotic derivatives of interest in the financial and the
commodity markets. The scope of our methodology is not restricted in
the Black and Scholes world because it can as well be applied when the
underlying asset price dynamics are modelled by a number of mean-reverting
diffusions that have been considered in the mathematical finance literature
and are of particular interest in the theory used in the interest rate and the
commodity markets. Also, one of its important aspects is that it provides
monotone sequences of both upper and lower bounds, which can be used to
control the maximal possible approximation error.

In contrast to Helmes, Röhl and Stockbridge (2001), and Schwerer (2001),
the objective criteria that we wish to evaluate here are not anymore ex-
pressed in terms of moments of the underlying process’ distribution at a
given (stopping) time, which gives rise to a situation that requires additional
modelling effort. Moreover, we consider moment conditions that derive from
the semi-definite positivity property of moment and localising matrices (see
Section 4). As a result, we are faced with the solution of SDP instead of
LP problems. SDP problems are convex optimisation problems that, given
a required precision, can, in principle, be solved in time that is polynomial
in the problem’s size, and standard software solvers are now available, in-
cluding public domain ones. It is worth noting that, instead of considering
moment conditions leading to SDP problems, we could as well have con-
sidered moment conditions leading to LP problems. Although we did not
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test the efficiency of the two possibilities against each other in the present
context, our experience suggests the superiority of the SDP approach (for
results in this direction, see Lasserre and Prieto-Rumeau (2004)).

We also prove the convergence of our algorithms to the value of the ob-
jective criterion under certain conditions. The most important of these as-
sumptions requires that the underlying asset’s distribution at the derivative’s
maturity is uniquely determined by its moment sequence. With regard to the
underlying asset dynamics considered in this paper, the Ornstein-Uhlenbeck
process as in Vasicek’s model and the standard square-root process with
mean reversion as in the CIR model satisfy this condition because the nor-
mal and the non-central χ2 distributions are uniquely determined by their
moment sequences. On the other hand, we cannot guarantee the convergence
of our algorithms to the exact value of the options under consideration if
we assume that the underlying follows a GBM because the lognormal dis-
tribution is not moment-determinate (see also Example 3.3 for a further
illustration of this issue). In all cases, our numerical investigation has re-
vealed that our method yields very good results with only a small number
of moments, and compares favourably with standard approximation tech-
niques against which we have tested it. In particular, our lower bounds
for fixed-strike, arithmetic-average Asian options on a GBM outperform the
Curran (1992) lower bound.

At this point, we should note that what appears as a possible drawback
of our method, namely the lack of our algorithm’s convergence when the un-
derlying asset dynamics are modelled by a GBM, actually provides a further
contribution of the paper. Indeed, our analysis reveals that the moment de-
terminancy of the underlying probability distributions plays a fundamental
role when addressing the qualitative nature of bounds for option prices using
moment methods. In particular, it has obvious implications for the quality
of the bounds derived by Bertsimas and Popescu (2000, 2002), Gotoh and
Konno (2002), and the other related references discussed above.

The paper is organised as follows. In Section 2, we present the derivative
structures on which our analysis focuses. In Section 3, we develop the the-
oretical background from which our methodology derives, and we explore
certain of its ramifications. Section 4 is concerned with the issue of moment
conditions pertaining to the relaxations developed in Section 3. Sections 5
and 6 present how the general method can be applied to the pricing of
derivatives with Asian and barrier payoff structures, respectively. Finally,
our numerical investigation is presented in Section 7 and some proofs are
postponed in an appendix in Section 8.

2. A CLASS OF OPTIONS

Fix a filtered probability space (Ω,F ,Ft, P ) satisfying the usual conditions
and supporting a standard, one-dimensional (Ft)-Brownian motion W . We
consider a number of derivatives the underlying asset price process of which
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satisfies a stochastic differential equation (SDE) of the form

(2.1) dXt = b(Xt) dt + σ(Xt) dWt, X0 = x0 ∈ I.

Here, I is either (0,+∞) or R, and b, σ : I → I are given functions such
that (2.1) has a unique strong solution with values in I, for all t ≥ 0, P -a.s..
In particular, we assume that the underlying asset price process X is given
by one of the following three models.

Model 1: b(x) := bx, σ(x) := σx and I = (0,+∞), for some constants
b, σ ∈ R.

This is the familiar geometric Brownian motion underlying the Black and
Scholes model.

Model 2: b(x) := γ(θ − x), σ(x) := σ and I = R, for some constants
γ, θ, σ ∈ R.

This mean-reverting diffusion is an Ornstein-Uhlenbeck process, which ap-
pears, for instance, in Vasicek’s interest rate model.

Model 3: b(x) := γ(θ − x), σ(x) := σ
√

x and I = (0,+∞), for some
constants γ, θ, σ ∈ R such that γθ > 1

2σ2.
This diffusion models the short rate dynamics assumed in the Cox-Ingersoll-
Ross interest rate model. Note that the inequality γθ > 1

2σ2 is necessary
and sufficient for the solution of (2.1) to be non-explosive, in particular, for
the hitting time of 0 to be equal to ∞ with probability one.

Remark 2.1. At this point, we note that, apart from the models above,
there are several other choices for the underlying asset dynamics that we
could have considered. These include the diffusions as in (2.1) with

b(x) = γ(θ − x) and σ(x) = σx,

or
b(x) = γ(θ − x)x and σ(x) = σx,

which have been considered in the interest rate and the real option theories.
In fact, any one-dimensional diffusion the infinitesimal generator of which
maps polynomials into polynomials with the same or smaller degrees presents
a choice that is compatible with our approach.

Our analysis focuses on three types of derivative payoff structures. In
particular, we consider the payoffs of standard European, Asian and barrier
call options (it is a totally trivial exercise to modify our analysis to account
for the corresponding put options).

The value of a European call option written on the underlying X is given
by

(2.2) vE(x0) := e−ρT E
[
(XT − K)+

]
.

Here, T > 0 is the option’s maturity time, K is the option’s strike price,
ρ is a constant discounting factor, and x0 is the initial underlying asset
price. Plainly, the simplest way of calculating vE(x0) is by integrating the
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function x 7→ (x−K)+ with respect to the distribution of XT (which, in the
Models 1, 2 and 3 that we consider is lognormal, normal and non-central χ2,
respectively). The reason we consider this type of options is because we can
easily compare our approximation results with the exact available formulas.

The value of a fixed-strike, arithmetic-average Asian call option written
on X is given by

(2.3) vA(x0) := e−ρT E

[(
1
T

∫ T

0
Xt dt − K

)+
]

.

The parameters appearing in this expression have same interpretation as
above.

The price of a typical down-and-out barrier call option written on the
underlying process X is given by

(2.4) vB(x0) := e−ρT E
[
(XT − K)+I{τ=T}

]
,

where τ is the (Ft)-stopping time defined by

(2.5) τ := inf {t ≥ 0 | Xt ≤ H} ∧ T,

and H < x0 is the knockout barrier. The other parameters are the same as
in the other options considered above.

At this point, we should note that, with regard to the dynamics of Model 1
and the standard Black and Scholes theory, we assume that the probability
measure P with respect to which we compute expectations in (2.2), (2.3) and
(2.4) identifies with the unique so-called risk neutral probability measure and
ρ is the short term interest rate. In this context, we must also have b = ρ,
but we do not impose such a condition because it does not provide any
simplification.

3. THE MOMENT APPROACH TO THE EVALUATION OF
FUNCTIONALS OF DIFFUSIONS

The purpose of this section is to introduce the moment approach to the prob-
lem of approximately evaluating certain functionals of a diffusion such as the
process X given by (2.1). This approach starts by identifying the value of
such functionals with the solution of appropriate infinite-dimensional op-
timisation problems in which the controlled variables are the moments of
suitably defined measures. It then proceeds to the derivation of suitable
finite-dimensional relaxations of the resulting optimisation problems. These
relaxations involve

(a) the restriction to a finite number of moments, and
(b) the replacement of the unknown moments by scalars constrained to

satisfy necessary, so-called moment conditions for these scalars to be iden-
tified with moments of measures with appropriate supports.
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3.1. Functionals of Diffusions and Martingale Moment Conditions.

To fix ideas, let (Ω,F ,Ft, P ) be a filtered probability space satisfying the
usual conditions and supporting a standard, m-dimensional (Ft)-Brownian
motion B, and consider the SDE

(3.1) dZt = β(Zt) dt + e(Zt) dBt, Z0 = z0 ∈ Rn,

where β : Rn → Rn and e : Rn → Rn×m are given deterministic functions
such that (3.1) has a unique strong solution. The infinitesimal generator A
of this diffusion is defined by

f 7→ (Af)(z) :=
1
2

tr
[
eeTDzzf

]
(z) +

[
βTDzf

]
(z), f ∈ D(A),

the domain D(A) of which contains the set C2
c (Rn) of all twice-continuously

differentiable functions f : Rn 7→ R with compact support. Here, given
f ∈ D(A), the vector Dzf and the n × n matrix Dzzf are the gradient and
the Hessian of f , respectively, so that

Dzf := (fz1 , . . . , fzn)T and Dzzf(i, j) := fzizj , i, j = 1, . . . , n.

We impose the following assumption.

Assumption 3.1. The entries of the vector β(z) and the matrix
(
eeT

)
(z)

are polynomials in z, so that A maps polynomials into polynomials. More-
over,

sup
t∈[0,T ]

n∑

j=1

E
[
|Zj

t |k
]

< ∞, for all T > 0, for all k ∈ N.

This assumption implies in particular that, given any polynomial f :
Rn → R, f ∈ D(A), and the process Mf defined by

Mf
t := f(Zt) − f(z0) −

∫ t

0
(Af) (Zs) ds

=
∫ t

0

[
eTDzf

]T
(Zs) dBs, t ≥ 0,(3.2)

is a square-integrable martingale.
To proceed further, fix any (Ft)-stopping time τ that is bounded by a

constant T > 0, P -a.s.. With regard to Doob’s optional sampling theorem,
observe that, under Assumption 3.1, if f : Rn → R is a polynomial, then

(3.3) E [f(Zτ )] − f(z0) − E

[∫ τ

0
(Af)(Zs) ds

]
= 0.

Now, consider
• the expected occupation measure µ(·) = µ(· ; z0) of the diffusion Z up to

time τ that is defined by

(3.4) µ(B) := E

[∫ τ

0
I{Zs∈B} ds

]
, B ∈ B(Rn),
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where B(Rn) is the Borel σ-algebra on Rn, and
• the exit location measure ν(·) = ν(· ; z0) that is defined by

(3.5) ν(B) := P (Zτ ∈ B) , B ∈ B(Rn),

which is the probability distribution of Zτ .
One may then rewrite (3.3) as

(3.6)
∫

Rn

f(z) ν(dz) − f(z0) −
∫

Rn

(Af)(z)µ(dz) = 0,

which is called the basic adjoint equation (e.g., see Helmes, Röhl and Stock-
bridge (2001)), and characterises the measures µ and ν associated with the
generator A (see Kurtz and Stockbridge (1998)).

Given a multi-index α ∈ Nn, if f is the monomial

z 7→ f(z) = zα :=
n∏

j=1

z
αj

j ,

then Assumption 3.1 implies that there exists a finite collection {cβ(α)}
of real numbers such that (Af)(z) =

∑
β cβ(α)zβ , for all z ∈ Rn. If we

define {µα} = {µα(z0)} and {να} = {να(z0)} to be the moments of µ and
ν, respectively, assumed to be finite, i.e.,

µα =
∫

Rn

zα µ(dz) < ∞ and να =
∫

Rn

zα ν(dz) < ∞,

then the basic adjoint equation (3.6) implies

(3.7) να −
∑

β

cβ(α)µβ = zα
0 , for all α ∈ Nn,

which is an infinite system of linear equations linking the moments of µ
and ν.

Going back to the main objective of this section, suppose that we want
to evaluate the functional J(z0) of the process Z that is defined by

(3.8) J(z0) := E [p(Zτ )] =
k∑

j=1

∫

Kj

pj(z) ν(dz),

where {Kj , j = 1, . . . , k} is a given Borel measurable partition of Rn,

p(z) :=
k∑

j=1

pj(z)IKj (z), z ∈ Rn,

and, for all j = 1, . . . , k,

pj(z) :=
∑

α

pjαzα, z ∈ Kj,

are given polynomials. If we define

νj(·) ≡ νj(· ; z0) := ν(· ; z0)
∣∣
Kj
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to be the restriction of ν on Kj , for j = 1, . . . , k, then we can see that

J(z0) =
k∑

j=1

∑

α

pjανα
j ,

which is a linear combination of the moments {να
j } = {να

j (z0)} of the mea-
sures νj .

We are now faced with two possible cases. The first one, Case I, arises
when we can easily pre-compute the moments {να} of the measure ν (see Sec-
tion 3.2 below). The second one, Case II, arises otherwise and involves the
use of the martingale moment conditions (3.7) (see Section 3.3 below). Our
treatment of European and Asian options is developed within the framework
of Case I, whereas barrier options require the use of techniques associated
with Case II.

3.2. Case I.
Suppose that the moments να, for α ∈ Nn, are known. We bound from

above and below the value J(z0) of the functional introduced in (3.8) with
the maximum and the minimum, respectively, of the infinite dimensional LP
problem defined by

(3.9) QI(z0) →





extremise
ν1,...,νk

k∑

j=1

∑

α

pjανα
j ,

subject to
k∑

j=1

να
j = να, α ∈ Nn,

νj ∈ M(Kj), j = 1, . . . , k,

where M(K) is the space of all Borel measures with finite moments of all
orders that are supported on a given Borel measurable set K ⊆ Rn, and
where “extremise” stands for either “maximise” or “minimise”.

Plainly, the constraints defining the feasible region of this LP problem are
necessary conditions, and therefore,

(3.10) inf QI(z0) ≤ J(z0) ≤ supQI(z0).

To proceed further, we need the following definition.

Definition 3.2. Let ν be a measure on Rn with finite moments of all orders.
The measure ν is said to be moment-determinate if ν = µ whenever

∫
zα µ(dz) =

∫
zα ν(dz), for all α ∈ Nn,

for some measure µ on Rn.

Notice that, when ν is moment-determinate, then both relations in (3.10)
hold with equality. Indeed, in this case, the measure ν ≡

∑
j νj is unique,
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and, necessarily, νj = ν
∣∣
Kj

. In general, a probability distribution is not nec-
essarily uniquely determined by its moment sequence. For instance, consider
the following important example.

Example 3.3. Suppose that we want to calculate

J(1) = E
[
(Z1 − K)+

]
,

where Z is the geometric Brownian motion given by

dZt = 1
2Zt dt + Zt dBt, Z0 = 1,

where B is a standard, one-dimensional Brownian motion. Then, Z1 has a
standard lognormal distribution, and the value of J(1) can be calculated by
means of a simple integration.

Now, consider the following family of probability density functions:

fa(x) =
1√
2πx

e−
1
2
(log x)2(1 + a sin(2π log x)), for x > 0,

parametrised by a ∈ [−1, 1]. All of these density functions identify with prob-
ability measures sharing the same moment sequence, namely the sequence
{exp(k2/2), k ∈ N}, and f0 is the lognormal probability density function of
Z1 (e.g., see Feller (1965, p. 227)). If we define

V (a) :=
∫

(x − K)+fa(x)dx,

then V depends linearly on a, and V (0) = J(1). It follows that the corre-
sponding “gap” in (3.10) is greater than or equal to

max
a∈[−1,1]

V (a) − min
a∈[−1,1]

V (a) > 0.

For illustration purposes, if we choose K = 1.1, then

V (−1) = 0.8471, V (0) = J(1) = 0.8391, V (1) = 0.8311,

so the corresponding gap in (3.10) is of at least 0.16 or, relative to J(1),
of at least 1.9%. Other choices of K yield relative gaps of at least 0.4% for
K = 1, and 3% for K = 1.2.

In general, it is worth noting that the size of the gap in (3.10) is associated
with the value of the index of dissimilarity of the Stieltjes class {fa, a ∈
[−1, 1]} (see Stoyanov (2004)).

Determining whether a given distribution is moment-determinate has
been an important and long-standing problem in probability theory, and
is still an area of active research (e.g., see Feller (1965); for recent develop-
ments, see Stoyanov (2000, 2002), and the references therein).

Given a measure µ on R, the Cramér condition

(3.11)
∫

R
exp {c|x|} µ(dx) < +∞, for some c > 0,
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provides a sufficient condition for µ to be moment-determinate that is easy
to check. With regard to the distributions associated with the dynamics
described by models considered in Section 2, we note that, while the normal
distribution (Model 2) and the non-central χ2 distribution (Model 3) are
moment-determinate (e.g., they verify (3.11)), the lognormal distribution
(Model 1) is not (see also Example 3.3 above).

3.3. Case II.
In the more general case, when the moments of ν are not easily available,

we consider the infinite dimensional LP problem defined by
(3.12)

QII(z0) →





extremise
ν1,...,νk,µ

k∑

j=1

∑

α

pjανα
j ,

subject to
k∑

j=1

να
j −

∑

β

cβ(α)µβ = zα
0 , α ∈ Nn,

µ ∈ M(Rn), νj ∈ M(Kj), j = 1, . . . , k,

which incorporates the martingale moment conditions (3.7). Note that, for
α = (0, . . . , 0), these constraints yield

ν1 + · · · + νk is a probability measure on Rn.

Similarly to (3.10), since the constraints defining the feasible region of
this LP problem are necessary conditions,

(3.13) inf QII(z0) ≤ J(z0) ≤ supQII(z0).

Furthermore, note that, if the constraints defining the feasible region of this
LP problem uniquely determine the moments of the measures νj, and if the
probability measure ν is moment-determinate, then both relations in (3.13)
hold with equality, and QII(z0) identifies the value J(z0).

3.4. Finite-Dimensional Relaxations.
We now address the problem of deriving finite-dimensional relaxations of

the infinite-dimensional LP problem defined by (3.9) or (3.12).
Given a Borel measurable set K ⊆ Rn, let M(K) be the set of all Borel

measures with support contained in K, and with all moments finite. We
define

(3.14) Nr(K) :=
{∫

xα µ(dx) | α ∈ Nn, |α| ≤ 2r, µ ∈ M(K)
}

,

where |α| :=
∑n

i=1 αi ≤ 2r, and we consider a set Sr(K) that is defined by
appropriate necessary moment conditions for scalars {ηα, |α| ≤ 2r} to be
moments of some measure in M(K), so that

(3.15) Sr(K) ⊇ Nr(K).

The issue of a precise definition of such a set Sr(K) will be clarified in
Section 4 below.
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If the moments of ν are known, cf. Section 3.2, then it is natural to
consider the finite-dimensional relaxation QI

r(z0) of QI(z0) that is defined
by
(3.16)

QI
r(z0) →





extremise
η1,...,ηk

k∑

j=1

∑

α

pjαηα
j ,

subject to
k∑

j=1

ηα
j = να, |α| ≤ 2r,

ηj ≡
{
ηα

j , |α| ≤ 2r
}
∈ Sr(Kj), j = 1, . . . , k.

If the moments of the measure ν are not readily available, cf. Section
3.3, we consider the finite dimensional relaxation QII

r (z0) of QII(z0) that is
defined by
(3.17)

QII
r (z0) →





extremise
η1,...,ηk,ϑ

k∑

j=1

∑

α

pjαηα
j ,

subject to
k∑

j=1

ηα
j −

∑

β

cβ(α)ϑα = zα
0 , |α| ≤ 2r,

ηj ≡
{
ηα

j , |α| ≤ 2r
}
∈ Sr(Kj), j = 1, . . . , k,

ϑ ≡ {ϑα, |α| ≤ 2r} ∈ Sr(Rn),

where the finite sets {cβ(α)} of scalars are provided from the basic adjoint
equation as in (3.7). Plainly, if the expected occupation measure is sup-
ported on a set K ⊂ Rn rather than Rn, then we impose the constraint
ϑ ∈ Sr(K) instead of the constraint ϑ ∈ Sr(Rn), which can improve the
precision of the resulting approximation.

Of course, for either of these optimisation problems to be well defined, we
assume that 2r is greater than or equal to the maximum of |α|, where α runs
over all of the multi-indices in the finite sum that we want to extremise.

4. MOMENT CONDITIONS

The purpose of this section is to provide explicit expressions for the sets
Sr(K) appearing in (3.15) and used in the finite-dimensional relaxations
(3.16)–(3.17). In fact there are two approaches that are particularly at-
tractive to this end: the linear programming (LP) and the semi-definite
programming (SDP) approaches that we discuss below.

4.1. The LP Approach.
In the linear programming (LP) approach, developed notably in Helmes,

Röhl and Stockbridge (2001), the moment conditions defining the sets Sr(K)
appearing in (3.15) are linear constraints linking the moment variables.
These constraints reflect only necessary conditions, and derive from con-
sidering a finite subset of the so-called Hausdorff moment conditions, which
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are necessary and sufficient conditions for a sequence of scalars to be iden-
tified with the moments of a measure supported on a polytope (see Feller
(1965), and Shohat and Tamarkin (1943)). For instance,

(4.1)
r∑

j=0

(−1)j
(

r

j

)
mj+k ≥ 0, r, k = 0, 1, . . . ,

state necessary and sufficient conditions for the scalars {mα, α ≥ 0} to be
moments of a measure µ supported on the interval [0, 1].

The linear character of such constraints is their main attractive feature
because the resulting relaxations QI

r or QII
r , as in (3.16) or (3.17), respec-

tively, present standard linear programs, for which many LP software solvers
that can solve very large size problems are now available. On the other hand
they are numerically ill-posed because of the binomial coefficients involved.

4.2. The SDP Approach.
More recent necessary and sufficient conditions can be expressed in terms

of the positive semi-definiteness of appropriate moment and localising matri-
ces. The resulting relaxations QI

r or QII
r , as in (3.16) or (3.17), respectively,

now become convex optimisation problems, called semi-definite programs,
for which efficient software solvers exist. The interested reader can find de-
tails on semi-definite programming in Vandenberghe and Boyd (1996). The
semi-definite programming (SDP) approach is more general than the LP
approach because one can easily derive necessary (resp., necessary and suffi-
cient) SDP moment conditions for arbitrary (resp., compact) semi-algebraic
sets. Also, the SDP moment conditions are particularly attractive for mea-
sures with support on the real line, a half-line [a,+∞) or (−∞, b], or a
segment [a, b]. Furthermore, these moment conditions have been applied
with success in a variety of global non-convex optimisation problems (see
Henrion and Lasserre (2003), and Lasserre (2001)).

In the context of certain diffusions models, it is shown in Lasserre and
Prieto-Rumeau (2004) that the SDP approach is indeed more precise than
the LP approach. Moreover, for the same required performance of the upper
and lower bounds, the SDP approach required significantly fewer moments
than the LP approach. On the other hand, the more recent SDP solvers
are much less developed than their older LP counterparts. However, future
progress in numerical analysis is bound to eliminate such a drawback.

4.3. Moment Matrices.
Let

(4.2)
(xα, |α| ≤ k) :=

(
1, x1, . . . , xn, . . . , x2

1, x1x2, . . . , x
k
1 , x

k−1
1 x2, . . . , x

k
n

)
,

be the usual basis of the space of real-valued polynomials in n variables, of
degree at most k, where |α| = α1 + · · · + αn.

Given a multi-index family of scalars ỹ ≡ {yα, α ∈ Nn}, let ŷ ≡ {ŷi, i ∈
N} be the sequence obtained by ordering ỹ so that it conforms with the
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indexing implied by the basis (4.2). The moment-matrix Mk(ỹ) with rows
and columns indexed in the basis (4.2) is then defined by

Mk(ỹ)(1, i) = Mk(ỹ)(i, 1) = ŷi−1, for i = 1, . . . , k + 1,

Mk(ỹ)(1, j) = yα and Mk(ỹ)(i, 1) = yβ ⇒ Mk(ỹ)(i, j) = yα+β,

where Mk(ỹ)(i, j) is the (i, j)-entry of the matrix Mk(ỹ). For instance, when
n = 1, ŷ = {y0, y1, y2, . . .} and Mk(ỹ) is the Hankel matrix

Hk(ỹ)(i, j) = yi+j−2, i, j = 1, . . . , k + 1,

while, when n = 2, ŷ = {y0,0, y1,0, y0,1, y2,0, y1,1, y0,2, . . .} and M1(ỹ) reads

M1(ỹ) =




y0,0 y1,0 y0,1

y1,0 y2,0 y1,1

y0,1 y1,1 y0,2


 .

In the context of this paper, moment matrices are of relevance if the
family of scalars ỹ ≡ {yα, α ∈ Nn} considered above can be identified with
the moments of a finite measure µ defined on the Borel σ-algebra on Rn. In
such a case, given any k ∈ N, the moment matrix Mk(ỹ) is positive semi-
definite, denoted Mk(ỹ) � 0 (similarly, we use the notation � 0 for positive
definite matrices). Indeed, for all polynomials x 7→ f(x) of degree at most k,
and with vector of coefficients (fα, |α| ≤ k) in the basis (4.2), we have

〈f,Mk(ỹ)f〉 =
∫

f2 dµ ≥ 0.

Note that the converse is not in general true: given a moment-like matrix
Mk(ỹ) � 0, the yα’s involved are not necessarily moments of some measure µ
on Rn.

4.4. Localising Matrices.
Given a polynomial q, we consider the set K ⊆ Rn defined by

K = {x ∈ Rn | q(x) ≥ 0}.

The localising matrix Mk(q, ỹ) is defined as follows. Let β(i, j) be the β-
subscript of the (i, j)-entry of the matrix Mk(ỹ). If the polynomial q has
coefficients (qα) in the basis (4.2), then the localising matrix is defined by

Mk(q, ỹ)(i, j) =
∑

α

qαyβ(i,j)+α.

For example, if x 7→ q(x) := 1 − x2
1 − x2

2, for x ∈ R2, then M1(q, ỹ) reads

M1(q, ỹ) =




1 − y2,0 − y0,2 y1,0 − y3,0 − y1,2 y0,1 − y2,1 − y0,3

y1,0 − y3,0 − y1,2 y2,0 − y4,0 − y2,2 y1,1 − y3,1 − y1,3

y0,1 − y2,1 − y0,3 y1,1 − y3,1 − y1,3 y0,2 − y2,2 − y0,4


 .

If the the elements of the family ỹ ≡ {yα} are the moments of some measure
µ supported on K, then Mk(q, ỹ) � 0, because, for all polynomials x 7→ f(x)
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of degree at most k, and with vector of coefficients (fα, |α| ≤ k) in the basis
(4.2),

〈f,Mk(q, ỹ)f〉 =
∫

f2q dµ ≥ 0,

Again, the converse is not true: the necessary conditions Mk(q, ỹ) � 0 and
Mk(ỹ) � 0 are not in general sufficient to ensure that the elements of ỹ are
the moments of some measure µ supported on K.

In general, if K is a semi-algebraic set, i.e., a set of the form

K := {x ∈ Rn | gi(x) ≥ 0, for all i = 1, . . . , l} ,

where gi, i = 1, . . . , l, are given polynomials, then the conditions

(4.3) Mk(ỹ) � 0 and Mk(gi, ỹ) � 0, i = 1, . . . , l, k = 1, 2, . . . ,

are necessary (but not sufficient) for the elements of ỹ to be moments of
some measure µ supported on K. However, by a result in Putinar (1993), if
K is compact, then, under some mild assumption, the conditions (4.3) are
also sufficient.

We now state a result that applies when n = 1 and will be useful in the
following sections. Given a vector y = (y0, y1, . . . , y2r) and a set K ⊆ R,
the K-moment problem investigates necessary and sufficient conditions for y
to be identified with the corresponding vector of moments of some measure
supported on K. This problem is called the truncated Hausdorff moment
problem if K = [a, b], and the truncated Stieltjes moment problem if K =
[a,+∞).

Theorem 4.1. Given a vector y = (y0, y1, . . . , y2r) ∈ R2r+1, the following
statements are true:

(a) With regard to the truncated Hausdorff moment problem,

Mr(y) � 0 and Mr−1(g, y) � 0,

with x 7→ g(x) := (b − x)(x − a), are necessary and sufficient conditions for
the elements of y to be the first 2r + 1 moments of a measure supported on
[a, b].

(b) With regard to the truncated Stieltjes moment problem,

Mr(y) � 0 and Mr−1(g, y) � 0

with x 7→ g(x) := x− a, are sufficient conditions for the elements of y to be
the first 2r + 1 moments of a measure supported on [a,+∞).

For the proof of this theorem we refer to Krein and Nudel’man (1977) or
Curto and Fialkow (1991). This important result provides sufficient condi-
tions for measures supported on non-compact sets and, as we shall shortly
see, it is very useful to establish convergence theorems. This is one of the
advantages of the SDP moment approach because, in the LP approach, one
must consider moments of measures with supports on compact sets.
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Remark 4.2. Suppose that K ⊆ R is the interval [a, b], [a,+∞) or (−∞, a].
With regard to the notation introduced by (3.14) in Section 3.4, given any
integer r ≥ 1, Nr(K) is the set of all vectors that provide the first 2r + 1
moments of a measure with finite moments of all orders and supported on K.
Now, given r ≥ 1, let Sr(K) ⊇ Nr(K) be the set of vectors in R2r+1 defined
by the necessary SDP moment conditions Mr(y) � 0, and Mr−1(g, y) � 0
with x 7→ g(x) := (b − x)(x − a), x 7→ g(x) := x − a or x 7→ g(x) := a − x,
respectively. Since these conditions are also sufficient in the case of the
truncated Hausdorff moment problem (see part (a) of Theorem 4.1 above),
it follows that

(4.4) Sr(K) = Nr(K), for K = [a, b].

With regard to the truncated Stieltjes moment problem, we define

Tr(K) :=
{
y ∈ R2r+1 | Mr(y) � 0 and Mr−1(g, y) � 0

}
.

In view of the associated definitions, Tr(K) = Sr(K), while, part (b) of
Theorem 4.1 implies that Tr(K) ⊆ Nr(K). However, these observations
imply that

(4.5) Nr(K) = Sr(K), for K = [a,∞) or K = (−∞, a].

The result provided by (4.4) and (4.5) will play an instrumental role in the
proofs of the convergence of our finite-dimensional schemes.

5. SDP RELAXATIONS FOR EUROPEAN AND ASIAN
OPTIONS

We now turn our attention to the development of a special case of the general
theory presented in the previous two sections that can account for the prob-
lem of pricing European and Asian options. The case of European options
being developed in exactly the same way, and being much simpler because
it considers measures involving only the process X, which are supported on
subsets of the real line, we concentrate our analysis on Asian options.

Consider the issue of calculating the value vA(x0) of an Asian call option
that is given by (2.3). With regard to standard analyses of Asian options
using PDE techniques (see Rogers and Shi (1995)), we consider the process
Y defined by

Yt =
1
T

∫ t

0
Xs ds, t ≥ 0.

The first step in the direction of applying the theory of Sections 3–4 is to
consider the process Z = (X,Y )T and the stopping time τ ≡ T . The exit
location measure ν being defined as in (3.5), we can see that the value of an
Asian call option given by (2.3) admits the expression

(5.1) vA(x0) = E
[
(YT − K)+

]
=

∫

R
(y − K)+ νY (dy),



MOMENTS AND SDP RELAXATIONS 17

where νY (dy) := ν(R, dy) is the Y -marginal of ν, namely the distribution of
the random variable YT . Here, we have set the discounting factor ρ equal to
0 because its presence does not really affect any aspect of our analysis.

To express (5.1) as a linear combination of moments, we consider the re-
strictions νY 1 and νY 2 of the measure νY on the sets (−∞,K) and [K,+∞),
respectively. If we denote by {νi

Y l} the moments of the measure νY l, where
l = 1, 2, then we can see that (5.1) admits the expression

vA(x0) = ν1
Y 2 − Kν0

Y 2.

Now, with regard to any of the Models 1, 2 or 3 considered for the un-
derlying asset price dynamics in Section 2, it is possible to pre-compute
the moments of the measure ν and, in particular, the moments of the mea-
sure νY .

Example 5.1. With reference to Model 2, given any integers i, j ≥ 0, we
can use Itô’s formula and the fact that the associated stochastic integrals are
martingales to compute

E
[
Xi

tY
j
t

]
= E

[∫ t

0

[
1
2σ2i(i − 1)Xi−2

s Y j
s + γθiXi−1

s Y j
s

− γiXi
sY

j
s + jXi+1

s Y j−1
s /T

]
ds

]
.

If we define ν̄(i,j)(t) := E
[
Xi

tY
j
t

]
, then we can see that these relations imply

d

dt
ν̄(i,j)(t) = 1

2σ2i(i − 1)ν̄(i−2,j)(t) + γθiν̄(i−1,j)(t)

− γiν̄(i,j)(t) + jν̄(i+1,j−1)(t)/T, ν̄(i,j)(0) = 0.(5.2)

If we restrict i and j so that 0 ≤ i + j ≤ 2r, for some integer r > 0, then
(5.2) yield a closed system of linear ordinary differential equations. This
system can easily be solved to compute the moments of the measure ν and,
in particular, the moments {νj

Y } ≡ {ν̄(0,j)(T )} of the measure νY .
It is straightforward to see that a similar situation arises if we consider

Models 1 or 3.

In view of the above observations, it is appropriate to consider relaxations
QA

r that are developed as in (3.16). We are thus faced with the finite-
dimensional SDP problem defined by

QA
r (x0, 0) →





extremise
η1,η2

η1
2 − Kη0

2 ,

subject to ηj
1 + ηj

2 = νj
Y , j = 0, . . . , 2r,

Mr(η1), Mr−1(g, η1) � 0,
Mr(η2), Mr−1(−g, η2) � 0.

Here, g is the polynomial defined by x 7→ g(x) := K−x, and Mr(·),Mr−1(· , ·)
are the moment and localising matrices defined in Sections 4.3 and 4.4. Note
that the last two constraints defining the feasible region of this SDP problem
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correspond to the necessary SDP moment conditions for {ηj
1, j = 0, . . . , 2r}

and {ηj
2, j = 0, . . . , 2r} to be moments of measures supported on (−∞,K],

and [K,+∞), respectively. Note that it is not a restriction to consider nec-
essary moment conditions on (−∞,K] and [K,+∞) instead of (−∞,K) and
[K,+∞), respectively, because we evaluate the expectation of the function
y 7→ (y − K)+ that vanishes at y = K.

It is of interest to note that this SDP problem involves the moments of the
measure νY only (as opposed to the moments of the “full” measure ν). This
is due to the fact that the objective criterion involves only the marginal νY .
Indeed, the joint distribution ν of (XT , YT )T is of relevance only as long as
the pre-computation of νY ’s moments is concerned (see Example 5.1 above).

The following result establishes the convergence of the relaxations con-
sidered when the underlying asset price dynamics are as in Model 2 or 3 in
Section 2.

Theorem 5.2. Suppose that the measure νY is moment-determinate. Then

min QA
r (x0, 0) ↑ vA(x0) and max QA

r (x0, 0) ↓ vA(x0).

The proof of this result can be found in Section 8.1 in the Appendix.

6. SDP RELAXATIONS FOR BARRIER OPTIONS

To put the problem of calculating the value of a barrier call option given by
(2.4) in the context of the theory developed in Sections 3 and 4, we consider
the time-price process Z = (Y,X)T, where Yt = t for all t ≥ 0, and the
stopping time τ defined by (2.5). It follows that the associated expected
occupation measure µ of the process Z up to time τ that is defined by (3.4)
is supported on [0, T ) × (H,+∞), while the exit location measure of Z,
namely the distribution of Zτ that is defined by (3.5), is supported on

[0, T ] × {H} ∪ {T} × [H,+∞).

With regard to these definitions, the value vB(x0) of the option is given by

vB(x0) =
∫

[0,T ]×R
(x − K)+ ν(dt, dx).

Again, without loss of generality, we have set the discounting factor ρ = 0.
To express this criterion as a linear combination of moments, we decompose
the measure ν into the sum of three measures ν1, ν2 and ν3, supported on

[0, T ] × {H}, {T} × (H,K) and {T} × [K,+∞),

respectively. Note that, in effect, we may assume that the measures ν1,
ν2 and ν3 are supported on the subsets of the real line [0, T ], (H,K) and
[K,+∞), respectively, which presents a significant computational simplifi-
cation. It follows that the objective criterion admits the expression

vB(x0) =
∫

[0,T ]×R
(x − K)+ ν(dt, dx) = ν1

3 − Kν0
3 .
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In the context of the problem considered here, the moments of the mea-
sures ν1, ν2 and ν3 are not readily available, which suggests a relaxation QB

r

as in (3.17). Such a relaxation involves the infinitesimal generator A of the
process Z = (Y,X)T that takes the form

f 7→ (Af)(t, x) := ft(t, x) +
1
2
σ2(x)fxx(t, x) + b(x)fx(t, x),

where b and σ are the data appearing in (2.1). With a view to the moment
conditions (3.7) and the corresponding constraint in the definition (3.17)
of the associated SDP problem, we first observe that, given a monomial
(t, x) 7→ tixj,
∫

R2

tixj ν(dt, dx) = Hj

∫ T

0
ti ν1(dt) + T i

∫ K

H
xj ν2(dx) + T i

∫ +∞

K
xjν3(dx).

In the spirit of the notation used in Section 3, if we denote by {ν(i,j)} and
{νi

l} the moments of the measures ν and νl with l = 1, 2, 3, respectively, this
relation reads

ν(i,j) = Hjνi
1 + T iνj

2 + T iνj
3.

With regard to the term in (3.6) involving A, it is straightforward to verify
that, if {µ(i,j)} are the moments of the measure µ, then

(6.1)
∫

R2

(Af) (t, x)µ(dt, dx) = iµ(i−1,j) +
[

1
2σ2j(j − 1) + bj

]
µ(i,j),

if we adopt Model 1 in Section 2, and derive similar expressions for the cases
arising if we consider Models 2 or 3. Furthermore, we can see that, given
any of the models in Section 2, the moment conditions (3.7), which now take
the form

(6.2) Hjνi
1 + T iνj

2 + T iνj
3 −

∑

β

cβ(i, j)µ(i,j) = 0, for 0 ≤ i + j ≤ 2r,

for choices of the coefficients cβ(i, j) that result from (6.1) or its analogues,
present a closed system of linear equations.

Summarising the discussion above, we are faced with the finite-dimen-
sional SDP:

QB
r (0, x0) →

{
extremise
η1,η2,η3,m

η1
3 − Kη0

3,

subject to (6.3), (6.4) and (6.5) below.

The constraints defining the feasible region of this SDP problem are

(6.3) Hjηi
1 + T iηj

2 + T iηj
3 −

∑

β

cβ(i, j)m(i,j) = 0, for 0 ≤ i + j ≤ 2r,
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where the coefficients cβ(i, j) are as in (6.2),

(6.4)





Mr(η1), Mr−1(g1, η1) � 0,
Mr(η2), Mr−1(g2, η2) � 0,
Mr(η3), Mr−1(g3, η3) � 0,
Mr(m), Mr−1(g4,m), Mr−1(g5,m) � 0,

with

t 7→ g1(t) := t(T − t), x 7→ g2(x) := (K − x)(x − H),

x 7→ g3(x) := x − K, (t, x) 7→ g4(t, x) := t(T − t),

(t, x) 7→ g5(t, x) := x − K,

and

(6.5) |ηi
1|, |η

j
2|, |η

j
3|, |m

(i,j)| ≤ Ar, for 0 ≤ i + j ≤ 2r,

for some large constant Ar. Note that, apart from imposing the necessary
SDP moment conditions on the measures νl, l = 1, 2, 3, and µ, we also bound
the feasible region by means of (6.5). This extra constraint will be used in
the proof of the convergence of our algorithm. Plainly, as far as numerical
considerations are concerned, these bounds can be totally disregarded.

The next result is concerned with the convergence of our algorithm.

Theorem 6.1. Suppose that the following conditions hold:
(i) the measure ν3 is moment-determinate, and
(ii) the infinite system

(6.6)
{

(6.3), for every i, j = 0, 1, . . . ,
(6.4), for every r = 1, 2, . . . ,

uniquely determines the moment sequence {ηj
3, j ≥ 0}.

Then
min QB

r (0, x0) ↑ vB(x0) and max QB
r (0, x0) ↓ vB(x0).

For the proof of this theorem, we refer to Section 8.2 in the Appendix.

Remark 6.2. In view of the structure of the problem considered and the
sufficient condition associated with (3.11), note that Assumption (i) in the
statement of Theorem 6.1 is satisfied if we assume that

E(exp{c|XT |}) < +∞, for some c > 0,

which is true for Models 2 and 3, but not for Model 1.

7. NUMERICAL EXAMPLES

In this section, we present numerical results obtained for the option pricing
problems considered above using the SDP moment approach. In our numer-
ical investigation, we used a modified version of the software GloptiPoly (see
Henrion and Lasserre (2003)), which in turn uses the SDP solver SeDuMi
(see Sturm (1999)). Although our approximation techniques have yielded
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Figure 7.1. European Options. Model 1

very precise and strongly encouraging results, we should mention that we
ran into numerical problems for certain choices of parameter values (these
cases are indicated in the discussion below), despite the relatively small size
of the associated SDP relaxations. Such numerical problems can possibly
be attributed to the fact that SeDuMi does not perform well on sparse and
degenerate problems. Other SDP solvers such as SDPT3, CSDP or SDPA
might provide more stable alternatives, which is a possibility that we have
not tested. However, it is not clear whether one of these solvers system-
atically outperforms the others, which is reflected by the fact that a new,
currently available version of GloptiPoly allows the user to choose any of
these SDP solvers.

In the presentation below, notice that, unless indicated, the discounting
factors have been dropped.

7.1. European Options.
Since there exist explicit expressions for the value of European call op-

tions, we are able to evaluate in a precise way the accuracy of our numerical
approximations. It turns out that the SDP approach provides tight bounds.

Figure 7.1 illustrates results for the geometric Brownian motion (Model 1).
The lower bounds minQE

r and the upper bounds max QE
r for 1 ≤ r ≤ 7,

are compared to the exact value (dashed line) provided by the Black and
Scholes formula. The values of the parameters in this example are

x0 = 1, K = 0.95, T = 2, b = 0.15 and σ = 0.15.

Despite the fact that convergence is not guaranteed for this particular case
(recall Example 3.3), an accuracy of 0.5% is achieved for r = 7.

Similarly, for the Ornstein-Uhlenbeck process, Table 7.1 shows the pre-
cision of the SDP approach approximations for orders r = 2, 3, 4, 5 or, in
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Table 7.1. European Options. Model 2

σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25
r = 2 0.87% 3.42% 8.31% 12.42%
r = 3 0.50% 2.77% 4.60% 6.40%
r = 4 0.46% 1.92% 4.18% 6.38%
r = 5 0.34% 1.91% 3.36% 4.42%

1 2 3 4 5

0.145

0.15

0.155

Figure 7.2. European Options. Model 3

other words, for a number of moments equal to 4, 6, 8, 10. The values of the
parameters are:

x0 = 1, K = 0.95, T = 2, γ = 1 and θ = 1.1.

We have chosen volatilities ranging from σ = 10% to σ = 25%.
Finally, upper {max QE

r }5
r=1 and lower bounds {min QE

r }5
r=1 are shown in

Figure 7.2 when the asset price obeys the dynamics of Model 3, and for the
following values of the parameters:

x0 = 1, K = 0.95, T = 3, γ = 0.9, θ = 1.1 and σ = 0.1.

For r = 5 the relative error is 0.36%.

7.2. Asian Options.
We have compared the SDP approximations with the Curran (1992)

bound for the fixed-strike, arithmetic-average Asian options when the un-
derlying dynamics are the geometric Brownian motion. The Curran bound
is a lower bound which is based on a conditional Jensen inequality. The
method used to derive this bound is very model specific because it relies
heavily on the lognormality of the marginal distributions. However, as dis-
played in Table 7.2, for a grid of values for (b, σ), our lower bound min QA

5
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Table 7.2. Asian Options. Model 1

Drift b = 0.14

σ = 0.08 σ = 0.10 σ = 0.12
Curran lower bound 0.16605 0.16658 0.16778

SDP lower bound 0.16642 0.16715 0.16796
SDP upper bound 0.16656 0.16772 0.16965

Relative error 0.08% 0.34% 1.01%

Drift b = 0.16

σ = 0.08 σ = 0.10 σ = 0.12
Curran lower bound 0.18497 0.18518 0.18578

SDP lower bound 0.18534 0.18565 0.18704
SDP upper bound 0.18562 0.18652 0.18788

Relative error 0.15% 0.47% 0.45%

Table 7.3. Asian Options. Model 2

σ = 0.05 σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25
r = 1 0.88% 3.40% 7.22% 11.94% 17.20%
r = 2 0.03% 0.42% 1.98% 5.31% 10.21%
r = 3 0.03% 0.20% 1.58% 4.69% 7.48%
r = 4 0.02% 0.19% 1.52% 3.95% 5.54%

improves Curran’s lower bound. The other parameters are:

x0 = 1, K = 1.05 and T = 4.

To compare with the approach given by Thompson (2002), we have taken
discounting into account with a discount rate ρ = b. Typical results are
shown in Table 7.2. The relative error shown in the last line of each table
is the relative length of the confidence interval with respect to its medium
point: (u− l)/(1

2 (l+u)), where l and u are the SDP lower and upper bound,
respectively.

Tables 7.3 and 7.4 display the relative errors (computed as explained
above) when the underlying asset price dynamics follow the Ornstein-Uh-
lenbeck and the standard square-root with mean-reversion processes, for
several choices of the volatility σ, and for:

x0 = 1, K = 0.9, T = 3, θ = 1.2, γ = 1.1 (Table 7.3), γ = 0.5 (Table 7.4).

Notice that very few relaxations suffice to obtain sharp bounds.

7.3. Barrier Options.
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Table 7.4. Asian Options. Model 3

σ = 0.05 σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25
r = 5 0.01% 0.14% 0.93% 2.80% 5.45%

Table 7.5. Barrier Options

Model 1

σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25
r = 8 2.63% 3.91% 0.52% (1.07%)

Model 2

σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25
r = 9 1.97% 2.19% 1.36% 2.8%

Model 3

σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25
r = 9 6.3% 2.85% 1.47% 0.83%

For barrier options, relative errors of the SDP approach are given in Table
7.5 for a number of values of the volatility σ. The rest of the parameters
are:

Model 1: x0 = 1, K = 1, H = 0.8, T = 2, b = 0;
Models 2 and 3: x0 = 1, K = 1, H = 0.8, T = 2, γ = 1, θ = 0.95.

With regard to Model 1, the SDP solver ran into numerical problems for
r = 8 and the value σ = 0.25. The relative error in the table gives the
accuracy of the r = 7 approximation.

These results indicate that the bounds provided by the SDP approach are
very tight. However, our experimentation was limited in size because of the
numerical problems encountered with the SDP solver SeDuMi. As a result,
we could not go beyond relaxations QB

r with r = 8 or r = 9 for barrier payoff
structures.

8. APPENDIX

In this final section, we provide the proofs of the theoretical results presented
in the paper.

8.1. Proof of Theorem 5.2.
The proof of this convergence result requires two preliminary lemmas.

The following one is a standard exercise.
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Lemma 8.1. Let µr, for r ≥ 1, and µ be probability measures on R such
that µr ⇒ µ. Let g : R → R be a continuous function such that, for some
continuous function h : R → R+,

lim
|x|→+∞

g(x)
h(x)

= 0 and sup
r≥1

∫

R
h(x)µr(dx) < +∞.

Then ∫

R
g(x)µr(dx) −→

∫

R
g(x)µ(dx), as r → ∞.

Given a Borel measure µ on R and a Borel set A we denote by µA the
restriction of µ on A, namely, the measure defined by

B 7→ µA(B) := µ(B ∩ A), B ∈ B(R).

Lemma 8.2. Let µ be a finite measure on R which is moment-determinate.
Suppose that {µr} is a sequence of finite measures on R whose moments
converge to those of µ, that is,

(8.1) lim
r→+∞

∫
xα µr(dx) =

∫
xα µ(dx), for all α ∈ N.

Let A ⊆ R be a Borel set with µ(∂A) = 0 and let µr,A and µA be the restric-
tions of µr and µ on A, respectively. Then µr,A ⇒ µA and the moments of
µr,A converge to the moments of µA.

Proof. We prove the result under the assumption that µr and µ are proba-
bility measures. The generalisation to finite measures is straightforward.

First, we note that µr ⇒ µ because the convergence of moments im-
plies weak convergence of the associated moment-determinate measures (see
Billingsley (1979, pp. 342–353)). Second, we prove that µr,A ⇒ µA or, equiv-
alently, that: ∫

R
f(x)IA(x)µr(dx) →

∫

R
f(x)IA(x)µ(dx),

for every bounded and continuous function f . Since the set of discontinu-
ities of fIA has µ-measure zero, this results follows from Billingsley (1968,
Theorem 5.2, p. 31).

To complete the proof, we still need to show that, for any α ∈ N,

(8.2) lim
r→+∞

∫

R
xα µr,A(dx) =

∫

R
xα µA(dx).

To this end, we fix α ∈ N, we consider the functions g and h defined by
g(x) := xα and h(x) := 1 + x2α, respectively, and we observe that

sup
r≥1

∫

R
h(x)µr,A(dx) ≤ sup

r≥1

∫

R
h(x)µr(dx) < ∞.

With regard to Lemma 8.1, it follows that (8.2) is true for all α ∈ N, i.e.,
the moments of µr,A converge to the moments of µA. �

Now we proceed to prove Theorem 5.2.
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Proof. We develop the proof for the sequence
{
min QA

r (x0, 0), r ≥ 1
}
. The

monotonicity property follows immediately from the fact that the feasible
regions decrease as r grows.

Fix any initial condition x0, and consider any integer r ≥ 1. The feasible
region of QA

r (x0, 0) is non-empty (because the moments of the restrictions of
νY provide a feasible solution). Moreover, it is bounded. Indeed, from the
constraints ηj

1+ηj
2 = νj

Y we deduce that ηj
1 and ηj

2 are bounded for j even. It
follows that the main diagonal of the positive semi-definite matrices Mr(η1)
and Mr(η2) are bounded, and therefore, all of their entries are bounded as
well. Since the feasible region of QA

r (x0, 0) is also closed, it follows that it
is compact.

Since its feasible region is compact, min QA
r (x0, 0) has an optimal solution.

Let {qj
1,r, 0 ≤ j ≤ 2r} and {qj

2,r, 0 ≤ j ≤ 2r} be such an optimal solution.
As a consequence of (4.5) in Remark 4.2, given any εr > 0, there exist
measures ν1,r and ν2,r supported on (−∞,K] and [K,+∞), respectively,
such that their moments satisfy

max
0≤j≤2r

|νj
1,r − qj

1,r| ≤ εr and max
0≤j≤2r

|νj
2,r − qj

2,r| ≤ εr.

If we define ν(r) := ν1,r + ν2,r, then we can see that
∫

R
(y − K)+ ν(r)(dy) = ν1

2,r − Kν0
2,r

satisfies

(8.3)
∣∣∣∣
∫

R
(y − K)+ ν(r)(dy) − min QA

r (x0, 0)
∣∣∣∣ ≤ (1 + K)εr,

and
|νj

(r) − νj
Y | ≤ 2εr, for 0 ≤ j ≤ 2r.

Now, combining the observation that the moments of ν(r) converge to the
moments of νY as εr → 0 with the assumption that νY is moment-determi-
nate and continuous, we can see that Lemma 8.2 implies

lim
r→+∞

∫

R
(y − K)+ ν(r)(dy) =

∫

R
(y − K)+ νY (dy) = vA(x0),

and the result follows from (8.3). �

8.2. Proof of Theorem 6.1.
The following lemma is a standard result and can be found in Billingsley

(1979) or Diaconis (1987).

Lemma 8.3. Let {µk} be a sequence of finite measures on R such that the
corresponding sequences of moments are convergent to a given sequence of
scalars {αr, r ≥ 0}, i.e.,

lim
k→+∞

∫
xr µk(dx) = αr, for all r ≥ 0.
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Then, there exists a measure supported on R, the moment sequence of which
is {αr, r ≥ 0}.

We can now prove Theorem 6.1.

Proof. In this proof, part of which is similar to the proof of Theorem 5.2,
we analyse the convergence of the sequence

{
min QB

r (0, x0), r ≥ 1
}
. It is

obvious that this sequence of minima is increasing, and therefore, it suffices
to establish the convergence of one subsequence.

Fix an initial condition x0 and any r ≥ 1. Provided that the bound Ar

is large enough, the feasible region of QB
r (0, x0) is non-empty (because the

moments of the measures µ and νl, l = 1, 2, 3, provide a feasible solution),
and compact. Now, let

{qi
1,r}0≤i≤2r, {qj

2,r}0≤j≤2r, {qj
3,r}0≤j≤2r, {q(i,j)

r }0≤i+j≤2r,

be an optimal solution of min QB
r (0, x0), and choose any εr > 0. With

reference to (4.5) in Remark 4.2, we deduce that there exist measures ν1,r,
ν2,r and ν3,r, with supports on [0, T ], [H,K] and [K,+∞), respectively, such
that

|νi
1,r − qi

1,r|, |ν
j
2,r − qj

2,r|, |ν
j
3,r − qj

3,r| ≤ εr, 0 ≤ i + j ≤ 2r,

so that, for some constant Br,

(8.4)
∣∣∣∣Hjνi

1,r + T iνj
2,r + T iνj

3,r −
∑

β

cβ(i, j)q(i,j)
r

∣∣∣∣ ≤ Brεr,

for all i and j, and

(8.5) |ν1
3,r − Kν0

3,r − minQB
r (0, x0)| ≤ (1 + K)εr.

Now suppose that εr → 0. Given any i and j, the sequences

{νi
1,r}, {νj

2,r}, {νj
3,r}, {q(i,j)

r },
parametrised by r ≥ 1 are bounded. Using a diagonal argument, we can
choose a subsequence of r’s such that these sequences are convergent for all
i and j. To simplify the notation, let us assume that the whole sequences
are converging. It follows that

(8.6) q(i,j)
r → q(i,j) for all i and j,

for some constants q(i,j), and, by Lemma 8.3, there exist measures ν̃1, ν̃2

and ν̃3 such that

(8.7) lim
r→+∞

νj
l,r = ν̃j

l , for l = 1, 2, 3 and j ≥ 0.

From (8.4), (8.6) and (8.7) we conclude that {q(i,j)} and the moments of
ν̃l, with l = 1, 2, 3, satisfy the infinite system of equations (6.6). Since
this system has a unique solution (Assumption (ii) in the statement of the
theorem), the moments of ν̃3 and ν3 coincide, and therefore, ν̃3 = ν3 because
ν3 is moment-determinate (Assumption (i) in the statement of the theorem).
The stated convergence follows from (8.5) and (8.7). �
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