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We present an iterative algorithm for computing values of optimal stopping problems

for one-dimensional diffusions on finite time intervals. The method is based on a time

discretisation of the initial model and a construction of discretised analogues of the associ-

ated integral equation for the value function. The proposed iterative procedure converges

in a finite number of steps and delivers in each step a lower or an upper bound for the

discretised value function on the whole time interval. We also give remarks on applica-

tions of the method for solving the integral equations related to several optimal stopping

problems.

1 Introduction

Optimal stopping problems on finite time intervals play an important role in the recent literature

on stochastic control (see, e.g. Peskir and Shiryaev [22] for general theory). A special interest to
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such problems was attracted due to the requests of rational valuation of early exercise American

options arising in the mathematical theory of modern finance. The latter problem was first

studied by McKean [15] who derived a free-boundary problem for the value function and the

optimal exercise boundary and obtained a countable system of nonlinear integral equations for

the latter. Kim [13], Jacka [11] and Carr, Jarrow and Myneni [4] (see also Myneni [16]) have

independently derived a nonlinear integral equation for the exercise boundary of the American

put option, which follows from the more general early exercise premium (EEP) representation.

The uniqueness of solution of that integral equation has been recently proven by Peskir [20].

Since the value function and the stopping boundary of a general optimal stopping problem

with finite time horizon cannot be found in an explicit form, some different numerical proce-

dures for computing the value and the boundary have been proposed. Carr [3] presented a

method based on the randomisation of the time horizon using the Erlang distribution, which

is equivalent to taking the Laplace transform of the initial American put option value. In that

case, the solution of the associated free-boundary problem can be derived in a closed form.

Hou, Little and Pant [10] established a new representation for the American put option value

and proposed an efficient numerical algorithm for solving the appropriate nonlinear integral

equation for the optimal exercise boundary. Pedersen and Peskir [18] (see also [6]-[7]) used the

backward induction method and a simple time discretisation of the nonlinear integral equation

to obtain the optimal stopping boundary. Kolodko and Schoenmakers [14] presented a policy

iteration method for computing the appropriate optimal Bermudan stopping time. At the same

time, Rogers [25] and Haugh and Kogan [9] developed Monte Carlo methods for computing ra-

tional values of early exercised American options (see also Glasserman [8] for an overview).

Another iterative Monte Carlo procedure was proposed in [2], which was based on the EEP

representation for American and Bermudan options. The method developed in [2] can be con-

sidered as an analogue of the classical Picard iteration scheme, which is applied for the proof

of existence of solutions of integral equations (cf., e.g. Tricomi [30]), having the advantage that

it allows for to obtain upper bounds for the value function from lower ones and lower bounds

from upper ones. In this paper, we propose a modification of that method, which is based on

an extension of the EEP representation, where the fixed maturity is replaced by a stopping

time at which the value of the associated Snell envelope process is equal to the payoff. For
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example, such a stopping time can be constructed as the first time at which the underlying

process hits the stopping boundary from the appropriate perpetual optimal stopping problem

(cf., e.g. Novikov and Shiryaev [17] and Shiryaev [29; Chapter VIII]). Moreover, we prove the

convergence of the method and determine the rate of convergence.

The paper is organised as follows. In Section 2, we give the setting of a finite horizon

optimal stopping problem for a one-dimensional diffusion process and formulate the associated

free-boundary problem. In Section 3, we describe a method for obtaining upper and lower

bounds for the value of the optimal stopping problem and derive an extension of the EEP

representation. In Section 4, we construct a time discretisation of the initial integral equation

for the value function and propose a numerical algorithm for solving the resulting discretised

equations. Such an iterative procedure provides in each step a lower or an upper bound for

the discretised value function and arrives at the latter in a finite number of steps. We stress

that, in contrast to the simple backward induction, this procedure delivers in each step an

approximation for the initial value function on the whole time interval and not for a certain

time interval before the maturity only. In Section 5, we prove the uniform convergence of the

algorithm to the initial value function as the discretisation becomes finer and determine the

rate of convergence. In Section 6, we give some remarks on applications of the method to

the rational valuation of early exercise American put and Asian options in the Black-Merton-

Scholes model as well as to solving the finite horizon versions of sequential testing and disorder

detection problems for Wiener processes. The main results of the paper are stated in Lemma

4 and Theorem 5.

2 Preliminaries

In this section, we recall results of general theory from [22], [12] and [18] (see also [15], [13],

[11], [4] and [20]) related to optimal stopping problems in one-dimensional diffusion models

with finite time horizon and formulate the associated free-boundary problem.

2.1. (Formulation of the problem.) For a precise formulation of the finite horizon optimal

stopping problem for a diffusion process, let us consider a probability space (Ω,F , P ) with a

standard Brownian motion B = (Bt)0≤t≤T started at zero. Suppose that there exists a process
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X = (Xt)0≤t≤T solving the stochastic differential equation:

dXt = µ(Xt) dt+ σ(Xt) dBt (X0 = x) (2.1)

where x ∈ E is a given number from the connected state space E ⊆ R of the process X .

Here, the local drift µ(x) and the diffusion coefficient σ(x) > 0 for x ∈ E are assumed to be

Lipschitz continuous (cf., e.g. (2.1) in [12]).

Let us consider the problem of computing the value function:

V (t, x) = sup
0≤τ≤T−t

Et,x
[
e−λτ G(t+ τ,Xt+τ )

]
(2.2)

where the supremum is taken over all stopping times τ of the process X (i.e. stopping times

with respect to the natural filtration of X ). Here, Et,x denotes the expectation with respect

to the initial measure Pt,x when the process (Xt+u)0≤u≤T−t starts at Xt = x , for some x ∈ E ,

and λ > 0 is a discounting factor.

Throughout the paper, we assume that the gain function G(t, x) satisfies some regularity

conditions (cf. [31], [12] and [18]) implying the existence of a strictly decreasing continuous

function b(t) such that at the first passage time:

τb = inf{0 ≤ u ≤ T − t |Xt+u ≥ b(t+ u)}

≡ inf{0 ≤ u ≤ T − t |V (t+ u,Xt+u) ≤ G(t+ u,Xt+u)} (2.3)

(the infimum of an empty set being equal to T − t) the supremum in (2.2) is attained. Among

the regularity conditions mentioned above, we refer the following:

(t, x) 7→ G(t, x) is C1,2 on [0, T ]× E (2.4)

x 7→ H(t, x) is decreasing on E for each 0 ≤ t ≤ T (2.5)

t 7→ H(t, x) is decreasing on [0, T ] for each x ∈ E (2.6)

where

H(t, x) = (Gt + µ(x)Gx + (σ2(x)/2)Gxx − λG)(t, x) (2.7)

for all 0 ≤ t ≤ T and x ∈ E (cf. Theorem 4.3, Propositions 4.4 and 4.5 in [12]). Note that the
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problem (2.2) turns out to be non-trivial if there exists a continuous function a(t) such that:

H(t, x) > 0 for x ∈ E such that x < a(t) (2.8)

H(t, x) = 0 for x ∈ E such that x = a(t) (2.9)

H(t, x) < 0 for x ∈ E such that x > a(t) (2.10)

for any 0 ≤ t ≤ T . The application of Itô’s formula directly implies that a(t) < b(t) for all

0 < t < T . In the sequel, we assume that conditions (2.4)-(2.6) and (2.8)-(2.10) are satisfied.

Further conditions on the functions G(t, x) and H(t, x) will be imposed below.

2.2. (Free-boundary problem.) By virtue of the regularity conditions in (2.4)-(2.6) and

(2.8)-(2.10) and using the strong Markov property of the process X , we are thus naturally led

to formulate the following free-boundary problem for the unknown value function V (t, x) from

(2.2) and the boundary b(t) from (2.3) (cf. [12] and [18]):

(Vt + µ(x)Vx + (σ2(x)/2)Vxx)(t, x) = λV (t, x) for x ∈ E such that x < b(t) (2.11)

V (t, x)
∣∣
x=b(t)

= G(t, x)
∣∣
x=b(t)

(instantaneous stopping) (2.12)

Vx(t, x)
∣∣
x=b(t)

= Gx(t, x)
∣∣
x=b(t)

(smooth fit) (2.13)

V (t, x) > G(t, x) for x ∈ E such that x < b(t) (2.14)

V (t, x) = G(t, x) for x ∈ E such that x > b(t) (2.15)

(Vt + µ(x)Vx + (σ2(x)/2)Vxx)(t, x) < λV (t, x) for x ∈ E such that x > b(t) (2.16)

where the conditions in (2.12) and (2.13) are satisfied for all 0 ≤ t < T . Note that the super-

harmonic characterization of the value function (see [5], [28] and [22; Chapter IV, Section 9])

implies that V (t, x) from (2.2) is the smallest functions satisfying the conditions in (2.11)-(2.12)

and (2.14)-(2.15).

2.3. (Early exercise premium representation.) Taking into account the condition in (2.13),

we may apply Itô’s formula to the function e−λsV (t+ s,Xt+s) and obtain:

e−λs V (t+ s,Xt+s) = V (t, x) (2.17)

+

∫ s

0

e−λu
(
Vt + µ(Xt+u)Vx + (σ2(Xt+u)/2)Vxx − λV

)
(t+ u,Xt+u) du+Ms
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where Ms =
∫ s

0
e−λuVx(t+ u,Xt+u)dBu , for 0 ≤ s ≤ T − t , is a continuous (local) martingale.

It follows from the regularity conditions imposed above that the time spent by the process

X at the boundary b(t) is of Lebesgue measure zero, so that, the value Vxx(t, x) can be set

arbitrarily to (t + u, b(t + u)), for each 0 ≤ u ≤ T − t . Hence, applying the formulas from

(2.11) and (2.15) to the expression in (2.17), we get:

e−λs V (t+ s,Xt+s) = V (t, x) (2.18)

+

∫ s

0

e−λuH(t+ u,Xt+u) I(Xt+u ≥ b(t+ u)) du+Ms

where I( · ) denotes the indicator function. Taking expectation from both sides of the expres-

sion in (2.18) with respect to the measure Pt,x , we obtain:

V (t, x) = e−λ(T−t)Et,x
[
G(T,XT )

]
−
∫ T−t

0

e−λuEt,x
[
H(t+ u,Xt+u) I(Xt+u ≥ b(t+ u))

]
du

≡ e−λ(T−t)Et,x
[
G(T,XT )

]
(2.19)

−
∫ T−t

0

e−λuEt,x
[
H(t+ u,Xt+u) I(V (t+ u,Xt+u) ≤ G(t+ u,Xt+u))

]
du

for all 0 ≤ t ≤ T and x ∈ E . The expression in (2.19) is a general form of the early exercise

premium representation for the value function of (2.2) derived in [13], [11] and [4] (see also [16]).

Setting x = b(t), it follows immediately from (2.19) that the stopping boundary b(t) solves the

nonlinear integral equation:

G(t, b(t)) = e−λ(T−t)Et,b(t)
[
G(T,XT )

]
(2.20)

−
∫ T−t

0

e−λuEt,b(t)
[
H(t+ u,Xt+u) I(Xt+u ≥ b(t+ u))

]
du

for all 0 ≤ t ≤ T and x ∈ E (see also [18], [13] and [11]-[12]). Applying the change-of-variable

formula with local times on curves from [19], it was proven in [18] (see also [20]-[23], [6]-[7] and

[22]) that the equation of (2.20) admits a unique solution. Note that the nonlinear integral

equation in (2.19) is preferable over the equation in (2.20), which involves the optimal stopping

boundary, since it allows a direct generalisation to the case of a multidimensional process X .

In a general case, the equations in (2.19) and (2.20) cannot be solved in an explicit form, so

that, numerical methods are required.

2.4. (Infinite horizon case.) Let us denote by V (t, x) and b(t) the value function and

the stopping boundary of the infinite horizon optimal stopping problem associated with one
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of (2.2)-(2.3), by letting T = ∞ . In the sequel, we will consider only the optimal stopping

problems such that V (t, x) = V (x) and b(t) = b holds for all 0 ≤ t ≤ T and x ∈ E . Moreover,

we will assume that the limit:

G(x) = lim
T→∞

e−λ(T−t)Et,x
[
G(T,XT )

]
exists and is finite. (2.21)

Then, letting T tend to infinity in (2.19) and (2.20) formally, we obtain:

V (x) = G(x)−
∫ ∞

0

e−λuEt,x
[
H(t+ u,Xt+u) I(Xt+u ≥ b)

]
du

= G(x)−
∫ ∞

0

e−λuEt,x
[
H(t+ u,Xt+u) I(V (Xt+u) ≤ G(t+ u,Xt+u))

]
du (2.22)

and

G(t, b) = G(b)−
∫ ∞

0

e−λuEt,b
[
H(t+ u,Xt+u) I(Xt+u ≥ b)

]
du

= G(b)−
∫ ∞

0

e−λuEt,b
[
H(t+ u,Xt+u) I(V (Xt+u) ≤ G(t+ u,Xt+u))

]
du (2.23)

for all 0 ≤ t ≤ T and x ∈ E , where the function V (x) and the number b are uniquely

determined by the equations in (2.22) and (2.23), respectively.

It follows from the formulas in (2.19) and (2.22) that:

V (t, x) = Ṽ (t, x)−
∫ T−t

0

e−λuEt,x
[
H(t+ u,Xt+u) I(b(t+ u) ≥ Xt+u > b)

]
du

= Ṽ (t, x) (2.24)

−
∫ T−t

0

e−λuEt,x
[
H(t+ u,Xt+u) I(V (t+ u,Xt+u) ≤ G(t+ u,Xt+u) < V (Xt+u))

]
du

where

Ṽ (t, x) = V (x) + e−λ(T−t)Et,x
[
G(T,XT )

]
−G(x) (2.25)

+

∫ ∞
T−t

e−λuEt,x
[
H(t+ u,Xt+u) I(V (Xt+u) ≤ G(t+ u,Xt+u))

]
du

for all 0 ≤ t ≤ T and x ∈ E . Note that the representation in (2.24) has an advantage over

(2.19), since it contains integration of probabilities of events when Xt belongs to bounded

intervals which are numerically easier to compute by using Monte Carlo methods than those

ones for unbounded intervals.
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3 Description of the method

In this section, we describe the procedure of obtaining an upper bound for the value function

from a lower one and a lower bound from an upper one and present a generalisation of the early

exercise premium representation.

3.1. Let σ be a stopping time for the process X such that:

V (t+ σ ∧ (T − t), Xt+σ∧(T−t)) = G(t+ σ ∧ (T − t), Xt+σ∧(T−t)) (Pt,x-a.s.) (3.1)

For example, let V ′(t, x) be an upper bound for V (t, x), that is, V ′(t, x) ≥ V (t, x) for all 0 ≤

t ≤ T and x ∈ E . Then, by choosing σ = inf{0 ≤ u ≤ T −t |V ′(t+u,Xt+u) ≤ G(t+u,Xt+u)} ,

we obviously get that (3.1) is satisfied. Hence, applying the conditions from (2.12) and (2.15)

to the expression in (2.18) and using the optional sampling theorem (see, e.g. [24; Chapter II,

Theorem 3.2]), we obtain:

V (t, x) = Et,x
[
e−λ(σ∧(T−t))G(t+ σ ∧ (T − t), Xt+σ∧(T−t))

]
− Et,x

[∫ σ∧(T−t)

0

e−λuH(t+ u,Xt+u) I(Xt+u ≥ b(t+ u)) du

]
≡ Et,x

[
e−λ(σ∧(T−t))G(t+ σ ∧ (T − t), Xt+σ∧(T−t))

]
(3.2)

− Et,x

[∫ σ∧(T−t)

0

e−λuH(t+ u,Xt+u) I(V (t+ u,Xt+u) ≤ G(t+ u,Xt+u)) du

]

for all 0 ≤ t ≤ T and x ∈ E . The expression in (3.2) is an extension of the early exercise

premium representation from (2.19).

3.2. Let Vl(t, x) be a lower bound and Vu(t, x) be an upper bound for the value function

V (t, x), that is, Vl(t, x) ≤ V (t, x) ≤ Vu(t, x) for all 0 ≤ t ≤ T and x ∈ E . For any stopping

time σ such that the equation in (3.1) is satisfied, we can insert Vl(t, x) and Vu(t, x) instead

of V (t, x) into the right-hand side of the expression in (3.2) and define the functions V ′u(t, x;σ)

and V ′l (t, x;σ) by:

V ′u(t, x;σ) = Et,x
[
e−λ(σ∧(T−t))G(t+ σ ∧ (T − t), Xt+σ∧(T−t))

]
(3.3)

− Et,x

[∫ σ∧(T−t)

0

e−λuH(t+ u,Xt+u) I(Vl(t+ u,Xt+u) ≤ G(t+ u,Xt+u)) du

]
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and

V ′l (t, x;σ) = Et,x
[
e−λ(σ∧(T−t))G(t+ σ ∧ (T − t), Xt+σ∧(T−t))

]
(3.4)

− Et,x

[∫ σ∧(T−t)

0

e−λuH(t+ u,Xt+u) I(Vu(t+ u,Xt+u) ≤ G(t+ u,Xt+u)) du

]
.

Due to the assumptions in (2.8)-(2.10), the functions in (3.3) and (3.4) are an upper and a lower

bound for V (t, x), respectively, that is, V ′l (t, x;σ) ≤ V (t, x) ≤ V ′u(t, x;σ) for all 0 ≤ t ≤ T

and x ∈ E . For example, we can take Vl(t, x) = G(t, x) or Vl(t, x) = e−λ(T−t)Et,x[G(T,XT )] as

a lower bound and Vu(t, x) = supτ≥0Et,x[e
−λτG(t + τ,Xt+τ )] as an upper bound for the value

function V (t, x). Note that if there is a sequence of stopping times σ1, . . . , σn , satisfying (3.1),

then one can consider the improved lower and upper bounds:

min
1≤k≤n

V ′u(t, x;σk) and max
1≤k≤n

V ′l (t, x;σk) (3.5)

for all 0 ≤ t ≤ T , x ∈ E , and some n ∈ N fixed.

3.3. Let V 0(t, x) be a lower bound for V (t, x) and σ be a stopping time satisfying (3.1).

Let us define the function V 1(t, x;σ) by the formula:

V 1(t, x;σ) = Et,x
[
e−λ(σ∧(T−t))G(t+ σ ∧ (T − t), Xt+σ∧(T−t))

]
(3.6)

− Et,x

[∫ σ∧(T−t)

0

e−λuH(t+ u,Xt+u) I(V 0(t+ u,Xt+u) ≤ G(t+ u,Xt+u)) du

]

and the function V 2(t, x;σ) by the formula:

V 2(t, x;σ) = Et,x
[
e−λ(σ∧(T−t))G(t+ σ ∧ (T − t), Xt+σ∧(T−t))

]
(3.7)

− Et,x

[∫ σ∧(T−t)

0

e−λuH(t+ u,Xt+u) I(V 1(t+ u,Xt+u;σ) ≤ G(t+ u,Xt+u)) du

]

for all 0 ≤ t ≤ T , x ∈ E , such that V 2(t, x;σ) ≥ V 0(t, x), and V 2(t, x;σ) = V 0(t, x)

elsewhere. Let us now define sequentially the functions V m(t, x;σ), for every m ∈ N , m ≥ 3,

by the formula:

V m(t, x;σ) = Et,x
[
e−λ(σ∧(T−t))G(t+ σ ∧ (T − t), Xt+σ∧(T−t))

]
(3.8)

− Et,x

[∫ σ∧(T−t)

0

e−λuH(t+ u,Xt+u) I(V m−1(t+ u,Xt+u;σ) ≤ G(t+ u,Xt+u)) du

]
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for all 0 ≤ t ≤ T and x ∈ E . Note that if the solution of the corresponding infinite horizon

problem exists then the functions V m(t, x;σ) may be defined by the formula:

V m(t, x;σ) = Ṽ (t, x;σ) (3.9)

− Et,x

[∫ σ∧(T−t)

0

e−λuH(t+ u,Xt+u) I(V m−1(t+ u,Xt+u;σ) ≤ G(t+ u,Xt+u) < V (Xt+u)) du

]

where

Ṽ (t, x;σ) = V (x) + Et,x
[
e−λ(σ∧(T−t))G(t+ σ ∧ (T − t), Xσ∧(T−t))

]
−G(x) (3.10)

+ Et,x

[∫ ∞
σ∧(T−t)

e−λuH(t+ u,Xt+u) I(V (Xt+u) ≤ G(t+ u,Xt+u)) du

]
for all 0 ≤ t ≤ T and x ∈ E . The definition of V m(t, x;σ) as in (3.10) is more convenient for

the use of Monte Carlo simulations than that in the formulas of (3.6) and (3.7)-(3.8) above.

Remark 1 Observe that, by construction, we have:

V 2k−1(t, x;σ) ≥ V (t, x) for 0 ≤ t ≤ T, x ∈ E, k ∈ N (3.11)

where the sequence (V 2k−1(t, x;σ))k∈N is monotone decreasing, and

V 2k(t, x;σ) ≤ V (t, x) for 0 ≤ t ≤ T, x ∈ E, k ∈ N (3.12)

where the sequence (V 2k(t, x;σ))k∈N is monotone increasing for each 0 ≤ t ≤ T , x ∈ E , and

every n ∈ N fixed. Moreover, any lower estimate V 2k−2(t, x;σ) for V (t, x) produces the upper

one V 2k−1(t, x;σ), and any upper estimate V 2k−1(t, x;σ) produces the lower one V 2k(t, x;σ),

for each 0 ≤ t ≤ T , x ∈ E , and every k ∈ N. In the next section, we will consider the question

of convergence of the sequence (V m(t, x;σ))m∈N to the value function V (t, x), for a discretised

version of (2.19), where we set σ = T − t for simplicity of exposition.

4 Discretisation and algorithm

In this section, we construct an approximation of the initial model based on the discretisation

of the integral equation in (2.19). We propose an iterative procedure which solves the resulting

discretised integral equation in a finite number of steps.

10



4.1. In order to construct a time-discretised analogue of the equation in (2.19), let us fix

some arbitrary 0 ≤ t ≤ T and n ∈ N and introduce a partition of the time interval [0, T − t] .

Let us set u0 = 0 and ui = i∆n with ∆n = (T − t)/n implying that ui − ui−1 = ∆n , for

every i = 1, . . . , n . Taking into account the structure of the expression (2.19), let us define the

approximation V̂n(t+ u, x) for the price V (t+ u, x) as a solution of the equation:

V̂n(t+ u, x) = e−λ(T−t−u)Et+u,x
[
G(T,XT )

]
−

n∑
i=dun/(T−t)e

e−λui Et+u,x
[
H(t+ ui, Xt+ui

) I (̂bn(t+ ui) ≥ Xt+ui
)
]

∆n

≡ e−λ(T−t−u)Et+u,x
[
G(T,XT )

]
(4.1)

−
n∑

i=dun/(T−t)e

e−λui Et+u,x
[
H(t+ ui, Xt+ui

) I(V̂n(t+ ui, Xt+ui
) ≤ G(t+ ui, Xt+ui

))
]

∆n

where the estimate b̂n(t + u) for the boundary b(t + u) is defined as the intersection curve of

the functions V̂n(t + u, x) and G(t + u, x). Here, dze ≡ inf{k ∈ N | k ≥ z} denotes the upper

integer part of a given positive number z > 0. It is clear that the equation in (4.1) has a unique

solution which can be obtained by means of backward induction in a finite number of steps.

This implies that the (piecewise constant) function V̂n(t+ u, x) is uniquely determined by the

formula in (4.1), for all 0 ≤ u ≤ T − t and x ∈ E . Let us set V̂ 0
n (t + u, x) = G(t + u, x) and

define the function V̂ 1
n (t+ u, x) by the formula:

V̂ 1
n (t+ u, x) = e−λ(T−t−u)Et+u,x

[
G(T,XT )

]
(4.2)

−
n∑

i=dun/(T−t)e

e−λui Et+u,x
[
H(t+ ui, Xt+ui

) I(V̂ 0
n (t+ ui, Xt+ui

) ≤ G(t+ ui, Xt+ui
))
]

∆n

and the function V̂ 2
n (t+ u, x) by the formula:

V̂ 2
n (t+ u, x) = e−λ(T−t−u)Et+u,x

[
G(T,XT )

]
(4.3)

−
n∑

i=dun/(T−t)e

e−λui Et+u,x
[
H(t+ ui, Xt+ui

) I(V̂ 1
n (t+ ui, Xt+ui

) ≤ G(t+ ui, Xt+ui
))
]

∆n

for all 0 ≤ u ≤ T−t , x ∈ E , such that V̂ 2
n (t+u, x) ≥ V̂ 0

n (t+u, x), and V̂ 2
n (t+u, x) = V̂ 0

n (t+u, x)

elsewhere. Let us now define sequentially the functions V̂ m
n (t+u, x), for every m ∈ N , m ≥ 3,
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by the formula:

V̂ m
n (t+ u, x) = e−λ(T−t−u)Et+u,x

[
G(T,XT )

]
−

n∑
i=dun/(T−t)e

e−λui Et+u,x
[
H(t+ ui, Xt+ui

) (4.4)

× I(V̂ m−1
n (t+ ui, Xt+ui

) ≤ G(t+ ui, Xt+ui
) < V (Xt+ui

)
]

∆n

for all 0 ≤ u ≤ T − t and x ∈ E .

Remark 2 It is easily seen from (4.1) that, by the construction in (4.2)-(4.4), we have:

V̂ 2k−1
n (t+ u, x) ≥ V̂n(t+ u, x) for 0 ≤ u ≤ T − t, x ∈ E, k ∈ N (4.5)

where the sequence (V̂ 2k−1
n (t+ u, x))k∈N is monotone decreasing, and

V̂ 2k
n (t+ u, x) ≤ V̂n(t+ u, x) for 0 ≤ u ≤ T − t, x ∈ E, k ∈ N (4.6)

where the sequence (V̂ 2k
n (t+ u, x))k∈N is monotone increasing, for each 0 ≤ u ≤ T − t, x ∈ E ,

and every n ∈ N fixed. Moreover, any lower bound V̂ 2k−2
n (t + u, x) for V̂n(t + u, x) produces

the upper one V̂ 2k−1
n (t + u, x), and any upper bound V̂ 2k−1

n (t + u, x) produces the lower one

V̂ 2k
n (t+ u, x), for each 0 ≤ u ≤ T − t, x ∈ E , and every k ∈ N.

Remark 3 For every m < n, the function u 7→ V̂ m
n (t + u, x) is an estimate for V̂n(t + u, x)

on the whole interval [0, T − t], for each 0 ≤ t ≤ T and x ∈ E fixed. This fact shows the

advantage of the proposed method over the standard backward induction.

4.2. Let us now show that the sequence of functions (V̂ m
n (t + u, x))k∈N from (4.2)-(4.4)

converges to the function V̂n(t + u, x) in n steps, for all 0 ≤ u ≤ T − t , x ∈ E , and every

n ∈ N .

Lemma 4 For each 0 ≤ t ≤ T fixed, we have V̂ m
n (t+u, x) = V̂n(t+u, x), for all 0 ≤ u ≤ T −t

and x ∈ E , and for every m ≥ n.

Proof. Let us fix some 0 ≤ t ≤ T and n ∈ N . Then, by construction of V̂ m
n (t + u, x) in

(4.2)-(4.4), the equalities:

V̂ 2k+1
n (t+ u, x)− V̂ 2k

n (t+ u, x) = −
n∑

i=dun/(T−t)e

e−λui Et+u,x
[
H(t+ ui, Xt+ui

)

× I(V̂ 2k
n (t+ ui, Xt+ui

) ≤ G(t+ ui, Xt+ui
) < V̂ 2k−1

n (t+ ui, Xt+ui
))
]

∆n (4.7)

12



and

V̂ 2k+2
n (t+ u, x)− V̂ 2k+1

n (t+ u, x) = −
n∑

i=dun/(T−t)e

e−λui Et+u,x
[
H(t+ ui, Xt+ui

)

× I(V̂ 2k
n (t+ ui, Xt+ui

) ≤ G(t+ ui, Xt+ui
) < V̂ 2k+1

n (t+ ui, Xt+ui
))
]

∆n (4.8)

are satisfied for all 0 ≤ u ≤ T − t and x ∈ E , and for every k ∈ N .

In order to prove the desired assertion, we should use the mathematical induction principle.

First, we note that V̂ m
n (T, x) = G(T, x) holds for all x ∈ E and m ∈ N . For checking the

induction basis, it is enough to observe that if m = 2k with k = 0 then the expression in (4.8)

implies the equality:

V̂ 2
n (t+ u, x)− V̂ 1

n (t+ u, x) = −e−λun Et+u,x
[
H(t+ un, Xt+un) (4.9)

× I(V̂ 0
n (t+ un, Xt+un) ≤ G(t+ un, Xt+un) < V̂ 1

n (t+ un, Xt+un))
]

∆n = 0

which is satisfied for all (n− 1)(T − t)/n ≤ u ≤ T − t , where we have t+un = T , by definition

of the partition.

5 Convergence of the algorithm

We now prove that the solution of the discretised equation in (4.1) converges to V (t + u, x)

uniformly on [0, T − t] as n tends to infinity. For this, let us further denote:

F (t, x; t+ u, y) = Et,x
[
H(t+ u,Xt+u) I(Xt+u ≥ y)

]
(5.1)

for all 0 ≤ u ≤ T − t and x, y ∈ E .

Theorem 5 Suppose that the conditions in (2.4)-(2.6) and (2.8)-(2.10) are satisfied. Assume

that the function:

x 7→ G(t, x) is monotone and convex on E with |Gx(t, x)| ≥ ε (5.2)

for some ε > 0 and the function:

y 7→ F (t, x; t+ u, y) is C1 on E (5.3)
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and ∣∣Fy(t, x; t+ u, y)
∣∣ ≤ C√

u
(5.4)

holds for all 0 ≤ t ≤ T , 0 < u ≤ T − t, and x, y ∈ E , and some C > 0 fixed. Let V̂n(t+ u, x)

be a solution of the discretised equation in (4.1). Then, there exists some t ∈ [0, T ] close

enough to T and such that the sequence (V̂n(t + u, x))n∈N converges to V (t + u, x) uniformly,

for 0 ≤ u ≤ T − t and x ∈ E , with the rate 1/n when n tends to infinity.

Proof. First, we observe that the representations in (2.19) and (4.1) imply:∣∣∣V̂n(t, x)− V (t, x)
∣∣∣ (5.5)

≤

∣∣∣∣∣
∫ T−t

0

e−λu F (t, x; t+ u, b(t+ u)) du−
n∑
i=1

e−λui F (t, x; t+ ui, b(t+ ui)) ∆n

∣∣∣∣∣
+

n∑
i=1

e−λui

∣∣∣F (t, x; t+ ui, b(t+ ui))− F (t, x; t+ ui, b̂(t+ ui))
∣∣∣∆n

for all 0 ≤ t ≤ T and x ∈ E . In order to deal with the first term on the right-hand side of the

inequality in (5.5), we can use a standard estimate for the Riemann sum approximation and

obtain:∣∣∣∣∣
∫ T−t

0

e−λu F (t, x; t+ u, b(t+ u)) du−
n∑
i=1

e−λui F (t, x; t+ ui, b(t+ ui)) ∆n

∣∣∣∣∣ ≤ C1

n
(5.6)

for all n ≥ N and some C1 > 0 fixed. As to the second term in (5.5), we can make use of the

mean value theorem and the inequality (5.4) to get:∣∣∣F (t, x; t+ ui, b(t+ ui))− F (t, x; t+ ui, b̂n(t+ ui))
∣∣∣ (5.7)

=
∣∣Fy(t, x; t+ ui, ξi)

∣∣ ∣∣∣̂bn(t+ ui)− b(t+ ui)
∣∣∣ ≤ C
√
ui

∣∣∣̂bn(t+ ui)− b(t+ ui)
∣∣∣

for some ξi ∈ E and every i = 1, . . . , n . From the assumption of (2.4), it follows by the mean

value theorem that:∣∣∣G(t+ ui, b̂(t+ ui))−G(t+ ui, b(t+ ui))
∣∣∣ =

∣∣Gx(t+ ui, ηi)
∣∣ ∣∣∣̂bn(t+ ui)− b(t+ ui)

∣∣∣ (5.8)
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for some ηi ∈ E and every i = 1, . . . , n . Then, using the expression in (5.8) and taking into

account the assumption of (5.2), it follows from (5.7) that:∣∣∣F (t, x; t+ ui, b(t+ ui))− F (t, x; t+ ui, b̂(t+ ui))
∣∣∣ (5.9)

≤ C

ε
√
ui

∣∣∣G(t+ ui, b̂n(t+ ui))−G(t+ ui, b(t+ ui))
∣∣∣

=
C

ε
√
ui

∣∣∣V̂n(t+ ui, b̂n(t+ ui))− V (t+ ui, b(t+ ui))
∣∣∣

≤ C

ε
√
ui

∣∣∣V̂n(t+ ui, xi)− V (t+ ui, xi)
∣∣∣

for some xi ∈ E such that xi ∈ (̂bn(t)∧ b(t), b̂n(t)∨ b(t)). Hence, combining the inequalities of

(5.5)-(5.9), we get:∣∣∣V̂n(t+ ui, xi)− V (t+ ui, xi)
∣∣∣ ≤ sup

0≤ui≤T−t
sup
xi∈E

∣∣∣V̂n(t+ ui, xi)− V (t+ ui, xi)
∣∣∣ (5.10)

for all 0 ≤ t ≤ T and every i = 1, . . . , n . By virtue of the fact that the function e−λu/
√
u is

decreasing, straightforward calculations show that the inequalities:

n∑
i=1

e−λui
C

ε
√
ui

∆n ≤
C

ε

∫ T−t

0

e−λu√
u
du ≤ C2

√
T − t (5.11)

hold for all 0 ≤ t ≤ T and some C2 > 0 fixed. Therefore, combining the inequalities of

(5.6)-(5.11), we obtain from (5.5) that:∣∣∣V̂n(t, x)− V (t, x)
∣∣∣ ≤ C1

n
+ C2

√
T − t sup

0≤ui≤T−t
sup
xi∈E

∣∣∣V̂n(t+ ui, xi)− V (t+ ui, xi)
∣∣∣ (5.12)

for all 0 ≤ t ≤ T and x ∈ E . Hence, we have:

sup
0≤u≤T−t

sup
x∈E

∣∣∣V̂n(t+ u, x)− V (t+ u, x)
∣∣∣ (5.13)

≤ C1

n
+ C2

√
T − t sup

0≤u≤T−t
sup
x∈E

∣∣∣V̂n(t+ u, x)− V (t+ u, x)
∣∣∣

for all 0 ≤ t ≤ T and x ∈ E .

Let us finally choose some t ∈ [0, T ] such that C2

√
T − t ≤ 1/2. It thus follows from (5.13)

that:

sup
0≤u≤T−t

sup
x∈E

∣∣∣V̂n(t+ u, x)− V (t+ u, x)
∣∣∣ ≤ 2C1

n
(5.14)

for all n ∈ N such that n ≥ N . This completes the proof of the theorem.
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6 Examples

In this section, we give some remarks on the application of the iterative procedure introduced

above to solving nonlinear integral equations arising from some optimal stopping problems with

finite time horizon.

Example 6 (Early exercise American put option [15], [20], [22; Chapter VII, Section 25].)

Suppose that in (2.2) we have G(t, x) = (K−x)+ and λ = r , for some K, r > 0 fixed. Assume

that in (2.1) we have µ(x) = rx, σ(x) = θx, for x ∈ E = (0,∞) and some θ > 0, and hence,

H(t, x) = −rK in (2.7). In this case, as an analogue of the formula in (5.1), we have:

F (0, x; t, y) = −rK P0,x

[
Xt ≤ y

]
(6.1)

= −rK Φ

(
1

σ
√
t

(
log

y

x
−
(
r − θ2

2

)
t

))
for all t > 0 and x, y > 0, where Φ(x) = (1/

√
2π)

∫ x
−∞ e

−y2/2dy . Thus, the conditions in

(5.2)-(5.4) as well as the other essential assumptions of Theorem 5 are satisfied for almost all

x > 0. We may also take σ as a first hitting of some curve which is strictly above the stopping

boundary b, for example, h(t) = K − βK
√

(T − t)| log(T − t)|, for some β > 0 (see [1]), and

consider this bound as a lower for the price of an American option.

Example 7 (Early exercise Asian option [23], [22; Chapter VII, Section 27].) Suppose that in

(2.2) we have G(t, x) = (1− x/t)+ and λ = 0. Assume that in (2.1) we have µ(x) = (1− rx),

σ(x) = θx, for all x ∈ E = (0,∞) and some r, θ > 0, and hence, H(t, x) = ((1/t+ r)x− 1)/t

in (2.7). In this case, as an analogue of the formula in (5.1), we have:

F (0, x; t, y) = E0,x

[
H(t, x) I(Xt ≤ y)

]
(6.2)

=

∫ ∞
0

∫ ∞
0

1

t

((1

t
+ r
)x+ a

s
− 1

)
I
(x+ a

s
≤ y
)
f(t, s, a) ds da

for all t > 0 and x, y > 0, where

f(t, s, a) =
2
√

2

π3/2θ3

sr/θ
2

a2
√
t

exp

(
2π2

θ2t
− (r + θ2/2)2

2θ2
t− 2

θ2a
(1 + s)

)
(6.3)

×
∫ ∞

0

exp

(
−2z2

θ2t
− 4
√
s

θ2a
cosh z

)
sinh z sin

(4πz

θ2t

)
dz

for all t > 0 and s, a > 0. Thus, it can be verified that the conditions in (5.2)-(5.4) as well as

the other essential assumptions of Theorem 5 are satisfied for almost all x > 0.
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Example 8 (Wiener sequential testing problem with finite horizon [6], [22; Chapter VI, Sec-

tion 21].) Suppose that in (2.2) we have G(t, x) = −t− ax ∧ b(1− x), for some a, b > 0 fixed

and λ = 0. Assume that in (2.1) we have µ(x) = 0, σ(x) = θx(1− x), for all x ∈ E = (0, 1)

and some θ > 0, and hence, H(t, x) = 1 in (2.7). In this case, as an analogue of the formula

(5.1), we have:

F (0, x; t, y) = P0,x

[
Xt ≤ y

]
= xΦ

(
1

θ
√
t

log

(
y

1− y
1− x
x

)
− θ
√
t

2

)
(6.4)

+ (1− x) Φ

(
1

θ
√
t

log

(
y

1− y
1− x
x

)
+
θ
√
t

2

)
for all t > 0 and x, y ∈ (0, 1). Thus, it can be verified that the conditions (5.2)-(5.4) as well

as the other essential assumptions of Theorem 5 are satisfied for almost all x ∈ (0, 1). In this

case, the function x 7→ G(t, x) is monotone on the intervals (0, 1/2) and (1/2, 1), separately.

Example 9 (Wiener disorder detection problem with finite horizon [7], [22; Chapter VI, Sec-

tion 22].) Suppose that in (2.2) we have G(t, x) = −(1 − x) and λ = 0. Assume that in

(2.1) we have µ(x) = η(1 − x), σ(x) = θx(1 − x), for all x ∈ E = (0, 1) and some η, θ > 0.

The reward of the related optimal stopping problem also contains an integral, and thus, as an

analogue of the formula in (5.1), we have:

F (0, x; t, y) = E0,x

[
Xt I(Xt ≤ y) + (1−Xt) I(Xt ≥ y)

]
(6.5)

=

∫ y

0

z p(x; t, z) dz +

∫ 1

y

(1− z) p(x; t, z) dz

for all t > 0 and x, y ∈ (0, 1), where an explicit expression for the marginal density function

p(x; t, z) is derived in [7; Section 4] (see also [22; Chapter VI, Section 22]). It can be verified

that the conditions in (5.2)-(5.4) as well as the other essential assumptions of Theorem 5 are

satisfied (see [7]).

Example 10 (Early exercise Russian option [26]-[27], [21], [22; Chapter VII, Section 26].)

Suppose that in (2.2) we have G(t, x) = x. Assume that in (2.1) we have:

dXt = −rXt dt+ θXt dBt + dRt (X0 = x) (6.6)

where

Rt =

∫ t

0

I(Xu = 1)
d(max0≤v≤u Su)

Su
(6.7)
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and St = exp(θBt+(r+θ2/2)t), for all t ≥ 0 and some r, θ > 0, and hence, H(t, x) = −(r+λ)x

for all x ∈ E = (0,∞) in (2.7). In this case, as an analogue of the formula in (5.1) we have:

F (0, x; t, y) = E0,x

[
H(t, x) I(Xt ≥ y)

]
(6.8)

= −
∫ ∞

1

∫ ∞
0

(m ∨ x
s

)
I
(m ∨ x

s
≥ y
)
f(t, s,m) ds dm

for all t > 0 and x, y > 0, where

f(t, s,m) =
2

θ3
√

2πt3
log(m2/s)

sm
exp

(
− log2(m2/s)

2θ2t
+
β

θ
log s− β2

2
t

)
(6.9)

for 0 < s ≤ m and m ≥ 1 with β = r/θ + θ/2. Thus, it can be shown that in this case the

condition in (5.4) is not satisfied. This fact can be explained by the presence of a reflection term

from (6.7) in the equation of (6.6). Therefore, one should find another arguments to prove the

assertion of Theorem 5 for this case.
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