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The problem of disorder seeks to determine a stopping time which
is as close as possible to the unknown time of ’disorder’ when the ob-
served process changes its probability characteristics. We give a par-
tial answer to this question for some special cases of Lévy processes
and present a complete solution of the Bayesian and variational prob-
lem for a compound Poisson process with exponential jumps. The
method of proof is based on reducing the Bayesian problem to an
integro-differential free-boundary problem where in some cases the
smooth-fit principle breaks down and is replaced by the principle of
continuous fit.

(Abbreviated Title: ON THE DISORDER PROBLEM)

1. Introduction. Assume that at time t = 0 we begin to observe a
continuously updated process X = (Xt)t≥0 whose probability characteristics
change at some unknown time θ called the time of ’disorder’ which cannot
be observed directly. Throughout the paper the random time θ can take
the value 0 with probability π , and under the condition that θ > 0 it
is exponentially distributed with parameter λ > 0. The disorder problem
or the problem of quickest disorder detection is to decide by observing the
process X at which time instant one should give an ’alarm’ indicating the
occurrence of ’disorder’ as close as possible to the time θ in the sense that
both the probability of ’false alarm’ and the expectation of the time interval
between the occurrence of ’disorder’ and the ’alarm’ when the latter is given
correctly should be minimal.

The problem of detecting a change in drift of a Wiener process was for-
mulated and solved by Shiryaev [12]-[15] (see also [16], [17; Ch. IV] and [17;
p. 208] for historical notes and references). Some particular cases of the
problem of detecting a change in the intensity of a Poisson process were con-
sidered in Gal’chuk and Rozovskii [6] and in Davis [4]. Peskir and Shiryaev
[10] presented a complete solution of the disorder problem for a Poisson pro-
cess in the Bayesian formulation. The main aim of this paper is to find
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an explicit expression of the optimal stopping boundary for the a posteriori
probability process in some special cases of the problem for Lévy processes
and to present a complete solution to the problem for a compound Poisson
process having exponentially distributed jumps. Actually, we give the next
example of process for which the quickest disorder detection problem can be
solved in an explicit form. Such processes are used, for example, in several
models of stochastic finance and insurance (see e.g. Shiryaev [18]). For some
other optimal stopping problems for such processes see e.g. Mordecki [9].

The paper is organized as follows. In Section 2 we give a formulation of
the Bayesian and variational problem of quickest disorder detection for Lévy
processes. In Section 3 by the examination of the sample-path behavior of
the a posteriori probability process we find an optimal stopping boundary
in some particular cases of the Bayesian problem. In Section 4 by means
of solving the corresponding integro-differential free-boundary problem we
derive a complete solution of the Bayesian problem for a compound Poisson
process with exponential jumps, where we can observe the breakdown of the
smooth-fit principle and its replacement by the principle of continuous fit.
These effects can be explained both by the examination of the sample-path
properties of the a posteriori probability process and by the existence of a
singularity point of the integro-differential equation. Note that in models
based on jump processes the situations when the continuous fit replaces the
smooth fit were earlier observed, for example, in bandit problems (see e.g.
Berry and Fristedt [2] for references). In Section 5 passing from the derived
solution of the Bayesian problem we find an explicit expression for the optimal
stopping boundary in the corresponding variational problem.

We should note here that the problem of quickest detection admits differ-
ent formulations and appears in on-line quality control, radar-location, seis-
mology, etc. (see e.g. Carlstein, Müller and Siegmund [3] and Kolmogorov,
Prokhorov and Shiryaev [8]).

2. Formulation of the Bayesian and variational problem. For a
precise probabilistic formulation of the quickest disorder detection problem
for Lévy processes (see [17; Ch. IV] for the Wiener process case) let us suppose
that on some measurable space (Ω,F) equipped with a family of probability
measures (P s)s≥0 there exists a nonnegative random variable θ such that
P s[θ = s] = 1 for all s ≥ 0. It is assumed that we observe a continuously
updated process X = (Xt)t≥0 with X0 = 0 and having under the measure
P s the following triplet:

((t ∧ s)b0 + ((t− s) ∨ 0)b1, 0, dt [I{t<s}ν0(dx) + I{t≥s}ν1(dx)]) (2.1)

with respect to the function h(x) = x , x ∈ R , for all t, s ≥ 0, where νi(dx)
is a Lévy measure on R such that νi({0}) = 0 and

∫
(x2 ∧ 1)νi(dx) < ∞ for

i = 0, 1 (see e.g. [7; Ch. II.4] or [11; Ch. II.8]). Here θ and X are assumed
to be stochastically independent under P s for all s ≥ 0. Let us fix λ > 0
and define the measures Pπ = πP 0 + (1− π)

∫∞
0

λe−λsP sds for all π ∈ [0, 1],
so that we have Pπ[θ = 0] = π and Pπ[θ > t | θ > 0] = e−λt for all t ≥ 0.
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Let τ be a stopping time with respect to the filtration FX = (FX
t )t≥0 ,

where FX
t = σ{Xs | 0 ≤ s ≤ t} . We will interpret τ as the time at which

the ’alarm’ is sounded to signal the change in distribution of the observed
process X . The Bayesian disorder problem is to minimize the risk function:

V (π) = inf
τ

{
Pπ[τ < θ] + cEπ[τ − θ]+

}
, (2.2)

where the infimum is taken over all FX -stopping times τ , and to find an
optimal stopping time τ∗ at which the infimum in (2.2) is attained. Here
Pπ[τ < θ] is the probability of ’false alarm’, Eπ[τ − θ]+ is the ’average delay’
in detecting of disorder correctly, and c > 0 is some constant.

It is easily shown (see [17; pp. 195-197]) that the value function V (π)
can be expressed in terms of the a posteriori probability process (πt), where
πt = Pπ[θ ≤ t | FX

t ] for all t ≥ 0 and Pπ[π0 = π] = 1. Namely, we have:

V (π) = inf
τ

Eπ

[
1− πτ + c

∫ τ

0

πt dt

]
. (2.3)

Moreover, it is easily verified (see [17; p. 204]) that the infimum in (2.3) is
actually taken over the class M(π) of stopping times τ such that Eπ[τ ] < ∞ .

In order to give the corresponding variational or fixed false-alarm proba-
bility formulation, let the number π ∈ [0, 1) be fixed and let M(π, α) denote
the class of stopping times τ satisfying:

Pπ[τ < θ] ≤ α, (2.4)

where α is a given constant from the interval [0, 1). The variational disorder
problem is to find in the class M(π, α) a stopping time τ̂ such that:

Eπ[τ̂ − θ]+ ≤ Eπ[τ − θ]+ (2.5)

for any other stopping time τ from M(π, α).

3. Preliminary results and examples. Suppose that the filtration
FX is right-continuous and the following conditions are satisfied:

∫
|x| νi(dx) < ∞ (i = 0, 1), (3.1)

b1 = b0 +

∫
x ν1(dx)−

∫
x ν0(dx), (3.2)

∫ (√
Y (x)− 1

)2

ν0(dx) < ∞, (3.3)

where Y (x) = ν1(dx)/ν0(dx) for all x ∈ R . Then by means of Girsanov’s
theorem for semimartingales [7; Th. III.5.34] and Itô’s formula [7; Th. I.4.57],
using the schema of arguments in [17; p. 202] it can be verified that the
process (πt) solves the following stochastic differential equation:

dπt = λ(1− πt) dt +

∫
πt−(1− πt−)(Y (x)− 1)

1 + πt−(Y (x)− 1)
(µX − νX)(dt, dx), (3.4)
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where µX is the measure of jumps of the process X and its FX -compensator
νX is given by νX(dt, dx) = (πt−ν1(dx) + (1− πt−)ν0(dx)) dt . From (3.4) it
is easily seen that (πt) is a time-homogeneous (strong) Markov process under
Pπ with respect to the natural filtration which clearly coincides with FX .
The latter implies that the infimum in (2.3) can be taken over all stopping
times of (πt) playing the role of a sufficient statistic (see e.g. [17; Ch. II.15]).

It can be also verified (see [17; pp. 197-198] and [10]) that the value
function V (π) is decreasing and concave on [0, 1], and the optimal stopping
time in (2.3) is given by:

τ∗ = inf{t ≥ 0 |πt ≥ B∗}, (3.5)

where B∗ is the smallest number π from [0, 1] such that V (π) = 1− π .
Using the arguments from [10] we now find an explicit expression for the

optimal stopping boundary B∗ in some particular cases of the problem.

Lemma 3.1. Assume in addition to (2.1) and (3.1)-(3.3) that we have:

ν1(dx) ≥ ν0(dx) (x ∈ R), (3.6)

0 <

∫
x ν1(dx)−

∫
x ν0(dx) ≤ c + λ. (3.7)

Then in the Bayesian problem of quickest disorder detection (2.2)-(2.3) the
stopping time τ∗ from (3.5) is optimal with B∗ = B , where we set:

B =
λ

λ + c
. (3.8)

Proof. The assumption (3.7) ensures that B ≤ B̂ , where we set:

B̂ = λ
/(∫

x ν1(dx)−
∫

x ν0(dx)

)
. (3.9)

From the equation (3.4) it is seen that if B̂ ≥ 1 then the process (πt) is

strictly increasing, and if B̂ < 1 then the drift rate of the continuous part
of (πt) is positive on [0, B̂), negative on (B̂, 1), and equal to zero at B̂ .

Thus, if (πt) starts in [0, B̂) or in (B̂, 1), then under the absence of jumps

(πt) will never reach B̂ , because its drift tends to zero the same time with
linear order. Therefore, by virtue of the fact that under the condition (3.6)

the process (πt) can have only positive jumps, it can leave [0, B̂) only by

jumping and fluctuating in (B̂, 1) cannot enter [0, B̂). If (πt) starts or ends

up at B̂ , then it is trapped there (Pπ−a.s.) until the next jump of X occurs.
From (3.4) it follows that the process (πt) admits the representation:

πt = π + λ

∫ t

0

(1− πs−) ds + Mt, (3.10)
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where (Mt) is a martingale under Pπ with respect to FX . Hence, by means of
the optional sampling theorem (see e.g. [7; Th. I.1.39]), from (3.10) together
with (3.4) and according to (3.1) we obtain that Eπ[Mτ ] = 0 and hence:

Eπ

[
1− πτ + c

∫ τ

0

πt dt

]
= 1− π + (λ + c) Eπ

∫ τ

0

(
πt − λ

λ + c

)
dt (3.11)

for all stopping times τ from M(π). Recalling that the process (πt) is mono-

tone increasing in [B, B̂) and after entering [B̂, 1] cannot leave it anymore,
from (3.11) we may therefore conclude that it is never optimal to stop (πt)
in [0, B) as well as (πt) must be stopped instantly after passing through B .
¤

Example 3.2. Assume that in (2.1) we have bi = 1/λi and νi(dx) =
I{x>0}e−λixdx/x with λi > 0. Thus X is a gamma process with parameter
changing from λ0 to λ1 (see e.g. [18; Ch. III.1]). In this case the integrals in
(3.1) and (3.3) are equal to 1/λi and log[(λ0 + λ1)

2/(4λ0λ1)], respectively.
Therefore, by Lemma 3.1 we get that if λ0 > λ1 > 0 and log(λ0/λ1) ≤ c+λ ,
then the stopping time τ∗ from (3.5) is optimal with B∗ = λ/(λ + c).

Example 3.3. Suppose that in (2.1) we have bi = 1/γi and νi(dx) =
I{x>0}e−γ2

i x/2dx/(2πx3)1/2 with γi > 0. Thus X is an inverse Gaussian pro-
cess with parameter changing from γ0 to γ1 (see e.g. [1]). In this case the
integrals in (3.1) and (3.3) are equal to 1/γi and [2(γ2

0 + γ2
1)]

1/2 − γ0 − γ1 ,
respectively. Therefore, by Lemma 3.1 we conclude that if γ0 > γ1 > 0 and
γ0 − γ1 ≤ c + λ , then τ∗ from (3.5) is optimal with B∗ = λ/(λ + c).

Remark 3.4. We note that from (3.11) it is seen that one should not
stop (πt) when it is in [0, B] , so that for B∗ from (3.5) we have B ≤ B∗ ≤ 1.

4. Solution of the Bayesian problem for a compound Poisson
process with exponential jumps. In the rest of the paper it is assumed
that the process X is defined by:

Xt =

∫ t

0

θs− dX1
s +

∫ t

0

(1− θs−) dX0
s , (4.1)

where X i
s =

∑N i
s

j=1 ξi
j and θs = I{s≥θ} for all t, s ≥ 0, N i = (N i

t ) is a Poisson

process with intensity 1/λi , and (ξi
j)j∈N is a sequence of independent random

variables exponentially distributed with parameter λi (N i , (ξi
j)j∈N and θ are

supposed to be independent) for i = 0, 1. Then in (2.1) we have bi = 1/λ2
i

and νi(dx) = I{x>0}e−λixdx , and thus X is a compound Poisson process
having exponentially distributed jumps with parameter changing from λ0

to λ1 . In this case the integrals in (3.1) and (3.3) are equal to 1/λ2
i and

(λ0 − λ1)
2/[λ0λ1(λ0 + λ1)], respectively, and (3.4) takes the form:

dπt = λ(1− πt) dt +

∫ ∞

0

πt−(1− πt−)(e−λ1x − e−λ0x)

πt−e−λ1x + (1− πt−)e−λ0x
(4.2)

× (
µX(dt, dx)− (

πt−e−λ1x + (1− πt−)e−λ0x
)
dt dx

)
.
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Standard arguments imply that in this case the infinitesimal operator L
of the process (πt) acts on a function f ∈ C1([0, 1]) according to the rule:

(Lf)(π) =

(
λ−

(
λ0 − λ1

λ0λ1

)
π

)
(1− π)f ′(π) (4.3)

+

∫ ∞

0

[
f

(
πe−λ1x

πe−λ1x + (1− π)e−λ0x

)
− f(π)

] (
πe−λ1x + (1− π)e−λ0x

)
dx

for all π ∈ [0, 1]. Using standard arguments based on the strong Markov
property it follows that V (π) is C1 on (0, B∗). Therefore, using the re-
sults from [17; Ch. III.8] we can formulate the following integro-differential
free-boundary problem for the unknown function V (π) from (2.3) and the
unknown boundary B∗ from (3.5):

(LV )(π) = −cπ (0 < π < B∗), (4.4)

V (π) = 1− π (B∗ ≤ π ≤ 1), (4.5)

V (B∗−) = 1−B∗ (continuous fit), (4.6)

where the condition (4.6) is satisfied by virtue of the concavity argument
above. Note that the superharmonic characterization of the value function
(see [5] and [17]) implies that V (π) is the largest function satisfying (4.4)-
(4.6). Moreover, under some relations on the parameters of the model which
are specified below, the following condition may be satisfied or break down:

V ′(B∗) = −1 (smooth fit). (4.7)

We also observe that in this case B̂ from (3.9) takes the form:

B̂ =
λλ0λ1

λ0 − λ1

(4.8)

and turns out to be a singularity point of the equation (4.4) when λ0 > λ1 .
Using the schema of arguments in [10] we further show that the system

(4.4)-(4.6) admits an explicit solution which turns out to be a solution of the
initial optimal stopping problem (2.3). For this, let us consider a continuous
function f(π) satisfying (4.4) on (0, B) and (4.5) on [B, 1] for some 0 <
B < 1 given and fixed.

Let us first assume that λ0 > λ1 . Then it follows that the function
f̃(y) = f(π) with π = ey/(1 + ey) solves the following system:

(
λ′(1 + ey)

ey
− 1

γ(γ − 1)

)
f̃ ′(y)− f̃(y)[γ(1 + ey)− 1]

γ(γ − 1)(1 + ey)
(4.9)

+
eγy

1 + ey

[∫ eB
y

f̃(z)(1 + ez)

eγz
dz +

e−γ eB
γ

]
= −c(λ0 − λ1)e

y

1 + ey
(y < B̃),

f̃(y) = 1/(1 + ey) (y ≥ B̃), (4.10)
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where we set γ = λ0/(λ0−λ1) > 1, λ′ = λ(λ0−λ1) > 0 and B̃ = log[B/(1−
B)]. It can be easily shown that the system (4.9)-(4.10) has a unique solution
which is given by:

f̃(y; B̃) =
1

1 + e eB −
∫ eB

y

γ(γ − 1)F̃ (z, B̃)eγz

γ(1 + ez)− 1
dz, (4.11)

F̃ (y, B̃) =
1

Ã(y)

(
C̃(y, B̃)−

∫ eB
y

C̃(z, B̃)

Ã(z)

G̃(z)

G̃(y)
dz

)
, (4.12)

Ã(y) =
1 + ey

ey

(
λ′γ(γ − 1)(1 + ey)− ey

γ(1 + ey)− 1

)
, (4.13)

C̃(y, B̃) =
e−(γ−1) eB

γ(γ − 1)(1 + e eB)
− cλ0e

−(γ−1)y

γ
, (4.14)

G̃(y) =

{∣∣ey − B̂/(1− B̂)
∣∣a(1 + ey), if B̂ 6= 1,

exp[−γey](1 + ey), if B̂ = 1,
(4.15)

for y ≤ B̃ , and a = (B̂ + γ − 1)/(1 − B̂) if B̂ 6= 1. Using (4.11)-(4.15) we

may thus conclude that the function f(π; B) = f̃(y; B̃) given by:

f(π; B) = 1−B −
∫ B

π

γF (x,B∗)(1− x)[x/(1− x)]γ

λ1[λ1 + (λ0 − λ1)x]
dx, (4.16)

F (π, B) =
1

A(π)π(1− π)

(
C(π,B)−

∫ B

π

C(x,B)G(x)dx

A(x)G(π)x(1− x)

)
, (4.17)

A(π) =
λλ0λ1 − (λ0 − λ1)π

π[λ1 + (λ0 − λ1)π]
, (4.18)

C(π, B) =
1−B

γ(γ − 1)

(
1−B

B

)γ−1

− c(λ0 − λ1)

(
1− π

π

)γ−1

, (4.19)

G(π) =

∣∣∣∣
λλ0λ1 − (λ0 − λ1)π

(λ0 − λ1 − λλ0λ1)(1− π)

∣∣∣∣
a

1

1− π
, if

λλ0λ1

λ0 − λ1

6= 1, (4.20)

= exp

(
λ0π

(λ1 − λ0)(1− π)

)
1

1− π
, if

λλ0λ1

λ0 − λ1

= 1,

a =
λ1(1 + λλ0)

λ0 − λ1 − λλ0λ1

, if
λλ0λ1

λ0 − λ1

6= 1, (4.21)

for π ∈ (0, B] is a unique solution of the system (4.4)-(4.5).
Let us now assume that λ0 < λ1 . In this case it follows that the function

f̃(y) = f(π) with π = ey/(1 + ey) solves the equation:

(
λ′(1 + ey)

ey
− 1

γ(γ − 1)

)
f̃ ′(y)− f̃(y)[γ(1 + ey)− 1]

γ(γ − 1)(1 + ey)
(4.22)

− eγy

1 + ey

∫ y

−∞

f̃(z)(1 + ez)

eγz
dz = −c(λ0 − λ1)e

y

1 + ey
(y < B̃)
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and satisfies (4.10), where γ = λ0/(λ0 − λ1) < 0, λ′ = λ(λ0 − λ1) < 0 and

B̃ = log[B/(1− B)]. It can be easily verified that the system (4.22)+(4.10)
has a unique solution which is given by:

f̃(y) =
1

1 + e eB +

∫ y

−∞

γ(γ − 1)F̃ (z)eγz

γ(1 + ez)− 1
dz, (4.23)

F̃ (y) = −c(λ0 − λ1)

Ã(y)

(
e−(γ−1)y +

∫ y

−∞

e−(γ−1)z

Ã(z)

G̃(z)

G̃(y)
dz

)
(4.24)

for y ≤ B̃ , where Ã(y) and G̃(y) are defined in (4.13) and (4.15), respec-
tively. Using (4.23)-(4.24) and (4.13)+(4.15) we may therefore conclude that

the function f(π; B) = f̃(y) given by (4.16) with:

F (π) = − c(λ0 − λ1)

A(π)π(1− π)

((
1− π

π

)γ−1

+

∫ π

0

G(x)(1− x)γ−2

A(x)G(π)xγ
dx

)
(4.25)

for π ∈ (0, B] is a unique solution of the system (4.4)-(4.5).
Taking into account the facts proved above we are now ready to formulate

the main assertion of the section.

Theorem 4.1. Suppose that the observed process X is given by (4.1).
Then in the Bayesian problem of quickest disorder detection (2.2)-(2.3) the
value function V (π) coincides with the function:

V∗(π) =

{
f(π; B∗), π ∈ (0, B∗),

1− π, π ∈ [B∗, 1],
(4.26)

(with V∗(0) = f(0+; B∗)) and the optimal stopping time τ∗ is explicitly given
by (3.5), where f(π; B) and the boundary B∗ are specified as follows:

(i): if λ0 > λ1 and c > 1/λ1 − 1/λ0 − λ, then f(π; B) is given by
(4.16)-(4.17) and B∗ = B ≡ λ/(λ + c);

(ii): if λ0 > λ1 and c = 1/λ1 − 1/λ0 − λ, then f(π; B) is given by

(4.16)-(4.17) and B∗ = B = B̂ ≡ λλ0λ1/(λ0 − λ1);
(iii): if λ0 > λ1 and c < 1/λ1 − 1/λ0 − λ, then f(π; B) is given by

(4.16)-(4.17) and B∗ > B is a unique root of H(B∗) = 0, where we set:

H(B) =

∫ B

bB C(x,B)G(x)

A(x)x(1− x)
dx; (4.27)

(iv): if λ0 < λ1 , then f(π; B) = f(π) is given by (4.16)+(4.25) and B∗
is uniquely determined from the equation:

f ′(B∗) = −1. (4.28)

Proof. (i)+(ii) In these cases the conditions (3.6)-(3.7) are satisfied and

thus B ≤ B̂ . Hence, by Lemma 3.1 we get that B∗ coincides with B and, by
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means of the uniqueness arguments for solutions of the first-order ordinary
differential equations, we may conclude that V∗(π) = V (π) for all π ∈ [0, 1].

(iii) In this case we have B̂ < B , and thus, according to Remark 3.4 we

see that the optimal boundary B∗ is located to the right from B̂ . Taking an
arbitrary B from (B̂, 1), by means of the arguments above we obtain that
the function f(π; B) from (4.16)-(4.17) is a unique solution of the system

(4.4)-(4.6) for π ∈ (B̂, B] . Observe that in the given case there exists a

unique point B′ ∈ (B̂, 1) such that limπ↓ bB f(π; B) = ±∞ for B ∈ (B̂, B′) ∪
(B′, 1) and limπ↓ bB f(π; B′) is finite. Hence f(π; B) together with F (π, B)

from (4.17) can be uniquely extended to the interval (0, B̂] , where by the

l’Hôpital’s rule one may let F (B̂, B′) = F (B̂±, B′) and thus f ′(B̂; B′) =

f ′(B̂±; B′) ≡ −cλ2
1/(λ0 − λ1 − λλ0λ1). Then from (4.16)-(4.17) it follows

that B′ can be characterized by means of H(B′) = 0, where H(B) is defined

in (4.27). Since H(B̂+) = +0 and the derivative H ′(B) > 0 for B ∈ (B̂, B)

and H ′(B) < 0 for B ∈ (B, 1), the function H(B) increases on (B̂, B) and
decreases on (B, 1). Thus, by virtue of the property limB↑∞H(B) = −∞ ,
we get that B′ belongs to the interval (B, 1) and H(B′) = 0 has a unique
solution.

Summarizing the facts proved above we see that the value function V (π)
and the optimal boundary B∗ should necessarily solve the system (4.4)-
(4.6) and there is only one point B′ such that the solution f(π; B′) taken

at π = B̂ is finite. We may therefore conclude that B∗ coincides with B′

and the uniqueness argument for solutions of first-order differential equations
implies that V∗(π) = V (π) for all π ∈ [0, 1], thus proving the claim.

(iv) Taking into account the fact that in this case the process (πt) can
increase only continuously, following the arguments in [17; Ch. IV.4] and [10]
we may guess that the smooth-fit condition (4.7) is satisfied and thus the
equation (4.28) holds. Using straightforward calculations it is shown that
f ′′(π) < 0 for π ∈ (0, 1), hence the function f(π) from (4.16)+(4.25) is
concave on [0, 1] and its derivative f ′(π) is decreasing on (0, 1). Therefore,
by virtue of the facts that f ′(0+) = 0 and f ′(1−) = −∞ , we may conclude
that the equation (4.28) admits a unique solution.

Let us now show that the function V∗(π) defined in (4.26)+(4.16)+(4.25)
coincides with the value function V (π) and B∗ being a unique root of (4.28)
is an optimal stopping boundary. For this, applying Itô’s formula, we get:

V∗(πt) = V∗(π) +

∫ t

0

(LV∗)(πs−) ds + M∗
t , (4.29)

where the process (M∗
t ) defined by:

M∗
t =

∫ t

0

∫ ∞

0

[
V∗

(
πs−e−λ1x

πs−e−λ1x + (1− πs−)e−λ0x

)
− V∗(πs−)

]
(4.30)

× (
µX(ds, dx)− (

πs−e−λ1x + (1− πs−)e−λ0x
)
ds dx

)
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is a martingale under Pπ with respect to FX .
Since V∗(π) is a bounded function, from (4.30) by means of the optional

sampling theorem we get that Eπ[M∗
τ ] = 0 for all τ from M(π). Thus,

taking the expectation on both sides in (4.29) with τ instead of t and using
the fact that a direct verification yields (LV∗)(π) ≥ −cπ and V∗(π) ≤ 1− π ,
we obtain:

V∗(π) ≤ Eπ

[
1− πτ + c

∫ τ

0

πt dt

]
(4.31)

for all τ from the class M(π), and hence V∗(π) ≤ V (π) for all π ∈ [0, 1].
Observe that straightforward calculations above imply that the function

V∗(π) and the boundary B∗ solve the system (4.4)-(4.6), hence we have
V∗(πτ∗) = 1−πτ∗ and (LV∗)(πt) = −cπt for all 0 ≤ t ≤ τ∗ . Therefore, taking
the expectation on both sides in (4.29) with t replaced by τ∗ and using the
obvious fact that τ∗ belongs to M(π), we see that the equality in (4.31) is
attained at τ = τ∗ . This implies that V∗(π) = V (π) for all π ∈ [0, 1], and
that B∗ is an optimal stopping boundary, thus the proof is complete. ¤

Remark 4.2. We observe that in the case (i) of Theorem 4.1 it can be
verified that f ′(B∗−; B∗) = −1 and in the case (iv) we have proved that
(4.28) holds, so that the smooth-fit condition (4.7) is satisfied. This can
be explained by the both facts that the process (πt) may pass through B∗
continuously and the equation (4.4) has no singularity point.

On the other hand, in the case (ii) it is shown that f ′(B∗−; B∗) =
−cλ2

1/(λ0 − λ1 − λλ0λ1) > −1 and in the case (iii) it can be also proved
that the smooth-fit condition (4.7) breaks down. This can be explained by
means of the both facts that the process (πt) may pass through B∗ for the

first time only by jumping and the equation (4.4) has a singularity point B̂ .

Remark 4.3. We note that the function f(π; B) for different B ∈ (0, 1)
and the function V∗(π) in the cases (i)-(iv) look the same as on [10; Fig. 2-5].

5. Solution of the variational problem for a compound Poisson
process with exponential jumps. Let us first note that if α ≥ 1−π , then
letting τ̂ = 0 we get Pπ[τ̂ < θ] = Pπ[θ > 0] = 1−π ≤ α and Eπ[τ̂ − θ]+ = 0,
from where it is seen that τ̂ = 0 is optimal in the formulation (2.4)-(2.5).

Assuming that 0 < α < 1 − π and following the arguments from [17;
pp. 198-200], we further show that the solution of the variational problem
(2.4)-(2.5) can be obtained using the solution of the Bayesian problem. For
this, let us introduce the function:

u(π; B∗) = Pπ[τ∗ < θ] (= Eπ[1− πτ∗ ]). (5.1)

In order to find an explicit expression for the function u(π; B) in the case
when λ0 > λ1 , we observe that, by virtue of the strong Markov property, it
should solve the following system:

(Lu)(π; B) = 0 (0 < π < B), (5.2)

u(π; B) = 1− π (B ≤ π ≤ 1). (5.3)
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By means of the same arguments as in the text accompanied by the formu-
las (4.9)-(4.21), it is shown that the system (5.2)-(5.3) admits the unique
solution:

u(π; B) = 1−B −
∫ B

π

γλ1D(x,B)(1− x)

λ1 + (λ0 − λ1)x

(
x

1− x

)γ

dx, (5.4)

D(π, B) =
1−B

γ(γ − 1)A(π)π(1− π)

G(B)

G(π)

(
1−B

B

)γ

(5.5)

for π ∈ (0, B), π 6= B̂ , where γ = λ0/(λ0− λ1) > 1, the functions A(π) and
G(π) are given by (4.18) and (4.20), respectively, and by the l’Hôpital’s rule

one may let D(B̂, B) = D(B̂±, B) ≡ 0 as well as u(0; B) = u(0+; B).
It is not difficult to verify that ∂u(π; B)/(∂B) < 0 for B ∈ (π, 1), so

that the function u(π; B) is strictly decreasing on (π, 1) for 0 < π < 1 − α
fixed. Therefore, by virtue of the obvious facts that u(π; 0) = 1 − π and
u(π; 1) = 0, we may conclude that there exists a point B(α) ≤ 1− α being
a unique solution of the equation:

u(π; B(α)) = α. (5.6)

Let us now formulate the main result of the section.

Theorem 5.1. Suppose that the observed process X is given by (4.1).
Then in the variational problem of quickest disorder detection (2.4)-(2.5) the
optimal stopping time τ̂ is explicitly given by:

τ̂ = inf{t ≥ 0 |πt ≥ B(α)}, (5.7)

where the boundary B(α) ≤ 1− α is specified as follows:
(i): if 0 < α < 1− π and λ0 > λ1 , then B(α) is a unique root of (5.6);
(ii): if α ≥ 1− π or λ0 < λ1 , then B(α) = 1− α .

Proof. (i) Let us consider the function B∗ = B∗(c) being an opti-
mal boundary in the corresponding Bayesian problem which is uniquely de-
termined from the parts (i)-(iii) of Theorem 4.1. It can be easily shown
that B∗(c) is continuous and strictly decreasing on (0,∞) and satisfies
limc↓0 B∗(c) = 1 and limc↑∞ B∗(c) = 0. Then there exists a constant c(α)
such that B(α) = B∗(c(α)), and by the definition (2.2) we have:

Pπ[τ̂ < θ] + c(α)Eπ[τ̂ − θ]+ ≤ Pπ[τ < θ] + c(α)Eπ[τ − θ]+ (5.8)

for all stopping times τ . Since from (5.6) together with (5.1) and (3.5) it is
seen that Pπ[τ̂ < θ] = α , we may thus conclude that (5.8) directly yields:

c(α)Eπ[τ̂ − θ]+ ≤ c(α)Eπ[τ − θ]+ (5.9)

for all τ from M(π, α). Therefore, by virtue of the obvious fact that c(α) > 0
for 0 < α < 1− π , we obtain that τ̂ from (5.7) is optimal in (2.5).
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(ii) Since whenever λ0 < λ1 the process (πt) can increase only contin-
uously, we get that {πbτ ≥ B(α)} = {πbτ = B(α)} , and from (5.1) it thus
follows that in this case we have u(π; B) = 1−B . Hence, from (5.6) it is seen
that B(α) = 1 − α , and the arguments from the previous part (i) complete
the proof. ¤
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