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We study a model of a financial market in which two risky assets are paying dividends

with rates changing their initial values to other constant ones when certain events occur.

Such events are associated with the first times at which the value processes of issuing firms,

modeled by geometric Brownian motions, fall to some prescribed levels. The asset price

dynamics are described by exponential diffusion processes with random drift rates and

independent driving Brownian motions. We derive closed form expressions for rational

values of European contingent claims, under full and partial information.

1 Introduction

In the present paper, we study a first passage time model for two dividend paying assets with

dividend rates changing their initial values to other constant ones, during the allowed infinite

time horizon. The times of change of the dividend rates are assumed to be the first times at

which the firm values hit some given lower constant barriers. Such a model corresponds to a

financial market in which the fall of one of the firm values leads to a change of the dividend rate
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not of the asset issued by the same firm only, but of the other ones too. For instance, such a

situation may happen in a model with one parent company having several branches (or firms),

when a financial trouble of one of the firms makes an influence on the dividend policy of all

other ones as well. Note that some other models with random dividends were earlier considered

in the literature (see, e.g. Geske [3]), where the possibility of significance of stochastic dividend

effect on the rational values of contingent claims was emphasized. We introduce a dividend

switching model for asset prices that reflects certain contagion effect between low ratings of

several firms, which appears to be new for the related literature, to the best of our knowledge.

Other first passage time contagion models were considered within the credit risk framework, for

example, in Zhou [15], Giesecke [4], Overbeck and Schmidt [10], Valužis [14] (see also Bielecki

and Rutkowski [1; Chapter X] or Schönbucher [13; Chapter X] for further references).

The purpose of the present paper is to derive closed form expressions for rational values

of European contingent claims in the model described above. Suppose that the evolution

of firm values (or some related indices) is modeled by geometric Brownian motions, and the

risk-neutral dynamics of the underlying asset prices are described by exponential diffusion

processes having the following structure. Assume that the drift rates of the latter processes are

changing their initial values to other constant ones at the first times when the former processes

fall to some prescribed levels, on the infinite time interval. For simplicity of exposition, we

restrict our consideration to the two-dimensional case and assume that the firm values and the

underlying asset price processes are driven by the same Brownian motions, which are supposed

to be independent of each other. The rational values of the claims are expressed through the

transition density of the joint marginal distribution of a geometric Brownian motion and its

running minimum, as well as through the density of its first passage time on a constant level.

The results of the paper can naturally be extended to the case of a model with several underlying

assets, the price processes of which are driven by independent Brownian motions with random

drift rates. A generalization of the model to the case of correlated driving Brownian motions

would lead to more complicated and less explicit formulas (see, e.g. Iyengar [6], He et al. [5]

or Patras [11]).

The paper is organized as follows. In Section 2, we introduce a two-dimensional model with

two firms issuing two underlying risky assets having the dividend structure described above. In

Section 3, we derive expressions for rational prices of European contingent claims with respect

to the filtration generated by both firm value processes (full information). In Section 4, we

present expressions for the same contingent claims with respect to the filtration generated by
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the value of one of the firms only (partial information). In Section 5, we illustrate our results

on the rational pricing of European exchange options allowing its holders to exchange one asset

for another (see, e.g. Margrabe [9]), in the model described above, under full information. In

that case, the expressions for rational prices can be simplified, and thus become more amenable

for simulations. The main results of the paper are stated in Propositions 3.1 and 4.1.

2 The model

In this section, we introduce a first passage model for two firms issuing dividend paying assets.

2.1 The dynamics of firm values and asset prices

We consider a probability space (Ω,G, P ) with two independent standard Brownian motions

W i = (W i
t )t≥0 , i = 1, 2. Let the processes X i = (X i

t)t≥0 , i = 1, 2, be given by:

X i
t = xi exp

((
ηi −

θ2
i

2

)
t+ θiW

i
t

)
(2.1)

where ηi , θi > 0 and xi > 0 are some constants, for every i = 1, 2. The processes X i , i = 1, 2,

describe the evolution of values of two firms. Following the structural approach in credit risk

models, let us define the random variables τi , i = 1, 2, by:

τi = inf{t ≥ 0 |X i
t ≤ bi} (2.2)

where bi > 0, i = 1, 2, are some given constant levels. We will sometimes use the notation

τi(xi) to emphasize the dependence of τi on the starting value xi , for every i = 1, 2. Note

that, by construction, τi , i = 1, 2, are stopping times with respect to the natural filtration

Gt = σ(X1
u, X

2
u | 0 ≤ u ≤ t), t ≥ 0, of the process (X1, X2).

Let the processes Si = (Sit)t≥0 , i = 1, 2, be given by:

Sit = si exp

((
r − σ2

i

2
− δi,0

)
t− (δi,1 − δi,0) (t− τ1)+ − (δi,2 − δi,0) (t− τ2)+ + σiW

i
t

)
(2.3)

where (t − τi)
+ = max{t − τi, 0} , and σi , δi,k , si are some strictly positive constants, for

every i = 1, 2 and k = 0, 1, 2. The existence of such a pair of processes (S1, S2) can be easily

deduced from the classical diffusion model with constant dividend rates, by means of standard

change-of-measure arguments. The processes Si , i = 1, 2, describe the risk-neutral dynamics

of the prices of dividend paying assets issued by the two firms. Here, r ≥ 0 is the interest rate
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of a riskless banking account. Observe that it follows from (2.1) and (2.3) that the processes

Si , i = 1, 2, admit the representation:

Sit = si

(
X i
t

xi

)αi

exp
(
rt+ βi,0t+ γi,1(t− τ1)+ + γi,2(t− τ2)+

)
(2.4)

where αi = σi/θi , βi,0 = σiθi/2− σiηi/θi − σ2
i /2− δi,0 and γi,k = δi,0 − δi,k , i, k = 1, 2.

At the random times τi , i = 1, 2, at which the value processes of the two firms hit some

prescribed barriers, the dividend rates of the underlying assets change their initial values to

other constant ones. In more details, for every i = 1, 2 fixed, the i-th asset pays dividends

at the rate δi,0 until the time τ1 ∧ τ2 = min{τ1, τ2} at which the first event occurs and the

dividend rate is changed to δi,` , where ` = 1 if τ1 ∧ τ2 = τ1 , and ` = 2 if τ1 ∧ τ2 = τ2 . Then,

the i-th asset pays dividends with the rate δi,` until the time τ1 ∨ τ2 = max{τ1, τ2} at which

the second event occurs and the dividend rate is changed to δi,3 = δi,1 + δi,2 − δi,0 . After both

events occur, the i-th asset pays dividends with the rate δi,3 .

2.2 The payoffs of European contingent claims

The purpose of the present paper is to determine the rational (no-arbitrage) prices of European

contingent claims with payoffs of the form C(S1
T , S

2
T ), for some non-negative measurable func-

tions C(s1, s2), si > 0, i = 1, 2, and a fixed time horizon T > 0. Without loss of generality,

we assume that the payoffs are already discounted by the banking account, that is equivalent

to letting r equal to zero. The rational (or no-arbitrage) price process V = (Vt)0≤t≤T of such

a claim is given by:

Vt = E[C(S1
T , S

2
T ) | Gt] (2.5)

for any 0 ≤ t ≤ T , where the expectation is taken with respect to the equivalent martingale

measure. In the sequel, we will provide a closed form expression for the rational price of the so-

called currency exchange (or Margrabe) option with the payoff C(s1, s2) = (s1 − s2)
+ , si > 0,

i = 1, 2.

Observe that the value in (2.5) can be decomposed as:

Vt = E[C(S1
T , S

2
T ) I(T < τ1 ∧ τ2) | Gt] (2.6)

+
2∑
i=1

E[C(S1
T , S

2
T ) I(τ3−i ≤ T < τi) | Gt]

+
2∑
i=1

E[C(S1
T , S

2
T ) I(τ3−i < τi ≤ T ) | Gt]
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for all 0 ≤ t ≤ T , where I(·) denotes the indicator function. It follows from the expression in

(2.4) that the value process in (2.6) admits the representation:

Vt = E[C0(T,X
1
T , X

2
T ) I(T < τ1 ∧ τ2) | Gt] (2.7)

+
2∑
i=1

E[C1,i(T, τ3−i, X
i
T , X

3−i
T ) I(τ3−i ≤ T < τi) | Gt]

+
2∑
i=1

E[C2,i(T, τ3−i, τi, X
i
T , X

3−i
T ) I(τ3−i < τi ≤ T ) | Gt]

for any 0 ≤ t ≤ T . Here, according to the expression in (2.4), for each T > 0 and the

starting values si , xi , i = 1, 2, we have C0(T, y, z) = C(D1
0(T, y), D2

0(T, z)), where we de-

fine Di
0(T, x) = si(x/xi)

αieβi,0T with αi = σi/θi and βi,0 = σiθi/2 − σiηi/θi − σ2
i /2 − δi,0 ,

i = 1, 2. We also have C1,i(T, v, y, z) = C(Di
i(T, v, y), D3−i

i (T, v, z)), where we define

D`
i (T, v, x) = s`(x/x`)

α`eβ`,0T+γ`,3−i(T−v) with γ`,i = δ`,0 − δ`,i , i, ` = 1, 2. Moreover, we

have C2,i(T, v, u, y, z) = C(Di
3(T, v, u, y), D3−i

3 (T, v, u, z)), where we define D`
3(T, v, u, x) =

s`(x/x`)
α`eβ`,0T+γ`,3−i(T−v)+γ`,i(T−u) , i, ` = 1, 2.

Furthermore, we shall also determine the rational prices of the European contingent claims

under the assumption that the information available from the market is generated by one of the

firm values only. This corresponds to a situation where small investors trading in the market

cannot observe the values (or related indices) of other firms. In that case, the rational price

processes V j = (V j
t )0≤t≤T , j = 1, 2, of the claims are given by:

V j
t = E[C0(T,X

1
T , X

2
T ) I(T < τ1 ∧ τ2) | Gjt ] (2.8)

+
2∑
i=1

E[C1,i(T, τ3−i, X
i
T , X

3−i
T ) I(τ3−i ≤ T < τi) | Gjt ]

+
2∑
i=1

E[C2,i(T, τ3−i, τi, X
i
T , X

3−i
T ) I(τ3−i < τi ≤ T ) | Gjt ]

for any 0 ≤ t ≤ T . Here, Gjt = σ(Xj
u | 0 ≤ u ≤ t), t ≥ 0, is the natural filtration of the process

Xj , for every j = 1, 2.

2.3 The minimum process and some distribution laws

Let us introduce the running minimum process M i = (M i
t )t≥0 associated with the process X i

and defined by:

M i
t = min

0≤u≤t
X i
u ∧mi (2.9)
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for any xi ≥ mi > 0 fixed and i = 1, 2. It is known (see, e.g. [12; Chapter III, Section 3],

[7; Appendix E] or [2; Part II, Section 2]) that the transition density gi of the Markov process

(X i,M i) defined by:

Pxi,mi
(X i

t ∈ dx,M i
t ∈ dm) = gi(xi,mi; t, x,m) dx dm (2.10)

admits the representation:

gi(xi,mi; t, x,m) =
2

θ3
i

√
2πt3

ln(m2/(xix))

xm
exp

(
− ln2(m2/(xix))

2θ2
i t

+
ρi
θi

ln(x/xi)−
ρ2
i t

2

)
(2.11)

for all t > 0 and x ≥ m with xi ≥ mi ≥ m > 0, and equals zero otherwise. Here, Pxi,mi

denotes the probability under the assumption that (X i,M i) starts at (xi,mi), and we set

ρi = ηi/θi − θi/2. Although the expression for gi in (2.11) does not depend on mi explicitly,

we shall keep this notation in order to further use the (strong) Markov property of the couple

(X i,M i), for every i = 1, 2.

It is also known that the density hi of the hitting time τi in (2.2) defined by:

Pxi,mi
(τi ∈ dt) = hi(xi; t) dt (2.12)

admits the representation:

hi(xi; t) =
ln(xi/bi)

θi
√

2πt3
exp

(
−(ln(xi/bi) + ρiθit)

2

2θ2
i t

)
(2.13)

for all t > 0 and xi ≥ mi > bi > 0.

3 The case of full information

In this section, we compute the three conditional expectations of the expression in (2.7).

3.1 The first term

Let us begin by computing the first term in (2.7). For this, applying the Markov property of

the process (X1,M1, X2,M2), we get:

Ex1,m1,x2,m2 [C0(T,X
1
T , X

2
T ) I(T < τ1 ∧ τ2) | Gt] (3.1)

= I(t < τ1 ∧ τ2)Ex1,m1,x2,m2 [C0(T,X
1
T , X

2
T ) I(T < τ1 ∧ τ2) | Gt]

= I(t < τ1 ∧ τ2)EX1
t ,M

1
t ,X

2
t ,M

2
t
[C0(T

′, X1
T ′ , X

2
T ′) I(T ′ < τ ′1 ∧ τ ′2)]
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where we set T ′ = T − t and τ ′i = τi(X
i
t) ≡ τi(xi) − t , for each 0 ≤ t ≤ T . Here, Ex1,m1,x2,m2

denotes the expectation under the assumption that the process (X1,M1, X2,M2) starts at

(x1,m1, x2,m2) with xi ≥ mi > bi > 0, for every i = 1, 2. Then, using the fact that the event

{τi > t} can be represented in the form {M i
t > bi} , we have:

Ex1,m1,x2,m2 [C0(T
′, X1

T ′ , X
2
T ′) I(T ′ < τ ′1 ∧ τ ′2)] (3.2)

= Ex1,m1,x2,m2 [C0(T
′, X1

T ′ , X
2
T ′) I(M1

T ′ > b1,M
2
T ′ > b2)]

where τ ′i = τi(xi), for every i = 1, 2. Hence, we obtain from (3.1) and (3.2) that:

Ex1,m1,x2,m2 [C0(T,X
1
T , X

2
T ) I(T < τ1 ∧ τ2) | Gt] (3.3)

= I(t < τ1 ∧ τ2)
∫ ∞
b1

∫ ∞
b1

∫ ∞
b2

∫ ∞
b2

C0(T − t, x′1, x′2)
2∏
`=1

g`(X
`
t ,M

`
t ;T − t, x′`,m′`) dx′` dm′`

where the functions gi , i = 1, 2, are given in (2.11) above.

3.2 The second term

Let us continue with computing the second term in (2.7). For this, applying the Markov

property of the process (X1,M1, X2,M2), we get:

Ex1,m1,x2,m2 [C1,i(T, τ3−i, X
i
T , X

3−i
T ) I(τ3−i ≤ T < τi) | Gt] (3.4)

= Ex1,m1,x2,m2 [C1,i(T, τ3−i, X
i
T , X

3−i
T ) I(τ3−i ≤ t < T < τi) | Gt]

+ Ex1,m1,x2,m2 [C1,i(T, τ3−i, X
i
T , X

3−i
T ) I(t < τ3−i ≤ T < τi) | Gt]

= I(τ3−i ≤ t < τi)EX1
t ,M

1
t ,X

2
t ,M

2
t
[C0

1,i(T
′, X i

T ′ , X
3−i
T ′ ) I(T ′ < τ ′i)]

+ I(t < τ1 ∧ τ2)EX1
t ,M

1
t ,X

2
t ,M

2
t
[C1

1,i(T
′, τ ′3−i, X

i
T ′ , X

3−i
T ′ ) I(τ ′3−i ≤ T ′ < τ ′i)]

for all 0 ≤ t ≤ T . Here, for each T ′ ≡ T − t > 0 and the starting values si , xi , we

have C0
1,i(T

′, y, z) = C(Di
i(T − t, 0, y), D3−i

i (T − t, 0, z)) and C1
1,i(T

′, v, y, z) = C(Di
i(T − t, v −

t, y), D3−i
i (T − t, v − t, z)), where the functions D`

i (T, v, x), i, ` = 1, 2, are defined above.

We then continue with computing every term in (3.4) separately. Firstly, we see that:

Ex1,m1,x2,m2 [C
0
1,i(T

′, X i
T ′ , X

3−i
T ′ ) I(T ′ < τ ′i)] = Ex1,m1,x2,m2 [C

0
1,i(T

′, X i
T ′ , X

3−i
T ′ ) I(M i

T ′ > bi)] (3.5)

for xi ≥ mi > bi > 0 and b3−i ∧ x3−i ≥ m3−i > 0. Then, using the independence of (X i,M i)
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and (X3−i,M3−i), we have:

Ex1,m1,x2,m2 [C1,i(T, τ3−i, X
i
T , X

3−i
T )I(τ3−i ≤ t < T < τi) | Gt] (3.6)

= I(τ3−i ≤ t < τi)

∫ ∞
0

∫ ∞
bi

∫ ∞
0

∫ b3−i

0

C0
1,i(T − t, x′i, x′3−i)

3−i∏
`=i

g`(X
`
t ,M

`
t ;T − t, x′`,m′`) dx′` dm′`

where the functions gi , i = 1, 2, are given in (2.11) above.

Now, applying the strong Markov property of (X1,M1, X2,M2), we have:

Ex1,m1,x2,m2 [C1,i(T
′, τ ′3−i, X

i
T ′ , X

3−i
T ′ ) I(τ ′3−i ≤ T ′ < τ ′i)] (3.7)

= Ex1,m1,x2,m2 [C1,i(T
′, τ ′3−i, X

i
T ′ , X

3−i
T ′ ) I(M i

T ′ > bi, τ
′
3−i ≤ T ′)]

= Ex1,m1,x2,m2 [Ĉ1,i(T
′, τ ′3−i, X

i
τ ′3−i

,M i
τ ′3−i

, X3−i
τ ′3−i

,M3−i
τ ′3−i

) I(τ ′3−i ≤ T ′)]

= Ex1,m1,x2,m2 [Ĉ1,i(T
′, τ3−i, X

i
τ3−i

,M i
τ3−i

, b3−i, b3−i) I(τ3−i ≤ T ′)]

for xi ≥ mi > bi > 0, i = 1, 2, where the functions Ĉ1,i , i = 1, 2, are defined by:

Ĉ1,i(T
′, v, xi,mi, x3−i,m3−i) = Ex1,m1,x2,m2 [C

1
1,i(T

′, v,X i
T ′−v, X

3−i
T ′−v) I(M i

T ′−v > bi)] (3.8)

for xi ≥ mi > bi > 0, b3−i ∧ x3−i ≥ m3−i > 0 and any 0 ≤ v ≤ T ′ fixed. Thus, using the

independence of τ3−i and (X i,M i), we obtain from (3.7) that:

Ex1,m1,x2,m2 [C1,i(T, τ3−i, X
i
T , X

3−i
T ) I(t < τ3−i ≤ T < τi) | Gt] (3.9)

= I(t < τ1 ∧ τ2)
∫ T−t

0

∫ ∞
0

∫ ∞
bi

Ĉ1,i(T − t, v, x′i,m′i, b3−i, b3−i)h3−i(X
3−i
t ; v)

× gi(X i
t ,M

i
t ; v, x

′
i,m

′
i) dv dx

′
i dm

′
i

where, by virtue of the independence of (X i,M i) and (X3−i,M3−i), it follows from (3.8) that:

Ĉ1,i(T − t, v, x′i,m′i, x′3−i,m′3−i) (3.10)

=

∫ ∞
0

∫ ∞
bi

∫ ∞
0

∫ b3−i

0

C1
1,i(T − t, v, x′′i , x′′3−i)

3−i∏
`=i

g`(x
′
`,m

′
`;T − t− v, x′′` ,m′′` ) dx′′` dm′′`

and the functions gi and hi , i = 1, 2, are given in (2.11) and (2.13) above.
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3.3 The third term

Let us complete with computing the third term in (2.7). For this, applying the Markov property

of the process (X1,M1, X2,M2), we get:

Ex1,m1,x2,m2 [C2,i(T, τ3−i, τi, X
i
T , X

3−i
T ) I(τ3−i < τi ≤ T ) | Gt] (3.11)

= Ex1,m1,x2,m2 [C2,i(T, τ3−i, τi, X
i
T , X

3−i
T ) I(τ3−i < τi ≤ t) | Gt]

+ Ex1,m1,x2,m2 [C2,i(T, τ3−i, τi, X
i
T , X

3−i
T ) I(τ3−i ≤ t < τi ≤ T ) | Gt]

+ Ex1,m1,x2,m2 [C2,i(T, τ3−i, τi, X
i
T , X

3−i
T ) I(t < τ3−i < τi ≤ T ) | Gt]

= I(τ3−i < τi ≤ t)EX1
t ,M

1
t ,X

2
t ,M

2
t
[C0

2,i(T
′, X i

T ′ , X
3−i
T ′ )]

+ I(τ3−i ≤ t < τi)EX1
t ,M

1
t ,X

2
t ,M

2
t
[C1

2,i(T
′, τ ′i , X

i
T ′ , X

3−i
T ′ ) I(τ ′i ≤ T ′)]

+ I(t < τ1 ∧ τ2)EX1
t ,M

1
t ,X

2
t ,M

2
t
[C2

2,i(T
′, τ ′3−i, τ

′
i , X

i
T ′ , X

3−i
T ′ ) I(τ ′3−i < τ ′i ≤ T ′)]

for all 0 ≤ t ≤ T . Here, for each T ′ ≡ T − t > 0 and the starting values si , xi fixed, we have

C0
2,i(T

′, y, z) = C(Di
3(T − t, 0, 0, y), D3−i

3 (T − t, 0, 0, z)), C1
2,i(T

′, u, y, z) = C(Di
3(T − t, 0, u −

t, y), D3−i
3 (T − t, 0, u− t, z)) and C2

2,i(T
′, v, u, y, z) = C(Di

3(T − t, v− t, u− t, y), D3−i
3 (T − t, v−

t, u− t, z)), where the functions Di
3(T, v, u, x), i = 1, 2, are defined above.

We now continue with computing every term in (3.11) separately. Firstly, using the inde-

pendence of the processes (X i,M i) and (X3−i,M3−i), we obtain:

Ex1,m1,x2,m2 [C2,i(T, τ3−i, τi, X
i
T , X

3−i
T ) I(τ3−i < τi ≤ t) | Gt] (3.12)

= I(τ3−i < τi ≤ t)

∫ ∞
0

∫ bi

0

∫ ∞
0

∫ b3−i

0

C0
2,i(T − t, x′i, x′3−i)

3−i∏
`=i

g`(X
`
t ,M

`
t ;T − t, x′`,m′`) dx′` dm′`

where the functions gi , i = 1, 2, are given in (2.11) above.

Secondly, applying the strong Markov property of (X1,M1, X2,M2), we have:

Ex1,m1,x2,m2 [C
1
2,i(T

′, τ ′i , X
i
T ′ , X

3−i
T ′ ) I(τ ′i ≤ T ′)] (3.13)

= Ex1,m1,x2,m2 [Ĉ2,i(T
′, τ ′i , X

i
τ ′i
,M i

τ ′i
, X3−i

τ ′i
,M3−i

τ ′i
) I(τ ′i ≤ T ′)]

= Ex1,m1,x2,m2 [Ĉ2,i(T
′, τi, bi, bi, X

3−i
τi
,M3−i

τi
) I(τi ≤ T ′)]

for xi ≥ mi > bi > 0 and b3−i∧x3−i ≥ m3−i > 0, where the functions Ĉ2,i , i = 1, 2, are defined

by:

Ĉ2,i(T
′, u, xi,mi, x3−i,m3−i) = Ex1,m1,x2,m2 [C

1
2,i(T

′, u,X i
T ′−u, X

3−i
T ′−u)] (3.14)
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for bi ∧ xi ≥ mi > 0, i = 1, 2, and any 0 ≤ u ≤ T ′ fixed. Thus, using the independence of τi

and (X3−i,M3−i), we obtain from (3.13) that:

Ex1,m1,x2,m2 [C2,i(T, τi, X
i
T , X

3−i
T ) I(τ3−i ≤ t < τi ≤ T ) | Gt] (3.15)

= I(τ3−i ≤ t < τi)

∫ T−t

0

∫ ∞
0

∫ b3−i

0

Ĉ2,i(T − t, u, bi, bi, x′3−i,m′3−i)hi(X i
t ;u)

× g3−i(X
3−i
t ,M3−i

t ;u, x′3−i,m
′
3−i) du dx

′
3−i dm

′
3−i

where, by virtue of the independence of (X i,M i) and (X3−i,M3−i), it follows from (3.14) that:

Ĉ2,i(T − t, u, x′i,m′i, x′3−i,m′3−i) (3.16)

=

∫ ∞
0

∫ bi

0

∫ ∞
0

∫ b3−i

0

C1
2,i(T − t, u, x′′i , x′′3−i)

3−i∏
`=i

g`(x
′
`,m

′
`;T − t− u, x′′` ,m′′` ) dx′′` dm′′`

and the functions gi and hi , i = 1, 2, are given in (2.11) and (2.13) above.

Finally, we see that:

Ex1,m1,x2,m2 [C
2
2,i(T

′, τ ′3−i, τ
′
i , X

i
T ′ , X

3−i
T ′ ) I(τ ′3−i < τ ′i ≤ T ′)] (3.17)

= Ex1,m1,x2,m2 [C
2
2,i(T

′, τ ′3−i, τ
′
i , X

i
T ′ , X

3−i
T ′ ) I(M i

τ ′3−i
> bi, τ

′
i ≤ T ′)]

= Ex1,m1,x2,m2 [C̃2,i(T
′, τ ′3−i, X

i
τ ′3−i

,M i
τ ′3−i

, X3−i
τ ′3−i

,M3−i
τ ′3−i

) I(M i
τ ′3−i

> bi, τ
′
i ≤ T ′)]

= Ex1,m1,x2,m2 [C̃2,i(T
′, τ3−i, X

i
τ3−i

,M i
τ3−i

, b3−i, b3−i) I(M i
τ3−i

> bi, τi ≤ T ′)]

for xi ≥ mi > bi > 0, i = 1, 2, where the functions C̃2,i , i = 1, 2, are defined by:

C̃2,i(T
′, v, xi,mi, x3−i,m3−i) (3.18)

= Ex1,m1,x2,m2 [C2,i(T
′, v, τ ′i , X

i
τ ′i
,M i

τ ′i
, X3−i

τ ′i
,M3−i

τ ′i
) I(τ ′i ≤ T ′ − v)]

= Ex1,m1,x2,m2 [C2,i(T
′, v, τi, bi, bi, X

3−i
τi
,M3−i

τi
) I(τi ≤ T ′ − v)]

for xi ≥ mi > bi > 0, b3−i ∧ x3−i ≥ m3−i > 0 and any 0 ≤ v ≤ T ′ fixed, where the functions

C2,i , i = 1, 2, are defined by:

C2,i(T
′, v, u, xi,mi, x3−i,m3−i) = Ex1,m1,x2,m2 [C

2
2,i(T

′, v, u,X i
T ′−u, X

3−i
T ′−u)] (3.19)

for bi ∧ xi ≥ mi > 0, i = 1, 2, and any 0 ≤ u ≤ T ′ − v fixed. Hence, using again the
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independence of τ3−i and (X i,M i), we obtain from (3.17) that:

Ex1,m1,x2,m2 [C2,i(T, τ3−i, τi, X
i
T , X

3−i
T ) I(t < τ3−i < τi ≤ T ) | Gt] (3.20)

= I(t < τ1 ∧ τ2)
∫ T−t

0

∫ ∞
bi

∫ ∞
bi

C̃2,i(T − t, v, x′i,m′i, b3−i, b3−i)h3−i(X
3−i
t ; v)

× gi(X i
t ,M

i
t ; v, x

′
i,m

′
i) dv dx

′
i dm

′
i

where, by virtue of the independence of τi and (X3−i,M3−i), it follows from (3.18) that:

C̃2,i(T − t, v, x′i,m′i, x′3−i,m′3−i) (3.21)

=

∫ T−t−v

0

∫ ∞
0

∫ b3−i

0

C2,i(T − t, v, u, bi, bi, x′′3−i,m′′3−i)hi(x′i;u)

× g3−i(x
′
3−i,m

′
3−i;u, x

′′
3−i,m

′′
3−i) du dx

′′
3−i dm

′′
3−i

the functions C2,i , i = 1, 2, admit the representation:

C2,i(T − t, v, u, x′i,m′i, x′3−i,m′3−i) (3.22)

=

∫ ∞
0

∫ bi

0

∫ ∞
0

∫ b3−i

0

C2
2,i(T − t, v, u, x′′i , x′′3−i)

3−i∏
`=i

g`(x
′
`,m

′
`;T − t− u, x′′` ,m′′` ) dx′′` dm′′`

and the functions gi and hi , i = 1, 2, are given in (2.11) and (2.13).

Therefore, summarizing the facts proved above, we are now ready to formulate the following

assertion.

Proposition 3.1. The rational price of the European contingent claim in (2.7) under full

information is given by the sum of the terms in (3.3), (3.6), (3.9), (3.12), (3.15) and (3.20).

4 The case of partial information

In this section, we describe the computation of conditional expectations in (2.8).

Let us proceed by computing the terms in (2.8). For this, let H(t, xj,mj, x3−j,m3−j) be a

nonnegative continuous function, for any j = 1, 2 fixed. Then, using the independence of τj
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and (X3−j,M3−j), we see that:

Ex1,m1,x2,m2 [H(t,Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(t < τj ∧ τ3−j) | Gjt ] (4.1)

= I(t < τj)Ex1,m1,x2,m2 [H(t,Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(M3−j
t > b3−j) | Gjt ]

= I(t < τj)

∫ ∞
b3−j

∫ ∞
b3−j

H(t,Xj
t ,M

j
t , x

′
3−j,m

′
3−j) g3−j(x3−j,m3−j; t, x

′
3−j,m

′
3−j) dx

′
3−j dm

′
3−j

and

Ex1,m1,x2,m2 [H(t,Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(τ3−j ≤ t < τj) | G3−j
t ] (4.2)

= I(τ3−j ≤ t)Ex1,m1,x2,m2 [H(t,Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(M j
t > bj) | G3−j

t ]

= I(τ3−j ≤ t)

∫ ∞
bj

∫ ∞
bj

H(t, x′j,m
′
j, X

3−j
t ,M3−j

t ) gj(xj,mj; t, x
′
j,m

′
j) dx

′
j dm

′
j

for all 0 ≤ t ≤ T , where the functions gj , j = 1, 2, are given in (2.11) above.

Now, taking into account Markovian structure of the process (X1,M1, X2,M2), we obtain:

Ex1,m1,x2,m2 [H(t,Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(τ3−j ≤ t < τj) | Gjt ] (4.3)

= I(t < τj)

∫ t

0

∫ ∞
0

∫ b3−j

0

H(t,Xj
t ,M

j
t , x

′
3−j,m

′
3−j)h3−j(x3−j; v)

× g3−j(b3−j, b3−j; t− v, x′3−j,m′3−j) dv dx′3−j dm′3−j

and

Ex1,m1,x2,m2 [H(t,Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(τ3−j < τj ≤ t) | Gjt ] (4.4)

= I(τj ≤ t)

∫ τj

0

∫ ∞
0

∫ b3−j

0

H(t,Xj
t ,M

j
t , x

′
3−j,m

′
3−j)h3−j(x3−j; v)

× g3−j(b3−j, b3−j; τj − v, x′3−j,m′3−j) dv dx′3−j dm′3−j

as well as

Ex1,m1,x2,m2 [H(t,Xj
t ,M

j
t , X

3−j
t ,M3−j

t ) I(τ3−j < τj ≤ t) | G3−j
t ] (4.5)

= I(τ3−j ≤ t)

∫ t

τ3−j

∫ ∞
bj

∫ ∞
bj

H(t, x′j,m
′
j, X

3−j
t ,M3−j

t )hj(xj;u)

× gj(bj, bj; t− u, x′j,m′j) du dx′j dm′j

for 0 ≤ t ≤ T , and the functions gj and hj , j = 1, 2, are given in (2.11) and (2.13) above.
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Summarizing the facts proved above, let us formulate the following assertion.

Proposition 4.1. The rational price of the European contingent claim in (2.8) under partial

information is given by the sum of the terms in (4.1), (4.2), (4.3), (4.4) and (4.5), where the

function H is given appropriately, by the corresponding values in (3.3), (3.6), (3.9), (3.12),

(3.15) or (3.20), respectively.

5 Some examples

In this section, we derive explicit expressions for rational prices of the European exchange

(Margrabe) options, in the considered model with random dividends, under full information.

In order to give an illustrating example, let us provide computations for the first term in the

expression in (2.7), for the payoff function C(s1, s2) = (s1 − s2)
+ , si > 0, i = 1, 2. The other

terms in (2.7) can be computed similarly. It is easily seen from the structure or the processes

Si and X i in (2.3) and (2.1) that, in that case, for each T > 0 and the starting values si , xi ,

i = 1, 2, we have C0(T, y, z) = (D1
0(T, y) −D2

0(T, z))+ , where Di
0(T, x) = si(x/xi)

αieβi,0T and

αi = σi/θi and βi,0 = σiθi/2 − σiηi/θi − σ2
i /2 − δi,0 , i = 1, 2, as above. It thus follows from

(3.1) that:

Ex1,m1,x2,m2 [(D
1
0(T,X1

T )−D2
0(T,X2

T ))+ I(T < τ1 ∧ τ2) | Gt] (5.1)

= I(t < τ1 ∧ τ2)Ex1,m1,x2,m2 [(D
1
0(T,X1

T )−D2
0(T,X2

T ))+ I(T < τ1 ∧ τ2) | Gt]

= I(t < τ1 ∧ τ2)EX1
t ,M

1
t ,X

2
t ,M

2
t
[(D1

0(T ′, X1
T ′)−D2

0(T ′, X2
T ′))

+ I(T ′ < τ ′1 ∧ τ ′2)]

for all 0 ≤ t ≤ T . Hence, we have from (3.2) that:

Ex1,m1,x2,m2 [(D
1
0(T ′, X1

T ′)−D2
0(T ′, X2

T ′))
+ I(T ′ < τ ′1 ∧ τ ′2)] (5.2)

= Ex1,m1,x2,m2 [(D
1
0(T ′, X1

T ′)−D2
0(T ′, X2

T ′)) I(M1
T ′ > b1,M

2
T ′ > b2, D

1
0(T ′, X1

T ′) > D2
0(T ′, X2

T ′)]

for xi ≥ mi > bi > 0, i = 1, 2.

Let us now observe that, following the line of the arguments from [12; Theorem A.6.1], it is

shown that there exists a probability measure P̃ i being locally equivalent to P on the filtration

(Gt)t≥0 and such that its density process is given by:

dP̃ i

dP

∣∣∣
Gt

= exp
(
σiW

i
t −

σ2
i

2
t
)

(5.3)
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for all t ≥ 0 and every i = 1, 2. Then, by Girsanov’s theorem (see, e.g. [8; Theorem 6.3]),

we may conclude that the process W̃ i = (W̃ i
t )t≥0 , defined by W̃ i

t = W i
t − σi t , is a standard

Brownian motion under the measure P̃ i . Note that, since the processes W i , i = 1, 2, are

assumed to be independent, the process W 3−i remains a standard Brownian motion under P̃ i ,

for every i = 1, 2. Hence, it is seen from (2.1) that the process X i has the expression:

X i
t = xi exp

((
ηi + σiθi −

θ2
i

2

)
t+ θi W̃

i
t

)
(5.4)

for every i = 1, 2. We also note that, using the explicit expression in (2.1), we obtain from

(5.3) that:

dP̃ i

dP

∣∣∣
Gt

= e(βi,0+δi,0)t
(X i

t

xi

)αi

(5.5)

for all t ≥ 0.

Taking into account the structure of the processes X i and Si in (2.1) and (2.3), we therefore

conclude from (5.1)-(5.2) and (5.5) that the expression in (3.3) takes the form:

Ex1,m1,x2,m2 [(D
1
0(T,X1

T )−D2
0(T,X2

T ))+ I(T < τ1 ∧ τ2) | Gt] = I(t < τ1 ∧ τ2) (5.6)

×
(
S1
t e
−δ1,0(T−t) P̃ 1

X1
t ,M

1
t ,X

2
t ,M

2
t
(M1

T−t > b1,M
2
T−t > b2, D

1
0(T − t,X1

T−t) > D2
0(T − t,X2

T−t))

− S2
t e
−δ2,0(T−t) P̃ 2

X1
t ,M

1
t ,X

2
t ,M

2
t
(M1

T−t > b1,M
2
T−t > b2, D

1
0(T − t,X1

T−t) > D2
0(T − t,X2

T−t))
)

where

P̃ i
X1

t ,M
1
t ,X

2
t ,M

2
t
(M1

T−t > b1,M
2
T−t > b2, D

1
0(T − t,X1

T−t) > D2
0(T − t,X2

T−t)) (5.7)

=

∫ ∞
b1

∫ ∞
b1

∫ ∞
b2

∫ ∞
b2

I(D1
0(T − t, x′1) > D2

0(T − t, x′2))
2∏
`=1

g̃i`(X
`
t ,M

`
t ;T − t, x′`,m′`) dx′` dm′`

with the functions g̃i` , ` = 1, 2, defined as gi in (2.11) above with ρ̃ii = ηi/θi + σi − θi/2 and

ρ̃i3−i = η3−i/θ3−i − θ3−i/2 in place of ρi , for every i = 1, 2.
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from the Europlace Institute of Finance and the European Science Foundation (ESF) through

the Short Visit Grant number 1356 of the programme Advanced Mathematical Methods for

Finance (AMaMeF) are gratefully acknowledged.

14



References

[1] Bielecki, T. R. and Rutkowski, M. (2004). Credit Risk: Modeling, Valuation and

Hedging. Springer, Berlin.

[2] Borodin, A. N. and Salminen, P. (1996). Handbook of Brownian Motion.
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