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We study a model of a financial market in which the dividend rates of two risky

assets change their initial values to other constant ones at the times at which certain

unobservable external events occur. The asset price dynamics are described by geometric

Brownian motions with random drift rates switching at exponential random times, that

are independent of each other and the constantly correlated driving Brownian motions.

We obtain closed form expressions for the rational values of European contingent claims

through the filtering estimates of occurrence of the switching times and their conditional

probability density derived given the filtration generated by the underlying asset price

processes.

1 Introduction

In the present paper, we introduce a model for two assets paying dividends with rates changing

their initial values to other constant ones at the times at which certain unobservable events

occur. Such a model is related to a financial market in which the occurrence of some external
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events leads to changes of the dividend rates of the underlying assets. For instance, such

a situation may happen when the failure of a large industrial company or some important

political decision taken by the parliament can affect the dividend policy of the issuing firms.

Note that other models with random dividends have been earlier considered in the literature

(see, e.g. Geske [6]), where the possibility of the significance of stochastic dividend effects on the

rational values of contingent claims was emphasized. We propose a dividend switching model

for several asset prices, which reflects an influence of certain unobservable external events, that

appears to be new for the related literature, to the best of our knowledge.

The purpose of the present paper is to derive closed form expressions for rational values

of European contingent claims in the model described above. Suppose that the dynamics of

the underlying asset prices are described by geometric Brownian motions with random drift

rates having the following structure with respect to the risk-neutral probability measure. We

assume that the drift rates change their initial values to other constant ones at exponentially

distributed random times, that are independent of each other and the constantly correlated

driving Brownian motions. The rational values of the contingent claims are thus expressed

through the transition density of a two-dimensional geometric Brownian motion. The results of

the paper can naturally be extended to the case of a model with several underlying assets, the

price processes of which are driven by constantly correlated Brownian motions with switching

drift rates.

This paper continues the investigation of information-based approach for derivative pric-

ing, initiated by Brody, Hughston and Macrina [2], for the case of a multi-dimensional diffu-

sion model with switching random drifts. The hidden Markov model with a two-dimensional

observation process represents an extension of the model with one-dimensional observations

introduced by Shiryaev [9] (see also [11; Chapter IV, Section 4]) with the aim to provide a se-

quential procedure of detecting an unobservable switching (disorder) time. Models with more

complicated hidden continuous-time Markov chains as unobservable signals have been studied

in the literature and the corresponding finite-dimensional systems of Markovian filtering esti-

mates have been derived (see, e.g. Liptser and Shiryaev [8; Chapter IX] or Elliott, Aggoun and

Moore [4] for further developments). The analysis of such models represents an important part

of general stochastic filtering theory (see, e.g. Kallianpur [7] for an extensive overview).

The present paper can also be considered as a companion one to [5], where the key argument

of solving the problem of pricing of contingent claims was based on the Markov property of

the underlying two-dimensional structural diffusion model. In the present paper, we propose a
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simple derivation of the three-dimensional Markovian system of stochastic differential equations

for the posterior probabilities, being filtering estimates of the occurrence of the switching times,

driven by a two-dimensional innovation Brownian motion. Since the transition density of

the multi-dimensional Markov process formed by the asset prices together with the resulting

posterior probabilities certainly has a complicated structure, the main tool of deriving the

pricing formulas is based on the application of the so-called key lemma of credit risk theory.

The paper is organized as follows. In Section 2, we introduce a model with two underlying

risky assets having the structure of dividend rates described above. In Section 3, we derive

stochastic differential equations for the posterior probabilities of occurrence of the external

events and get explicit expressions for their conditional probability density given the accessible

filtration generated by the market prices of risky assets. In Section 4, we obtain closed form

expressions for the rational prices of European contingent claims under the partial information

generated by the price dynamics of the underlying assets. The main results of the paper are

stated in Propositions 3.1 and 4.1.

2 The model

In this section, we introduce a model for two assets with switching dividend rates.

2.1 The dynamics of asset prices

Let us suppose that on a probability space (Ω,G, P ) there exist two random times τi , i = 1, 2,

and two standard Brownian motions W i = (W i
t )t≥0 , i = 1, 2. Assume that P (τi > t) = e−λit

and 〈W 1,W 2〉t = ρt , for all t ≥ 0 and some λi > 0 and ρ ∈ (−1, 1) fixed. Let the processes

Si = (Sit)t≥0 , i = 1, 2, be given by:

Sit = exp

((
r − σ2

i

2
− δi,0

)
t− (δi,1 − δi,0) (t− τi)+ + σiW

i
t

)
(2.1)

where (t − τi)+ = max{t − τi, 0} , and σi , δi,j are some strictly positive constants, for every

i = 1, 2 and j = 0, 1. Assume that τi , i = 1, 2, are independent of each other and of the

Brownian motions W i , i = 1, 2. The processes Si , i = 1, 2, describe the risk-neutral dynamics

of the prices of dividend paying assets issued by the two firms, and τi , i = 1, 2, are random

times at which some unobservable events occur, leading to the changes of the dividend rates.

In more details, for every i = 1, 2 fixed, the i-th asset pays dividends at the rate δi,0 until the
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time τi at which the i-th event occurs and the dividend rate is changed to δi,1 . Here, r ≥ 0 is

the interest rate of a riskless banking account, and σi is the volatility coefficient. It follows from

an application of Itô’s formula that the process Si given by (2.1) admits the representation:

dSit = (r − δi,0 − (δi,1 − δi,0) I(τi ≤ t))Sit dt+ σi S
i
t dW

i
t (2.2)

where I(·) denotes the indicator function.

2.2 The payoffs of European contingent claims

In what follows, we determine the rational (no-arbitrage) prices of European contingent claims

with payoffs of the form C(S1
T , S

2
T ), for some non-negative measurable functions C(s1, s2),

si > 0, i = 1, 2, and a fixed time horizon T > 0. We assume that the information available

from the market is generated by the asset prices only. This is related to a situation where

small investors trading in the market cannot observe the times at which the external events

τi , i = 1, 2, occur. The rational (no-arbitrage) price process V = (Vt)0≤t≤T of such a claim is

given by:

Vt = E[e−r(T−t)C(S1
T , S

2
T ) | FSt ] (2.3)

for any 0 ≤ t ≤ T , where the expectation is taken with respect to the equivalent martingale

measure under which the dynamics of Si , i = 1, 2, are given by (2.2). Here, we denote by

(FSt )t≥0 the natural filtration of the couple of processes (S1, S2), that is, FSt = σ(S1
u, S

2
u | 0 ≤

u ≤ t) for all t ≥ 0. This filtration reflects the information flow which is accessible for investors

trading in the market. Observe that the value in (2.3) can be decomposed as:

Vt = E[e−r(T−t)C(S1
T , S

2
T ) I(T < τ1 ∧ τ2) | FSt ] (2.4)

+
2∑
i=1

E[e−r(T−t)C(S1
T , S

2
T ) I(τ3−i ≤ T < τi) | FSt ]

+
2∑
i=1

E[e−r(T−t)C(S1
T , S

2
T ) I(τ3−i < τi ≤ T ) | FSt ]

for all 0 ≤ t ≤ T .

Remark 2.1. Observe that the assumption that every external event affects the price

of one of the assets only does not restrict the generality, since the driving Brownian motions

are supposed to be correlated. More precisely, let us assume that the asset price processes

4



S∗i = (S∗it )t≥0 , i = 1, 2, are defined by:

S∗it = exp

((
r − (σ∗i )

2

2
− δ∗i,0

)
t− (δ∗i,1 − δ∗i,0) (t− τ1)+ − (δ∗i,2 − δ∗i,0) (t− τ2)+ + σ∗i W

∗i
t

)
(2.5)

where W ∗i = (W ∗i
t )t≥0 , i = 1, 2, are standard Brownian motions on the initial probability

space and 〈W ∗1,W ∗2〉t = ρ∗t for all t ≥ 0. It is shown by means of standard arguments that,

under the assumption that δi,0 6= δi,1 , i = 1, 2, the equalities:

lnS∗it =
2∑
j=1

(
δ∗i,j − δ∗i,0
δj,1 − δj,0

)
lnSjt and thus W ∗i

t =
1

σ∗i

2∑
j=1

(
δ∗i,j − δ∗i,0
δj,1 − δj,0

)
σjW

j
t (2.6)

hold, where the parameters δ∗i,0 and σ∗i > 0 can be explicitly identified by:

δ∗i,0 = r − (σ∗i )
2

2
−

2∑
j=1

(
r −

σ2
j

2
− δj,0

)( δ∗i,j − δ∗i,0
δj,1 − δj,0

)
(2.7)

and

(σ∗i )
2 =

2∑
j=1

(
δ∗i,j − δ∗i,0
δj,1 − δj,0

)2

σ2
j + 2

(
δ∗i,1 − δ∗i,0
δ1,1 − δ1,0

)(
δ∗i,2 − δ∗i,0
δ2,1 − δ2,0

)
σ1σ2ρ (2.8)

as well as ρ∗ ∈ (−1, 1) is given by:

ρ∗ =
1

σ∗1σ
∗
2

(
2∑
j=1

σ2
j

2∏
i=1

δ∗i,j − δ∗i,0
δj,1 − δj,0

+

(
2∏
i=1

δ∗i,i − δ∗i,0
δi,1 − δi,0

+
2∏
i=1

δ∗i,3−i − δ∗i,0
δ3−i,1 − δ3−i,0

)
σ1σ2ρ

)
(2.9)

for every i = 1, 2. Note that the assets Si , i = 1, 2, can be expressed through S∗i , i = 1, 2,

and the parameters are specified by means of the inverse linear transformation associated

with that of (2.6). It also follows from the expressions of (2.6)-(2.9) that any contingent claim

depending on the assets S∗i , i = 1, 2, with a given positive measurable payoff function C(s1, s2)

can be represented as C∗(S1, S2) = C(S∗1, S∗2), for some appropriately constructed function

C∗(s1, s2). We therefore conclude that the consideration of a model with two changes in the

dividend rates of both assets such as in (2.5) is equivalent to the use of the model with only

one change in every underlying asset such as in (2.1), so that, the choice of the latter model

does not yield any sensible loss of generality.

2.3 Some filtrations and distribution laws

Let us introduce the process X i,j = (X i,j
t )t≥0 by:

X i,j
t = exp

((
r − σ2

i

2
− δi,j

)
t+ σiW

i
t

)
(2.10)
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for all t ≥ 0, and every i = 1, 2 and j = 0, 1. Note that we have Sit = X i,0
t for 0 ≤ t < τi , and

Sit = X i,0
t eγi(t−τi) for t ≥ τi , where we set γi = δi,0 − δi,1 for i = 1, 2.

Let us denote by (FXt )t≥0 the natural filtration of the couple of processes (X1,0, X2,0), that

is, FXt = σ(X1,0
u , X2,0

u | 0 ≤ u ≤ t) for all t ≥ 0. For every i = 1, 2, let H i = (H i
t)t≥0 be the

indicator process associated with the random time τi and defined by H i
t = I(τi ≤ t), and let

(Hi
t)t≥0 be its natural filtration, so that, Hi

t = σ(H i
u | 0 ≤ u ≤ t) for all t ≥ 0. Let us also

define the filtrations (Git)t≥0 and (Gt)t≥0 by Git = FXt ∨Hi
t and Gt = FXt ∨H1

t ∨H2
t , respectively,

so that, the equality Gt ≡ FXt ∨ H1
t ∨ H2

t = FSt ∨ H1
t ∨ H2

t holds for all t ≥ 0. It is further

assumed that all the considered filtrations are right-continuous and completed by all the sets

of P -measure zero.

As it follows from the results below, the two-dimensional process (S1, S2) has a complicated

Markovian structure on its natural filtration (FSt )t≥0 , so that, the direct computation of the

conditional expectations in (2.4) should be avoided. Therefore, taking into account the tower

property for conditional expectations, we obtain from the expression in (2.1) that the value

process of (2.4) admits the representation:

Vt = E[E[e−r(T−t)C(X1,0
T , X2,0

T ) I(T < τ1 ∧ τ2) | Gt] | FSt ] (2.11)

+
2∑
i=1

E[E[e−r(T−t)C(X i,0
T , X3−i,0

T eγ3−i(T−τ3−i)) I(τ3−i ≤ T < τi) | Gt] | FSt ]

+
2∑
i=1

E[E[e−r(T−t)C(X i,0
T eγi(T−τi), X3−i,0

T eγ3−i(T−τ3−i)) I(τ3−i < τi ≤ T ) | Gt] | FSt ]

for all 0 ≤ t ≤ T . In order to compute the expectations in (2.11), we will use the fact that

(X i,j
T /X

i,j
t , X

3−i,`
T /X3−i,`

t ) is a couple of log-normal random variables and its density function

gj,` defined by:

P (X i,j
T /X

i,j
t ∈ dy,X

3−i,`
T /X3−i,`

t ∈ dz) = gj,`(T − t; y, z) dydz (2.12)

admits the representation:

gj,`(u; y, z) =
1

2πuyzσiσ3−i
√

1− ρ2
(2.13)

× exp

(
− 1

(1− ρ2)

(
(ln y − µi,ju)2

2σ2
i u

+
(ln z − µ3−i,`u)2

2σ2
3−iu

− (ln y − µi,ju)(ln z − µ3−i,`u)ρ

σiσ3−iu

))
for all u, y, z > 0 and every j, ` = 0, 1 (see, e.g. [8; Chapter XIII, Section 1]). Here and

after, we set µi,j = r − σ2
i /2− δi,j for every i = 1, 2 and j = 0, 1, in order to simplify further

notations.
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3 Filtering equations and conditional densities

In this section, we derive stochastic differential equations for the posterior probabilities of

occurrence of the external events and their conditional probability density with respect to the

accessible filtration (FSt )t≥0 .

3.1 Posterior probabilities

Let us introduce the processes Φi = (Φi
t)t≥0 and Ψi = (Ψi

t)t≥0 defined by:

Φi
t = λi

∫ t

0

Zi,0
t

Zi,0
v

dv and Ψi
t = λ3−i

∫ t

0

Φi
u

Zi,0
t

Zi,0
u

Z3−i,1
t

Z3−i,1
u

du (3.1)

where the process Zi,j = (Zi,j
t )t≥0 is given by:

Zi,j
t = exp

(
λi t+

µi,1 − µi,0
σ2
i (1− ρ2)

(
lnSit −

µi,1 + µi,0
2

t− σiρ

σ3−i

(
lnS3−i

t − µ3−i,j t
)))

(3.2)

in terms of the logarithm of the asset price process Si having the form:

lnSit = µi,0 t+ (µi,1 − µi,0) (t− τi)+ + σiW
i
t (3.3)

for all t ≥ 0, where µi,j = r − σ2
i /2− δi,j for every i = 1, 2 and j = 0, 1. Here, the process Φi

is the likelihood-ratio process corresponding to the case of τi ≤ t < τ3−i (see [11; Chapter IV,

Section 4]), and the process Ψi is the likelihood-ratio process corresponding to the case of

τi < τ3−i ≤ t , for all t ≥ 0 and every i = 1, 2.

By means of standard arguments similar to those in [10; Chapter IV, Section 4] (which are

compressed in [11; Chapter IV, Section 4]), resulting from the application of the generalized

Bayes’ formula (see, e.g. [8; Theorem 7.23]), it is shown that the (conditional) posterior prob-

ability processes Π = (Πt)t≥0 and Πi = (Πi
t)t≥0 defined by Πt = P (τ1 ≤ t, τ2 ≤ t | FSt ) and

Πi
t = P (τi ≤ t | FSt ), respectively, take the form:

Πt =
Ψt

1 + Ξt

and Πi
t =

Υi
t

1 + Ξt

(3.4)

where the processes Ψ = (Ψt)t≥0 , Υi = (Υi
t)t≥0 and Ξ = (Ξt)t≥0 are given by:

Ψt = Ψi
t + Ψ3−i

t , Υi
t = Φi

t + Ψt and Ξt = Φi
t + Φ3−i

t + Ψt (3.5)

for all t ≥ 0 and every i = 1, 2.
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3.2 Filtering equations

Applying Itô’s formula, we deduce that the process Zi,j from (3.2) admits the representation:

dZi,j
t = Zi,j

t

(
λi dt+

µi,1 − µi,0
σ2
i (1− ρ2)

(
d lnSit − µi,0 dt−

σiρ

σ3−i

(
d lnS3−i

t − µ3−i,j dt
)))

(3.6)

with Zi,j
0 = 1. Then, defining the process U i = (U i

t )t≥0 by U i
t = Zi,0

t Z
3−i,1
t and the process

Y i = (Y i
t )t≥0 by:

Y i
t =

µi,1 − µi,0
σ2
i (1− ρ2)

(
lnSit − µi,0 t−

σiρ

σ3−i

(
lnS3−i

t − µ3−i,0 t
))

(3.7)

we see that the following expression holds:

dU i
t = U i

t

(
(λi + λ3−i) dt+ dY i

t + dY 3−i
t

)
(3.8)

with U i
0 = 1, for all t ≥ 0, and every i = 1, 2 and j = 0, 1.

Hence, using Itô’s formula again, we obtain that the processes Φi and Ψi from (3.1) solve

the stochastic differential equations:

dΦi
t = λi

(
1 + Φi

t

)
dt+ Φi

t dY
i
t (3.9)

with Φi
0 = 0, and

dΨi
t =

(
λ3−i Φ

i
t + (λi + λ3−i) Ψi

t

)
dt+ Ψi

t (dY i
t + dY 3−i

t ) (3.10)

with Ψi
0 = 0. Thus, the processes defined in (3.5) admit the representations:

dΨt =
(
λ3−iΦ

i
t + λiΦ

3−i
t + (λi + λ3−i) Ψt

)
dt+ Ψt (dY i

t + dY 3−i
t ) (3.11)

with Ψi
0 = 0,

dΥi
t =

(
λi(1 + Ξt) + λ3−iΥ

i
t

)
dt+ Υi

t dY
i
t + Ψt dY

3−i
t (3.12)

with Υi
0 = 0, and

dΞt = (λi + λ3−i)(1 + Ξt) dt+ Υi
t dY

i
t + Υ3−i

t dY 3−i
t (3.13)

with Ξ0 = 0, where the process Y i is given by (3.7), for every i = 1, 2.
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By means of straightforward computations, we therefore conclude that the processes defined

in (3.4) solve the stochastic differential equations:

dΠt =
(
λi(Π

3−i
t − Πt) + λ3−i(Π

i
t − Πt)

)
dt (3.14)

+ Πt(1− Πi
t)

(
µi,1 − µi,0
σ2
i (1− ρ2)

(
d lnSit −

(
µi,0 + (µi,1 − µi,0)Πi

t

)
dt

− σiρ

σ3−i

(
d lnS3−i

t −
(
µ3−i,0 + (µ3−i,1 − µ3−i,0)Π

3−i
t

)
dt
)))

+ Πt(1− Π3−i
t )

(
µ3−i,1 − µ3−i,0

σ2
3−i(1− ρ2)

(
d lnS3−i

t −
(
µ3−i,0 + (µ3−i,1 − µ3−i,0)Π

3−i
t

)
dt

− σ3−iρ

σi

(
d lnSit −

(
µi,0 + (µi,1 − µi,0)Πi

t

)
dt
)))

with Π0 = 0, and

dΠi
t = λi(1− Πi

t) dt (3.15)

+ Πi
t(1− Πi

t)

(
µi,1 − µi,0
σ2
i (1− ρ2)

(
d lnSit −

(
µi,0 + (µi,1 − µi,0)Πi

t

)
dt

− σiρ

σ3−i

(
d lnS3−i

t −
(
µ3−i,0 + (µ3−i,1 − µ3−i,0)Π

3−i
t

)
dt
)))

+ (Πt − Πi
tΠ

3−i
t )

(
µ3−i,1 − µ3−i,0

σ2
3−i(1− ρ2)

(
d lnS3−i

t −
(
µ3−i,0 + (µ3−i,1 − µ3−i,0)Π

3−i
t

)
dt

− σ3−iρ

σi

(
d lnSit −

(
µi,0 + (µi,1 − µi,0)Πi

t

)
dt
)))

with Πi
0 = 0, where we recall that µi,j = r − σ2

i /2− δi,j for every i = 1, 2 and j = 0, 1.

3.3 Innovation processes

Using the filtering arguments from [8; Chapter IX, Section 1], for every i = 1, 2, we obtain that

the process Si from (2.1) and (2.2) admits the representation:

dSit =
(
r − δi,0 − (δi,1 − δi,0) Πi

t

)
Sit dt+ σi S

i
t dW

i

t (3.16)

in the filtration (FSt )t≥0 . Here, the innovation process W
i

= (W
i

t)t≥0 defined by:

W
i

t =

∫ t

0

dSiu
σiSiu

− 1

σi

∫ t

0

(
r − δi,0 − (δi,1 − δi,0) Πi

u

)
du (3.17)

is a standard Brownian motion in the filtration (FSt )t≥0 , according to P. Lévy’s characterization

theorem. Moreover, it can be shown by means of standard arguments that 〈W 1
,W

2〉t = ρt
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holds for all t ≥ 0, and the natural filtration of W
i
, i = 1, 2, coincides with (FSt )t≥0 . It thus

follows that the processes Π and Πi from (3.4) and (3.14)-(3.15) solve the stochastic differential

equations:

dΠt =
(
λi(Π

3−i
t − Πt) + λ3−i(Π

i
t − Πt)

)
dt (3.18)

+
δi,0 − δi,1
σi
√

1− ρ2
Πt(1− Πi

t) dŴ
i
t +

δ3−i,0 − δ3−i,1
σ3−i

√
1− ρ2

Πt(1− Π3−i
t ) dŴ 3−i

t

with Π0 = 0, and

dΠi
t = λi(1− Πi

t) dt (3.19)

+
δi,0 − δi,1
σi
√

1− ρ2
Πi
t(1− Πi

t) dŴ
i
t +

δ3−i,0 − δ3−i,1
σ3−i

√
1− ρ2

(Πt − Πi
tΠ

3−i
t ) dŴ 3−i

t

with Πi
0 = 0, where the process Ŵ i = (Ŵ i

t )t≥0 defined by:

Ŵ i
t =

W
i

t − ρW
3−i
t√

1− ρ2
(3.20)

is also a standard Brownian motion, for every i = 1, 2. It can be also shown by means of

standard arguments that 〈Ŵ 1, Ŵ 2〉t = ρt holds for all t ≥ 0, and the natural filtration of Ŵ i ,

i = 1, 2, coincides with (FSt )t≥0 .

3.4 Conditional densities

Let us now find an expression for the family of conditional probability density processes

(αt(u, v))t≥0 defined from the representation:

P (τ1 > u, τ2 > v | FSt ) =

∫ ∞
u

∫ ∞
v

αt(a, b)λ1λ2e
−λ1a−λ2b dadb (3.21)

for all t, u, v ≥ 0. Applying the generalized Bayes’ formula (see, e.g. [8; Theorem 7.23]), we

obtain that the conditional probability in (3.21) can be expressed as:

P (τ1 > u, τ2 > v | FSt ) =

∫ ∞
t∨u

∫ ∞
t∨v

e(λ1+λ2)t

1 + Ξt

λ1λ2e
−λ1a−λ2b dadb (3.22)

+

∫ t∨u

u

∫ ∞
t∨v

eλ1a+λ2t

1 + Ξt

Z1,0
t

Z1,0
a

λ1λ2e
−λ1a−λ2b dadb+

∫ ∞
t∨u

∫ t∨v

v

eλ1t+λ2b

1 + Ξt

Z2,0
t

Z2,0
b

λ1λ2e
−λ1a−λ2b dadb

+

∫ t∨u

u

∫ t∨v

v

eλ1a+λ2b

1 + Ξt

(
Z1,0
t

Z1,0
a

Z2,1
t

Z2,1
b

I(a < b) +
Z2,0
t

Z2,0
b

Z1,1
t

Z1,1
a

I(b < a)

)
λ1λ2e

−λ1a−λ2b dadb
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for t, u, v ≥ 0. Here, the processes Zi,j and Ξ are defined in (3.2) and (3.5) above, for every

i = 1, 2 and j = 0, 1. Therefore, the conditional probability density in (3.21) takes the form:

αt(u, v) =
eλ1(u∧t)+λ2(v∧t)

1 + Ξt

(
Z1,0
t

Z1,0
u∧t

Z2,1
t

Z2,1
v∧t

I(u < v) +
Z2,0
t

Z2,0
v∧t

Z1,1
t

Z1,1
u∧t

I(v < u)

)
(3.23)

for all t, u, v ≥ 0. Furthermore, by virtue of the definition of the processes in (3.1)-(3.2) and

(3.4)-(3.5), applying standard arguments, we verify that:∫ ∞
0

∫ ∞
0

αt(u, v)λ1λ2e
−λ1u−λ2v dudv = 1 (3.24)

as expected. This shows the regularity of the family of conditional probability density processes

(αt(u, v))t≥0 .

Summarizing the facts proved above, let us formulate the following assertion.

Proposition 3.1. In the two-dimensional model for Si , i = 1, 2, of (2.1)-(2.2) and

(3.16) with partial information contained in (FSt )t≥0 , the posterior probability (Π,Π1,Π2)

from (3.4) and (3.18)-(3.19) is a three-dimensional time-homogeneous Markov process, while

(S1, S2,Π,Π1,Π2) forms a five-dimensional time-homogeneous Markov process. Moreover, the

conditional probability density αt(u, v) defined in (3.21) admits the representation (3.23), where

the processes Zi,j , i = 1, 2, j = 0, 1, and Ξ are given by (3.2) and (3.5), respectively.

Let us now make a short note that links the two-dimensional model of (2.1)-(2.2) and the

initial one-dimensional one considered in [11; Chapter IV, Section 4].

Corollary 3.2. Observe that, in the case of ρ = 0, it follows from the structure of the

processes in (3.1)-(3.2) and (3.4)-(3.5) that P (τ1 ≤ t, τ2 ≤ t | FSt ) = P (τ1 ≤ t | FSt )P (τ2 ≤
t | FSt ), so that the property Πt = Π1

tΠ
2
t holds for all t ≥ 0. In that case, the filtering equations

in (3.15) and (3.19) take the form of the stochastic differential equations in (4.149) and (4.150)

from [11; Chapter IV, Section 4].

4 Computation of rational prices

In this section, we compute the three conditional expectations of the expressions in (2.4) and

(2.11). To simplify the notation, without loss of generality we further assume that the payoffs

are already discounted by the dynamics of the bank account, which is equivalent to letting the

interest rate r be equal to zero.
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4.1 The first term

Let us begin by computing the first term in (2.11). For this, we first observe that:

E[C(X1,0
T , X2,0

T ) I(T < τ1 ∧ τ2) | Gt] (4.1)

= I(t < τ1 ∧ τ2)E[C(X1,0
T , X2,0

T ) I(T < τ1 ∧ τ2) | Gt]

= I(t < τ1 ∧ τ2)E[C(X1,0
t (X1,0

T /X1,0
t ), X2,0

t (X2,0
T /X2,0

t )) I(T < τ1 ∧ τ2) | Gt]

holds for all 0 ≤ t ≤ T . Then, applying the key lemma (see, e.g. [3; page 122] or [1; Section 5.1])

for the filtrations (Gt)t≥0 and (FXt )t≥0 and taking into account the independence of τi , i = 1, 2,

and X i,0 , i = 1, 2, we get:

I(t < τ1 ∧ τ2)E[C(X1,0
t (X1,0

T /X1,0
t ), X2,0

t (X2,0
T /X2,0

t )) I(T < τ1 ∧ τ2) | Gt] (4.2)

= I(t < τ1 ∧ τ2)
E[C(X1,0

t (X1,0
T /X1,0

t ), X2,0
t (X2,0

T /X2,0
t )) I(T < τ1 ∧ τ2) | FXt ]

P (t < τ1 ∧ τ2 | FXt )

= I(t < τ1 ∧ τ2)
C0(T, T − t,X1,0

t , X2,0
t )

P (t < τ1 ∧ τ2 | FXt )
=
I(t < τ1 ∧ τ2)
P (t < τ1 ∧ τ2)

C0(T, T − t, S1
t , S

2
t )

where, by virtue of the independence of increments of lnX i,0 , we have:

C0(T, T − t, s1, s2) = E[C(s1(X
1,0
T /X1,0

t ), s2(X
2,0
T /X2,0

t ))]P (T < τ1 ∧ τ2) (4.3)

= e−(λ1+λ2)T

∫ ∞
−∞

∫ ∞
−∞

C(s1y, s2z) g0,0(T − t; y, z) dydz

for each 0 ≤ t ≤ T , and the function g0,0 is given in (2.13) above. Hence, by means of the

tower property for conditional expectations, using the fact that the arguments from the previous

section yield P (t < τ1 ∧ τ2 | FSt ) = Πt − Π1
t − Π2

t + 1, we obtain from (4.1) and (4.2) that:

E[C(S1
T , S

2
T ) I(T < τ1 ∧ τ2) | FSt ] (4.4)

=
P (t < τ1 ∧ τ2 | FSt )

P (t < τ1 ∧ τ2)
C0(T, T − t, S1

t , S
2
t ) =

Πt − Π1
t − Π2

t + 1

e−(λ1+λ2)t
C0(T, T − t, S1

t , S
2
t )

holds for all 0 ≤ t ≤ T , where the function C0(T, T − t, s1, s2) is given by (4.3) above.
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4.2 The second term

Let us continue with computing the second term in (2.11). For this, we observe that:

E[C(X i,0
T , X3−i,0

T eγ3−i(T−τ3−i)) I(τ3−i ≤ T < τi) | Gt] (4.5)

= E[C(X i,0
T , X3−i,0

T eγ3−i(T−τ3−i)) I(τ3−i ≤ t < T < τi) | Gt]

+ E[C(X i,0
T , X3−i,0

T eγ3−i(T−τ3−i)) I(t < τ3−i ≤ T < τi) | Gt]

= I(τ3−i ≤ t < τi)E[C(X i,0
t (X i,0

T /X i,0
t ), S3−i

t (X3−i,1
T /X3−i,1

t )) I(T < τi) | Gt]

+ I(t < τ1 ∧ τ2)E[C(X i,0
t (X i,0

T /X i,0
t ), X3−i,0

t eγ3−i(T−τ3−i)(X3−i,0
T /X3−i,0

t )) I(t < τ3−i ≤ T < τi) | Gt]

holds for all 0 ≤ t ≤ T . Then, applying the key lemma for the filtrations (Gt)t≥0 and (G3−i
t )t≥0

and taking into account the independence of τi and τ3−i , X
i,j , i = 1, 2, j = 0, 1, we get:

I(τ3−i ≤ t < τi)E[C(X i,0
t (X i,0

T /X i,0
t ), S3−i

t (X3−i,1
T /X3−i,1

t )) I(T < τi) | Gt] (4.6)

= I(τ3−i ≤ t < τi)
E[C(X i,0

t (X i,0
T /X i,0

t ), S3−i
t (X3−i,1

T /X3−i,1
t )) I(T < τi) | G3−i

t ]

P (τ3−i ≤ t < τi | G3−i
t )

= I(τ3−i ≤ t < τi)
C0

1,i(T, T − t,X
i,0
t , S3−i

t )

P (τ3−i ≤ t < τi | G3−i
t )

=
I(τ3−i ≤ t < τi)

P (t < τi)
C0

1,i(T, T − t, Sit , S3−i
t )

where, by virtue of the independence of increments of lnX i,j , we have:

C0
1,i(T, T − t, si, s3−i) = E[C(s1(X

i,0
T /X i,0

t ), s2(X
3−i,1
T /X3−i,1

t ))]P (T < τi) (4.7)

= e−λiT

∫ ∞
0

∫ ∞
0

C(siy, s3−iz) g0,1(T − t; y, z) dydz

for each 0 ≤ t ≤ T , and the function g0,1 is given in (2.13) above. Hence, by means of the

tower property for conditional expectations and the fact that the arguments from the previous

section yield P (τ3−i ≤ t < τi | FSt ) = Π3−i
t − Πt , we obtain from (4.5) and (4.6) that:

E[C(SiT , S
3−i
T ) I(τ3−i ≤ t < T < τi) | FSt ] (4.8)

=
P (τ3−i ≤ t < τi | FSt )

P (t < τi)
C0

1,i(T, T − t, Sit , S3−i
t ) =

Π3−i
t − Πt

e−λit
C0

1,i(T, T − t, Sit , S3−i
t )

holds for all 0 ≤ t ≤ T , where the function C0
1,i(T, T − t, si, s3−i) is given in (4.7) above.

Now, applying the key lemma for the filtrations (Gt)t≥0 and (FXt )t≥0 and taking into account
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the independence of τi , i = 1, 2, and X i,0 , i = 1, 2, we get:

I(t < τ1 ∧ τ2) (4.9)

× E[C(X i,0
t (X i,0

T /X i,0
t ), X3−i,0

t eγ3−i(T−τ3−i)(X3−i,0
T /X3−i,0

t )) I(t < τ3−i ≤ T < τi) | Gt]

= I(t < τ1 ∧ τ2)

× E[C(X i,0
t (X i,0

T /X i,0
t ), X3−i,0

t eγ3−i(T−τ3−i)(X3−i,0
T /X3−i,0

t )) I(t < τ3−i ≤ T < τi) | FXt ]

P (t < τ1 ∧ τ2 | FXt )

= I(t < τ1 ∧ τ2)
C1

1,i(T, T − t,X
i,0
t , X3−i,0

t )

P (t < τ1 ∧ τ2 | FXt )
=
I(t < τ1 ∧ τ2)
P (t < τ1 ∧ τ2)

C1
1,i(T, T − t, Sit , S3−i

t )

where, by virtue of the independence of increments of lnX i,0 , we have:

C1
1,i(T, T − t, si, s3−i) (4.10)

= E[C(si(X
i,0
T /X i,0

t ), s3−ie
γ3−i(T−τ3−i)(X3−i,0

T /X3−i,0
t )) I(t < τ3−i ≤ T )]P (T < τi)

= e−λiT

∫ T

t

∫ ∞
0

∫ ∞
0

C(siy, s3−ie
γ3−i(T−v)z)λ3−ie

−λ3−iv g0,0(T − t; y, z) dvdydz

for each 0 ≤ t ≤ T , and the function g0,0 is given in (2.13) above. Hence, by means of the

tower property, we obtain from (4.5) and (4.9) that:

E[C(SiT , S
3−i
T ) I(t < τ3−i ≤ T < τi) | FSt ] (4.11)

=
P (t < τ1 ∧ τ2 | FSt )

P (t < τ1 ∧ τ2)
C1

1,i(T, T − t, Sit , S3−i
t ) =

Πt − Π1
t − Π2

t + 1

e−(λ1+λ2)t
C1

1,i(T, T − t, Sit , S3−i
t )

holds for all 0 ≤ t ≤ T , where the function C1
1,i(T, T − t, si, s3−i) is given in (4.10) above.

4.3 The third term

Let us complete with computing the third term in (2.11). For this, we observe that:

E[C(X i,0
T eγi(T−τi), X3−i,0

T eγ3−i(T−τ3−i)) I(τ3−i < τi ≤ T ) | Gt] (4.12)

= E[C(X i,0
T eγi(T−τi), X3−i,0

T eγ3−i(T−τ3−i)) I(τ3−i < τi ≤ t) | Gt]

+ E[C(X i,0
T eγi(T−τi), X3−i,0

T eγ3−i(T−τ3−i)) I(τ3−i ≤ t < τi ≤ T ) | Gt]

+ E[C(X i,0
T eγi(T−τi), X3−i,0

T eγ3−i(T−τ3−i)) I(t < τ3−i < τi ≤ T ) | Gt]

= I(τ3−i < τi ≤ t)E[C(Sit(X
i,1
T /X i,1

t ), S3−i
t (X3−i,1

T /X3−i,1
t )) | Gt]

+ I(τ3−i ≤ t < τi)E[C(X i,0
t eγi(T−τi)(X i,0

T /X i,0
t ), S3−i

t (X3−i,1
T /X3−i,1

t )) I(t < τi ≤ T ) | Gt]

+ I(t < τ1 ∧ τ2)

× E[C(X i,0
t eγi(T−τi)(X i,0

T /X i,0
t ), X3−i,0

t eγ3−i(T−τ3−i)(X3−i,0
T /X3−i,0

t )) I(t < τ3−i < τi ≤ T ) | Gt]
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holds for all 0 ≤ t ≤ T . Firstly, using the independence of increments of lnX i,1 , i = 1, 2, we

get:

I(τ3−i < τi ≤ t)E[C(Sit(X
i,1
T /X i,1

t ), S3−i
t (X3−i,1

T /X3−i,1
t )) | Gt] (4.13)

= I(τ3−i < τi ≤ t)C0
2,i(T, T − t, Sit , S3−i

t )

where we have:

C0
2,i(T, T − t, si, s3−i) = E[C(si(X

i,1
T /X i,1

t ), s3−i(X
3−i,1
T /X3−i,1

t )) | Gt] (4.14)

=

∫ ∞
0

∫ ∞
0

C(siy, s3−iz) g1,1(T − t; y, z) dydz

for each 0 ≤ t ≤ T , and the function g1,1 is given in (2.13) above. Hence, using the tower

property and the explicit form of the conditional density of τi , i = 1, 2, derived in the previous

section, we obtain from (4.12) and (4.13) that:

E[C(SiT , S
3−i
T ) I(τ3−i < τi ≤ t) | FSt ] (4.15)

= P (τ3−i < τi ≤ t | FSt )C0
2,i(T, T − t, Sit , S3−i

t )

=

∫ t

0

∫ t

0

αt(u, v) I(v < u) dudv C0
2,i(T, T − t, Sit , S3−i

t )

holds for all 0 ≤ t ≤ T , where the function C0
2,i(T, T − t, si, s3−i) is given in (4.14) and the

density αt(u, v) is given in (3.23) above.

Secondly, applying the key lemma for the filtrations (Gt)t≥0 and (G3−i
t )t≥0 and taking into

account the independence of τi and τ3−i , X
i,j , i = 1, 2, j = 0, 1, we get:

I(τ3−i ≤ t < τi)E[C(X i,0
t eγi(T−τi)(X i,0

T /X i,0
t ), S3−i

t (X3−i,1
T /X3−i,1

t )) I(t < τi ≤ T ) | Gt] (4.16)

= I(τ3−i ≤ t < τi)
E[C(X i,0

t eγi(T−τi)(X i,0
T /X i,0

t ), S3−i
t (X3−i,1

T /X3−i,1
t )) I(t < τi ≤ T ) | G3−i

t ]

P (τ3−i ≤ t < τi | G3−i
t )

= I(τ3−i ≤ t < τi)
C1

2,i(T, T − t,X
i,0
t , S3−i

t )

P (τ3−i ≤ t < τi | G3−i
t )

=
I(τ3−i ≤ t < τi)

P (t < τi)
C1

2,i(T, T − t, S1
t , S

2
t )

where, by virtue of the independence of increments of lnX i,j , we have:

C1
2,i(T, T − t, si, s3−i) (4.17)

= E[C(sie
γi(T−τi)(X i,0

T /X i,0
t ), s3−i(X

3−i,1
T /X3−i,1

t )) I(t < τi ≤ T ) | G3−i
t ]

=

∫ T

t

∫ ∞
0

∫ ∞
0

C(sie
γi(T−u)y, s3−iz)λie

−λiu g0,1(T − t; y, z) dudydz
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for each 0 ≤ t ≤ T , and the function g0,1 is given in (2.13) above. Hence, by means of the

tower property, we obtain from (4.12) and (4.16) that:

E[C(SiT , S
3−i
T ) I(τ3−i ≤ t < τi ≤ T ) | FSt ] (4.18)

=
P (τ3−i ≤ t < τi | FSt )

P (t < τi)
C1

2,i(T, T − t, Sit , S3−i
t ) =

Π3−i
t − Πt

e−λit
C1

2,i(T, T − t, Sit , S3−i
t )

holds for all 0 ≤ t ≤ T , where the function C1
2,i(T, T − t, si, s3−i) is given in (4.17) above.

Finally, applying the key lemma for the filtrations (Gt)t≥0 and (FXt )t≥0 and taking into

account the independence of τi , i = 1, 2, and X i,0 , i = 1, 2, we get:

I(t < τ1 ∧ τ2) (4.19)

× E[C(X i,0
t eγi(T−τi)(X i,0

T /X i,0
t ), X3−i,0

t eγ3−i(T−τ3−i)(X3−i,0
T /X3−i,0

t )) I(t < τ3−i < τi ≤ T ) | Gt]

= I(t < τ1 ∧ τ2)

× E[C(X i,0
t eγi(T−τi)(X i,0

T /X i,0
t ), X3−i,0

t eγ3−i(T−τ3−i)(X3−i,0
T /X3−i,0

t )) I(t < τ3−i < τi ≤ T ) | FXt ]

P (t < τ1 ∧ τ2 | FXt )

= I(t < τ1 ∧ τ2)
C2

2,i(T, T − t,X
i,0
t , X3−i,0

t )

P (t < τ1 ∧ τ2 | FXt )
=
I(t < τ1 ∧ τ2)
P (t < τ1 ∧ τ2)

C2
2,i(T, T − t, Sit , S3−i

t )

where, by virtue of the independence of increments of lnX i,0 , we have:

C2
2,i(T, T − t, si, s3−i) (4.20)

= E[C(sie
γi(T−τi)(X i,0

T /X i,0
t ), s3−ie

γ3−i(T−τ3−i)(X3−i,0
T /X3−i,0

t )) I(t < τ3−i < τi ≤ T ) | FXt ]

=

∫ T

t

∫ T

t

∫ ∞
0

∫ ∞
0

C(sie
γi(T−u)y, s3−ie

γ3−i(T−v)z) I(v < u)

× λ1λ2e
−λ1u−λ2v g0,0(T − t; y, z) dudvdydz

for each 0 ≤ t ≤ T , and the function g0,0 is given in (2.13) above. Hence, by means of the

tower property, we obtain from (4.5) and (4.19) that:

E[C(SiT , S
3−i
T ) I(t < τ3−i < τi ≤ T ) | FSt ] (4.21)

=
P (t < τ1 ∧ τ2 | FSt )

P (t < τ1 ∧ τ2)
C2

2,i(T, T − t, Sit , S3−i
t ) =

Πt − Π1
t − Π2

t + 1

e−(λ1+λ2)t
C2

2,i(T, T − t, Sit , S3−i
t )

holds for all 0 ≤ t ≤ T , where the function C2
2,i(T, T − t, si, s3−i) is given in (4.20) above.

Therefore, summarizing the facts proved above, we are now ready to formulate the following

assertion.
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Proposition 4.1. Let the interest rate r of the bank account be equal to zero. The rational

price of the European contingent claim in (2.4) and (2.11) under the partial information con-

tained in (FSt )t≥0 is given by the sum of the terms in (4.4), (4.8), (4.11), (4.15), (4.18) and

(4.21).
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