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We obtain exact large deviation rates for the log-likelihood ratio in testing models
with observed Ornstein-Uhlenbeck processes and get explicit rates of decrease for the
error probabilities of Neyman-Pearson, Bayes, and minimax tests. Moreover, we give
expressions for the rates of decrease for the error probabilities of Neyman-Pearson tests
in models with observed processes solving affine stochastic delay differential equations.

1 Introduction

Asymptotic properties of likelihood ratios play an important role in statistical testing problems.
Sometimes they can be studied by using large deviation results, for example, in the case of
binary statistical experiments. Chernoff [9] proved large deviation theorems for sums of i.i.d.
observations. Bahadur [1]-[3] studied asymptotic efficiency of tests and estimates for observed
sequences of random variables (see also Bahadur, Zabel and Gupta [4]). Birgé [8] applied the
results of [9] to the investigation of the rate of decrease for error probabilities of Neyman-
Pearson tests. Generalizations of the large deviation results to the case of semimartingale
models and their applications are collected in the monograph [21]. Lin’kov [22] proved large
deviation theorems for extended random variables and applied them to the investigation of
general statistical experiments. Exact large deviation rates for the log-likelihood ratio in testing
models with fractional Brownian motion were derived in [23]. In the present paper we derive
an explicit form of large deviation theorems of Chernoff type for the log-likelihood ratio in
testing models with Ornstein-Uhlenbeck processes by applying the large deviation results from
the general continuous-time semimartingale framework of Lin’kov [21]. Note that the results
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in [4] were obtained by using the large deviation techniques for sequences of random variables.
The problem of testing mean reversion for processes of Ornstein-Uhlenbeck type was earlier
studied by Szimayer and Maller [27]. Note that the Ornstein-Uhlenbeck processes play a key
role for modeling the behavior of interest rates in financial markets (see e.g. [29] or [5]).

In recent years, several statistical problems for models with time delay were studied. Dietz
[11] considered an Ornstein-Uhlenbeck-type model with exponential decreasing memory and
proved the local asymptotically mixed normality (in an extended sense) of the suitably nor-
malized model. Gushchin and Küchler [12] - [14] derived local asymptotic properties of the
likelihood process in (two-parameter) models connected with a special case of affine stochastic
delay differential equations. Putschke [25] continued this investigation for a multi-parametric
case of such affine delay equations. Küchler and Kutoyants [17] studied the asymptotic behavior
of the maximum likelihood and Bayesian estimators of delay in a simple Ornstein-Uhlenbeck-
type model. Küchler and Vasil’ev [18] investigated the almost sure consistency and asymptotic
normality of sequential estimators for multi-parametric affine delay equations. Gushchin and
Küchler [15] derived conditions under which a model with an affine stochastic delay differential
equation satisfies the local asymptotic normality property and where the maximum likelihood
and Bayesian estimators of a parameter are asymptotically normal and efficient. In this paper
we consider the problem of testing hypotheses and study the asymptotic behavior of the error
probabilities for Neyman-Pearson tests in Ornstein-Uhlenbeck-type models with delay. Asymp-
totic properties for tests of delay parameters in the cases of small noise and large sample size
were recently studied by Kutoyants [19] - [20].

The paper is organized as follows. In Section 2, we cite large deviation results for the log-
likelihood ratio process and their applications to the investigation of the rates of decrease for
error probabilities of Neyman-Pearson, Bayes, and minimax tests (cf. [21] - [23]). In Section 3,
by means of explicit expressions for Hellinger integrals, we obtain exact large deviation rates for
the log-likelihood ratio in a model of testing hypotheses about the parameter of an Ornstein-
Uhlenbeck process. We remark that there appears some kind of discontinuity in the solution
when the basic hypothesis is altered. The results are applied to the investigation of the rates
of decrease for error probabilities of the tests mentioned above. It seems possible to derive the
analogues of some of these results in the models with discretely observed data (see e.g. [4]). For
this, some essentially different techniques, which is applied by derivation of the large deviation
results for testing models with sequences of random variables, should be used. Then the initial
continuous-time assertions can be obtained as a limiting case of the corresponding results from
the discrete-time case by applying the invariance principle. In Section 4, we get the rates of
decrease for the error probabilities of Neyman-Pearson tests in models with processes that solve
affine stochastic delay differential equations and give two illustrating examples.

2 Large deviation theorems and their applications

Suppose that (Ω,F , P0, P1) is a binary statistical experiment and that X = (Xt)t≥0 is a real-
valued process. Let (Ft)t≥0 be the filtration generated by X , that is Ft = σ(Xs | 0 ≤ s ≤ t),
t ≥ 0. Let H0 and H1 be two statistical hypotheses under which the distribution of the observed
process X is given by the different measures P0 and P1 , respectively. We will consider the
problem of testing the hypothesis H0 against its alternative H1 . In this section we cite some
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results from Lin’kov [21] - [23] and use his notation.

2.1. Suppose that the measures P0 and P1 are locally equivalent on the filtration (Ft)t≥0

and introduce the log-likelihood ratio process Λ = (Λt)t≥0 defined as the logarithm of the
Radon-Nikodym derivative:

Λt = log
d(P1|Ft)
d(P0|Ft)

(2.1)

for all t ≥ 0. Let the process H(ε) = (Ht(ε))t≥0 be the Hellinger integral of the order ε ∈
(−∞,∞) of the restrictions P1|Ft and P0|Ft given by:

Ht(ε) := Ht(ε;P1, P0) = E0[exp(εΛt)] (2.2)

for all t ≥ 0 (see e.g. [16; Chapter IV, Section 1]). Note that the relationship Ht(ε;P0, P1) =
Ht(1− ε;P1, P0) holds for all ε ∈ (−∞,∞) and t ≥ 0.

We will say that the Hellinger integral (2.2) satisfies the regularity condition if for some
function ψt , t ≥ 0, such that ψt →∞ as t→∞ , the (possibly infinite) limit

κ(ε) := lim
t→∞

ψ−1
t logHt(ε) (2.3)

exists for all ε ∈ (−∞,∞). It is known (see e.g. [10; Chapter III, Section 3]) that the function
κ(ε) is a strictly convex and continuously differentiable function on (ε−, ε+) with

−∞ ≤ ε− := inf{ε |κ(ε) <∞} < ε+ := sup{ε |κ(ε) <∞} ≤ ∞ (2.4)

where ε− ≤ 0 and ε+ ≥ 1. If ε− < 0 or ε+ > 1 then the derivatives κ′(0) and κ′(1) are
well-defined, respectively.

For every γ ∈ R let us define the function I(γ) as the Legendre-Fenchel transform of κ(ε)
by:

I(γ) := sup
ε∈(ε−,ε+)

(εγ − κ(ε)) (2.5)

(cf. e.g. [26]) with
κ′(ε−+) := lim

ε↓ε−
κ′(ε) < κ′(ε+−) := lim

ε↑ε+
κ′(ε) (2.6)

and define the values:

γ0 := κ′(0) if ε− < 0, γ0 := κ′(0+) = lim
ε↓ε−

κ′(ε) if ε− = 0 (2.7)

γ1 := κ′(1) if ε+ > 1, γ1 := κ′(1−) = lim
ε↑ε+

κ′(ε) if ε+ = 1 (2.8)

where by virtue of the convexity of κ(ε) on (ε−, ε+) we have γ0 < γ1 .

The following assertion is a large deviation theorem of Chernoff type for the log-likelihood
ratio process Λ = (Λt)t≥0 .

Proposition 2.1. Let the regularity condition (2.3) be satisfied. Then the following con-
clusions are valid:

(i) if γ0 < κ′(ε+−) then for all γ ∈ (γ0,κ′(ε+−)) we have:

lim
t→∞

ψ−1
t logP0[ψ

−1
t Λt > γ] = lim

t→∞
ψ−1
t logP0[ψ

−1
t Λt ≥ γ] = −I(γ); (2.9)
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(ii) if ε− < 0 and κ′(ε−+) < κ′(0) then for all γ ∈ (κ′(ε−+),κ′(0)) we have:

lim
t→∞

ψ−1
t logP0[ψ

−1
t Λt < γ] = lim

t→∞
ψ−1
t logP0[ψ

−1
t Λt ≤ γ] = −I(γ); (2.10)

(iii) if κ′(ε−+) < γ1 then for all γ ∈ (κ′(ε−+), γ1) we have:

lim
t→∞

ψ−1
t logP1[ψ

−1
t Λt < γ] = lim

t→∞
ψ−1
t logP1[ψ

−1
t Λt ≤ γ] = γ − I(γ); (2.11)

(iv) if ε+ > 1 and κ′(1) < κ′(ε+−) then for all γ ∈ (κ′(1),κ′(ε+−)) we have:

lim
t→∞

ψ−1
t logP1[ψ

−1
t Λt > γ] = lim

t→∞
ψ−1
t logP1[ψ

−1
t Λt ≥ γ] = γ − I(γ). (2.12)

This assertion is proved by using large deviation theorems for extended random variables
in [22].

2.2. The results cited above give an opportunity to investigate the rate of decrease of the
error probabilities for some statistical tests. In the rest of the section we refer some results about
the asymptotic behavior of the error probabilities for Neyman-Pearson, Bayes, and minimax
tests. The proofs of these results can be found in [22] (see also references in [23]).

Let αt , t ≥ 0, be an arbitrary function having values in (0, 1), and let δt(αt) be a Neyman-
Pearson test of the level αt ∈ (0, 1) for testing the hypotheses H0 and H1 under the observations
Xs , 0 ≤ s ≤ t (see e.g. [21; Chapter II, Section 2.1]). The following assertion describes the rate
of decrease for the error probabilities of the first and second kind αt and β(αt), respectively,
for the test δt(αt) under the regularity condition (2.3).

Proposition 2.2. Let (2.3) be satisfied with γ0 < γ1 . Then the following conclusions are
valid:

(i) for all a ∈ (I(γ0), I(γ1)) we have:

lim
t→∞

ψ−1
t logαt = −a if and only if lim

t→∞
ψ−1
t log β(αt) = −b(a) (2.13)

with
b(a) := a− γ(a) ∈ (I(γ1)− γ1, I(γ0)− γ0) (2.14)

and γ(a) is a unique solution of the equation I(γ) = a with respect to γ ∈ (γ0, γ1);
(ii) for all a ∈ [0, I(γ0)] we have:

lim
t→∞

ψ−1
t logαt = −a implies lim sup

t→∞
ψ−1
t log β(αt) ≤ γ0 − I(γ0) (2.15)

and for all a ∈ [I(γ1),∞] we have:

lim
t→∞

ψ−1
t logαt = −a implies lim inf

t→∞
ψ−1
t log β(αt) ≥ γ1 − I(γ1); (2.16)

(iii) for all b ∈ [0, I(γ1)− γ1] we have:

lim
t→∞

ψ−1
t log β(αt) = −b implies lim sup

t→∞
ψ−1
t logαt ≤ −I(γ1) (2.17)
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and for all b ∈ [I(γ0)− γ0,∞] we have:

lim
t→∞

ψ−1
t log β(αt) = −b implies lim inf

t→∞
ψ−1
t logαt ≥ −I(γ0). (2.18)

These results under more restrictive conditions were proved in [21]. The only if part in
(2.13) for the sequence of observed i.i.d. random variables was proved by Birgé [8].

Let δπt be a Bayes test for testing the hypotheses H0 and H1 based on the observations Xs ,
0 ≤ s ≤ t , where π and 1 − π , π ∈ [0, 1], are the a priori probabilities of the hypotheses H0

and H1 , respectively (see e.g. [21; Chapter II, Section 2.1]). The following assertion describes
the rate of decrease for the error probabilities of the first and second kind αt(δ

π
t ) and β(δπt ),

and the risk e(δπt ) for the test δπt under the regularity condition (2.3).

Proposition 2.3. Let (2.3) be satisfied with γ0 < 0 < γ1 . Then the following relationships
hold:

lim
t→∞

ψ−1
t logα(δπt ) = lim

t→∞
ψ−1
t log β(δπt ) = lim

t→∞
ψ−1
t log e(δπt ) = −I(0). (2.19)

This assertion was proved by Chernoff [9] for the case of i.i.d. random variables. Under
some other conditions the last equality in (2.19) was proved by Vajda [28].

Let δ∗t be a minimax test for testing the hypotheses H0 and H1 under the observations Xs ,
0 ≤ s ≤ t (see e.g. [7; Chapter III, Section 4]). The following assertion describes the rate of
decrease for the error probabilities of the first and second kind αt(δ

∗
t ) and β(δ∗t ), and the risk

e(δ∗t ) for the test δ∗t under the regularity condition (2.3).

Proposition 2.4. Suppose that (2.3) is satisfied with γ0 < 0 < γ1 . Then we have:

lim
t→∞

ψ−1
t logα(δ∗t ) = lim

t→∞
ψ−1
t log β(δ∗t ) = lim

t→∞
ψ−1
t log e(δ∗t ) = −I(0). (2.20)

3 Ornstein-Uhlenbeck models

In this section we consider a model where the observation process X = (Xt)t≥0 satisfies the
following stochastic differential equation:

dXt = −θXt dt+ dWt (X0 = x) (3.1)

where W = (Wt)t≥0 is a standard Wiener process and θ ≥ 0, x ∈ R are some given constants.
We will study the problem of testing the simple hypothesis H0 : θ = θ0 against the simple
alternative H1 : θ = θ1 .

Here we specify the results of the previous section for Ornstein-Uhlenbeck processes in both
cases θ1 > θ0 = 0 and θ1 > θ0 > 0. It is remarkable that the first case cannot be obtained
from the second one by letting θ0 ↓ 0.

3.1. Since equation (3.1) has a pathwise unique continuous solution under both hypothe-
ses H0 and H1 , by means of the Girsanov formula for diffusion-type processes (see e.g. [24;
Chapter VII, Theorem 7.19]) we may conclude that the measures P0 and P1 are locally equiv-
alent on (Ft)t≥0 , and under the hypothesis H0 the log-likelihood ratio process (2.1) admits the
representation:

Λt = (θ0 − θ1)

∫ t

0

Xs dWs −
(θ0 − θ1)

2

2

∫ t

0

X2
s ds. (3.2)
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By applying Itô’s formula (see e.g. [24; Chapter IV, Theorem 4.4] or [16; Chapter I, Theo-
rem 4.57]), from (3.1) it follows that under H0 we have:

X2
t = x2 + 2

∫ t

0

Xs dXs + t = x2 − 2θ0

∫ t

0

X2
s ds+ 2

∫ t

0

Xs dWs + t (3.3)

and hence: ∫ t

0

Xs dWs =
1

2

(
X2
t − x2 + 2θ0

∫ t

0

X2
s ds− t

)
. (3.4)

Thus, by substituting the expression (3.4) into (3.2), we obtain that the Hellinger integral (2.2)
takes the expression:

Ht(ε) = E0

[
exp

(
ε(θ0 − θ1)

2

(
X2
t − x2 + 2θ0

∫ t

0

X2
s ds− t

)
− ε(θ0 − θ1)

2

2

∫ t

0

X2
s ds

)]
= exp

(
ε(θ1 − θ0)

2
(x2 + t)

)
E0

[
exp

(
ε(θ0 − θ1)

2
X2
t −

ε(θ2
1 − θ2

0)

2

∫ t

0

X2
s ds

)]
. (3.5)

In order to derive the large deviation results from the previous section for the model defined
in (3.1) we should find a function ψt , t ≥ 0, for which the regularity condition (2.3) is satisfied.
For this, we will investigate the asymptotic behavior of the Hellinger integral (3.5) under t→∞ .

3.2. First, let us suppose that θ1 > θ0 = 0 in (3.1). In this case the Hellinger integral (3.5)
takes the form:

Ht(ε) = exp

(
εθ1

2
(x2 + t)

)
E0

[
exp

(
−εθ1

2
X2
t −

εθ2
1

2

∫ t

0

X2
s ds

)]
. (3.6)

Assume that ε > 0 and define ϕ := εθ1/2 and ξ :=
√
εθ1 (or ξ := −

√
εθ1 ). Then, by using

the Feynman-Kac formula, we obtain that the logarithm of the Hellinger integral (3.6) admits
the representation:

logHt(ε) = ϕ(x2 + t) (3.7)

− x2[ξ sinh(ξt) + 2ϕ cosh(ξt)]

2[cosh(ξt) + 2ϕξ−1 sinh(ξt)]
− 1

2
log[cosh(ξt) + 2ϕξ−1 sinh(ξt)]

(cf. the formula (1.9.3) in [6; Chapter II, Section 1]). It can be also shown that for ε < 0 and
sufficiently large t > 0 we have Ht(ε) = ∞ in (3.6). Hence, by substituting the expression
(3.7) into (2.3), taking ψt = θ1t and letting t go to ∞ , we get:

κ(ε) = −
√
ε(1−

√
ε)

2
and κ′(ε) = − 1

4
√
ε

+
1

2
(3.8)

for ε ∈ (ε−, ε+) = (0,∞), so that κ′(ε−+) = −∞ , κ′(1) = 1/4 and κ′(ε+−) = 1/2.
It is easily seen that the function I(γ) from (2.5) takes the expression:

I(γ) = sup
ε>0

(εγ − κ(ε)) =
1

8(1− 2γ)
(3.9)
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and the values in (2.7) - (2.8) can be calculated as γ0 = κ′(ε−+) = −∞ and γ1 = κ′(1) = 1/4
with I(γ0) = 0 and I(γ1) = 1/4.

Because in this case we have γ0 < 0 < γ1 , from Propositions 2.1 - 2.4 and the formulas
(3.8) - (3.9) we get that the following assertion holds.

Theorem 3.1. In the model (3.1) of testing hypothesis H0 : θ = θ0 against the alternative
H1 : θ = θ1 the following conclusions are valid with the functions ψt = θ1t, t ≥ 0, and I(γ)
from (3.9):

(i) if γ ∈ (γ0,κ′(ε+−)) = (−∞, 1/2) then (2.9) holds,
if γ ∈ (κ′(ε−+),κ′(0)) = (−∞, 1/4) then (2.11) holds,
and if γ ∈ (κ′(1),κ′(ε+−)) = (1/4, 1/2) then (2.12) holds;

(ii) if a ∈ (I(γ0), I(γ1)) = (0, 1/4) then (2.13) - (2.14) hold with b(a) = a− 1/2 + 1/(16a);

(iii) if a = I(γ0) = 0 then (2.15) holds,
if a ∈ [I(γ1),∞] = [1/4,∞] then (2.16) holds,
if b = I(γ1)− γ1 = 0 then (2.17) holds,
and if b = I(γ0)− γ0 =∞ then (2.18) holds;

(iv) in the Bayes test we have (2.19), and for the minimax test (2.20) holds with I(0) = 1/8.

3.3. Now let us suppose that θ1 > θ0 > 0 in (3.1). In this case we assume that
ε > −θ0/(2(θ2

1 − θ2
0)) and define ϕ := ε(θ1 − θ0)/2 and ξ :=

√
2ε(θ2

1 − θ2
0)/θ0 + 1 (or

ξ := −
√

2ε(θ2
1 − θ2

0)/θ0 + 1). This implies (ξ2 − 1)θ0/4 = ε(θ2
1 − θ2

0)/2. Then, by using the
Feynman-Kac formula, we obtain that the logarithm of the Hellinger integral (3.5) admits the
representation:

logHt(ε) = ϕ(x2 + t) +
θ0t

2
+
x2

4
− 1

2
log[(1 + 4ϕ)ξ−1 sinh(θ0ξt) + cosh(θ0ξt)] (3.10)

+
x2

4ξ−1 sinh(θ0ξt)

(
1

(1 + 4ϕ)ξ−1 sinh(θ0ξt) + cosh(θ0ξt)
− cosh(θ0ξt)

)
(cf. the formula (1.9.7) in [6; Chapter II, Section 7]). It can be also shown that for ε <
−θ0/(2(θ2

1−θ2
0)) and sufficiently large t > 0 we have Ht(ε) =∞ in (3.5). Hence, by substituting

the expression (3.10) into (2.3), taking ψt = (θ1 − θ0)t and letting t go to ∞ , we get:

κ(ε) =
ε

2
−
√

2εθ0(θ2
1 − θ2

0) + θ2
0

2(θ1 − θ0)
+

θ0

2(θ1 − θ0)
and κ′(ε) =

1

2
− θ0(θ0 + θ1)

2
√

2εθ0(θ2
1 − θ2

0) + θ2
0

(3.11)

for ε ∈ (ε−, ε+) = (−θ0/(2(θ2
1 − θ2

0)),∞) with κ′(ε−+) = −∞ , κ′(0) = (1− θ0 − θ1)/2,
κ′(1) = 1/2− θ0(θ0 + θ1)/(2

√
2θ0(θ2

1 − θ2
0) + θ2

0), and κ′(ε+−) = 1/2.
It is easily seen that the function I(γ) from (2.5) takes the expression:

I(γ) = sup
ε>ε−

(εγ − κ(ε)) =
θ0(1− 2γ − θ0 − θ1)

2

4(θ2
1 − θ2

0)(1− 2γ)
(3.12)

and the values in (2.7) - (2.8) can be calculated as γ0 = κ′(0) = (1− θ0 − θ1)/2, γ1 = κ′(1) =
1/2−θ0(θ0 + θ1)/(2

√
2θ0(θ2

1 − θ2
0) + θ2

0) with I(γ0) = 0 and I(γ1) = (θ0 −
√

2θ0(θ2
1 − θ2

0) + θ2
0)2/

(4(θ1 − θ0)
√

2θ0(θ2
1 − θ2

0) + θ2
0).
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Because in this case we have γ0 < γ1 , from Propositions 2.1 - 2.4 and the formulas (3.11) -
(3.12) we get that the following assertion holds.

Theorem 3.2. In the model (3.1) of testing hypothesis H0 : θ = θ0 against the alternative
H1 : θ = θ1 with θ1 > θ0 > 0 the following conclusions are valid with the functions ψt =
(θ1 − θ0)t, t ≥ 0, and I(γ) from (3.12):

(i) if γ ∈ (γ0,κ′(ε+−)) = ((1− θ0 − θ1)/2, 1/2) then (2.9) holds,
if γ ∈ (κ′(ε−+),κ′(0)) = (−∞, (1− θ0 − θ1)/2) then (2.10) holds,
if γ ∈ (κ′(ε−+), γ1) = (−∞, 1/2− θ0(θ0 + θ1)/(2

√
2θ0(θ2

1 − θ2
0) + θ2

0)) then (2.11) holds,

and if γ ∈ (κ′(1),κ′(ε+−)) = (1/2 − θ0(θ0 + θ1)/(2
√

2θ0(θ2
1 − θ2

0) + θ2
0)), 1/2) then (2.12)

holds;

(ii) if a ∈ (0, I(γ1)) = (0, (θ0 −
√

2θ0(θ2
1 − θ2

0) + θ2
0)2/(4(θ1 − θ0)

√
2θ0(θ2

1 − θ2
0) + θ2

0)) then

(2.13) - (2.14) holds with b(a) = (1− θ0 − θ1)/2−(θ0 + θ1)(a(θ1−θ0)−
√
aθ0(θ1 − θ0) + a2(θ1 − θ0)2)/θ0 ;

(iii) if a = I(γ0) = 0 then (2.15) holds,
if a ∈ [I(γ1),∞] = [(θ0 −

√
2θ0(θ2

1 − θ2
0) + θ2

0)2/(4(θ1 − θ0)
√

2θ0(θ2
1 − θ2

0) + θ2
0),∞] then

(2.16) holds,
if b ∈ [0, I(γ1)−γ1] = [0, (θ0 −

√
2θ0(θ2

1 − θ2
0) + θ2

0)2/(4(θ1 − θ0)
√

2θ0(θ2
1 − θ2

0) + θ2
0)−1/2+

θ0(θ0 + θ1)/(2
√

2θ0(θ2
1 − θ2

0) + θ2
0)] then (2.17) holds,

and if b ∈ [I(γ0)− γ0,∞] = [−(1− θ0 − θ1)/2,∞] then (2.18) holds;

(iv) if γ0 < 0 < γ1 holds, then in the Bayes test we have (2.19), and for the minimax test
(2.20) holds with I(0) = θ0(1− θ0 − θ1)

2/(4(θ2
1 − θ2

0)).

Remark 3.3. The cases θ0 > θ1 = 0 and θ0 > θ1 > 0 can be dealt with similarly as above
by virtue of the property Ht(ε;P0, P1) = Ht(1− ε;P1, P0) for all ε ∈ (−∞,∞) and t ≥ 0.

Remark 3.4. The question if the derived rate bounds are optimal as well as the second
order expansions for log βt(αt) remain as open problems here.

4 Ornstein-Uhlenbeck-type models with delay

In this section we consider a model where the observed process X = (Xt)t≥0 satisfies the
following stochastic differential equation:

dXt =

∫ 0

−r
Xt+s a(ds) dt+ dWt (Xt = Zt for t ∈ [−r, 0]) (4.1)

where W = (Wt)t≥0 is a standard Wiener process independent of the initial (continuous) process
Z = (Zt)−r≤t≤0 , and a(ds) is a finite signed measure on [−r, 0] for some r > 0 fixed. From the
arguments in [15; Section 3] it follows that for given W , Z and a(ds) there exists a pathwise
unique continuous process X = (Xt)t≥−r satisfying (4.1). Let us denote by Ms the set of all
signed measures a(ds) on [−r, 0] such that a stationary solution of (4.1) exists (for necessary
and sufficient conditions for the existence of a stationary solution of (4.1) see [13] and [15;
Section 3]). We will study the problem of testing the simple hypothesis H0 : a(ds) ≡ a0(ds)
against the simple alternative H1 : a(ds) ≡ a1(ds), where ai(ds) ∈ Ms for i = 0, 1, and
a0(ds) 6≡ a1(ds).
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4.1. By using the arguments in [15; Section 3] we may conclude that equation (4.1) has a
unique continuous stationary solution under both hypotheses H0 : a(ds) ≡ a0(ds) and H1 :
a(ds) ≡ a1(ds), and the measures P0 and P1 are locally equivalent on (Ft)t≥−r with Ft =
σ(Xs | − r ≤ s ≤ t) for t ≥ −r (here we set Ft = σ(Zs | − r ≤ s ≤ t) for −r ≤ t ≤ 0). Then,
by means of the Girsanov-type formula (5.1) in [15], we get that under the hypothesis H0 the
log-likelihood ratio process (2.1) admits the representation:

Λt = log
d(P1|F0)

d(P0|F0)
+

∫ t

0

Ys dWs −
1

2

∫ t

0

Y 2
s ds (4.2)

where the process Y = (Yt)t≥0 is defined by:

Yt =

∫ 0

−r
Xt+s [a1(ds)− a0(ds)] (4.3)

so that the Hellinger integral (2.2) takes the form:

Ht(ε) = E0

[
exp

(
ε log

d(P1|F0)

d(P0|F0)
+ ε

∫ t

0

Ys dWs −
ε

2

∫ t

0

Y 2
s ds

)]
. (4.4)

We should note that in the most cases of the model defined in (4.1), it seems to be impossible
to calculate the Hellinger integral (4.4) in an explicit way, unless when ai(ds), i = 0, 1, are
some Dirac measures at the point zero. Using the arguments in [21; Theorems 3.1.4, 3.2.2] we
now describe the asymptotic behavior of the error probabilities for Neyman-Pearson tests.

Theorem 4.1. Let αt , t ≥ 0, be the error probability of the first kind of the Neyman-
Pearson test in the model (4.1) of testing hypothesis H0 : a(ds) ≡ a0(ds) against the alternative
H1 : a(ds) ≡ a1(ds) with ai(ds) ∈ Ms , i = 0, 1, such that a0(ds) 6≡ a1(ds). Then for the
function ψt , t ≥ 0, given by:

ψt = E0

[
1

2

∫ t

0

Y 2
s ds

]
(4.5)

we have
lim
t→∞

ψ−1
t logαt = 0 implies lim sup

t→∞
ψ−1
t log β(αt) ≤ −1, (4.6)

and if the condition

Ht(ε
′;P1, P0) <∞ for some ε′ < 0 and all t ≥ 0 (4.7)

is satisfied, then

lim
t→∞

ψ−1
t log(1− αt) = 0 implies lim inf

t→∞
ψ−1
t log β(αt) ≥ −1. (4.8)

Proof. Since in the assumptions above ai(ds) ∈Ms for i = 0, 1, by means of the arguments
in [15; Sections 3 and 5], we may conclude that there exists a positive constant B∗ depending
on a0(ds) (see the formula (3.13) in [15]) and a constant Cr > 0 depending only on r from the
formula (5.2) in [15] such that:

E0[Y
2
t ] ≥ CrB∗‖a1 − a0‖2D (4.9)
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for all t ≥ 0 (see the formula (5.7) in [15]). Here ‖a1 − a0‖D is the dual Lipschitz norm from
the formula (3.16) in [15] being strictly positive when a0(ds) 6≡ a1(ds). Thus, changing the
order of integration and expectation in (4.5), from (4.9) we obtain that ψt →∞ under t→∞ .

Let us choose ε and δ such that 0 < ε < δ/2 < δ < 1 (when (4.7) holds, also ε′ ≤ δ <
δ/2 < ε < 0) and p = δ/ε , q = δ/(δ − ε) such that 1/p+ 1/q = 1. Then standard tricks with
Hölder’s inequality (see e.g. [21; Theorem 3.1.4]) imply that for the Hellinger integral (4.4) we
have:

Ht(ε) = H0(δ)
ε/δ

(
E0

[
exp

(
− ε

(δ − ε)
δ(1− δ)

2

∫ t

0

Y 2
s ds

)])(δ−ε)/δ

(4.10)

and applying Jensen’s inequality to the right-hand side of (4.10) we get:

Ht(ε) = H0(δ)
ε/δ

(
E0

[
exp

(
−sgn(δ)

δ(1− δ)
2

∫ t

0

Y 2
s ds

)])ε/δ
. (4.11)

Observe that from Jensen’s and Lyapunov’s inequalities as well as by the monotonicity of the
logarithmic function it follows that for given δ we have:

logE0

[
exp

(
−δ(1− δ)

2

∫ t

0

Y 2
s ds

)]
≤ −δ(1− δ)E0

[
1

2

∫ t

0

Y 2
s ds

]
. (4.12)

Thus, letting t go to ∞ in (4.11), by using the property ψt →∞ as t→∞ and the fact that
H0(ε) in (4.4) is finite (since the restrictions P0|F0 and P1|F0 are equivalent), by means of
(4.12), we obtain:

lim sup
ε↓0

lim sup
t→∞

ε−1ψ−1
t logHt(ε) (4.13)

≤ lim sup
δ↓0

lim sup
t→∞

δ−1ψ−1
t logE0

[
exp

(
−δ(1− δ)

2

∫ t

0

Y 2
s ds

)]
≤ −1

and (when (4.7) holds) also:

lim inf
ε↑0

lim inf
t→∞

ε−1ψ−1
t logHt(ε) (4.14)

≥ lim inf
δ↑0

lim inf
t→∞

δ−1ψ−1
t logE0

[
exp

(
−δ(1− δ)

2

∫ t

0

Y 2
s ds

)]
≥ −1.

Therefore, by virtue of [21; Theorems 2.3.1 and 2.3.3] we may conclude that (4.6) and (when
(4.7) holds, also (4.8)) are satisfied. �

Corollary 4.2. From the arguments above it is easily seen that if condition (4.7) is satisfied,
then we have the following more exact result:

lim
t→∞

ψ−1
t logαt = lim

t→∞
ψ−1
t log(1− αt) = 0 implies lim

t→∞
ψ−1
t log β(αt) = −1. (4.15)

4.2. In the rest of the section we give some examples of models of the type (4.1) in which
condition (4.7) holds.

10



Example 4.3. Suppose that in (4.1) we have Zt = 0 for t ∈ [−r, 0] and ai(ds) ≡ −θiδ0
for i = 0, 1 with θ1 > θ0 > 0, where δ0 denotes the Dirac measure having the mass one at
the point zero. In this case there exists a stationary solution of equation (4.1), so that we have
ai(ds) ∈Ms for i = 0, 1. Then from the results of the previous section it follows that condition
(4.7) is satisfied, for example, with ε′ = −θ0/(4(θ2

1 − θ2
0)), so that we have the exact result

(4.15) with ψt = (θ0 − θ1)
2t/(2θ0)− (θ0 − θ1)

2(1− e−2θ0t)/(4θ2
0), t ≥ 0, in (4.5).

Example 4.4. Suppose that in (4.1) we have Zt = 0 for t ∈ [−r, 0], a0(ds) ≡ −θ0δ0 and
a1(ds) ≡ −θ1δ−r for some θ0 > 0, 0 < θ1 < πr/2 and r > 0. This means that we consider a
problem of testing hypothesis ’there is no delay’ against the alternative ’there is a delay’. In
this case there also exists a stationary solution of equation (4.1), so that we have ai(ds) ∈ Ms

for i = 0, 1. Some estimation problems for this type of models were considered in [12] and [17].
Let us introduce the process M = (Mt)t≥0 given by:

Mt =

∫ t

0

(θ0Xs − θ1Xs−r) dWs with 〈M〉t =

∫ t

0

(θ0Xs − θ1Xs−r)
2 ds. (4.16)

Then it follows that the Hellinger integral (4.4) takes the form:

Ht(ε) = E0 [exp (εMt − ε〈M〉t/2)] (4.17)

(with H0(ε) = 1 since Z ≡ 0). If the following conditions hold:

E0

[
exp

(
2ε2〈M〉t

)]
<∞ and E0 [exp (ε(2ε− 1)〈M〉t)] <∞ (4.18)

then, by means of Cauchy-Schwarz inequality, we have for (4.17):

Ht(ε) ≤
{
E0

[
exp

(
2εMt − (2ε)2〈M〉t/2

)]}1/2 {E0 [exp (ε(2ε− 1)〈M〉t)]}1/2 . (4.19)

From the formula (1.9.3) in [6; Chapter II, Section 7] it is easily seen that:

E0

[
exp

(
θ0

8

∫ t

0

X2
s ds

)]
<∞ (4.20)

and since under hypothesis H0 we have:∫ t

0

(θ0Xs − θ1Xs−r)
2 ds ≤ 2θ2

0

∫ t

0

X2
s ds+ 2θ2

1

∫ t

0

X2
s−r ds ≤ 2(θ2

0 + θ2
1)

∫ t

0

X2
s ds (4.21)

we may conclude that the conditions 4ε2(θ2
0 + θ2

1) ≤ θ0/8 and 2ε(2ε − 1)(θ2
0 + θ2

1) ≤ θ0/8
guarantee that (4.18) - (4.19) holds, and hence (4.17) is finite. Thus, condition (4.7) is satisfied,
for example, with ε′ = −θ0/(128(θ2

0 + θ2
1)), so that we have the exact result (4.15) with ψt =

θ0t/4− θ1e
θ0r(t− r)/2 + θ2

1(t− r)/(4θ0)− (1− e−2θ0t)/8 + θ1e
−θ0r/(4θ0)− θ1e

−2θ0(t−r/2)/(4θ0)−
θ2
1(1− e−2θ0(t−r))/(8θ2

0), t ≥ r , in (4.5).
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[29] Vasiček, O. A. (1977). An equilibrium characterization of the term structure. Journal
of Financial Economics 5 (177–188).

13


