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Abstract

A convertible (callable) bond is a security that the holder can convert into a

specified number of underlying shares. In addition, the issuer can recall the bond,

paying some compensation, or force the holder to convert it immediately. We give

an explicit solution to the corresponding optimal stopping game in the context of a

reduced form model driven by a Brownian motion and a compound Poisson process

with exponential jumps. It turns out that the occurrence of jumps leads to optimal

stopping strategies whose structure differs from the results for continuous models.
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1 Introduction

The market for convertible bonds has been growing rapidly during the last years. A

convertible bond can be considered as a hybrid between a standard corporate bond and

a stock. To issue a convertible bond is especially attractive for relatively small firms with

high growth potential and risk. Such firms can often pay only small coupons but are

willing to compensate this by participating the holder in the possible rise of their stocks.

Convertible bonds have been investigated rather extensively. Especially quite recently

the corresponding optimal stopping problems have attracted much attention in the litera-

ture on mathematical finance. One has to distinguish between reduced form models where
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the stock price process of the issuing firm is directly given by some stochastic process and

structural models where the starting point is the firm value which is the sum of the total

equity value and the total debt value. Within a firm value model the pricing problem

is treated in Ŝırbu, Pikovsky and Shreve [31]. In contrast to earlier articles of Brennan

and Schwartz [4] and Ingersoll [11]-[12], their paper includes the case where an earlier

conversion of the bond can be optimal. This fact necessitates to address a nontrivial free-

boundary problem. In the present article we work with reduced form models where such a

contract can be expressed as a standard game contingent claim (see Davis and Lischka [6]

for a complete introduction and a precise description of the contract). The arbitrage-free

prices for a game contingent claim are given by the values of the corresponding zero-sum

optimal stopping games considered under some martingale measures (see Kifer [17] for

complete market models, and Kallsen and Kühn [16] for the incomplete case). In addi-

tion, by utility arguments one can justify a special choice for the martingale measure in

incomplete models (see, e.g., Kallsen and Kühn [15]). Explicit solutions for the perpetual

put option of game type are obtained in Kyprianou [21].

The special feature of this paper is that we do not restrict ourselves to the classical

Black-Scholes model, but study a more general jump-diffusion model, where aiming at

closed form solutions we consider the perpetual case and let the jumps be exponentially

distributed. Besides the analytical tractability of this model, it has some other desirable

properties. For example, it is able to reproduce the leptokurtic feature of the return

distribution. In addition, taking a HARA-type utility function and the corresponding

utility-based martingale measure, the jumps remain exponentially distributed under the

measure transformation (see Kou [18] and Kou and Wang [19] for a detail description

of the model). Therefore, our model can describe the stochastic dynamics under some

economically justified martingale measure. From observed plain-vanilla option prices the

parameters λ and θ in the formula (2.1) below can be calibrated, which specifies the

martingale measure.

It turns out that the occurrence of jumps in the model may change the structural

behavior of the solution, and the issuer of a convertible bond is affected by the risk that the

conversion value can jump over the recall price. Moreover, we can observe some phenomena
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which are quite unusual in optimal stopping problems. This is in contrast to standard

American put and call options, where it was shown that the structure of optimal exercise

times does not change under an extension of the driving process from Brownian motion

to a more general Lévy process (see, e.g., Mordecki [23]-[24]). However, the phenomena

observed in this paper should correspondingly also hold in the non-perpetual case as well

as in more general jump-diffusion models.

The paper is organized as follows. In Section 2 we formulate the corresponding optimal

stopping game and reduce it to an equivalent integro-differential double free-boundary

problem. In Section 3 we derive an explicit solution to the free-boundary problem that

also prepares the proof of the main result which is stated in Theorem 4.1. In Section 4

we verify that the solution of the free-boundary problem turns out to be a solution of

the initial optimal stopping problem. In Section 5 we give some concluding remarks and

comment the structure of the solution under different relationships on the parameters of

the model.

2 Formulation of the problem

For a precise formulation of the problem let us consider a probability space (Ω,F , P )

with a standard Brownian motion W = (Wt)t≥0 and a jump process J = (Jt)t≥0 defined

by Jt =
∑Nt

i=1 ξi, where N = (Nt)t≥0 is a Poisson process with intensity λ and (ξi)i∈N is

a sequence of independent random variables exponentially distributed with parameter 1

(W , N and (ξi)i∈N are supposed to be independent). The stock price process S = (St)t≥0

is given by

St = s exp

((
r − δ − η2

2
− λθ

1− θ

)
t+ ηWt + θ Jt

)
(2.1)

where η ≥ 0, 0 < δ < r and θ < 1. It follows that S solves the stochastic differential

equation

dSt = St−(r − δ) dt+ St−η dWt + St−

∫ ∞
0

(
eθy − 1

)
(µ(dt, dy)− ν(dt, dy)) (2.2)

and S0 = s, where r is the riskless interest rate and the dividend rate payed to stockholders

is δSt. Here µ(dt, dy) is the measure of jumps of the process J with the compensator
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ν(dt, dy) = λdtI(y > 0)e−ydy, which means that we work directly under a martingale

measure for S. Note that the assumption θ < 1 guarantees that the jumps of S are

integrable under the martingale measure, which is no restriction.

Assume that the firm issues a convertible bond at time zero. At each subsequent

time, the bondholder can decide whether to continue to hold the bond, thereby collecting

coupons at the rate c + hS with some c > 0 and h ≥ 0 fixed, or to convert it into a

predetermined number γ > 0 of stocks. On the other hand, at any time the issuing firm

can redeem the bond at some call price K > 0, but at the same time it has to offer the

holder to convert the bond instantly. Put differently, the firm can terminate the contract

by paying the amount max{K, γS}. Thus we can express this contract as a standard

game contingent claim. If the holder terminates the contract by converting the bond into

γ stocks, then the total (discounted) payoff to the holder is given by

Lt =

∫ t

0

e−ru (c+ hSu) du+ e−rt γSt, (2.3)

while if the issuer terminates the contract, then the total payoff to the holder is given by

Ut =

∫ t

0

e−ru (c+ hSu) du+ e−rt (K ∨ γSt) (2.4)

for any time t ≥ 0. Taking into account that the holder looks for a converting time

maximizing the expected discounted payoff, while the issuer looks for a recalling time

minimizing the same quantity, we obtain by Kifer [17] or Kallsen and Kühn [16] that an

arbitrage-free price for the convertible bond coincides with the value of the corresponding

optimal stopping game

V∗(s) = inf
σ

sup
τ
Es
[
LτI(τ < σ) + UσI(σ ≤ τ)

]
= sup

τ
inf
σ
Es
[
LτI(τ < σ) + UσI(σ ≤ τ)

]
(2.5)

where the infimum and the supremum are taken over all stopping times σ and τ with

respect to the natural filtration of S, and Es denotes the expectation under the assumption

that S0 = s for s > 0. We also note that when c ≥ rK the solution of the problem (2.5)

is trivial. Namely, in this case, the upper process (2.4) stopped at the first time when

γSt exceeds K is a submartingale, which implies that the issuer should recall the bond
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immediately. So that we assume that c < rK. In addition, we suppose that h < γδ,

since otherwise the coupon payments for the convertible bond always exceed the dividend

payments of the involved stocks.

From the general theory of optimal stopping games (see, e.g., [7], [2]-[3], [8]-[9], [20],

[22], [5]) it follows that the value function V∗(s) of the problem (2.5) lies between γs and

K∨γs for each s > 0. Then, from the structure of the lower and upper processes (2.3) and

(2.4) it is seen that Lt = Ut when St ≥ K/γ for any t ≥ 0, and hence we have V∗(s) = γs

for all s ≥ K/γ. Taking into account these facts we will search for optimal stopping times,

at which the issuer and holder should terminate the contract, of the form

σ∗ = inf{t ≥ 0 |St ≥ A∗} (2.6)

τ∗ = inf{t ≥ 0 |St ≥ B∗} (2.7)

for some numbers 0 < A∗ ≤ K/γ and 0 < B∗ ≤ K/γ to be determined. We also observe

that, by virtue of the structure of the lower and upper gain functions γs and K ∨ γs, it

follows that stopping the game simultaneously by both holder and issuer cannot be optimal

as long as the process S fluctuates in the interval (0, K/γ). Thus, only the following

situations can occur: either B∗ < A∗ = K/γ, or A∗ < B∗ = K/γ, or A∗ = B∗ = K/γ.

By means of standard arguments it can be shown that the infinitesimal operator L of

the process S acts on an arbitrary function F ∈ C2(0,∞) (or F ∈ C1(0,∞) when η = 0)

according to the rule

(LF )(s) =

(
r − δ − λθ

1− θ

)
s F ′(s) +

η2

2
s2 F ′′(s) (2.8)

+

∫ ∞
0

(
F
(
seθy

)
− F (s)

)
λe−y dy

for all s > 0. In order to find explicit expressions for the unknown value function V∗(s)

from (2.5) and the unknown boundaries A∗ and B∗ from (2.6)-(2.7) let us use the general

theory of optimal stopping problems for continuous time Markov processes (see, e.g., [10]

and [29], Chapter III, Section 8, as well as [2]-[3]). We can reduce the optimal stopping
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game (2.5) to the double free-boundary problem

(LV − rV )(s) = −(c+ hs) for 0 < s < A ∧B (2.9)

V (B−) = γB if B ≤ A =
K

γ
, V (A−) = K ∨ γA if A ≤ B =

K

γ
(continuous fit) (2.10)

V (s) = γs for s > B if B ≤ A =
K

γ
, V (s) = K ∨ γs for s > A if A ≤ B =

K

γ
(2.11)

γs < V (s) < K ∨ γs for 0 < s < A ∧B (2.12)

where 0 < A ∨ B ≤ K/γ and (2.10) play the role of instantaneous-stopping conditions.

Moreover, when either η > 0, or θ < 0, or 0 < θ < 1 with r − δ − λθ/(1 − θ) > 0 holds,

we assume that the conditions

V ′(B−) = γ if B < A =
K

γ
, V ′(A−) = 0 if A < B =

K

γ
(smooth fit) (2.13)

are satisfied. The latter can be explained by the fact that in the cases mentioned above,

leaving the continuation region (0, A∗∧B∗) the process S can pass through the boundary

A∗ ∧ B∗ < K/γ continuously. This property was earlier observed in [25]-[26] by solving

some other optimal stopping problems for jump processes (see also [1] for necessary and

sufficient conditions for the occurrence of the smooth-fit condition and references to the

related literature).

3 Solution of the free-boundary problem

Let us now derive explicit solutions to the free-boundary problem formulated above under

different relationships on the parameters of the model.

3.1. Let us first consider the continuous case η > 0 and θ = 0. In this case, by means

of the same arguments as in [28], Section 8, or [30], Chapter VII, Section 2a, it can be

shown that equation (2.9) has the general solution

V (s) = C1 s
γ1 + C2 s

γ2 +
c

r
+
hs

δ
(3.1)

where C1 and C2 are some arbitrary constants, and γ2 < 0 < 1 < γ1 are given by

γi =
1

2
− r − δ

η2
− (−1)i

√(
1

2
− r − δ

η2

)2

+
2r

η2
(3.2)
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for i = 1, 2. It thus follows that in (3.1) we have C2 = 0, since otherwise V (s) → ±∞

as s ↓ 0, which should be excluded by virtue of the obvious fact that the value function

(2.5) is bounded under s ↓ 0. Hence, applying conditions (2.10) and (2.13) to the function

(3.1), we get that if B < A = K/γ then the following equalities hold

C1B
γ1 +

c

r
+
hB

δ
= γB (3.3)

γ1C1B
γ1 +

hB

δ
= γB (3.4)

and if A < B = K/γ then the following equalities hold

C1A
γ1 +

c

r
+
hA

δ
= K (3.5)

γ1C1A
γ1 +

hA

δ
= 0. (3.6)

Thus, solving the systems (3.3)-(3.4) and (3.5)-(3.6) it follows that three regions for K

with qualitatively different solutions to the free-boundary problem (besides the trivial

solution in case K ≤ c/r) can be distinguished. Namely, by means of straightforward

calculations we obtain that if the condition

K >
γ1

γ1 − 1

γδ

γδ − h
c

r
(3.7)

holds then B∗ < A∗ = K/γ and the solution of system (2.9)-(2.10)+(2.13) is given by

V (s;B∗) =
1

γ1 − 1

c

r

( s

B∗

)γ1
+
c

r
+
hs

δ
(3.8)

for all 0 < s < B∗ with

B∗ =
γ1

γ1 − 1

δ

γδ − h
c

r
, (3.9)

if the condition
γ1γδ

γ1(γδ − h) + h

c

r
≤ K ≤ γ1

γ1 − 1

γδ

γδ − h
c

r
(3.10)

holds then A∗ = B∗ = K/γ and the solution of system (2.9)-(2.10) is given by

V (s;K/γ) =

(
γδ − h
δ

K

γ
− c

r

)(γs
K

)γ1
+
c

r
+
hs

δ
(3.11)

for all 0 < s < K/γ, while if the condition

c

r
< K <

γ1γδ

γ1(γδ − h) + h

c

r
(3.12)
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holds then A∗ < B∗ = K/γ and the solution of system (2.9)-(2.10)+(2.13) is given by

V (s;A∗) = − 1

γ1 − 1

(
K − c

r

)( s

A∗

)γ1
+
c

r
+
hs

δ
(3.13)

for all 0 < s < A∗ with

A∗ =
γ1

γ1 − 1

δ

h

(
K − c

r

)
. (3.14)

Note that when h = 0 the condition (3.12) fails to hold, so that A∗ < B∗ = K/γ cannot

occur in that case.

3.2. From now on let us consider the jump-diffusion case θ 6= 0 and for the integrability

of jumps assume that θ < 1. By means of straightforward calculations we reduce equation

(2.9) to the form

−(r + λ)V (s) + (r − δ + ζ)s V ′(s) +
η2

2
s2 V ′′(s)− αλsαG(s) = −(c+ hs) (3.15)

with α = 1/θ and ζ = −λθ/(1 − θ), where taking into account conditions (2.10)-(2.11)

we set

G(s) =−
∫ B

s

V (z)
dz

zα+1
+
γB1−α

1− α
if α = 1/θ > 1 and B ≤ A =

K

γ
(3.16)

G(s) =−
∫ A

s

V (z)
dz

zα+1
+
γ(K/γ)1−α

α(1− α)
− KA−α

α
if α = 1/θ > 1 and A ≤ B =

K

γ
(3.17)

G(s) =

∫ s

0

V (z)
dz

zα+1
if α = 1/θ < 0 (3.18)

for all 0 < s < A ∧ B. Then, from (3.15) and (3.16)-(3.18) it follows that the function

G(s) solves the following (third-order) ordinary differential equation

η2s3

2
G′′′(s) +

[
η2(α + 1) + r − δ + ζ

]
s2G′′(s) (3.19)

+

[
(α + 1)

(
η2α

2
+ r − δ + ζ

)
− (r + λ)

]
sG′(s)− αλG(s) = −s−α(c+ hs)

for 0 < s < A ∧B, which has the general solution

G(s) = C1
sβ1

β1

+ C2
sβ2

β2

+ C3
sβ3

β3

− cs−α

rα
+

hs1−α

δ(1− α)
(3.20)

where C1, C2 and C3 are some arbitrary constants and β3 < β2 < β1, βi 6= 0 for i = 1, 2, 3,

are the real roots of the corresponding (characteristic) equation

η2

2
β3 +

[
η2

(
α− 1

2

)
+ r − δ + ζ

]
β2 (3.21)

+

[
α

(
η2(α− 1)

2
+ r − δ + ζ

)
− (r + λ)

]
β − αλ = 0.
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Therefore, differentiating both sides of the formulas (3.16)-(3.18) we obtain that the

integro-differential equation (3.15) has the general solution

V (s) = C1 s
γ1 + C2 s

γ2 + C3 s
γ3 +

c

r
+
hs

δ
(3.22)

where we set γi = βi + α for i = 1, 2, 3. Observe that if η = 0 and r − δ + ζ 6= 0 then it

is seen that (3.19) degenerates into a second-order differential equation, and in that case

we can put C3 = 0 in (3.20) as well as in (3.22), while the roots of equation (3.21) are

explicitly given by

βi =
r + λ

2(r − δ + ζ)
− α

2
− (−1)i

√(
r + λ

2(r − δ + ζ)
− α

2

)2

+
αλ

r − δ + ζ
(3.23)

for i = 1, 2. Note that if η = 0 and r− δ+ ζ = 0 then (3.19) degenerates into a first-order

differential equation, and in that case we can put C2 = C3 = 0 in (3.20) as well as in

(3.22), while the unique root of equation (3.21) is given by

β1 = − αλ

r + λ
. (3.24)

3.2.1. Let us now consider the subcase of negative jumps α = 1/θ < 0. Observe from

(3.19) that then we have 0 < β2 < −α < 1 − α < β1 so that α < γ2 < 0 < 1 < γ1 with

γi = βi + α for i = 1, 2, and if, in addition, η > 0 then we have β3 < 0. It thus follows

that in (3.20) as well as in (3.22) we have C2 = C3 = 0, since otherwise G(s)→ ±∞ and

V (s)→ ±∞ as s ↓ 0 that should be excluded by virtue of the facts that the value function

(2.5) so that the function (3.18) are bounded under s ↓ 0. Therefore, using straightforward

calculations we obtain that in the same regions for K as defined in (3.7), (3.10) and (3.12)

the solution of system (2.9)-(2.11)+(2.13) is given by the same formulas as in (3.8)-(3.9),

(3.11) and (3.13)-(3.14), respectively, with γ1 = β1 + α, where if η > 0 then β1 is the

largest root of equation (3.21), while if η = 0 then β1 is given by (3.23).

3.2.2. Let us now consider the subcase of positive jumps α = 1/θ > 1. Observe

that if, in addition, η > 0 then we have β3 < −α < 1 − α < β2 < 0 < β1 so that

γ3 < 0 < 1 < γ2 < α < γ1 with γi = βi + α, where βi for i = 1, 2, 3 are the roots of

equation (3.21). It thus follows that in (3.20) as well as in (3.22) we have C3 = 0, since

otherwise V (s) → ±∞ as s ↓ 0 that should be excluded by virtue of the fact that the
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function (2.5) is bounded under s ↓ 0. Note that if, in addition, η = 0 and r − δ + ζ > 0

with ζ = −λθ/(1 − θ) then we have 1 − α < β2 < 0 < β1 so that 1 < γ2 < α < γ1

with γi = βi + α, where βi for i = 1, 2 are given by (3.23). Hence, applying conditions

(3.16)-(3.17), (2.10) and (2.13) to the functions (3.20) and (3.22), respectively, we get that

if B < A = K/γ then the following equalities hold

C1
Bγ1

β1

+ C2
Bγ2

β2

− c

rα
+

hB

δ(1− α)
=

γB

1− α
(3.25)

C1B
γ1 + C2B

γ2 +
c

r
+
hB

δ
= γB (3.26)

γ1C1B
γ1 + γ2C2B

γ2 +
hB

δ
= γB (3.27)

and if A < B = K/γ then the following equalities hold

C1
Aγ1

β1

+ C2
Aγ2

β2

− c

rα
+

hA

δ(1− α)
=

K

α(1− α)

(
γA

K

)α
− K

α
(3.28)

C1A
γ1 + C2A

γ2 +
c

r
+
hA

δ
= K (3.29)

γ1C1A
γ1 + γ2C2A

γ2 +
hA

δ
= 0. (3.30)

Thus, solving the systems (3.25)-(3.27) and (3.28)-(3.30) we get that in this subcase there

are also three regions for K with qualitatively different (nontrivial) solutions to the free-

boundary problem. Namely, by means of straightforward calculations we obtain that if

the condition

K >
α− 1

α

γ1

γ1 − 1

γ2

γ2 − 1

γδ

γδ − h
c

r
(3.31)

holds then B∗ < A∗ = K/γ and the solution of system (2.9)-(2.11)+(2.13) is given by

V (s;B∗) =
1

α(β1 − β2)

c

r

(
β1γ2

γ1 − 1

( s

B∗

)γ1
− β2γ1

γ2 − 1

( s

B∗

)γ2)
+
c

r
+
hs

δ
(3.32)

for all 0 < s < B∗ with

B∗ =
α− 1

α

γ1

γ1 − 1

γ2

γ2 − 1

δ

γδ − h
c

r
, (3.33)

if the condition

α− 1

α

γ1γ2γδ

(γ1 − 1)(γ2 − 1)(γδ − h) + (α− 1)γδ

c

r

≤ K ≤ α− 1

α

γ1

γ1 − 1

γ2

γ2 − 1

γδ

γδ − h
c

r
(3.34)
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holds then A∗ = B∗ = K/γ and the solution of system (2.9)-(2.11) is given by

V (s;K/γ) =
β1

β1 − β2

(
γ2 − 1

α− 1

γδ − h
δ

K

γ
− γ2

α

c

r

)(γs
K

)γ1
(3.35)

− β2

β1 − β2

(
γ1 − 1

α− 1

γδ − h
δ

K

γ
− γ1

α

c

r

)(γs
K

)γ2
+
c

r
+
hs

δ

for all 0 < s < K/γ, while if the condition

c

r
< K <

α− 1

α

γ1γ2γδ

(γ1 − 1)(γ2 − 1)(γδ − h) + (α− 1)γδ

c

r
(3.36)

holds then A∗ < B∗ = K/γ and the solution of system (2.9)-(2.11)+(2.13) is given by

V (s;A∗) = − 1

β1 − β2

(
γ2

(
K − c

r

)
− (γ2 − 1)

hA∗
δ

)( s

A∗

)γ1
(3.37)

+
1

β1 − β2

(
γ1

(
K − c

r

)
− (γ1 − 1)

hA∗
δ

)( s

A∗

)γ2
+
c

r
+
hs

δ

for all 0 < s < A∗, where A∗ is determined as the unique solution of the equation(
γA

K

)α
− α(γ1 − 1)(γ2 − 1)

β1β2

h

δ

A

K
+

(α− 1)γ1γ2

β1β2K

(
K − c

r

)
= 0. (3.38)

Note that when h = 0 equation (3.38) admits the explicit solution

A∗ =
K

γ

(
(1− α)γ1γ2

β1β2K

(
K − c

r

))1/α

. (3.39)

3.2.3. Let us finally consider the subcase η = 0 and α = 1/θ > 1 with r − δ + ζ ≤ 0

and ζ = −λθ/(1 − θ). Observe that if, in addition, r − δ + ζ < 0 then we have β2 <

−α < 1 − α < β1 < 0 so that γ2 < 0 < 1 < γ1 with γi = βi + α, where βi for i = 1, 2

are given by (3.23). It follows that in (3.20) as well as in (3.22) we have C2 = C3 = 0,

since otherwise V (s) → ±∞ as s ↓ 0 that should be excluded by virtue of the fact that

the function (2.5) is bounded under s ↓ 0. Note that if, in addition, r − δ + ζ = 0 then

we have 1 − α < β1 < 0 so that γ1 > 1 with γ1 = β1 + α, where β1 is given by (3.24).

Hence, applying conditions (3.16)-(3.17) and (2.10) to the functions (3.20) and (3.22),

respectively, we get that if B ≤ A = K/γ then the following equalities hold

C1
Bγ1

β1

− c

rα
+

hB

δ(1− α)
=

γB

1− α
(3.40)

C1B
γ1 +

c

r
+
hB

δ
= γB (3.41)
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and if A ≤ B = K/γ then the following equalities hold

C1
Aγ1

β1

− c

rα
+

hA

δ(1− α)
=

K

α(1− α)

(
γA

K

)α
− K

α
(3.42)

C1A
γ1 +

c

r
+
hA

δ
= K. (3.43)

Thus, solving the systems (3.40)-(3.41) and (3.42)-(3.43) we may conclude that, in con-

trast to the previous parts, in this subcase there are only two regions for K with qualita-

tively different (nontrivial) solutions to the free-boundary problem. Namely, by means of

straightforward calculations we obtain that if the condition

K ≥ α− 1

α

γ1

γ1 − 1

γδ

γδ − h
c

r
(3.44)

holds then B∗ ≤ A∗ = K/γ and the solution of system (2.9)-(2.11) is given by

V (s;B∗) = − β1

α(γ1 − 1)

c

r

( s

B∗

)γ1
+
c

r
+
hs

δ
(3.45)

for all 0 < s < B∗ with

B∗ =
α− 1

α

γ1

γ1 − 1

δ

γδ − h
c

r
, (3.46)

while if the condition
c

r
< K ≤ α− 1

α

γ1

γ1 − 1

γδ

γδ − h
c

r
(3.47)

holds then A∗ ≤ B∗ = K/γ and the solution of system (2.9)-(2.11) is given by

V (s;A∗) =

(
K − c

r
− hA∗

δ

)( s

A∗

)γ1
+
c

r
+
hs

δ
(3.48)

for all 0 < s < A∗, where A∗ is determined as the unique solution of the equation(
γA

K

)α
− α(γ1 − 1)

β1

h

δ

A

K
+

(α− 1)γ1

β1K

(
K − c

r

)
= 0. (3.49)

Note that when h = 0 equation (3.49) admits the explicit solution

A∗ =
K

γ

(
(1− α)γ1

β1K

(
K − c

r

))1/α

. (3.50)

Remark that in this case the smooth-fit conditions (2.13) fail to hold, that can be explained

by the fact that when η = 0 and 0 < θ < 1 with r − δ − λθ/(1 − θ) ≤ 0, leaving the

continuation region (0, A∗ ∧B∗) the process S can pass through the boundary A∗ ∧B∗ <

12



K/γ only by jumping. Such an effect was earlier observed in [25]-[26] by solving some

other optimal stopping problems for jump processes. According to the results in [1] the

smooth-fit condition can fail to hold because the compound Poisson process J has finite

variation.

4 Main result and proof

Taking into account the facts proved above, let us now formulate the main assertion of

the paper.

Theorem 4.1. Let the process S be given by (2.1) and assume that the standing

assumptions 0 < δ < r and 0 ≤ h < γδ hold. Then the value function of the problem (2.5)

admits the representation

V∗(s) =


V (s;A∗ ∧B∗), if 0 < s < A∗ ∧B∗

γs, if B∗ ≤ A∗ and s ≥ B∗

K ∨ γs, if A∗ ≤ B∗ and s ≥ A∗

(4.1)

and the optimal stopping times σ∗ and τ∗ have the structure (2.6)-(2.7), where the function

V (s;A∗ ∧B∗) and the boundaries A∗ and B∗ are specified as follows:

(i) if η > 0 and θ = 0 then under condition (3.7) we have B∗ < A∗ = K/γ and V (s;B∗)

is given by (3.8) with B∗ from (3.9), under condition (3.10) we have A∗ = B∗ = K/γ and

V (s;K/γ) is given by (3.11), while under condition (3.12) we have A∗ < B∗ = K/γ and

V (s;A∗) is given by (3.13) with A∗ being the unique solution of (3.14), where γ1 is given

by (3.2);

(ii) if θ < 0 then the assertion (i) holds with γ1 replaced by β1 + 1/θ, where β1 is the

largest root of equation (3.21) in case η > 0, while β1 is given by (3.23) in case η = 0;

(iii) if η > 0 and 0 < θ < 1 then under condition (3.31) we have B∗ < A∗ = K/γ

and V (s;B∗) is given by (3.32) with B∗ from (3.33), under condition (3.34) we have

A∗ = B∗ = K/γ and V (s;K/γ) is given by (3.35), while under condition (3.36) we have

A∗ < B∗ = K/γ and V (s;A∗) is given by (3.37) with A∗ being the unique solution of

(3.38), where γi = βi + 1/θ and βi for i = 1, 2 are the two largest roots of equation (3.21);

13



(iv) if η = 0 and 0 < θ < 1 with r − δ − λθ/(1− θ) > 0 then the assertion (iii) holds

with βi for i = 1, 2 given by (3.23);

(v) if η = 0 and 0 < θ < 1 with r − δ − λθ/(1 − θ) ≤ 0 then under condition (3.44)

we have B∗ ≤ A∗ = K/γ and V (s;B∗) is given by (3.45) with B∗ from (3.46), while

under condition (3.47) we have A∗ ≤ B∗ = K/γ and V (s;A∗) is given by (3.48) with A∗

being the unique solution of (3.49), where γ1 = β1 + 1/θ and β1 is given by (3.23) in case

r − δ − λθ/(1− θ) < 0, while β1 is given by (3.24) in case r − δ − λθ/(1− θ) = 0.

Proof. In order to verify the assertions stated above, it remains to show that the

function (4.1) coincides with the value function (2.5) and the stopping times σ∗ and τ∗

from (2.6)-(2.7) with the boundaries A∗ and B∗ specified above are optimal. For this, let

us denote by V (s) the right-hand side of the expression (4.1). In this case, by means of

straightforward calculations and the assumptions above it follows that the function V (s)

solves the system (2.9)-(2.11), and conditions (2.13) are satisfied when either η > 0, or

θ < 0, or 0 < θ < 1 with r − δ − λθ/(1 − θ) > 0 holds. In addition, we note that V (s)

can be written as a difference of two convex functions. Then, applying Itô-Tanaka-Meyer

formula (see, e.g., [13], Chapter V, Theorem 5.52, or [27], Chapter IV, Theorem 51) to

e−rtV (St), we obtain

e−rt V (St)

= V (s) +

∫ t

0

e−ru (LV − rV )(Su)I(Su 6= A∗, Su 6= B∗, Su 6= K/γ) du (4.2)

+Mt +
1

2

∫ t

0

e−ru
(
V ′(K/γ+)− V ′(K/γ−)

)
I(Su = K/γ) d`u

where the process (`t)t≥0, the local time of S at the point K/γ, is given by

`t = Ps − lim
ε↓0

1

2ε

∫ t

0

I(K/γ − ε < Su < K/γ + ε) η2S2
u du (4.3)

(see, e.g., [27], page 178, Corollary 3), and the process (Mt)t≥0 given by

Mt =

∫ t

0

e−ru V ′(Su)I(Su 6= A∗, Su 6= B∗, Su 6= K/γ) ηSu dWu (4.4)

+

∫ t

0

∫ ∞
0

e−ru
(
V
(
Su−e

θy
)
− V (Su−)

)
(µ(du, dy)− ν(du, dy))
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is a local martingale with respect to Ps being a probability measure under which the

process S starts at 0 < s < K/γ. Note that when η = 0 and r − δ − λθ/(1− θ) = 0, the

indicators in the formulas (4.2) and (4.4) can be set to one.

By the construction of V (s) in the previous section and using straightforward cal-

culations it can be verified that (LV − rV )(s) ≤ −(c + hs) for all 0 < s < A∗ and

(LV − rV )(s) ≥ −(c+hs) for all 0 < s < B∗. Moreover, by means of standard arguments

it can be shown that for the derivative we have 0 ≤ V ′(s;A∗ ∧ B∗) ≤ γ on the interval

(0, A∗∧B∗), and thus the property (2.12) also holds that together with (2.10)-(2.11) yields

V (s) ≥ γs and V (s) ≤ K ∨ γs for all s > 0. Observe that from (2.1) it is seen that when

either η > 0 or r−δ−λθ/(1−θ) 6= 0, the time spent by the process S at the points A∗, B∗

and K/γ is of Lebesgue measure zero. Thus, in those cases, the indicator appearing in the

first integral of the expression (4.2) can be ignored. Hence, from (4.2) and the structure

of the stopping times in (2.6)-(2.7) with 0 < A∗ ≤ K/γ and 0 < B∗ ≤ K/γ it follows that

Lσ∗∧τ ≤
∫ σ∗∧τ

0

e−ru (c+ hSu) du+ e−r(σ∗∧τ) V (Sσ∗∧τ ) ≤ V (s) +Mσ∗∧τ (4.5)

Uσ∧τ∗ ≥
∫ σ∧τ∗

0

e−ru (c+ hSu) du+ e−r(σ∧τ∗) V (Sσ∧τ∗) ≥ V (s) +Mσ∧τ∗ (4.6)

for any stopping times σ and τ of the process S started at 0 < s < K/γ.

Let (τn)n∈N be an arbitrary localizing sequence of stopping times for the process

(Mt)t≥0. Then using (4.5)-(4.6) and the fact that, by construction, we have V (Sσ∗) =

K ∨ γSσ∗ and V (Sτ∗) = γSτ∗ , respectively, by means of the optional sampling theorem

(see, e.g., [14], Chapter I, Theorem 1.39) we get

Es
[
Lτ∧τnI(τ ∧ τn < σ∗) + Uσ∗I(σ∗ ≤ τ ∧ τn)

]
(4.7)

≤ Es

[∫ σ∗∧τ∧τn

0

e−ru (c+ hSu) du+ e−r(σ∗∧τ∧τn) V (Sσ∗∧τ∧τn)

]
≤ V (s) + Es

[
Mσ∗∧τ∧τn

]
= V (s)

Es
[
Lτ∗I(τ∗ < σ ∧ τn) + Uσ∧τnI(σ ∧ τn ≤ τ∗)

]
(4.8)

≥ Es

[∫ σ∧τ∗∧τn

0

e−ru (c+ hSu) du+ e−r(σ∧τ∗∧τn) V (Sσ∧τ∗∧τn)

]
≥ V (s) + Es

[
Mσ∧τ∗∧τn

]
= V (s)
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for all 0 < s < K/γ. Taking into account the structure of the processes in (2.3)-(2.4) and

the stopping times in (2.6)-(2.7) as well as the integrability of jumps of the process S, it

can be shown that the property

Es

[
sup
t≥0

L(σ∗∨τ∗)∧t

]
≤ Es

[
sup
t≥0

U(σ∗∨τ∗)∧t

]
<∞ (4.9)

holds for all 0 < s < K/γ and the variables Lσ∗∨τ∗ and Uσ∗∨τ∗ are bounded on the set

{σ∗ ∨ τ∗ =∞}. Hence, letting n go to infinity in (4.7)-(4.8) and using Fatou’s lemma, we

obtain that for any stopping times σ and τ the inequalities

Es
[
LτI(τ < σ∗) + Uσ∗I(σ∗ ≤ τ)

]
≤ V (s) ≤ Es

[
Lτ∗I(τ∗ < σ) + UσI(σ ≤ τ∗)

]
(4.10)

are satisfied for all 0 < s < K/γ, from where the desired assertion follows directly.

Inserting σ∗ in place of σ and τ∗ in place of τ into (4.10), we obtain that the equality

Es
[
Lτ∗I(τ∗ < σ∗) + Uσ∗I(σ∗ ≤ τ∗)

]
= V (s) (4.11)

holds for all 0 < s < K/γ. �

Remark 4.2. Let us assume that h = 0. In this case, if θ ≤ 0 then condition (3.12)

never holds, so that the situation A∗ < B∗ = K/γ cannot occur. On the other hand,

if 0 < θ < 1 then conditions (3.36) and (3.47) may be satisfied, and thus the situation

A∗ < B∗ = K/γ turns out to be possible. This shows that the occurrence of positive jumps

in the stock price process S may lead to a change in the structure of optimal stopping

strategies for the problem (2.5).

Remark 4.3. Let us assume that η = 0 and 0 < θ < 1 with r − δ − λθ/(1− θ) ≤ 0.

In this case there is a single recall price K satisfying both (3.44) and (3.47) such that the

situation A∗ = B∗ = K/γ occurs (signifying that the stock price process S should not be

stopped before it exceeds the level K/γ). This stays in contrast to the case when either

η > 0 or r − δ − λθ/(1− θ) > 0 holds, where, in general, a whole interval of recall prices

K can exist for which A∗ = B∗ = K/γ is the solution (see (3.10) or (3.34)).
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Figure 1. A computer drawing of the value function V∗(s)
in the situation B∗ < A∗ = K/γ
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Figure 2. A computer drawing of the value function V∗(s)
in the situation A∗ = B∗ = K/γ
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Figure 3. A computer drawing of the value function V∗(s)
in the situation A∗ < B∗ = K/γ with smooth fit

-

6

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

c
r

K

A∗ B∗=K/γ

V

s

γs

V (s;A∗)

Figure 4. A computer drawing of the value function V∗(s)
in the situation A∗ < B∗ = K/γ without smooth fit
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5 Conclusion

We have considered the convertible (callable) bond optimal stopping game in a jump-

diffusion model with infinite time horizon. For continuous models, in the context of a firm

value approach, the articles of Brennan and Schwartz [4] and Ingersoll [11]-[12] as well

as the recent results of Ŝırbu, Pikovsky and Shreve [31] tell us that under the standing

assumption that the coupon payments are less than the interest rate on the recall price,

that is c < rK (in the case h = 0), the issuer never recalls the bond before the conversion

value exceeds the recall price. This means that the initial optimal stopping game can be

reduced to an optimal conversion problem. We recover this phenomenon for a reduced

form model when the stock price can possess negative jumps (see Fig. 1). We note that in

that case there is also a whole interval of recall prices K such that the stock price process

reaches the level K/γ before being stopped by the holder or issuer (see Fig. 2).

In addition, in this paper it is also shown that the occurrence of positive jumps in the

stock price process can cause the issuer to recall the bond earlier, that is even if γs < K.

The reason for this is the risk that the conversion value can jump over K that may lead to

a higher payoff γs > K. If there is either a diffusion term or a positive drift term, then the

smooth-fit condition at the optimal boundary holds (see Fig. 3). An extreme situation can

occur when the diffusion term vanishes and the price process merely consists of positive

jumps and a negative drift. In that case, the issuer may recall the bond earlier and the

smooth-fit condition fails to hold (see Fig. 4).
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cesses. Finance & Stochastics 6, 473–493.

21



[25] Peskir, G. and Shiryaev, A. N. (2000). Sequential testing problems for Pois-

son processes. Ann. Statist. 28, 837–859.

[26] Peskir, G. and Shiryaev, A. N. (2002). Solving the Poisson disorder problem.

Advances in Finance and Stochastics. Essays in Honour of Dieter Sondermann.
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