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We connect two approaches for solving discounted optimal stopping problems for one-

dimensional time-homogeneous regular diffusion processes on infinite time intervals. The

optimal stopping rule is assumed to be the first exit time of the underlying process from

a region restricted by two constant boundaries. We provide an explicit decomposition of

the reward process into a product of a gain function of the boundaries and a uniformly

integrable martingale inside the continuation region. This martingale plays a key role for

stating sufficient conditions for the optimality of the first exit time. We also consider

several illustrating examples of rational valuation of perpetual American strangle options.

1 Introduction

Optimal stopping problems have as an objective to search for random times at which the under-

lying stochastic processes should be stopped, with the aim to optimize the expected values of
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given reward functionals. The majority of explicitly solvable stopping problems with exponen-

tial discounting are essentially those for one-dimensional diffusion processes with infinite time

horizon. The optimal stopping times are then the first times at which the underlying processes

exit certain regions restricted by constant boundaries. We study the connection between the

following two approaches existing in the literature, which are applied for computing explicit

expressions for the value functions and the boundaries in such optimal stopping problems.

In the free-boundary approach, described profoundly in the monograph of Peskir and Shiryaev

[26], the associated free-boundary problem for a differential operator is formulated for the un-

known value function and the stopping boundaries. Although such a free-boundary problem

usually has multiple solutions, the appropriate one can be specified as the solution which satis-

fies certain additional conditions such as smooth fit, natural boundary, normal entrance, normal

reflection, etc. (see [26; Chapter IV, Section 9.1] for an extensive overview of proofs of these prin-

ciples). By means of the verification arguments from stochastic analysis, including an extended

Itô-Tanaka formula and the optional sampling theorem, it is then shown that the resulting solu-

tion of the free-boundary problem provides the solution of the initial optimal stopping problem.

In the martingale approach due to Beibel and Lerche [5] and [6], applied to optimal stop-

ping problems with infinite time horizon, the discounted reward process is decomposed into a

product of a positive uniformly integrable martingale and a gain function of the current state of

the underlying one-dimensional diffusion process. It is then shown that the optimization of the

gain function over all admissible stopping points gives the value of the initial optimal stopping

problem, whenever the optimal stopping time is finite almost surely with respect to the prob-

ability measure constructed by means of the positive martingale (see also Lerche and Urusov

[19]). This approach is closely connected to the fundamental principle of Snell [33] of the least

superharmonic characterization of the value function and provides explicit solutions of optimal

stopping problems for continuous Markov processes. Furthermore, it can easily be verified that

the solution of the optimal stopping problem, obtained by means of the approach of Beibel and

Lerche, satisfies the associated free-boundary problem. It can also be shown directly that the

optimization of the resulting gain function yields that the smooth-fit condition holds for the

value function at the optimal stopping boundaries.

In the present paper, we assume that the optimal stopping rule is the first time at which the
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underlying one-dimensional diffusion process exits a region restricted by two constant bound-

aries. We characterize the value function in Theorem 3.1, as a solution of the associated free-

boundary problem satisfying the smooth-fit conditions at the optimal boundaries. We show

how the gain function and the positive uniformly integrable martingale inside the continuation

region can be specified explicitly from the solution of the free-boundary problem. This mar-

tingale appears further in Theorem 3.2, where sufficient conditions are given for the optimality

of the first exit time. We illustrate our results by several examples of exponentially discounted

optimal stopping problems in one-dimensional diffusion models.

The paper is organized as follows. In Section 2, we introduce the setting of an exponentially

discounted optimal stopping problem for a one-dimensional time-homogeneous regular diffusion

process and formulate the associated free-boundary problem. We derive a closed form solution

of the latter problem and decompose it into a form which is amenable for the comparison of the

two approaches. In Section 3, we verify that the solution of the free-boundary problem provides

the solution of the initial optimal stopping problem and show that its value coincides with the

resulting gain from the decomposition obtained. In Section 4, we provide several examples of

discounted optimal stopping problems for one-dimensional linear diffusions, which arise mainly

from the rational valuation of perpetual American strangle options.

2 Preliminaries

In this section, we give a formulation of an exponentially discounted optimal stopping prob-

lem for a one-dimensional diffusion process and solve the associated ordinary differential free-

boundary problem. We also provide a decomposition of the solution, which is related to the

martingale approach of Beibel and Lerche.

2.1. Formulation of the problem. For a precise formulation of the problem, let us

consider a probability space (Ω,F , P ) with a standard Brownian motion W = (Wt)t≥0. Let

X = (Xt)t≥0 be a process solving the stochastic differential equation

dXt = µ(Xt) dt+ σ(Xt) dWt (X0 = x) (2.1)
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where µ(x) and σ(x) > 0 are some continuously differentiable functions on (0,∞). The latter

assumption guarantees the existence of a pathwise unique solution of the equation in (2.1), for

a given starting point x > 0 (see, e.g. Karatzas and Shreve [15; Chapter V, Theorem 2.5]

and Rogers and Williams [28; Chapter V, Section 44]). It follows that X is a regular diffusion

process, in the sense of Karlin and Taylor [16; Chapter XV], on its state space which is assumed

to be the positive half line (0,∞). Let us consider an optimal stopping problem with the value

function

V∗(x) = sup
τ
Ex
[
e−rτ H(Xτ )

]
(2.2)

where the supremum is taken over all stopping times τ , with respect to the natural filtration

(Ft)t≥0 of the process X. Here, H(x) is a payoff function, r > 0 is a discounting rate, and

Ex denotes the expectation under the assumption that X0 = x, for some x > 0. Such optimal

stopping problems have been considered in Dynkin [11], Fakeev [12], Mucci [21], Salminen [29],

Øksendal and Reikvam [23], and Beibel and Lerche [6] among others (see also Bensoussan

and Lions [7; Theorem 3.19] and Øksendal [22; Chapter X]), for regular diffusion processes

with general payoffs and infinite time horizon. More recently, such optimal stopping problems

were studied in Dayanik and Karatzas [10], Alvarez [2] and [3], Peskir and Shiryaev [26], and

Lamberton and Zervos [18] (see the latter references for an extensive discussion).

2.2. Structure of the optimal stopping time. It follows from the general theory of

optimal stopping for Markov processes (see, e.g. [26; Chapter I, Section 2.1]) that the optimal

stopping time in the problem of (2.2) is given by

τ∗ = inf{t ≥ 0 |V∗(Xt) = H(Xt)} (2.3)

whenever it exists, under appropriate conditions on the payoff function H(x). For simplicity of

exposition, we further assume that the payoff H(x) is a positive continuous function which is

continuously differentiable on (0,∞) except at a finite number of points ci > 0, i = 1, . . . , n, for

some n ∈ N ∪ {0}, and its first derivative H ′(x) is continuously differentiable on (ci−1, ci), for

every i = 1, . . . , n+ 1, with c0 = 0 and cn+1 =∞. Note that almost all payoff functions, which

are considered in the examples below, belong to this class. In that case, the stopping time τ∗

turns out to be the first time at which the process X exits a region that consists of a countable

union of disjoint (possibly unbounded) open (in the relative topology) intervals (ai, bi), such
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that 0 ≤ ai < bi ≤ ∞, i ∈ N (see, e.g. [2; Section 3] and [26; Chapter I, Section 2.2]). In order

to simplify the exposition, we further search for an optimal stopping time of the form

τ∗ = inf{t ≥ 0 |Xt /∈ (a∗, b∗)} (2.4)

for some numbers 0 ≤ a∗ < b∗ ≤ ∞ to be determined (see [26; Chapter IV, Section 9] for a

similar setting).

2.3. The free-boundary problem. By means of standard arguments (see, e.g. [15;

Chapter V, Section 5.1]), it can be shown that the infinitesimal operator L of the process X

acts on an arbitrary twice continuously differentiable locally bounded function F (x) according

to the rule

(LF )(x) = µ(x)F ′(x) +
1

2
σ2(x)F ′′(x) (2.5)

for all x > 0. In order to find explicit expressions for the unknown value function V∗(x) from (2.2)

and the unknown boundaries a∗ and b∗ from (2.4), we may use the results of the general theory

of optimal stopping problems for continuous time Markov processes (see, e.g. [31; Chapter III,

Section 8] and [26; Chapter IV, Section 8]). We formulate the associated free-boundary problem

(LV )(x) = rV (x) for a < x < b (2.6)

V (a+) = H(a) and V (b−) = H(b) (instantaneous stopping) (2.7)

V ′(a+) = H ′(a) and V ′(b−) = H ′(b) (smooth fit) (2.8)

V (x) = H(x) for x < a and x > b (2.9)

V (x) > H(x) for a < x < b (2.10)

for some 0 < a < b <∞ fixed. Note that the conditions in (2.8) are naturally used for the value

functions at the optimal stopping boundaries for the underlying regular diffusions X, whenever

the coefficients µ(x) and σ(x) as well as the payoff functions H(x) are continuously differentiable

at the boundaries a and b (see [26; Chapter IV, Section 9] for an extensive overview).

2.4. Solution of the free-boundary problem. We now look for functions which solve

the free-boundary problem stated in (2.6)–(2.8). Let U+(x) and U−(x) be two fundamental

positive solutions (i.e. nontrivial linearly independent particular solutions) of the second order

ordinary differential equation in (2.6). Without loss of generality, we may assume that U+(x)
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and U−(x) are (strictly) increasing and decreasing functions on (0,∞), respectively. Note that

the (strictly) convex functions U+(x) and U−(x) can be represented as the Laplace transforms

of the first passage times of the process X on constant boundaries (see, e.g. [14; Chapter IV,

Section 4.6] or [28; Chapter V, Section 50]). It was proved in [29; Theorem 2.7] that the functions

U+(x) and U−(x) turn out to be minimal r-excessive functions of the regular diffusion X, in

the sense of the fact that the canonical diffusion processes, which correspond to the associated

normal transition functions, converge to single points almost surely. The general solution of the

second order ordinary differential equation in (2.6) is thus given by

V (x) = C+ U+(x) + C− U−(x) (2.11)

where C+ and C− are some arbitrary constants. Hence, applying the instantaneous-stopping

conditions from (2.7) to the function in (2.11), we get that the equalities

C+ U+(a) + C− U−(a) = H(a) and C+ U+(b) + C− U−(b) = H(b) (2.12)

hold for some 0 < a < b <∞. Solving the system of equations in (2.12), we obtain the function

V (x; a, b) = C+(a, b)U+(x) + C−(a, b)U−(x) (2.13)

which satisfies the system in (2.6)–(2.7) when we put

C+(a, b) =
H(a)U−(b)−H(b)U−(a)

U+(a)U−(b)− U+(b)U−(a)
(2.14)

and

C−(a, b) =
H(b)U+(a)−H(a)U+(b)

U+(a)U−(b)− U+(b)U−(a)
(2.15)

for 0 < a < b <∞. Applying the smooth-fit conditions from (2.8) to the function in (2.13), we

therefore obtain that the equalities

C+(a, b)U ′+(a) + C−(a, b)U ′−(a) = H ′(a) (2.16)

C+(a, b)U ′+(b) + C−(a, b)U ′−(b) = H ′(b) (2.17)

hold with C+(a, b) and C−(a, b) given by (2.14) and (2.15), under the assumption that the

function H(x) is continuously differentiable at the boundaries a and b. It is shown by means of
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standard arguments that the system in (2.16)–(2.17) is equivalent to

H(a)U ′+(a)−H ′(a)U+(a)

U ′+(a)U−(a)− U+(a)U ′−(a)
=

H(b)U ′+(b)−H ′(b)U+(b)

U ′+(b)U−(b)− U+(b)U ′−(b)
(2.18)

H(a)U ′−(a)−H ′(a)U−(a)

U ′+(a)U−(a)− U+(a)U ′−(a)
=

H(b)U ′−(b)−H ′(b)U−(b)

U ′+(b)U−(b)− U+(b)U ′−(b)
(2.19)

for some 0 < a < b < ∞ (compare with [29; Theorem 4.7], [2; Theorem 2] and [10; Corol-

lary 7.2]). Note that, in the case of a general payoff function H(x), the solution a∗ and b∗ of

the system in (2.18)–(2.19) may not be unique. However, we will prove the uniqueness of such

a couple for a particular payoff function in Examples 4.2 and 4.6 below. Sufficient conditions

for uniqueness of solutions of more general optimal stopping game problems were derived in [3;

Theorem 4.3] in terms of the infinitesimal characteristics and the payoff functions in a slightly

less general (from the point of view of differentiability) framework.

2.5. Some decompositions of the value function. It follows from (2.13) that the

function V (x; a, b) admits the representation

V (x; a, b) = G(a, b)
(
p(a, b)U+(x) + (1− p(a, b))U−(x)

)
(2.20)

for any x ∈ (a, b) fixed. Here, the gain function G(a, b) is defined by

G(a, b) = C+(a, b) + C−(a, b) (2.21)

so that the function p(a, b) is given by

p(a, b) =
C+(a, b)

C+(a, b) + C−(a, b)
(2.22)

for 0 < a < b <∞. Hence, the expressions for C+(a, b) and C−(a, b) in (2.14) and (2.15) imply

that the formulas in (2.21) and (2.22) take the form

G(a, b) =
H(b)(U+(a)− U−(a))−H(a)(U+(b)− U−(b))

U+(a)U−(b)− U+(b)U−(a)
(2.23)

and

p(a, b) =
H(a)U−(b)−H(b)U−(a)

H(b)(U+(a)− U−(a))−H(a)(U+(b)− U−(b))
(2.24)

for 0 < a < b < ∞. We also observe that, by means of straightforward computations, it is

shown that the system of equations in (2.18)–(2.19) is equivalent to the system

∂G

∂a
(a, b) = 0 and

∂G

∂b
(a, b) = 0. (2.25)

This means that solutions of the former system are critical points of the gain function G(a, b).
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3 Main results

In this section, we formulate and prove the main assertions of the paper, which build a connection

between the free-boundary approach developed in Peskir and Shiryaev [26] and the martingale

approach of Beibel and Lerche [5] and [6].

3.1. Verification lemma. Let us first prove the corresponding verification assertion and

show how the uniformly integrable martingale can be specified from the solution of the free-

boundary problem in (2.6)–(2.8). Such assertions were proved in Peskir and Shiryaev [26] among

other references in different settings, and in Lamberton and Zervos [18] under less restrictive

assumptions on the payoff function. For the case of optimal stopping games, a similar assertion

was proved in Alvarez [3].

Theorem 3.1 Let the process X be a pathwise unique solution of the stochastic differential

equation in (2.1). Suppose that the payoff H(x) is a positive continuous function such that

H ′(x) is continuously differentiable on (ci−1, ci), i = 1, . . . , n + 1, n ∈ N ∪ {0}, for some

0 = c0 < c1 < · · · < cn < cn+1 = ∞. Assume that the stopping time τ∗ has the structure of the

first exit time of the process X from the interval (a∗, b∗) as in (2.4), where the couple a∗ and

b∗, such that 0 < a∗ < b∗ <∞, is a unique solution of the system of equations in (2.18)–(2.19).

Then, the value function of the optimal stopping problem in (2.2) has the form

V∗(x) =

V (x; a∗, b∗), if a∗ < x < b∗,

H(x), if x ≤ a∗ or x ≥ b∗,

(3.1)

where V (x; a, b) is given by (2.20), and τ∗ from (2.4) is an optimal stopping time.

Moreover, the function V (x; a∗, b∗) admits the representation

V (x; a∗, b∗) = G(a∗, b∗)Ex
[
M∗

τ∗

]
(3.2)

for x ∈ (a∗, b∗), where the process M∗ = (M∗
t )t≥0 defined by

M∗
t = e−r(τ∗∧t)

(
p(a∗, b∗)U+(Xτ∗∧t) + (1− p(a∗, b∗))U−(Xτ∗∧t)

)
(3.3)

is a uniformly integrable martingale, and the functions G(a, b) and p(a, b) are given by (2.21)

and (2.22), respectively.
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Proof: In order to verify the assertions stated above, let us show that the function defined

in (3.1) coincides with the value function in (2.2), and that the stopping time τ∗ in (2.4) is

optimal with the boundaries a∗ and b∗ specified above. For this, let us denote by V (x) the

right-hand side of the expression in (3.1). Taking into account the assumptions of continuous

differentiability of the coefficients µ(x) and σ(x) in (2.1), we may conclude from the equation

in (2.6) that the derivative V ′(x) is continuously differentiable on (a∗, b∗). Hence, according to

the conditions of (2.7)–(2.9), applying the local time-space formula from [24] (see also [25] and

[26; Chapter II, Section 3.5] for a summary of the related results as well as further references),

we get

e−rt V (Xt) = V (x) +M ′
t (3.4)

+

∫ t

0

e−rs (LV − rV )(Xs) I(Xs 6= a∗, Xs 6= b∗, Xs 6= ci, i = 1, . . . , n) ds

+
n∑
i=1

1

2

∫ t

0

e−rs
(
V ′(ci+)− V ′(ci−)

)
I(Xs = ci) d`

i
s

for all t ≥ 0, where the process M ′ = (M ′
t)t≥0 defined by

M ′
t =

∫ t

0

e−rs V ′(Xs) I(Xs 6= ci, i = 1, . . . , n)σ(Xs) dWs (3.5)

is a local martingale with respect to Px, which is a probability measure under which the process

X starts at x > 0. Here, the process `i = (`it)t≥0 defined by

`it = Px − lim
δ↓0

1

2δ

∫ t

0

I(ci − δ < Xs < ci + δ)σ2(Xs) ds (3.6)

is the local time of the process X at the point ci > 0 at which the derivative H ′(x) does not

exist, and I(·) denotes the indicator function.

Suppose that at some y > 0, such that either y < a∗ or y > b∗ holds with y 6= ci, i = 1, . . . , n,

we have (LH−rH)(y) > 0. Then, there exists some ε > 0 and δ > 0 such that either y+δ < a∗

or y− δ > b∗, while none of the points ci, i = 1, . . . , n, belong to the interval (y− δ, y + δ), and

(LH−rH)(x) ≥ ε holds for all x ∈ (y−δ, y+δ). We thus see that it would be worthy to continue

the observation at least until the first time at which the process X exits the neighborhood

(y− δ, y+ δ), for y > 0 fixed. However, this fact contradicts the assumption about the structure

of the optimal stopping time in (2.4). We may therefore conclude that (LH− rH)(x) ≤ 0 holds
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for any x < a∗ and x > b∗ such that x 6= ci, i = 1, . . . , n. These arguments also show that

if (LH − rH)(y) > 0 holds then the expression in (3.4) yields that y belongs to the interval

(a∗, b∗). The formula in (3.4) also implies that if H ′(y+) − H ′(y−) > 0 holds for some y > 0

then y belongs to the interval (a∗, b∗) as well. The latter fact follows from the property that the

term in the third line of (3.4) is increasing more rapidly than the one in the second line there,

on small time intervals under the assumptions above.

Suppose now that V (z) ≤ H(z) for some z ∈ (a∗, b∗). Then, there exist points z′ and z′′

such that a∗ < z′ ≤ z′′ < b∗ and the equality V (z) = H(z) holds for z = z′ and z = z′′, as

well as the equalities V ′(z′−) = H ′(z′) and V ′(z′′+) = H ′(z′′) are satisfied, whenever the payoff

function H(x) is continuously differentiable at z′ and z′′. Hence, according to the arguments of

the previous section, this would lead to the fact that the free-boundary problem in (2.6)–(2.8)

would have the function V (x) with the corresponding couple of boundaries a∗ and z′ or z′′ and

b∗ as its solution, respectively. However, this fact contradicts the assumption of uniqueness of

solution of the system in (2.18)–(2.19) and thus shows that the inequality V (x) > H(x) should

hold for all x ∈ (a∗, b∗).

Getting all these arguments together with the fact proved above that the function V (x) and

the boundaries a∗ and b∗ satisfy the system in (2.6)–(2.10), we conclude that (LV − rV )(x) ≤ 0

holds for any x > 0 such that x 6= a∗, x 6= b∗, x 6= ci, i = 1, . . . , n, as well as V (x) ≥ H(x) holds

for all x > 0. It follows from the continuous differentiability of the functions µ(x) and σ(x) in

(2.1) that the time spent by X at the points a∗, b∗ and ci, i = 1, . . . , n, is of Lebesgue measure

zero, and thus, the indicators which appear in the integrals in the second line of (3.4) and in

(3.5) can be ignored (see, e.g. [8; Chapter II, Section 1]). Hence, the expression in (3.4) yields

that the inequalities

e−rτ H(Xτ ) ≤ e−rτ V (Xτ ) ≤ V (x) +M ′
τ (3.7)

hold for any stopping time τ of the process X started at x > 0.

Let (τn)n∈N be an arbitrary localizing sequence of stopping times for the process M ′. Taking

the expectations with respect to the probability measure Px in (3.7), by means of the optional
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sampling theorem (see, e.g. [15; Chapter I, Theorem 3.22]), we get that the inequalities

Ex
[
e−r(τ∧τn)H(Xτ∧τn)

]
≤ Ex

[
e−r(τ∧τn) V (Xτ∧τn)

]
(3.8)

≤ V (x) + Ex
[
M ′

τ∧τn

]
= V (x)

hold for all x > 0. Hence, letting n go to infinity and using Fatou’s lemma, we obtain

Ex
[
e−rτ H(Xτ )

]
≤ Ex

[
e−rτ V (Xτ )

]
≤ V (x) (3.9)

for any stopping time τ and all x > 0. By virtue of the structure of the stopping time in (2.4),

it is readily seen that the equalities in (3.9) hold with τ∗ instead of τ when either x ≤ a∗ or

x ≥ b∗.

It remains to show that the equalities are attained in (3.9) when τ∗ replaces τ for a∗ < x < b∗.

By virtue of the fact that the function V (x; a∗, b∗) and the boundaries a∗ and b∗ satisfy the

conditions in (2.6) and (2.7), it follows from the expression in (3.4) and the structure of the

stopping time in (2.4) that the equalities

e−r(τ∗∧τn) V (Xτ∗∧τn ; a∗, b∗) = G(a∗, b∗)M
∗
τn = V (x) +M ′

τ∗∧τn (3.10)

are satisfied for all x ∈ (a∗, b∗) and any localizing sequence (τn)n∈N of M ′ and thus of M∗ too,

where the process M∗ is defined in (3.3). Observe that the assumptions on H(x), together with

the explicit form of the function in (2.13)–(2.15) as well as the properties of the functions U+(x)

and U−(x), yield that the condition

Ex

[
sup
t≥0

e−r(τ∗∧t) V (Xτ∗∧t; a∗, b∗)
]
<∞ (3.11)

holds for all x ∈ (a∗, b∗), as well as the variable e−rτ∗V (Xτ∗ ; a∗, b∗) is equal to zero on the event

{τ∗ = ∞} (Px-a.s.). Hence, taking into account the property in (3.11), we conclude from the

expression in (3.10) that the process (M ′
τ∗∧t)t≥0 is a uniformly integrable martingale. Note that

such properties remain also true for certain payoff functions H(x) and underlying processes X in

the one stopping boundary cases 0 = a∗ < b∗ <∞ and 0 < a∗ < b∗ =∞. Therefore, taking the

expectations in (3.10) and letting n go to infinity, we apply Lebesgue’s dominated convergence

theorem to obtain the equalities

Ex
[
e−rτ∗ H(Xτ∗)

]
= Ex

[
e−rτ∗ V (Xτ∗ ; a∗, b∗)

]
= G(a∗, b∗)Ex

[
M∗

τ∗

]
= V (x) (3.12)
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for all x ∈ (a∗, b∗). The latter, together with the inequalities in (3.9), implies the fact that V (x)

coincides with the value function V∗(x) from (2.2), and τ∗ from (2.4) is an optimal stopping

time. Note that these arguments also yield the expression in (3.2) as well as the fact that M∗

is a uniformly integrable martingale. �

3.2. Optimality of the solution. Observe again that, since a∗ and b∗ is a couple solving

the smooth-fit equations in (2.18)–(2.19), it is then automatically a critical point of the function

G(a, b). Moreover, the assertion of Theorem 3.1 implies the fact that the function G(a, b) defined

in (2.21) attains a local maximum at the couple a∗ and b∗. In order to prove this claim, we observe

that, for any x∗ ∈ (a∗, b∗) fixed, we may put U+(x∗) = U−(x∗) = 1. This can be done without loss

of generality, since the functions U+(x) and U−(x) were chosen up to multiplicative constants,

as fundamental solutions of the second order ordinary differential equation in (2.6). Suppose

now that there exist a′ ∈ (a∗ − δ, a∗ + δ) and b′ ∈ (b∗ − δ, b∗ + δ) such that G(a′, b′) > G(a∗, b∗)

holds for some δ > 0 with a∗+ δ < x∗ < b∗− δ. In this case, it would follow from the expression

in (2.20) that V (x∗; a
′, b′) > V (x∗; a∗, b∗) holds too. However, this fact contradicts the assertion

of Theorem 3.1 stating that τ∗, being of the type of (2.4), is optimal. Therefore, we have that

V (x∗; a, b) ≤ V (x∗; a∗, b∗) holds for all a ∈ (a∗ − δ, a∗ + δ) and b ∈ (b∗ − δ, b∗ + δ), thus proving

the claim.

3.3. The martingale approach of Beibel and Lerche. We now describe shortly the

martingale approach of Beibel and Lerche [5] and [6]. To stay in the framework of those papers,

we assume that the starting value x is chosen as x∗ such that U+(x∗) = U−(x∗) = 1. In this

case, the value of the expected reward functional from (2.2) admits the representation

V∗(x∗) = sup
τ
Ex∗

[
Mτ

(
H(Xτ )

pU+(Xτ ) + (1− p)U−(Xτ )

)]
(3.13)

for any 0 < p < 1 fixed, where the process M = (Mt)t≥0 defined by

Mt = e−rt
(
pU+(Xt) + (1− p)U−(Xt)

)
(3.14)

forms a martingale. It thus follows that the solution of the initial optimal stopping problem is

reduced to the maximization of the expression inside the inner brackets of (3.13) over 0 < p < 1.

More precisely, the following assertions hold (see [5; Subsection 2.3] and [6; Section 3]).
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Theorem 3.2 If 0 < p∗ < 1 is such that the expression

0 < sup
a≤x∗

H(a)

p∗U+(a) + (1− p∗)U−(a)
= sup

x∗≤b

H(b)

p∗U+(b) + (1− p∗)U−(b)
= C∗ <∞ (3.15)

holds, then C∗ coincides with the value V∗(x∗) in (3.13).

Moreover, if there exist numbers a∗ and b∗ such that 0 < a∗ < x∗ < b∗ <∞ and the equalities

C∗ =
H(a∗)

p∗U+(a∗) + (1− p∗)U−(a∗)
=

H(b∗)

p∗U+(b∗) + (1− p∗)U−(b∗)
(3.16)

are satisfied, then the stopping time τ∗ from (2.4) is optimal in the problem of (3.13).

Observe that, for instance, such a number p∗ exists when the situation

0 < sup
a≤x∗

H(a)

U−(a)
< sup

x∗≤b

H(b)

U−(b)
<∞ and 0 < sup

x∗≤b

H(b)

U+(b)
< sup

a≤x∗

H(a)

U+(a)
<∞ (3.17)

is realized (see [5; Subsection 2.3] and [6; Section 3] for further details). Note that the condition

of (3.17) is satisfied in Examples 4.2 and 4.6 below within the setting of two stopping boundaries.

Furthermore, in all other examples, both approaches lead to the same results. We also observe

that when the process X starts at some point x 6= x∗ such that a∗ < x < b∗, it follows from

(3.13) and (3.14) that the equalities

V∗(x) = C∗Ex
[
Mτ∗

]
= C∗

(
p∗ U+(x) + (1− p∗)U−(x)

)
(3.18)

hold. Here, the mixing constant p∗ defines the corresponding representing measure on the

minimal r-excessive functions U+(x) and U−(x) in the sense of Salminen [29; Section 3].

3.4. Connection of the two approaches. We shall now compare the outcomes of both

approaches. For this, let us assume that the process X starts at x∗ > 0, so that we have M∗
0 = 1

in (3.3). It follows from [27; Chapter VIII, Proposition 1.13] that there exists a probability

measure P ∗ being locally equivalent to P on the filtration (Ft)t≥0 and such that its density

process is given by
dP ∗

dP

∣∣∣
Ft

= M∗
t (3.19)

for all t ≥ 0, so that the restrictions P ∗ | Fτ∗ and P | Fτ∗ are equivalent on the event {τ∗ <∞}.

By virtue of the fact that e−rτ∗ H(Xτ∗) is equal to zero on the event {τ∗ =∞} (P -a.s.), we see
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from (3.10) that M∗
∞ is zero on {τ∗ = ∞} (P -a.s.) too. Hence, the assertion of Theorem 3.1

implies the fact that the expressions

V (x∗; a∗, b∗) = G(a∗, b∗)Ex∗
[
M∗

τ∗ I(τ∗ <∞) +M∗
τ∗ I(τ∗ =∞)

]
(3.20)

= G(a∗, b∗)P
∗
x∗(τ∗ <∞)

hold for a∗ < x∗ < b∗, where P ∗x∗ denotes the appropriate probability measure under which the

process X starts at x∗ > 0. Note that if P ∗x∗(τ∗ < ∞) = 1 holds, then we see from (3.20) that

V (x∗; a∗, b∗) is equal to G(a∗, b∗). On the other hand, it follows from the result of Theorem 3.2

that C∗ coincides with V (x∗; a∗, b∗), and thus, G(a∗, b∗) is equal to C∗ in this case. Moreover,

the explicit expression in (2.24) and the second equality in (3.16) directly imply the fact that

p(a∗, b∗) is equal to p∗. Thus, we can replace p∗ by p(a, b) and p(a∗, b∗) in the expressions of

(3.15) and (3.16), respectively. We may therefore conclude that the process M∗ from (3.3)

coincides with the martingale M from [5; Subsection 2.3] and [6; Section 3], which also appears

in (3.13) and takes the form of (3.14) with p = p∗, when it is considered up to the time τ∗.

4 Some examples

In this section, we illustrate the results obtained above on several examples of discounted optimal

stopping problems for one-dimensional linear diffusions. We demonstrate in Examples 4.2 and

4.6 that the connection between the two approaches established in Theorems 3.1 and 3.2 holds,

under the assumption that the optimal stopping time is the first exit time of the underlying

process from an open interval. We include Examples 4.3 and 4.4 to show that the smooth-fit

conditions for the value functions at the optimal stopping boundaries may break down or even

the optimal stopping time fails to exist, when the payoff function does not satisfy the appropriate

assumptions. We also consider the case of symmetric payoffs in Example 4.1 and the case in

which one of the boundaries is reflecting in Example 4.5 for completeness.

4.1. Some problems for a geometric Brownian motion. Let us first assume that

µ(x) = (r − δ)x and σ(x) = θx in (2.1), for all x > 0 and some 0 < δ < r and θ > 0 fixed.

In that case, the process X turns out to be a geometric Brownian motion with the state space

(0,∞), and the fundamental solutions of the second order ordinary differential equation in (2.6)
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are given by U+(x) = xγ+ and U−(x) = xγ− with

γ± =
1

2
− r − δ

θ2
±

√(
1

2
− r − δ

θ2

)2

+
2r

θ2
(4.1)

so that γ− < 0 < 1 < γ+ holds.

Example 4.1 (Symmetric smooth payoffs.) Let us first consider a continuously differen-

tiable payoff function H(x) such that H(x) = H(1/x) holds for x > 0, and assume that

(r− δ)/θ2 = 1/2 (see [5; Subsection 2.3]). In this case, we have a∗ = 1/b∗, so that p(a, b) ≡ 1/2

and the gain function takes the form G(a, b) ≡ 2C+(a, b) ≡ 2C−(a, b) = 2H(a)/(aη + a−η) with

b = 1/a and η =
√

2r/θ2. The latter function attains its maximum at a∗ being a solution of

η
H(a)

a

aη − a−η

aη + a−η
= H ′(a) (4.2)

whenever it exists, for 0 < a = 1/b <∞. These facts follow either from the equations in (2.18)–

(2.19) or from the equation in (3.16) (see also [6; Subsection 4.1]). It then follows from Theorem

3.1 that a∗ and b∗ = 1/a∗ are optimal stopping boundaries in the corresponding optimal stopping

problem, provided that the function H(x) is chosen such that the optimal stopping time is of

the structure (2.4).

Example 4.2 (Perpetual American strangle option.) Let us now consider the function

H(x) = (L − x)+ ∨ (x − K)+, for x > 0, where 0 < L < K are given constants (see [5;

Subsection 2.4]). In this case, the gain function G(a, b) admits the representation

G(a, b) =
(b−K)(aγ+ − aγ−)− (L− a)(bγ+ − bγ−)

aγ+bγ− − bγ+aγ−
(4.3)

so that the function p(a, b) takes the form

p(a, b) =
(L− a)bγ− − (b−K)aγ−

(b−K)(aγ+ − aγ−)− (L− a)(bγ+ − bγ−)
(4.4)

for some 0 < a < L < K < b < ∞. The function in (4.3) attains its maximum value at the

couple a∗ and b∗ being the unique solution of the system in (2.18)–(2.19) which takes the form

I+(a) = J+(b) and I−(a) = J−(b) (4.5)
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with

I+(a) =
(γ− − 1)a− γ−L

aγ+
and J+(b) =

(1− γ−)b+ γ−K

bγ+
(4.6)

I−(a) =
(1− γ+)a+ γ+L

aγ−
and J−(b) =

(γ+ − 1)b− γ+K

bγ−
(4.7)

for all 0 < a < L < K < b < ∞. It then follows from Theorem 3.1 that a∗ and b∗ are optimal

stopping boundaries in the corresponding optimal stopping problem. We also note that the

assumptions of Theorem 3.2 are satisfied, so that the value of G(a∗, b∗) coincides with the value

of C∗ from [5; Subsection 2.4] when 0 < L < 1 < K, under x∗ = 1 (see Figure 4.1 below).

In order to show the existence and uniqueness of a solution of the system of equations in

(4.5), we use the idea of proof of the existence and uniqueness of solutions applied for the

systems of equations in (4.73)–(4.74) from [31; Chapter IV, Section 2] and (3.16)–(3.17) from

[13; Section 3]. For this, we observe that, for the derivatives of the functions in (4.6)–(4.7), the

expressions

I ′+(a) = −(γ+ − 1)(γ− − 1)a− γ+γ−L

aγ++1
≡ −(γ+ − 1)(γ− − 1)(a− L)

aγ++1
< 0 (4.8)

J ′+(b) =
(γ+ − 1)(γ− − 1)b− γ+γ−K

bγ++1
≡ (γ+ − 1)(γ− − 1)(b−K)

bγ++1
< 0 (4.9)

I ′−(a) =
(γ+ − 1)(γ− − 1)a− γ+γ−L

aγ−+1
≡ (γ+ − 1)(γ− − 1)(a− L)

aγ−+1
> 0 (4.10)

J ′−(b) = −(γ+ − 1)(γ− − 1)b− γ+γ−K

bγ−+1
≡ −(γ+ − 1)(γ− − 1)(b−K)

bγ−+1
> 0 (4.11)

hold for all 0 < a < L < K < b <∞ with

L =
γ+γ−L

(γ+ − 1)(γ− − 1)
≡ rL

δ
and K =

γ+γ−K

(γ+ − 1)(γ− − 1)
≡ rK

δ
. (4.12)

Hence, the function I+(a) decreases on the interval (0, L) with I+(0+) = ∞ and I+(L) =

γ−L/[(γ+ − 1)L
γ+

] < 0, so that the range of its values is given by the interval (I+(L),∞). The

function J+(b) decreases on the interval (K,∞) with J+(K) = −γ−K/[(γ+ − 1)K
γ+

] > 0 and

J+(∞) = 0, so that the range of its values is given by the interval (0, J+(K)). The function

I−(a) increases on the interval (0, L) with I−(0+) = 0 and I−(L) = −γ+L/[(γ−−1)L
γ−

] > 0, so

that the range of its values is given by the interval (0, I−(L)). The function J−(b) increases on

the interval (K,∞) with J−(K) = γ+K/[(γ− − 1)K
γ−

] < 0 and J−(∞) =∞, so that the range

of its values is given by the interval (J−(K),∞).
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It thus follows from the left-hand equation in (4.5) that, for each b ∈ (K,∞), there exists a

unique number a ∈ (a, a′∗), where a is uniquely determined by the equation I+(a) = J+(K). It

also follows from the right-hand equation in (4.5) that, for each a ∈ (0, L), there exists a unique

number b ∈ (b′∗, b), where b is uniquely determined by the equation I−(L) = J−(b) (see Figure

4.1 above). Here, the numbers a′∗ and b′∗ defined by

a′∗ =
γ−L

γ− − 1
and b′∗ =

γ+K

γ+ − 1
(4.13)

are the optimal stopping boundaries for the cases of perpetual American put (K = ∞) and

call (L = 0) options, respectively (see [20]). We may therefore conclude that the equations

in (4.5) uniquely define the function b+(a) on (a, a′∗) with the range (K,∞) and the function

b−(a) on (0, L) with the range (b′∗, b), respectively. This fact directly yields that, for each point

a ∈ (a, a′∗), there exist unique values b+(a) and b−(a) belonging to (K,∞), that together with

the inequalities K < b−(0+) ≡ b′∗ < b−(L) < ∞ ≡ b+(a′∗) guarantees the existence of exactly

one intersection point with the coordinates a∗ and b∗ of the curves associated with the functions

b+(a) and b−(a) on the interval (a, a′∗) such that b′∗ < b+(a∗) ≡ b∗ ≡ b−(a∗) < b holds (see Figure

4.2 above). This completes the proof of the claim.

Example 4.3 (Perpetual American capped strangle option.) In the assumptions of Ex-

ample 4.2, let us change the payoff function H(x) by H̃(x) = [(L− x)+ ∧ (L− p)]∨ [(x−K)+ ∧

(q − K)], for x > 0, where 0 < p < L < K < q are some given constants (see [9; Section 1]

for the one-sided case). In this case, the gain function G̃(a, b) defined as G(a, b) in (4.3) with

(L− a)∧ (L− p) instead of (L− a) and (b−K)∧ (q−K) instead of (b−K) attains its unique

maximum value at ã∗ = a∗ ∨ p and b̃∗ = b∗ ∧ q, where the couple a∗ and b∗ is a unique solution

of the system in (4.5). It follows from Theorem 3.1 that ã∗ and b̃∗ are the optimal stopping

boundaries in the corresponding optimal stopping problem. However, we see that the smooth-fit

conditions in (2.8) do not necessarily hold when the payoff function H̃(x) is not smooth at ã∗

and b̃∗.

Example 4.4 (Perpetual American barrier strangle option.) In the assumptions of Ex-

ample 4.2, let us now change the payoff function H(x) by Ĥ(x) = [(L − x)+I(x > p)] ∨ [(x −

K)+I(x < q)], for x > 0, where 0 < p < L < K < q are some given constants. In this case,
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the gain function Ĝ(a, b) defined as G(a, b) in (4.3) with (L− a)I(a > p) instead of (L− a) and

(b −K)I(b < q) instead of (b −K) attains its unique maximum value at â∗ = a∗ and b̂∗ = b∗

whenever a∗ > p and b∗ < q, where the couple a∗ and b∗ is a unique solution of the system

in (4.5). It follows from Theorem 3.1 that â∗ and b̂∗ are the optimal stopping boundaries in

the corresponding optimal stopping problem whenever a∗ > p and b∗ < q, and there exists no

optimal stopping time otherwise.

4.2. A problem for a geometric Brownian motion with reflection. Let us now

consider the process X solving the stochastic differential equation

dXt = −ρXt dt+ θXt dWt + I(Xt = 1) dNt (X0 = x) (4.14)

where N = (Nt)t≥0 is an increasing process changing its value only when X started at x > 1

arrives at the point 1 being the instantaneously reflecting boundary, and 0 < r < ρ are some

given constants.

Example 4.5 (Perpetual American lookback call option with floating strike.)

Let us consider the function H(x) = (x −K)+, for x > 1, with some K > 1 (see [30] and [32;

Chapter VIII, Section 2d]). In this case, we have a∗ = 1 as well as p(1, b) ≡ γ−/(γ− − γ+),

and the gain function takes the form G(1, b) = (b −K)+/[p(1, b)bγ+ + (1 − p(1, b))bγ− ] (see [6;

Section 4.3]). The latter attains its maximum at some point b∗ on the interval (K,∞). Note

that, in this setting, the maximization of the function G(1, b) is equivalent to the application of

the condition

V ′(1+) = 0 (normal reflection) (4.15)

to the value function of the associated optimal stopping problem, instead of the corresponding

smooth-fit condition in (2.8). Adapting the arguments of the proof of Theorem 3.1 to this case,

we obtain that a∗ = 1 is a reflecting boundary for the process X and b∗ > K is an optimal

stopping boundary in (2.4).

4.3. A problem for a linear diffusion. Let us finally assume that µ(x) = 1 − ρx and

σ(x) = θx in (2.1), for all x > 0 and some 0 < r < ρ and θ > 0 fixed. In that case, the process

X turns out to be a linear diffusion with the state space (0,∞) and the fundamental solutions
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of the second order ordinary differential equation in (2.6) are given by

U+(x) = xλ+
Ψ(−λ+, 1− λ+ + λ−; 2/(θ2x))

Ψ(−λ+, 1− λ+ + λ−; 2/θ2)
(4.16)

and

U−(x) = xλ+
Φ(−λ+, 1− λ+ + λ−; 2/(θ2x))

Φ(−λ+, 1− λ+ + λ−; 2/θ2)
(4.17)

with

λ± =
1

2
+
ρ

θ2
±

√(
1

2
+
ρ

θ2

)2

+
2r

θ2
(4.18)

so that λ− < 0 < 1 + 2ρ/θ2 < λ+ holds. Here, we denote by

Φ(α, β; z) = 1 +
∞∑
k=1

(α)k
(β)k

zk

k!
(4.19)

and

Ψ(α, β; z) =
π

sin(πβ)

(
Φ(α, β; z)

Γ(1 + α− β)Γ(β)
− z1−β Φ(1 + α− β, 2− β; z)

Γ(α)Γ(2− β)

)
(4.20)

Kummer’s confluent hypergeometric functions of the first and second kind, respectively, for

β 6= 0,−1,−2, . . . and (β)k = β(β+1) · · · (β+k−1), k ∈ N, where the series in (4.19) converges

under all z > 0 (see, e.g. [1; Chapter XIII] and [4; Chapter VI]), and Γ denotes Euler’s Gamma

function.

Example 4.6 (Perpetual American integral strangle option with floating strikes.)

Let us consider the function H(x) = (L − x)+ ∨ (x − K)+, for x > 0, where 0 < L < K

are given constants (see [17] for the one-sided case). In this case, the gain function G(a, b)

admits the representation of (2.23), so that the function p(a, b) takes the form of (2.24) with

H(a) = L − a and H(b) = b −K, as well as U+(x) and U−(x) given by (4.16) and (4.17), for

some 0 < a < L < K < b < ∞. The resulting function G(a, b) attains its maximum value at

the couple a∗ and b∗ being the unique solution of the system in (2.18)–(2.19) which takes the
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form of (4.5) with

I+(a) = e−2/(θ2a) a−λ−
(

[λ+L− (λ+ − 1)a] Ψ

(
−λ+, 1− λ+ + λ−;

2

θ2a

)
(4.21)

− 2λ+(L− a)

θ2a
Ψ

(
1− λ+, 2− λ+ + λ−;

2

θ2a

))
J+(b) = e−2/(θ2b) b−λ−

(
[(λ+ − 1)b− λ+K] Ψ

(
−λ+, 1− λ+ + λ−;

2

θ2b

)
(4.22)

− 2λ+(b−K)

θ2b
Ψ

(
1− λ+, 2− λ+ + λ−;

2

θ2b

))
I−(a) = e−2/(θ2a) a−λ−

(
[λ+L− (λ+ − 1)a] Φ

(
−λ+, 1− λ+ + λ−;

2

θ2a

)
(4.23)

+
2λ+(L− a)

θ2(1− λ+ + λ−)a
Φ

(
1− λ+, 2− λ+ + λ−;

2

θ2a

))
J−(b) = e−2/(θ2b) b−λ−

(
[(λ+ − 1)b− λ+K] Φ

(
−λ+, 1− λ+ + λ−;

2

θ2b

)
(4.24)

+
2λ+(b−K)

θ2(1− λ+ + λ−)b
Φ

(
1− λ+, 2− λ+ + λ−;

2

θ2b

))
for all 0 < a < L < K < b < ∞. Here, we have used the fact that the function D(x) =

U ′+(x)U−(x)− U+(x)U ′−(x) admits the representation

D(x) = B exp

(
−
∫ x 2(1− ρy)

θ2y2
dy

)
= B xλ++λ−−1 e2/(θ

2x) (4.25)

for all x > 0 and some constant B > 0 representing the constant Wronskian determinant of the

fundamental solutions U+(x) and U−(x) (see, e.g. [8; Chapter II, Section 1]). It then follows

from Theorem 3.1 that a∗ and b∗ are optimal stopping boundaries in the corresponding optimal

stopping problem. The uniqueness of solution of the system in (4.5) with the functions in (4.21)–

(4.24) can be proved using the same schema of arguments as in Example 4.2 above, so that we

omit the proof. Moreover, it can be shown directly using the arguments in [5; Subsection 2.3]

and [6; Section 3] that the assumptions of Theorem 3.2 hold when 0 < L < 1 < K, under

x∗ = 1.
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