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We present a solution of the Bayesian problem of sequential testing of

two simple hypotheses about the mean value of an observed Wiener process

on the time interval with finite horizon. The method of proof is based on

reducing the initial optimal stopping problem to a parabolic free-boundary

problem where the continuation region is determined by two continuous

curved boundaries. By means of the change-of-variable formula containing

the local time of a diffusion process on curves we show that the optimal

boundaries can be characterized as a unique solution of the coupled system

of two nonlinear integral equations.

1. Introduction

The problem of sequential testing of two simple hypotheses about the mean value of an
observed Wiener process seeks to determine as soon as possible and with minimal probability
error which of the given two values is a true mean. The problem admits two different formu-
lations (cf. Wald [20]). In the Bayesian formulation it is assumed that the unknown mean has
a given distribution, and in the variational formulation no probabilistic assumption about the
unknown mean is made a priori. In this paper we only study the Bayesian formulation.

The history of the problem is long and we only mention a few points starting with Wald
and Wolfowitz [21]-[22] who used the Bayesian approach to prove the optimality of the sequen-
tial probability ratio test (SPRT) in the variational problem for i.i.d. sequences of observa-
tions. Dvoretzky, Kiefer and Wolfowitz [1] stated without proof that if the continuous-time
log-likelihood ratio process has stationary independent increments, then the SPRT remains op-
timal in the variational problem. Mikhalevich [9] and Shiryaev [17] (see also [18; Chapter IV])
derived an explicit solution of the Bayesian and variational problem for a Wiener process with
infinite horizon by reducing the initial optimal stopping problem to a free-boundary problem for
a differential operator. A complete proof of the statement from [1] (under some mild assump-
tions) was given by Irle and Schmitz [4]. An explicit solution of the Bayesian and variational
problem for a Poisson process with infinite horizon was derived in [15] by reducing the initial
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optimal stopping problem to a free-boundary problem for a differential-difference operator. The
main aim of the present paper is to derive a solution of the Bayesian problem for a Wiener
process with finite horizon.

It is known that optimal stopping problems for Markov processes with finite horizon are
inherently two-dimensional and thus analytically more difficult than those with infinite horizon.
A standard approach for handling such a problem is to formulate a free-boundary problem for
the (parabolic) operator associated with the (continuous) Markov process (see e.g. [8], [3],
[19], [5], [10]). Since solutions to such free-boundary problems are rarely known explicitly,
the question often reduces to prove the existence and uniqueness of a solution to the free-
boundary problem, which then leads to the optimal stopping boundary and the value function
of the optimal stopping problem. In some cases the optimal stopping boundary has been
characterized as a unique solution of the system of (at least) countably many nonlinear integral
equations (see e.g. [5; Theorem 4.3]). A method of linearization was suggested in [11] with the
aim of proving that only one equation from such a system may be sufficient to characterize
the optimal stopping boundary uniquely. A complete proof of the latter fact in the case of a
specific optimal stopping problem was given in [13] (see also [14]).

In the present paper we reduce the initial Bayesian problem to a finite-horizon optimal
stopping problem for a diffusion process and a non-smooth gain function where the continua-
tion region is determined by two continuous curved boundaries. In order to find an analytic
expression for the boundaries we formulate an equivalent parabolic free-boundary problem for
the infinitesimal operator of the strong Markov a posteriori probability process. By means of
the method of proof proposed in [11] and [13], and using the change-of-variable formula from
[12], we show that the optimal stopping boundaries can be uniquely determined from a cou-
pled system of nonlinear Volterra integral equations of the second kind. This also leads to the
explicit formula for the value (risk) function in terms of the optimal stopping boundaries.

The main result of the paper is stated in Theorem 2.1. The optimal sequential procedure
in the initial Bayesian problem is displayed more explicitly in Remark 2.2. A simple numerical
method for calculating the optimal boundaries is presented in Remark 2.3.

2. Solution of the Bayesian problem

In the Bayesian formulation of the problem with finite horizon (see [18; Chapter IV, Sec-
tions 1-2] for the infinite horizon case) it is assumed that we observe a trajectory of the Wiener
process X = (Xt)0≤t≤T with drift θµ where the random variable θ may be 1 or 0 with prob-
ability π or 1 − π , respectively.

2.1. For a precise probabilistic formulation of the Bayesian problem it is convenient to
assume that all our considerations take place on a probability space (Ω,F , Pπ) where the
probability measure Pπ has the following structure:

(2.1) Pπ = πP1 + (1 − π)P0

for π ∈ [0, 1]. Let θ be a random variable taking two values 1 and 0 with probabilities
Pπ[θ = 1] = π and Pπ[θ = 0] = 1 − π , and let W = (Wt)0≤t≤T be a standard Wiener process
started at zero under Pπ . It is assumed that θ and W are independent.
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It is further assumed that we observe a process X = (Xt)0≤t≤T of the form:

(2.2) Xt = θµt + σWt

where µ 6= 0 and σ2 > 0 are given and fixed. Thus Pπ[X ∈ · | θ = i ] = Pi[X ∈ · ] is the
distribution law of a Wiener process with drift iµ and diffusion coefficient σ2 > 0 for i = 0, 1,
so that π and 1 − π play the role of a priori probabilities of the statistical hypotheses:

(2.3) H1 : θ = 1 and H0 : θ = 0

respectively.
Being based upon the continuous observation of X our task is to test sequentially the

hypotheses H1 and H0 with a minimal loss. For this, we consider a sequential decision rule
(τ, d), where τ is a stopping time of the observed process X (i.e. a stopping time with respect
to the natural filtration FX

t = σ(Xs | 0 ≤ s ≤ t) generated by X for 0 ≤ t ≤ T ), and d is an
FX

τ -measurable random variable taking values 0 and 1. After stopping the observation at time
τ , the terminal decision function d indicates which hypothesis should be accepted according
to the following rule: if d = 1 we accept H1 , and if d = 0 we accept H0 . The problem then
consists of computing the risk function:

(2.4) V (π) = inf
(τ,d)

Eπ[τ + aI(d = 0, θ = 1) + bI(d = 1, θ = 0)]

and finding the optimal decision rule (τ∗, d∗) at which the infimum in (2.4) is attained. Here
Eπ[τ ] is the average loss due to a cost of the observations, and aPπ[d = 0, θ = 1] + bPπ[d =
1, θ = 0] is the average loss due to a wrong terminal decision, where a > 0 and b > 0 are given
constants.

2.2. By means of standard arguments (see [18; pages 166-167]) one can reduce the Bayesian
problem (2.4) to the optimal stopping problem:

(2.5) V (π) = inf
0≤τ≤T

Eπ[τ + aπτ ∧ b(1 − πτ )]

for the a posteriori probability process πt = Pπ[θ = 1|FX
t ] for 0 ≤ t ≤ T with Pπ[π0 = π] = 1.

Setting c = b/(a + b) the optimal decision function is then given by d∗ = 1 if πτ∗ ≥ c and
d∗ = 0 if πτ∗ < c.

2.3. It can be shown (see [18; pages 180-181]) that the likelihood ratio process (ϕt)0≤t≤T

defined as the Radon-Nikodym derivative:

(2.6) ϕt =
dP1|FX

t

dP0|FX
t

admits the following representation:

(2.7) ϕt = exp
( µ

σ2

(

Xt −
µ

2
t
))

while the a posteriori probability process (πt)0≤t≤T can be expressed as:

(2.8) πt =

(

π

1 − π
ϕt

)

/

(

1 +
π

1 − π
ϕt

)

3



and hence solves the stochastic differential equation:

(2.9) dπt =
µ

σ
πt(1 − πt) dW t (π0 = π)

where the innovation process (W t)0≤t≤T defined by:

(2.10) W t =
1

σ

(

Xt − µ

∫ t

0

πs ds
)

is a standard Wiener process (see also [7; Chapter IX]). Using (2.7) and (2.8) it can be verified
that (πt)0≤t≤T is a time-homogeneous (strong) Markov process under Pπ with respect to the
natural filtration. As the latter clearly coincides with (FX

t )0≤t≤T it is also clear that the
infimum in (2.5) can equivalently be taken over all stopping times of (πt)0≤t≤T .

2.4. In order to solve the problem (2.5) let us consider the extended optimal stopping
problem for the Markov process (t, πt)0≤t≤T given by:

(2.11) V (t, π) = inf
0≤τ≤T−t

Et,π[G(t + τ, πt+τ )]

where Pt,π[πt = π] = 1, i.e. Pt,π is a probability measure under which the diffusion process
(πt+s)0≤s≤T−t solving (2.9) starts at π , the infimum in (2.11) is taken over all stopping times
τ of (πt+s)0≤s≤T−t , and we set G(t, π) = t + aπ ∧ b(1 − π) for (t, π) ∈ [0, T ] × [0, 1]. Since G
is bounded and continuous on [0, T ] × [0, 1] it is possible to apply a version of Theorem 3 in
[18; page 127] for a finite time horizon and by statement (2) of that theorem conclude that an
optimal stopping time exists in (2.11).

2.5. Let us now determine the structure of the optimal stopping time in the problem (2.11).

(i) It follows from (2.9) that the scale function of (πt)t≥0 is given by S(x) = x for x ∈ [0, 1]
and the speed measure of (πt)t≥0 is given by m(dx) = (2σ/µ) dx/(x(1 − x)) for x ∈ 〈0, 1〉.
Hence the Green function of (πt)t≥0 on [π0, π1] ⊂ 〈0, 1〉 is given by Gπ0,π1

(x, y) = (π1 − x)(y −
π0)/(π1 − π0) for π0 ≤ y ≤ x and Gπ0,π1

(x, y) = (π1 − y)(x − π0)/(π1 − π0) for x ≤ y ≤ π1 .
Set H(π) = aπ ∧ b(1 − π) for π ∈ [0, 1] and let d = H(c). Take ε ∈ 〈0, d〉 and denote by

π0 = π0(ε) and π1 = π1(ε) the unique points 0 < π0 < c < π1 < 1 satisfying H(π0) = H(π1) =
d− ε. Let σε = inf { t > 0 | πt /∈ 〈π0, π1〉 } and set σT

ε = σε ∧ T . Then σε and σT
ε are stopping

times and it is easily verified that:

(2.12) Ec[σ
T
ε ] ≤ Ec[σε] =

∫ π1

π0

Gπ0,π1
(x, y) m(dy) ≤ Kε2

for some K > 0 large enough (not depending on ε). Similarly, we find that:

Ec[H(πσT
ε
)] = Ec[H(πσε

)I(σε < T )] + Ec[H(πT )I(σε ≥ T )](2.13)

≤ d − ε + d Pc[σε > T ] ≤ d − ε + (d/T ) Ec[σε] ≤ d − ε + L ε2

where L = dK/T .
Combining (2.12) and (2.13) we see that:

(2.14) Ec[G(σT
ε , πσT

ε
)] = Ec[σ

T
ε + H(πσT

ε
)] ≤ d − ε + (K+L) ε2
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for all ε ∈ 〈0, d〉. Choosing ε > 0 in (2.14) small enough we see that Ec[G(σT
ε , πσT

ε
)] < d.

Using the fact that G(t, π) = t + H(π) is linear in t, and T > 0 above is arbitrary, this shows
that it is never optimal to stop in (2.11) when πt+s = c for 0 ≤ s < T − t. In other words, this
shows that all points (t, c) for 0 ≤ t < T belong to the continuation region:

(2.15) C = {(t, π) ∈ [0, T 〉×[0, 1] | V (t, π) < G(t, π)}.

(ii) Recalling the solution to the problem (2.5) in the case of infinite horizon, where the
stopping time τ∗ = inf { t > 0 | πt /∈ 〈A∗, B∗〉 } is optimal and 0 < A∗ < c < B∗ < 1 are
uniquely determined from the system (4.85) in [18; page 185], we see that all points (t, π) for
0 ≤ t ≤ T with either 0 ≤ π ≤ A∗ or B∗ ≤ π ≤ 1 belong to the stopping region. Moreover,
since π 7→ V (t, π) with 0 ≤ t ≤ T given and fixed is concave on [0, 1] (this is easily deduced
using the same arguments as in [6; page 105] or [18; page 168]), it follows directly from the
previous two conclusions about the continuation and stopping region that there exist functions
g0 and g1 satisfying 0 < A∗ ≤ g0(t) < c < g1(t) ≤ B∗ < 1 for all 0 ≤ t < T such that the
continuation region is an open set of the form:

(2.16) C = {(t, π) ∈ [0, T 〉×[0, 1] | π ∈ 〈g0(t), g1(t)〉}

and the stopping region is the closure of the set:

(2.17) D = {(t, π) ∈ [0, T 〉×[0, 1] | π ∈ [0, g0(t)〉 ∪ 〈g1(t), 1]}.

(Below we will show that V is continuous so that C is open indeed. We will also see that
g0(T ) = g1(T ) = c.)

(iii) Since the problem (2.11) is time-homogeneous, in the sense that G(t, π) = t + H(π) is
linear in t and H depends on π only, it follows that the map t 7→ V (t, π) − t is increasing on
[0, T ]. Hence if (t, π) belongs to C for some π ∈ 〈0, 1〉 and we take any other 0 ≤ t′ < t ≤ T ,
then V (t′, π) − G(t′, π) = V (t′, π) − t′ − H(π) ≤ V (t, π) − t − H(π) = V (t, π) − G(t, π) < 0,
showing that (t′, π) belongs to C as well. From this we may conclude in (2.16)-(2.17) that the
boundary t 7→ g0(t) is increasing and the boundary t 7→ g1(t) is decreasing on [0, T ].

(iv) Let us finally observe that the value function V from (2.11) and the boundaries g0

and g1 from (2.16)-(2.17) also depend on T and let them denote here by V T , gT
0 and gT

1 ,
respectively. Using the fact that T 7→ V T (t, π) is a decreasing function on [t,∞〉 and V T (t, π) =
G(t, π) for all π ∈ [0, gT

0 (t)] ∪ [gT
1 (t), 1], we conclude that if T < T ′ , then 0 ≤ gT ′

0 (t) ≤ gT
0 (t) <

c < gT
1 (t) ≤ gT ′

1 (t) ≤ 1 for all t ∈ [0, T 〉. Letting T ′ in the previous expression go to ∞, we get
that 0 < A∗ ≤ gT

0 (t) < c < gT
1 (t) ≤ B∗ < 1 with A∗ ≡ limT→∞ gT

0 (t) and B∗ ≡ limT→∞ gT
1 (t)

for all t ≥ 0, where A∗ and B∗ are the optimal stopping points in the infinite horizon problem
referred to above.

2.6. Let us now show that the value function (t, π) 7→ V (t, π) is continuous on [0, T ]× [0, 1].
For this it is enough to prove that:

π 7→ V (t0, π) is continuous at π0(2.18)

t 7→ V (t, π) is continuous at t0 uniformly over π ∈ [π0 − δ, π0 + δ](2.19)
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for each (t0, π0) ∈ [0, T ] × [0, 1] with some δ > 0 small enough (it may depend on π0 ). Since
(2.18) follows by the fact that π 7→ V (t, π) is concave on [0, 1], it remains to establish (2.19).

For this, let us fix arbitrary 0 ≤ t1 < t2 ≤ T and 0 < π < 1, and let τ1 = τ∗(t1, π) denote
the optimal stopping time for V (t1, π). Set τ2 = τ1 ∧ (T − t2) and note since t 7→ V (t, π) is
increasing on [0, T ] and τ2 ≤ τ1 that we have:

0 ≤ V (t2, π) − V (t1, π) ≤ Eπ[(t2 + τ2) + H(πt2+τ2)] − Eπ[(t1 + τ1) + H(πt1+τ1)](2.20)

≤ (t2 − t1) + Eπ[H(πt2+τ2) − H(πt1+τ1)]

where we recall that H(π) = aπ ∧ b(1 − π) for π ∈ [0, 1]. Observe further that:

(2.21) Eπ[H(πt2+τ2) − H(πt1+τ1)] =

1
∑

i=0

1 + (−1)i(1 − 2π)

2
Ei[h(ϕτ2) − h(ϕτ1)]

where for each π ∈ 〈0, 1〉 given and fixed the function h is defined by:

(2.22) h(x) = H

((

π

1 − π
x

)

/

(

1 +
π

1 − π
x

))

for all x > 0. Then for any 0 < x1 < x2 given and fixed it follows by the mean value theorem
(note that h is C1 on 〈0,∞〉 except one point) that there exists ξ ∈ [x1, x2] such that:

(2.23) |h(x2) − h(x1)| ≤ |h′(ξ)| (x2 − x1)

where the derivative h′ at ξ satisfies:

(2.24) |h′(ξ)| =

∣

∣

∣

∣

H ′

((

π

1 − π
ξ

)

/

(

1 +
π

1 − π
ξ

))
∣

∣

∣

∣

π(1 − π)

(1 − π + πξ)2
≤ K

π(1 − π)

(1 − π)2
= K

π

1 − π

with some K > 0 large enough.
On the other hand, the explicit expression (2.7) yields:

(2.25) ϕτ2 − ϕτ1 = ϕτ2

(

1 − ϕτ1

ϕτ2

)

= ϕτ2

(

1 − exp

(

µ

σ2
(Xτ1 − Xτ2) −

µ2

2σ2
(τ1 − τ2)

))

and thus the strong Markov property (stationary independent increments) together with the
representation (2.2) and the fact that τ1 − τ2 ≤ t2 − t1 implies:

Ei(|ϕτ2 − ϕτ1 |)(2.26)

= Ei

[
∣

∣

∣

∣

ϕτ2

(

1 − exp

(

µ

σ
(Wτ1 − Wτ2) − (−1)i µ2

2σ2
(τ1 − τ2)

))
∣

∣

∣

∣

]

= Ei

[

ϕτ2 Ei

[
∣

∣

∣

∣

1 − exp

(

µ

σ
(Wτ1 − Wτ2) − (−1)i µ2

2σ2
(τ1 − τ2)

)
∣

∣

∣

∣

∣

∣

∣
FX

τ2

]]

≤ Ei[ϕτ2 ] Ei

[

sup
0≤t≤t2−t1

exp

(

µ

σ
Wt +

µ2

2σ2
t

)

− 1

]
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for i = 0, 1. Since it easily follows that:

(2.27) Ei[ϕτ2 ] = Ei

[

exp

(

µ

σ
Wτ2 − (−1)i µ2

2σ2
τ2

)]

≤ exp

(

µ2

σ2
(T − t2)

)

≤ exp

(

µ2

σ2
T

)

from (2.22)-(2.27) we get:

(2.28) Ei(|h(ϕτ2) − h(ϕτ1)|) ≤ K
π

1 − π
Ei(|ϕτ2 − ϕτ1 |) ≤ K

π

1 − π
L(t2 − t1)

where the function L is defined by:

(2.29) L(t2 − t1) = exp

(

µ2

σ2
T

)

Ei

[

sup
0≤t≤t2−t1

exp

(

µ

σ
Wt +

µ2

2σ2
t

)

− 1

]

.

Therefore, combining (2.28) with (2.20)-(2.21) above, we obtain:

(2.30) V (t2, π) − V (t1, π) ≤ (t2 − t1) + K
π

1 − π
L(t2 − t1)

from where, by virtue of the fact that L(t2 − t1) → 0 in (2.29) as t2 − t1 ↓ 0, we easily conclude
that (2.19) holds. In particular, this shows that the instantaneous-stopping conditions (2.50)
are satisfied.

2.7. In order to prove that the smooth-fit conditions (2.51) hold, i.e. that π 7→ V (t, π) is
C1 at g0(t) and g1(t), let us fix a point (t, π) ∈ [0, T 〉×〈0, 1〉 lying on the boundary g0 so that
π = g0(t). Then for all ε > 0 such that π < π + ε < c we have:

(2.31)
V (t, π + ε) − V (t, π)

ε
≤ G(t, π + ε) − G(t, π)

ε

and hence, taking the limit in (2.31) as ε ↓ 0, we get:

(2.32)
∂+V

∂π
(t, π) ≤ ∂G

∂π
(t, π)

where the right-hand derivative in (2.32) exists (and is finite) by virtue of the concavity of
π 7→ V (t, π) on [0, 1]. Note that the latter will also be proved independently below.

Let us now fix some ε > 0 such that π < π + ε < c and consider the stopping time
τε = τ∗(t, π + ε) being optimal for V (t, π + ε). Note that τε is the first exit time of the process
(πt+s)0≤s≤T−t from the set C in (2.16). Then by (2.1) and (2.8) it follows using the mean value
theorem that there exists ξi ∈ [π, π + ε] such that:

V (t, π + ε) − V (t, π) ≥ Eπ+ε[G(t + τε, πt+τε
)] − Eπ[G(t + τε, πt+τε

)](2.33)

=

1
∑

i=0

Ei[Si(π + ε) − Si(π)] = ε

1
∑

i=0

Ei[S
′
i(ξi)]

where the function Si is defined by:

(2.34) Si(π) =
1 + (−1)i(1 − 2π)

2
G

(

t + τε,
π

1 − π
ϕτε

/

(

1 +
π

1 − π
ϕτε

))
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and its derivative S ′
i at ξi is given by:

S ′
i(ξi) = (−1)i+1 G

(

t + τε,
ξi

1 − ξi
ϕτε

/

(

1 +
ξi

1 − ξi
ϕτε

))

(2.35)

+
1 + (−1)i(1 − 2ξi)

2

∂G

∂π

(

t + τε,
ξi

1 − ξi

ϕτε

/

(

1 +
ξi

1 − ξi

ϕτε

))

ϕτε

(1 − ξi + ξiϕτε
)2

for i = 0, 1. Since g0 is increasing it is easily verified using (2.7)-(2.8) and the fact that
t 7→ (±µ/(2σ)) t is a lower function for the standard Wiener process W that τε → 0 (Pi -a.s.)
and thus ϕτε

→ 1 (Pi -a.s.) as ε ↓ 0 for i = 0, 1. Hence we easily find:

(2.36) S ′
i(ξi) → (−1)i+1G(t, π) +

1 + (−1)i(1 − 2π)

2

∂G

∂π
(t, π) (Pi-a.s.)

as ε ↓ 0, and clearly |S ′
i(ξi)| ≤ Ki with some Ki > 0 large enough for i = 0, 1.

It thus follows from (2.33) using (2.36) that:

(2.37)
V (t, π + ε) − V (t, π)

ε
≥

1
∑

i=0

Ei[S
′
i(ξi)] →

∂G

∂π
(t, π)

as ε ↓ 0 by the dominated convergence theorem. This combined with (2.31) above proves that
V +

π (t, π) exists and equals Gπ(t, π). The smooth-fit at the boundary g1 is proved analogously.

2.8. We proceed by proving that the boundaries g0 and g1 are continuous on [0, T ] and
that g0(T ) = g1(T ) = c.

(i) Let us first show that the boundaries g0 and g1 are right-continuous on [0, T ]. For this,
fix t ∈ [0, T 〉 and consider a sequence tn ↓ t as n → ∞. Since gi is monotone, the right-hand
limit gi(t+) exists for i = 0, 1. Because (tn, gi(tn)) ∈ D for all n ≥ 1, and D is closed,
we see that (t, gi(t+)) ∈ D for i = 0, 1. Hence by (2.17) we see that g0(t+) ≤ g0(t) and
g1(t+) ≥ g1(t). The reverse inequalities follow obviously from the fact that g0 is increasing
and g1 is decreasing on [0, T ], thus proving the claim.

(ii) Suppose that at some point t∗ ∈ 〈0, T 〉 the function g1 makes a jump, i.e. let g1(t∗−) >
g1(t∗) ≥ c. Let us fix a point t′ < t∗ close to t∗ and consider the half-open region R ⊂ C being
a curved trapezoid formed by the vertexes (t′, g1(t

′)), (t∗, g1(t∗−)), (t∗, π
′) and (t′, π′) with any

π′ fixed arbitrarily in the interval 〈g1(t∗), g1(t∗−)〉. Observe that the strong Markov property
implies that the value function V from (2.11) is C1,2 on C . Note also that the gain function
G is C1,2 in R so that by the Leibnitz-Newton formula using (2.50) and (2.51) it follows that:

(2.38) V (t, π) − G(t, π) =

∫ g1(t)

π

∫ g1(t)

u

(

∂2V

∂π2
− ∂2G

∂π2

)

(t, v) dv du

for all (t, π) ∈ R .
Let us fix some (t, π) ∈ C and take an arbitrary ε > 0 such that (t + ε, π) ∈ C . Then

denoting by τε = τ∗(t + ε, π) the optimal stopping time for V (t + ε, π), we have:

V (t + ε, π) − V (t, π)

ε
≥Et+ε,π[G(t + ε + τε, πt+ε+τε

)] − Et,π[G(t + τε, πt+τε
)]

ε
(2.39)

=
Eπ[G(t + ε + τε, πτε

) − G(t + τε, πτε
)]

ε
= 1

8



and thus, taking the limit in (2.39) as ε ↓ 0, we get:

(2.40)
∂V

∂t
(t, π) ≥ ∂G

∂t
(t, π) = 1

at each (t, π) ∈ C .
Since the strong Markov property implies that the value function V from (2.11) solves the

equation (2.49), using (2.40) we obtain:

(2.41)
∂2V

∂π2
(t, π) = −2σ2

µ2

1

π2(1 − π)2

∂V

∂t
(t, π) ≤ −ε

σ2

µ2

for all t′ ≤ t < t∗ and all π′ ≤ π < g1(t
′) with ε > 0 small enough.

Hence by (2.38) using that Gππ = 0 we get:

(2.42) V (t′, π′) − G(t′, π′) ≤ −ε
σ2

µ2

(g1(t
′) − π′)2

2
→ −ε

σ2

µ2

(g1(t∗−) − π′)2

2
< 0

as t′ ↑ t∗ . This implies that V (t∗, π
′) < G(t∗, π

′) which contradicts the fact that (t∗, π
′) belongs

to the stopping region D . Thus g1(t∗−) = g1(t∗) showing that g1 is continuous at t∗ and thus
on [0, T ] as well. A similar argument shows that the function g0 is continuous on [0, T ].

(iii) We finally note that the method of proof from the previous part (ii) also implies that
g0(T ) = g1(T ) = c. To see this, we may let t∗ = T and likewise suppose that g1(T−) > c.
Then repeating the arguments presented above word by word we arrive to a contradiction with
the fact that V (T, π) = G(T, π) for all π ∈ [c, g1(T−)] thus proving the claim.

2.9. Summarizing the facts proved in Subsections 2.5-2.8 above we may conclude that the
following exit time is optimal in the extended problem (2.11):

(2.43) τ∗ = inf{0 ≤ s ≤ T − t | πt+s /∈ 〈g0(t + s), g1(t + s)〉}

(the infimum of an empty set being equal T − t) where the two boundaries (g0, g1) satisfy the
following properties (see Figure 1 below):

g0 : [0, T ] → [0, 1] is continuous and increasing(2.44)

g1 : [0, T ] → [0, 1] is continuous and decreasing(2.45)

A∗ ≤ g0(t) < c < g1(t) ≤ B∗ for all 0 ≤ t < T(2.46)

gi(T ) = c for i = 0, 1(2.47)

where A∗ and B∗ satisfying 0 < A∗ < c < B∗ < 1 are the optimal stopping points for
the infinite horizon problem uniquely determined from the system of transcendental equations
(4.85) in [18; page 185].

Standard arguments imply that the infinitesimal operator L of the process (t, πt)0≤t≤T acts
on a function f ∈ C1,2([0, T 〉 × [0, 1]) according to the rule:

(2.48) (Lf)(t, π) =

(

∂f

∂t
+

µ2

2σ2
π2(1 − π)2∂2f

∂π2

)

(t, π)

9



0

1

π

T

t π t→

→t g (t)
1

t g (t)→
0

τ∗

c

Figure 1. A computer drawing of the optimal stopping boundaries g0 and g1 from
Theorem 2.1. In the case above it is optimal to accept the hypothesis H1 .

for all (t, π) ∈ [0, T 〉 × [0, 1]. In view of the facts proved above we are thus naturally led to
formulate the following free-boundary problem for the unknown value function V from (2.11)
and the unknown boundaries (g0, g1) from (2.16)-(2.17):

(LV )(t, π) = 0 for (t, π) ∈ C(2.49)

V (t, π)
∣

∣

π=g0(t)+
= t + ag0(t), V (t, π)

∣

∣

π=g1(t)−
= t + b(1 − g1(t))(2.50)

∂V

∂π
(t, π)

∣

∣

∣

π=g0(t)+
= a,

∂V

∂π
(t, π)

∣

∣

∣

π=g1(t)−
= −b(2.51)

V (t, π) < G(t, π) for (t, π) ∈ C(2.52)

V (t, π) = G(t, π) for (t, π) ∈ D(2.53)

where C and D are given by (2.16) and (2.17), and the instantaneous-stopping conditions
(2.50) are satisfied for all 0 ≤ t ≤ T and the smooth-fit conditions (2.51) are satisfied for all
0 ≤ t < T .

Note that the superharmonic characterization of the value function (see [2] and [18]) implies
that V from (2.11) is a largest function satisfying (2.49)-(2.50) and (2.52)-(2.53).
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2.10. Making use of the facts proved above we are now ready to formulate the main result
of the paper. Below we set ϕ(x) = (1/

√
2π)e−x2/2 and Φ(x) =

∫ x

−∞
ϕ(y) dy for x ∈ R.

Theorem 2.1. In the Bayesian problem (2.4)-(2.5) of testing two simple hypotheses (2.3)
the optimal decision rule (τ∗, d∗) is explicitly given by:

τ∗ = inf{0 ≤ t ≤ T | πt /∈ 〈g0(t), g1(t)〉}(2.54)

d∗ =

{

1 (accept H1) if πτ∗ = g1(τ∗)

0 (accept H0) if πτ∗ = g0(τ∗)
(2.55)

where the two boundaries (g0, g1) can be characterized as a unique solution of the coupled system
of nonlinear integral equations:

Et,gi(t)[aπT ∧ b(1 − πT )] = agi(t) ∧ b(1 − gi(t))(2.56)

+
1

∑

j=0

∫ T−t

0

(−1)jPt,gi(t)[πt+u ≤ gj(t + u)] du (i = 0, 1)

for 0 ≤ t ≤ T satisfying (2.44)-(2.47) [see Figure 1 above].
More explicitly, the six terms in the system (2.56) read as follows:

Et,gi(t)[aπT ∧ b(1 − πT )] =(2.57)

= gi(t)

∫ ∞

−∞

agi(t) exp
(

µz
√

T − t/σ + µ2(T − t)/(2σ2)
)

∧ b(1 − gi(t))

1 − gi(t) + gi(t) exp
(

µz
√

T − t/σ + µ2(T − t)/(2σ2)
) ϕ(z) dz

+ (1 − gi(t))

∫ ∞

−∞

agi(t) exp
(

µz
√

T − t/σ − µ2(T − t)/(2σ2)
)

∧ b(1 − gi(t))

1 − gi(t) + gi(t) exp
(

µz
√

T − t/σ − µ2(T − t)/(2σ2)
) ϕ(z) dz

Pt,gi(t)[πt+u ≤ gj(t + u)](2.58)

= gi(t)Φ

(

σ

µ
√

u
log

(

gj(t + u)

1 − gj(t + u)

1 − gi(t)

gi(t)

)

− µ
√

u

2σ

)

+ (1 − gi(t))Φ

(

σ

µ
√

u
log

(

gj(t + u)

1 − gj(t + u)

1 − gi(t)

gi(t)

)

+
µ
√

u

2σ

)

for 0 ≤ u ≤ T − t with 0 ≤ t ≤ T and i, j = 0, 1.
[Note that in the case when a = b we have c = 1/2 and the system (2.56) reduces to one

equation only since g1 = 1 − g0 by symmetry.]

Proof. (i) The existence of boundaries (g0, g1) satisfying (2.44)-(2.47) such that τ∗ from
(2.54) is optimal in (2.4)-(2.5) was proved in Subsections 2.5-2.9 above. By the change-of-
variable formula from [12] it follows that the boundaries (g0, g1) solve the system (2.56) (cf.
(2.62)-(2.64) below). Thus it remains to show that the system (2.56) has no other solution in
the class of functions (h0, h1) satisfying (2.44)-(2.47).

Let us thus assume that two functions (h0, h1) satisfying (2.44)-(2.47) solve the system
(2.56), and let us show that these two functions (h0, h1) must then coincide with the optimal
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boundaries (g0, g1). For this, let us introduce the function:

(2.59) V h(t, π) =

{

Uh(t, π) if (t, π) ∈ Ch

G(t, π) if (t, π) ∈ Dh

where the function Uh is defined by:

(2.60) Uh(t, π) = Et,π[G(T, πT )] −
∫ T−t

0

Pt,π[(t + u, πt+u) ∈ Dh] du

for all (t, π) ∈ [0, T 〉 × [0, 1] and the sets Ch and Dh are defined as in (2.16) and (2.17) with
hi instead of gi for i = 0, 1. Note that (2.60) with G(t, π) instead of Uh(t, π) on the left-hand
side coincides with (2.56) when π = gi(t) and hj = gj for i, j = 0, 1. Since (h0, h1) solve (2.56)
this shows that V h is continuous on [0, T 〉 × [0, 1]. We need to verify that V h coincides with
the value function V from (2.11) and that hi equals gi for i = 0, 1.

(ii) Using standard arguments based on the strong Markov property (or verifying directly)
it follows that V h i.e. Uh is C1,2 on Ch and that:

(2.61) (LV h)(t, π) = 0 for (t, π) ∈ Ch.

Moreover, since Uh
π is continuous on [0, T 〉 × 〈0, 1〉 (which is readily verified using the explicit

expressions (2.57) and (2.58) above with π instead of gi(t) and hj instead of gj for i, j = 0, 1),
we see that V h

π is continuous on Ch . Finally, since h0(t) ∈ 〈0, c〉 and h1(t) ∈ 〈c, 1〉 we see
that V h i.e. G is C1,2 on Dh . Therefore, with (t, π) ∈ [0, T 〉 × 〈0, 1〉 given and fixed, the
change-of-variable formula from [12] can be applied, and in this way we get:

V h(t + s, πt+s) = V h(t, π)(2.62)

+

∫ s

0

(LV h)(t + u, πt+u)I(πt+u 6= h0(t + u), πt+u 6= h1(t + u)) du

+ Mh
s +

1

2

1
∑

i=0

∫ s

0

∆πV h
π (t + u, πt+u)I(πt+u = hi(t + u)) d`hi

u

for 0 ≤ s ≤ T − t where ∆πV h
π (t+u, hi(t+u)) = V h

π (t+u, hi(t+u)+)−V h
π (t+u, hi(t+u)−),

the process (`hi
s )0≤s≤T−t is the local time of (πt+s)0≤s≤T−t at the boundary hi given by:

(2.63) `hi
s = Pt,π−lim

ε↓0

1

2ε

∫ s

0

I(hi(t + u) − ε < πt+u < hi(t + u) + ε)
µ2

σ2
π2

t+u(1 − πt+u)
2 du

for i = 0, 1, and (Mh
s )0≤s≤T−t defined by Mh

s =
∫ s

0
V h

π (t + u, πt+u) I(πt+u 6= h0(t + u), πt+u 6=
h1(t + u)) (µ/σ) πt+u (1 − πt+u) dW u is a martingale under Pt,π .

Setting s = T − t in (2.62) and taking the Pt,π -expectation, using that V h satisfies (2.61)
in Ch and equals G in Dh , we get:

(2.64) Et,π[G(T, πT )] = V h(t, π) +

∫ T−t

0

Pt,π[(t + u, πt+u) ∈ Dh] du +
1

2
F (t, π)
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where (by the continuity of the integrand) the function F is given by:

(2.65) F (t, π) =
1

∑

i=0

∫ T−t

0

∆πV h
π (t + u, hi(t + u)) duEt,π[`hi

u ]

for all (t, π) ∈ [0, T 〉 × [0, 1] and i = 0, 1. Thus from (2.64) and (2.59) we see that:

(2.66) F (t, π) =

{

0 if (t, π) ∈ Ch

2 (Uh(t, π) − G(t, π)) if (t, π) ∈ Dh

where the function Uh is given by (2.60).

(iii) From (2.66) we see that if we are to prove that:

(2.67) π 7→ V h(t, π) is C1 at hi(t)

for each 0 ≤ t < T given and fixed and i = 0, 1, then it will follow that:

(2.68) Uh(t, π) = G(t, π) for all (t, π) ∈ Dh.

On the other hand, if we know that (2.68) holds, then using the general facts obtained directly
from the definition (2.59) above:

∂

∂π
(Uh(t, π) − G(t, π))

∣

∣

∣

π=h0(t)
= V h

π (t, h0(t)+) − V h
π (t, h0(t)−) = ∆πV h

π (t, h0(t))(2.69)

∂

∂π
(Uh(t, π) − G(t, π))

∣

∣

∣

π=h1(t)
= V h

π (t, h1(t)−) − V h
π (t, h1(t)+) = −∆πV h

π (t, h1(t))(2.70)

for all 0 ≤ t < T , we see that (2.67) holds too. The equivalence of (2.67) and (2.68) suggests
that instead of dealing with the equation (2.66) in order to derive (2.67) above we may rather
concentrate on establishing (2.68) directly.

To derive (2.68) first note that using standard arguments based on the strong Markov
property (or verifying directly) it follows that Uh is C1,2 in Dh and that:

(2.71) (LUh)(t, π) = 1 for (t, π) ∈ Dh.

It follows that (2.62) can be applied with Uh instead of V h , and this yields:

(2.72) Uh(t + s, πt+s) = Uh(t, π) +

∫ s

0

I((t + u, πt+u) ∈ Dh) du + Nh
s

using (2.61) and (2.71) as well as that ∆πUh
π (t+u, hi(t+u)) = 0 for all 0 ≤ u ≤ s and i = 0, 1

since Uh
π is continuous. In (2.72) we have Nh

s =
∫ s

0
Uh

π (t + u, πt+u) I(πt+u 6= h0(t + u), πt+u 6=
h1(t + u)) (µ/σ) πt+u(1 − πt+u) dW u and (Nh

s )0≤s≤T−t is a martingale under Pt,π .
Next note that (2.62) applied to G instead of V h yields:

(2.73) G(t + s, πt+s) = G(t, π) +

∫ s

0

I(πt+u 6= c) du − a + b

2
`c
s + Ms
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using that LG = 1 off [0, T ]×{c} as well as that ∆πGπ(t + u, c) = −b − a for 0 ≤ u ≤ s. In
(2.73) we have Ms =

∫ s

0
Gπ(t + u, πt+u) I(πt+u 6= c) (µ/σ) πt+u(1 − πt+u) dW u =

∫ s

0
[a I(πt+u <

c) − b I(πt+u >c)] (µ/σ) πt+u(1 − πt+u) dW u and (Ms)0≤s≤T−t is a martingale under Pt,π .
For 0 < π ≤ h0(t) or h1(t) ≤ π < 1 consider the stopping time:

(2.74) σh = inf{0 ≤ s ≤ T − t | πt+s ∈ [h0(t + s), h1(t + s)]}.

Then using that Uh(t, hi(t)) = G(t, hi(t)) for all 0 ≤ t < T and i = 0, 1 since (h0, h1) solve
(2.56), and that Uh(T, π) = G(T, π) for all 0 ≤ π ≤ 1, we see that Uh(t + σh, πt+σh

) =
G(t + σh, πt+σh

). Hence from (2.72) and (2.73) using the optional sampling theorem (see e.g.
[16; Chapter II, Theorem 3.2]) we find:

Uh(t, π) = Et,π[Uh(t + σh, πt+σh
)] − Et,π

[

∫ σh

0

I((t + u, πt+u) ∈ Dh) du
]

(2.75)

= Et,π[G(t + σh, πt+σh
)] − Et,π

[

∫ σh

0

I((t + u, πt+u) ∈ Dh) du
]

= G(t, π) + Et,π

[

∫ σh

0

I(πt+u 6= c) du
]

− Et,π

[

∫ σh

0

I((t + u, πt+u) ∈ Dh) du
]

= G(t, π)

since πt+u 6= c and (t + u, πt+u) ∈ Dh for all 0 ≤ u < σh . This establishes (2.68) and thus
(2.67) holds as well.

It may be noted that a shorter but somewhat less revealing proof of (2.68) [and (2.67)] can
be obtained by verifying directly (using the Markov property only) that the process:

(2.76) Uh(t + s, πt+s) −
∫ s

0

I((t + u, πt+u) ∈ Dh) du

is a martingale under Pt,π for 0 ≤ s ≤ T − t. This verification moreover shows that the
martingale property of (2.76) does not require that h0 and h1 are continuous and monotone
(but only measurable). Taken together with the rest of the proof below this shows that the
claim of uniqueness for the equation (2.56) holds in the class of continuous functions h0 and
h1 from [0, T ] to R such that 0 < h0(t) < c and c < h1(t) < 1 for all 0 < t < T .

(iv) Let us consider the stopping time:

(2.77) τh = inf{0 ≤ s ≤ T − t | πt+s /∈ 〈h0(t + s), h1(t + s)〉}.

Observe that, by virtue of (2.67), the identity (2.62) can be written as:

(2.78) V h(t + s, πt+s) = V h(t, π) +

∫ s

0

I((t + u, πt+u) ∈ Dh) du + Mh
s

with (Mh
s )0≤s≤T−t being a martingale under Pt,π . Thus, inserting τh into (2.78) in place of s

and taking the Pt,π -expectation, by means of the optional sampling theorem we get:

(2.79) V h(t, π) = Et,π[G(t + τh, πt+τh
)]
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for all (t, π) ∈ [0, T 〉 × [0, 1]. Then comparing (2.79) with (2.11) we see that:

(2.80) V (t, π) ≤ V h(t, π)

for all (t, π) ∈ [0, T 〉 × [0, 1].

(v) Let us now show that g0 ≤ h0 and h1 ≤ g1 on [0, T ]. For this, recall that by the same
arguments as for V h we also have:

(2.81) V (t + s, πt+s) = V (t, π) +

∫ s

0

I((t + u, πt+u) ∈ D) du + M g
s

where (M g
s )0≤s≤T−t is a martingale under Pt,π . Fix some (t, π) belonging to both D and Dh

(firstly below g0 and h0 and then above g1 and h1 ) and consider the stopping time:

(2.82) σg = inf{0 ≤ s ≤ T − t | πt+s ∈ [g0(t + s), g1(t + s)]}.

Inserting σg into (2.78) and (2.81) in place of s and taking the Pt,π -expectation, by means of
the optional sampling theorem we get:

Et,π[V h(t + σg, πt+σg
)] = G(t, π) + Et,π

[
∫ σg

0

I((t + u, πt+u) ∈ Dh) du

]

(2.83)

Et,π[V (t + σg, πt+σg
)] = G(t, π) + Et,π[σg].(2.84)

Hence by means of (2.80) we see that:

(2.85) Et,π

[
∫ σg

0

I((t + u, πt+u) ∈ Dh) du

]

≥ Et,π[σg]

from where, by virtue of the continuity of hi and gi on 〈0, T 〉 for i = 0, 1, it readily follows
that D ⊆ Dh , i.e. g0(t) ≤ h0(t) and h1(t) ≤ g1(t) for all 0 ≤ t ≤ T .

(vi) Finally, we show that hi coincides with gi for i = 0, 1. For this, let us assume that
there exists some t ∈ 〈0, T 〉 such that g0(t) < h0(t) or h1(t) < g1(t) and take an arbitrary
π from 〈g0(t), h0(t)〉 or 〈h1(t), g1(t)〉, respectively. Then inserting τ∗ = τ∗(t, π) from (2.43)
into (2.78) and (2.81) in place of s and taking the Pt,π -expectation, by means of the optional
sampling theorem we get:

Et,π[G(t + τ∗, πt+τ∗)] = V h(t, π) + Et,π

[
∫ τ∗

0

I((t + u, πt+u) ∈ Dh) du

]

(2.86)

Et,π[G(t + τ∗, πt+τ∗)] = V (t, π).(2.87)

Hence by means of (2.80) we see that:

(2.88) Et,π

[
∫ τ∗

0

I((t + u, πt+u) ∈ Dh) du

]

≤ 0

which is clearly impossible by the continuity of hi and gi for i = 0, 1. We may therefore
conclude that V h defined in (2.59) coincides with V from (2.11) and hi is equal to gi for
i = 0, 1. This completes the proof of the theorem. �
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Remark 2.2. Note that without loss of generality it can be assumed that µ > 0 in (2.2).
In this case the optimal decision rule (2.54)-(2.55) can be equivalently written as follows:

τ∗ = inf{0 ≤ t ≤ T | Xt /∈ 〈bπ
0 (t), bπ

1 (t)〉}(2.89)

d∗ =

{

1 (accept H1) if Xτ∗ = bπ
1 (τ∗)

0 (accept H0) if Xτ∗ = bπ
0 (τ∗)

(2.90)

where we set:

(2.91) bπ
i (t) =

σ2

µ
log

(

1 − π

π

gi(t)

1 − gi(t)

)

+
µ

2
t

for t ∈ [0, T ], π ∈ [0, 1] and i = 0, 1.
The result proved above shows that the following sequential procedure is optimal. Observe

Xt for t ∈ [0, T ] and stop the observation as soon as Xt becomes either greater than bπ
1 (t) or

smaller than bπ
0 (t) for some t ∈ [0, T ]. In the first case conclude that the drift equals µ, and

in the second case conclude that the drift equals 0.

Remark 2.3. In the preceding procedure we need to know the boundaries (bπ
0 , b

π
1 ) i.e. the

boundaries (g0, g1). We proved above that (g0, g1) is a unique solution of the system (2.56).
This system cannot be solved analytically but can be dealt with numerically. The following
simple method can be used to illustrate the latter (better methods are needed to achieve higher
precision around the singularity point t = T and to increase the speed of calculation).

Set tk = kh for k = 0, 1, . . . , n where h = T/n and denote:

J(t, gi(t)) = Et,gi(t)[aπT ∧ b(1 − πT )] − agi(t) ∧ b(1 − gi(t))(2.92)

K(t, gi(t); t + u, g0(t + u), g1(t + u)) =
1

∑

j=0

(−1)jPt,gi(t)[πt+u ≤ gj(t + u)](2.93)

for i = 0, 1 upon recalling the explicit expressions (2.57) and (2.58) above. Note that K always
depends on both g0 and g1 .

Then the following discrete approximation of the integral equations (2.56) is valid:

(2.94) J(tk, gi(tk)) =

n−1
∑

l=k

K(tk, gi(tk); tl+1, g0(tl+1), g1(tl+1)) h (i = 0, 1)

for k = 0, 1, . . . , n − 1. Setting k = n − 1 and g0(tn) = g1(tn) = c we can solve the system of
two equations (2.94) numerically and get numbers g0(tn−1) and g1(tn−1). Setting k = n−2 and
using the values g0(tn−1), g0(tn), g1(tn−1), g1(tn) we can solve (2.94) numerically and get num-
bers g0(tn−2) and g1(tn−2). Continuing the recursion we obtain gi(tn), gi(tn−1), . . . , gi(t1), gi(t0)
as an approximation of the optimal boundary gi at the points T, T − h, . . . , h, 0 for i = 0, 1
(cf. Figure 1 above).
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