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We derive closed form solutions to the discounted optimal stopping problems related

to the pricing of the perpetual American standard put and call options in an extension

of the Black-Merton-Scholes model with piecewise-constant dividend and volatility rates.

The method of proof is based on the reduction of the initial optimal stopping problems to

the associated free-boundary problems and the subsequent martingale verification using

a local time-space formula. We present explicit algorithms to determine the constant hit-

ting thresholds for the underlying asset price process, which provide the optimal exercise

boundaries for the options.

1 Introduction

The main aim of this paper is to present closed form solutions to the discounted optimal

stopping problems of (2.3) for the process S defined in (2.1)-(2.2). These problems are related

to the option pricing theory in mathematical finance and insurance, where the process S can

describe the price of a risky asset (e.g. the value of a company) on a financial market. In that

case, the values of (2.3) can be interpreted as fair prices of the perpetual American standard

put and call options in a diffusion model with piecewise-linear coefficients. Such problems were

first studied by McKean [14], who proved the optimality of the first time at which the price of
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the underlying risky asset, modelled by a geometric Brownian motion, hits a constant thresh-

old (see also Shiryaev [21; Chapter VIII; Section 2a], Peskir and Shiryaev [19; Chapter VII;

Section 25], and Detemple [7] for an extensive overview of other related results in the area).

Mordecki [15]-[16], Asmussen, Avram and Pistorius [4], and Alili and Kyprianou [3] proved the

optimality of the constant hitting threshold strategies for the underlying process and derived

closed form expressions for the values of these optimal stopping problems in several exponential

Lévy models. Some associated optimal stopping games for such processes were recently studied

by Baurdoux and Kyprianou [5] among others.

The model defined in (2.1)-(2.2) is related to the framework of the so-called local models of

stochastic volatility proposed by Dupire [8] and Derman and Kani [6], in which the diffusion

coefficients depended on both the time and the current state of the underlying risky asset

price process. Apart from easy calibration features, such extensions of the classical model with

constant coefficients remained within complete market setting in which any contingent claim

can be replicated by an admissible self-financing portfolio strategy, based on the underlying

asset and the riskless bank account only. More recently, Ekström [9]-[10] found explicit values

for the rational prices of the perpetual American options and investigated their properties

in some diffusion models with time- and state-dependent volatility coefficients. The call-put

duality for perpetual American options was studied by Alfonsi and Jourdain [1]-[2] within a

local volatility and constant dividend yield framework. Villeneuve [22] proposed a model with

both the volatility and dividend yield coefficients depending on the underlying price process and

investigated sufficient conditions on the payoff functions ensuring the optimality of the constant

threshold exercise strategies for the perpetual American options. Using a geometric approach,

Lu [13] presented a solution of the optimal stopping problem related to the perpetual American

put option in a dividend-free model with piecewise-constant volatility rate. He also studied the

inverse problem of recovering the volatility rate of such type from the perpetual put option

prices, initiated by Ekström and Hobson [11] within the general local volatility framework.

The purpose of this paper is to derive explicit expressions for values of one-dimensional

optimal stopping problems for diffusion processes with both piecewise-linear drift and diffusion

coefficients. Such values correspond to the rational prices of perpetual American standard put

and call options in an extension of the Black-Merton-Scholes model for underlying dividend

paying assets with both piecewise-constant dividend and volatility rates. It is assumed that

these rates change their values at the times at which the underlying asset price process crosses

some prescribed constant levels under the risk-neutral probability measure. Such a situation

may appear in the case in which either the firm issuing the asset decides to change the dividend

rate paid to stockholders or the volatility rate of the asset changes from one value to another
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at the times at which the market price crosses certain levels. These levels can have both

statistical and psychological nature depending on the strategies of market participants. This

model represents another example of local models of stochastic dividend and volatility, in which

the related coefficients depend on the current state of the underlying asset price process and

provides an approximation of the corresponding diffusion models with continuous coefficients

studied in [9]-[10], [1]-[2], and [22]. A linear version of this diffusion model was proposed

by Radner and Shepp [20] with the aim of solving some stochastic optimal impulse control

problems. We present explicit algorithms to determine the constant hitting thresholds for the

underlying diffusion process, which provide the optimal exercise boundaries for the options.

Based on solving the associated free-boundary problems, our approach should allow to handle

optimal stopping problems with more complicated payoffs than the ones of put and call options,

within the general diffusion framework of both piecewise-linear drift and diffusion coefficients.

The paper is organized as follows. In Section 2, we formulate the perpetual American put

and call option pricing optimal stopping problems in the diffusion model described above and

their associated ordinary differential free-boundary problems. In Section 3, we derive solutions

to the resulting systems of arithmetic equations equivalent to the free-boundary problems for

the put and call options, separately. In Section 4, we verify that the solutions of the free-

boundary problems provide the solutions of the initial optimal stopping problems.

2 Preliminaries

In this section, we present the setting and notation of the perpetual American standard put

and call option optimal stopping problems in a diffusion model with piecewise-linear coefficients.

We also formulate the associated ordinary differential free-boundary problems.

2.1. Formulation of the problem. Let us consider a probability space (Ω,F , P ) carrying

a standard one-dimensional Brownian motion B = (Bt)t≥0 . Assume that there exists a process

S = (St)t≥0 solving the stochastic differential equation

dSt =
(
r −∆(St)

)
St dt+ Σ(St)St dBt (2.1)

with S0 = s , where the functions ∆(s) and Σ(s) are defined by

∆(s) =
n∑
i=1

δi I(Li−1 < s ≤ Li) and Σ(s) =
n∑
i=1

σi I(Li−1 < s ≤ Li) (2.2)

for all s > 0 and some 0 = L0 < L1 < . . . < Ln−1 < Ln = ∞ , n ∈ N , fixed, and I(·)
denotes the indicator function. Suppose that the process S describes the risk-neutral dynamics
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of the price of a risky asset (e.g. the value of an issuing firm) paying dividends. Here, r > 0

represents the riskless interest rate, σi > 0 is the volatility rate, and δiS such that 0 < δi < r

is the dividend rate paid to stockholders, whenever S fluctuates within the interval (Li−1, Li] ,

for every i = 1, . . . , n . Note that the stochastic differential equation in (2.1) admits a unique

strong solution, and hence, S is a strong Markov process with respect to its natural filtration

(Ft)t≥0 defined by Ft = σ(Su | 0 ≤ u ≤ t), for all t ≥ 0 (see, e.g. [23; Theorem 4], [12;

Chapter 5] or [17; Chapter VII, Section 2]). A linear diffusion model with piecewise-constant

coefficients was considered in [20].

The main purpose of this paper is to compute the value functions of the optimal stopping

problems

V ∗(s) = sup
τ
E
[
e−rτ (K1 − Sτ ) ∨ 0

]
or V ∗(s) = sup

τ
E
[
e−rτ (Sτ −K2) ∨ 0

]
(2.3)

where the suprema are taken over all stopping times τ with respect to the filtration (Ft)t≥0 .

Such values represent the rational (or no-arbitrage) prices of the perpetual American put and

call options with strike prices K1, K2 > 0, respectively. Here, the expectations are taken with

respect to the equivalent martingale measure, under which the dynamics of S started at s > 0

are given by (2.1), and we further denote x ∨ y = max{x, y} and x ∧ y = min{x, y} , for any

x, y ∈ R . The left-hand problem of (2.3) was recently studied in [13] within the model of

(2.1)-(2.2), under the assumption that ∆(s) = 0.

2.2. Structure of the optimal stopping times. It follows from the general theory of

optimal stopping for Markov processes (see, e.g. [19; Chapter I, Section 2]) that the optimal

stopping times in the problems of (2.3) are given by

τ ∗ = inf{t ≥ 0 |V ∗(St) = (K1 − St) ∨ 0} or τ ∗ = inf{t ≥ 0 |V ∗(St) = (St −K2) ∨ 0} (2.4)

whenever they exist. The latter fact means that the process S should be stopped at the first

times at which it exits certain open intervals called the continuation regions. In this view, we

further search for optimal stopping times of the problems of (2.3) in the form

τ ∗ = inf{t ≥ 0 |St ≤ a∗} or τ ∗ = inf{t ≥ 0 |St ≥ b∗} (2.5)

for some 0 < a∗ ≤ K1 and b∗ ≥ K2 to be determined. We also assume that the optimal

stopping boundaries satisfy the conditions Lj−1 < a∗ ≤ Lj and Lm−1 < b∗ ≤ Lm , for certain

j,m = 1, . . . , n to be specified.

2.3. The free-boundary problems. It can be shown by means of standard arguments

(see, e.g. [12; Chapter V, Section 5.1] or [17; Chapter VII, Section 7.3]) that the infinitesimal
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operator L of the process S acts on an arbitrary twice continuously differentiable locally

bounded function F (s) according to the rule

(LF )(s) = (r − δi) s F ′(s) +
σ2
i

2
s2 F ′′(s) for Li−1 < s ≤ Li (2.6)

where we set F ′(Li) = F ′(Li−) and F ′′(Li) = F ′′(Li−), for every i = 1, . . . , n . In order to

find explicit expressions for the unknown value functions V ∗(s) from (2.3) and the unknown

boundaries a∗ or b∗ from (2.5), we may use the results of the general theory of optimal stopping

problems for continuous time Markov processes (see, e.g. [19; Chapter IV, Section 8]). We

formulate the associated free-boundary problems

(LV )(s) = rV (s) for s > a or s < b and such that s 6= Li, i = j, . . . ,m− 1 (2.7)

V (a+) = K1 − a or V (b−) = b−K2 (instantaneous stopping) (2.8)

V ′(a+) = −1 or V ′(b−) = 1 (smooth fit) (2.9)

V (s) = K1 − s for s < a or V (s) = s−K2 for s > b (2.10)

V (s) > (K1 − s) ∨ 0 for s > a or V (s) > (s−K2) ∨ 0 for s < b (2.11)

(LV )(s) < rV (s) for s < a or s > b (2.12)

for some 0 < a ≤ K1 or b ≥ K2 fixed, in the case of put or call option, respectively. Here, the

conditions of (2.8) and (2.9) are used to specify the solutions of the free-boundary problems

which are related to the optimal stopping problems in (2.3).

3 Solution of the free-boundary problem

In this section, we derive solutions to the free-boundary problems formulated above for the

cases of put and call option, separately, and prove the uniqueness of solutions of the related

arithmetic equations for optimal stopping boundaries.

3.1. The equivalent system of arithmetic equations. We first note that the general

solution of the second order ordinary differential equation in (2.7) is given by

V (s) =
n∑
i=1

(
C+
i s

γ+
i + C−i s

γ−i

)
I(Li−1 < s ≤ Li) (3.1)

where C+
i and C−i are some arbitrary constants, and define

γ±i =
1

2
− r − δi

σ2
i

±

√(
1

2
− r − δi

σ2
i

)2

+
2r

σ2
i

(3.2)
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so that γ−i < 0 < 1 < γ+
i holds for every i = 1, . . . , n . Hence, applying the instantaneous-

stopping and smooth-fit conditions from (2.8)-(2.9) to the function in (3.1) and using the fact

that the value function V ∗(s) is continuously differentiable for s < a or s > b in the case of

put or call option, respectively, we get that the equalities

C+
j a

γ+
j + C−j a

γ−j = K1 − a or C+
m b

γ+
m + C−m b

γ−m = b−K2 (3.3)

C+
j γ

+
j a

γ+
j + C−j γ

−
j a

γ−j = −a or C+
m γ

+
m b

γ+
m + C−m γ

−
m b

γ−m = b (3.4)

C+
i−1 L

γ+
i−1

i−1 + C−i−1 L
γ−i−1

i−1 = C+
i L

γ+
i
i−1 + C−i L

γ−i
i−1 for i = j + 1, . . . ,m (3.5)

C+
i−1 γ

+
i−1 L

γ+
i−1

i−1 + C−i−1 γ
−
i−1 L

γ−i−1

i−1 = C+
i γ

+
i L

γ+
i
i−1 + C−i γ

−
i L

γ−i
i−1 for i = j + 1, . . . ,m (3.6)

hold for some Lj−1 < a ≤ Lj ∧K1 or K2 ∨ Lm−1 < b ≤ Lm . It thus follows that the function

V (s; a, b) (3.7)

=
m∑
i=j

(
C+
i (a, b, Lj, . . . , Lm−1) s

γ+
i + C−i (a, b, Lj, . . . , Lm−1) s

γ−i

)
I(Li−1 < s ≤ Li)

satisfies the system in (2.7)-(2.9) with some C+
i (a, b, Lj, . . . , Lm−1) and C−i (a, b, Lj, . . . , Lm−1)

to be specified by the system in (3.3)-(3.6), for some Lj−1 < a ≤ Lj∧K1 or K2∨Lm−1 < b ≤ Lm .

3.2. Solution for the case of put option. Observe that we should also have C+
n = 0

in (3.1) when the left-hand part of the system in (2.7)-(2.12) is realised with m = n , since

otherwise V (s) → ±∞ , that must be excluded by virtue of the obvious fact that the value

function in (2.3) is bounded under s ↑ ∞ . In this case, solving the system of equations in the

left-hand part of (3.3)-(3.4), we get that its solution is given by

C+
j (a) =

I+
j (a)

γ+
j − γ−j

and C−j (a) =
I−j (a)

γ+
j − γ−j

(3.8)

with

I+
j (a) =

(γ−j − 1)a− γ−j K1

aγ
+
j

and I−j (a) =
(1− γ+

j )a+ γ+
j K1

aγ
−
j

(3.9)

for all Lj−1 < a ≤ Lj ∧ K1 . Then, solving the system of equations in (3.5)-(3.6), we get the

recursive expressions

C+
i L

γ+
i
i ≡ C+

i L
γ+

i
i−1

( Li
Li−1

)γ+
i

=

[
C+
i−1L

γ+
i−1

i−1

γ+
i−1 − γ−i
γ+
i − γ−i

+ C−i−1L
γ−i−1

i−1

γ−i−1 − γ−i
γ+
i − γ−i

]( Li
Li−1

)γ+
i

(3.10)

and

C−i L
γ−i
i ≡ C−i L

γ−i
i−1

( Li
Li−1

)γ−i
=

[
C+
i−1L

γ+
i−1

i−1

γ+
i − γ+

i−1

γ+
i − γ−i

+ C−i−1L
γ−i−1

i−1

γ+
i − γ−i−1

γ+
i − γ−i

]( Li
Li−1

)γ−i
(3.11)
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for any i = j+1, . . . , n−1. Hence, using the expressions in (3.8), we obtain that the expressions

C+
i =

sgn(γ+
i )

γ+
i − γ−i

∑
I±j (a)

L
γ±j
j

L
γ+

i
i−1

γ±i−1 − γ−i
γ+
i−1 − γ−i−1

i−1∏
k=j+1

sgn(γ±k )
γ±k−1 − γ

∓
k

γ+
k−1 − γ

−
k−1

( Lk
Lk−1

)γ±k
(3.12)

and

C−i =
sgn(γ−i )

γ+
i − γ−i

∑
I±j (a)

L
γ±j
j

L
γ−i
i−1

γ±i−1 − γ+
i

γ+
i−1 − γ−i−1

i−1∏
k=j+1

sgn(γ±k )
γ±k−1 − γ

∓
k

γ+
k−1 − γ

−
k−1

( Lk
Lk−1

)γ±k
(3.13)

hold for any i = j + 1, . . . , n − 1, while using the equalities in (3.12)-(3.13), we also get from

(3.5) that the expression

C−n =
1

γ+
n−1 − γ−n−1

∑
I±j (a)

L
γ±j
j

Lγ
−
n
n−1

n−1∏
i=j+1

sgn(γ±i )
γ±i−1 − γ∓i
γ+
i−1 − γ−i−1

( Li
Li−1

)γ±i
(3.14)

holds. The sums in (3.12)-(3.14) as well as in (3.18)-(3.19) below should be read according to

the rule∑
G(I±j (a), γ±j , γ

∓
j , γ

±
j+1, γ

∓
j+1, . . . , γ

±
n , γ

∓
n ) (3.15)

≡ G(I+
j (a), γ+

j , γ
−
j , γ

+
j+1, γ

−
j+1, . . . , γ

+
n , γ

−
n ) +G(I−j (a), γ−j , γ

+
j , γ

+
j+1, γ

−
j+1, . . . , γ

+
n , γ

−
n )

+G(I+
j (a), γ+

j , γ
−
j , γ

−
j+1, γ

+
j+1, . . . , γ

+
n , γ

−
n ) +G(I−j (a)γ−j , γ

+
j , γ

−
j+1, γ

+
j+1, . . . , γ

+
n , γ

−
n ) + · · ·

· · ·+G(I+
j (a), γ+

j , γ
−
j , γ

+
j+1, γ

−
j+1, . . . , γ

−
n , γ

+
n ) +G(I−j (a), γ−j , γ

+
j , γ

+
j+1, γ

−
j+1, . . . , γ

−
n , γ

+
n )

+G(I+
j (a), γ+

j , γ
−
j , γ

−
j+1, γ

+
j+1, . . . , γ

−
n , γ

+
n ) +G(I−j (a), γ−j , γ

+
j , γ

−
j+1, γ

+
j+1, . . . , γ

−
n , γ

+
n )

for any measurable function G(I±j (a), γ±j , γ
∓
j , γ

±
j+1, γ

∓
j+1, . . . , γ

±
n , γ

∓
n ). Thus, taking into account

the fact that C+
n = 0, we obtain from the left-hand part of the system in (3.5)-(3.6) that the

equality

C+
n−1 (γ−n − γ+

n−1)L
γ+

n−1

n−1 = C−n−1 (γ−n−1 − γ−n )L
γ−n−1

n−1 (3.16)

is satisfied. Using the expressions in (3.12)-(3.13), we can therefore conclude that the equation

in (3.16) takes the form

I+
j (a)L

γ+
j

j Q+
j = I−j (a)L

γ−j
j Q−j (3.17)

for Lj−1 < a ≤ Lj ∧K1 , with

Q+
j = sgn(γ+

j )
∑ (γ+

j − γ∓j+1)(γ
±
n−1 − γ−n )

γ±n−1 − γ∓n

n−1∏
i=j+1

sgn(γ±i )(γ±i − γ∓i+1)
( Li
Li−1

)γ±i
(3.18)

and

Q−j = sgn(γ−j )
∑ (γ−j − γ∓j+1)(γ

±
n−1 − γ−n )

γ±n−1 − γ∓n

n−1∏
i=j+1

sgn(γ±i )(γ±i − γ∓i+1)
( Li
Li−1

)γ±i
(3.19)
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for every j = 1, . . . , n − 2, while Q+
n−1 = γ+

n−1 − γ−n , Q−n−1 = γ−n − γ−n−1 , Q+
n = γ+

n − γ−n , and

Q−n = 0.

In order to prove the uniqueness of solution of the equation in (3.17), we observe that the

derivatives of the functions in (3.9) are given by the expressions

I+
j
′
(a) =

(γ+
j − 1)(γ−j − 1)(K1,j − a)

aγ
+
j +1

< 0, I−j
′
(a) =

(γ+
j − 1)(γ−j − 1)(a−K1,j)

aγ
−
j +1

> 0 (3.20)

for all 0 < Lj−1 < a ≤ Lj ∧K1 < K1,j , with

K1,j =
γ+
j γ
−
j K1

(γ+
j − 1)(γ−j − 1)

≡ rK1

δj
> K1 (3.21)

so that the function I+
j (a) decreases and the function I−j (a) increases on the interval (Lj−1, Lj∧

K1] . Hence, the equation in (3.17) admits a unique solution if and only if the inequalities

I+
j (Lj−1)L

γ+
j

j

Q−j
>
I−j (Lj−1)L

γ−j
j

Q+
j

and
I+
j (Lj ∧K1)L

γ+
j

j

Q−j
≤
I−j (Lj ∧K1)L

γ−j
j

Q+
j

(3.22)

hold with Q+
j and Q−j given by the expressions in (3.18)-(3.19).

In order to prove the inequalities in (3.22) above, we first assume that Lj−1 < Lj < K1

holds. Then, it can be verified by means of the induction principle that the inequalities Q+
j > 0,

γ+
j Q

−
j < −γ−j Q+

j and γ+
j Q

−
j L

γ+
j −γ

−
j

j−1 < −γ−j Q+
j L

γ+
j −γ

−
j

j are satisfied for every j = 1, . . . , n .

Hence, it is shown using straightforward computations that there exists a unique solution a∗j of

the equation in (3.17) such that Lj−1 < a∗j ≤ Lj if and only if the relationship µj−1Lj−1∨Lj <
K1 ≤ µjLj holds with

µj =
(γ+
j − 1)Q−j + (γ−j − 1)Q+

j

γ+
j Q

−
j + γ−j Q

+
j

> 1 (3.23)

for every j = 1, . . . , n , with Q+
j and Q−j given by (3.18)-(3.19). Thus, the assumption Lj−1 <

a∗j ≤ Lj can equivalently be replaced by the property µj−1Lj−1 ∨ Lj < K1 ≤ µjLj . Observe

that the latter inequalities can hold for K1 if either µj−1Lj−1 ≤ Lj , or Lj−1 < Lj < µj−1Lj−1

when Q−j ≥ 0, or Lj−1 < µj−1Lj−1/µj < Lj < µj−1Lj−1 when Q−j < 0. Note that the property

µj−1Lj−1 ∨ Lj < K1 ≤ µjLj does not hold, when Lj−1 < Lj ≤ µj−1Lj−1/µj < µj−1Lj−1 and

Q−j < 0, in which case there is no solution a∗j of the equation in (3.17) in the interval (Lj−1, Lj] .

Let us now assume that Lj−1 < K1 ≤ Lj holds. In this case, it can be checked by means of

the induction principle that the inequality −Q−j < Q+
j is satisfied for every j = 1, . . . , n . Hence,

it is shown by means of straightforward computations and using the relationships between Q+
j

and Q−j referred above that the equation in (3.17) admits a unique solution a∗j such that

Lj−1 < a∗j ≤ K1 if and only if the relationship µj−1Lj−1 < K1 ≤ Lj holds with µj given by
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(3.23). Thus, the assumption Lj−1 < a∗j ≤ K1 can equivalently be replaced by the property

µj−1Lj−1 < K1 ≤ Lj . Note that when the latter inequalities fail to hold, there is no solution

a∗j of the equation in (3.17) in the interval (Lj−1, K1] .

Summarising the facts proved above, we can therefore formulate the following algorithm

to specify the location interval (Lj−1, Lj] for the solution a∗ of the equation in (3.17), based

on the corresponding relationships between K1 , Li and µj for i, j = 1, . . . , n referred above.

Without loss of generality, let us thus assume that the strike price satisfies Lk−1 < K1 ≤ Lk , so

that there exist k possible intervals in which the solution a∗ can be located. We can therefore

start the following forward procedure started with j = 1:

(1) (searching for a solution in the interval (L0, L1]):

(a) if K1 ≤ µ1L1 holds, then there exists a solution 0 = L0 < a∗1 ≤ L1 of the equation

in (3.17) for j = 1, proceed with checking whether Q−i < 0 and µiLi < K1 holds

for some i = 2, . . . , k − 1, and in the latter case, continue with step (i+1),

(b) if µ1L1 < K1 holds, then continue with step (2);
...

(j) (searching for a solution in the interval (Lj−1, Lj] , for j = 2, . . . , k − 1):

(a) if K1 ≤ µjLj holds, then there exist a solution Lj−1 < a∗j ≤ Lj of the equation

in (3.17), proceed with checking whether Q−i < 0 and µiLi < K1 holds for some

i = j + 1, . . . , k − 1, and in that case, continue with step (i+1),

(b) if µjLj < K1 holds, then continue with step (j+1);
...

(k) (searching for a solution in the interval (Lk−1, K1]):

in this case, K1 ≤ Lk holds by assumption, and thus, there exist a solution Lk−1 < a∗k ≤
K1 of the equation in (3.17) for j = k .

Note that, after finding a solution Lj−1 < a∗j ≤ Lj of the equation in (3.17) at step (j),

part (a), for some j = 1, . . . , k − 2, we can get another solution Li−1 < a∗i ≤ Li only if

µlLl < µl−1Ll−1 holds for some l = j + 1, . . . , k − 1 and l < i . Such a situation can occur at

part (b) of any step while searching for a solution in the appropriate interval. However, these

facts do not make any impact on the procedure described above, which establishes the existence

of at least one solution Lj−1 < a∗j ≤ Lj∧K1 of the equation in (3.17), for a certain j = 1, . . . , k .

We further denote by a∗ the minimum over such solutions a∗j , j = 1, . . . , k , whenever they exist,

and construct the corresponding solution V (s; a∗) of the form in (3.7), which will dominate the

other possible solutions of the second-order ordinary differential equation in (2.7), satisfying

the conditions in (2.8)-(2.9) with the boundaries a∗j , j = 1, . . . , k . The latter fact can be shown
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by means of the arguments similar to the ones used in [19; Chapter VI, Remark 23.2] and [19;

Chapter VI, Theorem 24.1], or by verifying directly.

3.3. Solution for the case of call option. Observe that we should also have C−1 = 0

in (3.1) when the right-hand part of the system in (2.7)-(2.12) is realised with j = 1, since

V (s) → ±∞ otherwise, that must be excluded by virtue of the obvious fact that the value

function in (2.3) is bounded under s ↓ 0. In this case, solving the system of equations in the

right-hand part of (3.3)-(3.4), we get that its solution is given by

C+
m(b) =

J+
m(b)

γ+
m − γ−m

and C−m(b) =
J−m(b)

γ+
m − γ−m

(3.24)

with

J+
m(b) =

(1− γ−m)b+ γ−mK2

bγ
+
m

and J−m(b) =
(γ+
m − 1)b− γ+

mK2

bγ
−
m

(3.25)

for all K2 ∨ Lm−1 < b ≤ Lm . Then, solving the system of equations in (3.5)-(3.6), we obtain

the recursive expressions

C+
i L

γ+
i
i−1 ≡ C+

i L
γ+

i
i

(Li−1

Li

)γ+
i

=

[
C+
i+1L

γ+
i+1

i

γ+
i+1 − γ−i
γ+
i − γ−i

+ C−i+1L
γ−i+1

i

γ−i+1 − γ−i
γ+
i − γ−i

](Li−1

Li

)γ+
i

(3.26)

and

C−i L
γ−i
i−1 ≡ C−i L

γ−i
i

(Li−1

Li

)γ−i
=

[
C+
i+1L

γ+
i+1

i

γ+
i − γ+

i+1

γ+
i − γ−i

+ C−i+1L
γ−i+1

i

γ+
i − γ−i+1

γ+
i − γ−i

](Li−1

Li

)γ−i
(3.27)

for any i = 2, . . . ,m−1. Hence, using the expressions in (3.24), we obtain that the expressions

C+
i =

sgn(γ+
i )

γ+
i − γ−i

∑
J±m(b)

Lγ
±
m
m−1

L
γ+

i
i

γ±i+1 − γ−i
γ+
i+1 − γ−i+1

m−1∏
k=i+1

sgn(γ±k )
γ±k+1 − γ

∓
k

γ+
k+1 − γ

−
k+1

(Lk−1

Lk

)γ±k
(3.28)

and

C−i =
sgn(γ−i )

γ+
i − γ−i

∑
J±m(b)

Lγ
±
m
m−1

L
γ−i
i

γ±i+1 − γ+
i

γ+
i+1 − γ−i+1

m−1∏
k=i+1

sgn(γ±k )
γ±k+1 − γ

∓
k

γ+
k+1 − γ

−
k+1

(Lk−1

Lk

)γ±k
(3.29)

hold for any i = 2, . . . ,m− 1, while using the equalities in (3.28)-(3.29), we also get from (3.5)

that the expression

C+
1 =

1

γ+
2 − γ−2

∑
J±m(b)

Lγ
±
m
m−1

L
γ+
1

1

m−1∏
i=2

sgn(γ±i )
γ±i+1 − γ∓i
γ+
i+1 − γ−i+1

(Li−1

Li

)γ±i
(3.30)
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holds. The sums in (3.28)-(3.30) as well as in (3.34)-(3.35) below should be read according to

the rule∑
H(J±m(b), γ±m, γ

∓
m, γ

±
m−1, γ

∓
m−1, . . . , γ

±
1 , γ

∓
1 ) (3.31)

≡ H(J+
m(b), γ+

m, γ
−
m, γ

+
m−1, γ

−
m−1, . . . , γ

+
1 , γ

−
1 ) +H(J−m(b), γ−m, γ

+
m, γ

+
m−1, γ

−
m−1, . . . , γ

+
1 , γ

−
1 )

+H(J+
m(b), γ+

m, γ
−
m, γ

−
m−1, γ

+
m−1, . . . , γ

+
1 , γ

−
1 ) +H(J−m(b), γ−m, γ

+
m, γ

−
m−1, γ

+
m−1, . . . , γ

+
1 , γ

−
1 ) + · · ·

· · ·+H(J+
m(b), γ+

m, γ
−
m, γ

+
m−1, γ

−
m−1, . . . , γ

−
1 , γ

+
1 ) +H(J−m(b), γ−m, γ

+
m, γ

+
m−1, γ

−
m−1, . . . , γ

−
1 , γ

+
1 )

+H(J+
m(b), γ+

m, γ
−
m, γ

−
m−1, γ

+
m−1, . . . , γ

−
1 , γ

+
1 ) +H(J−m(b), γ−m, γ

+
m, γ

−
m−1, γ

+
m−1, . . . , γ

−
1 , γ

+
1 )

for any measurable function H(J±m(b), γ±m, γ
∓
m, γ

±
m−1, γ

∓
m−1, . . . , γ

±
1 , γ

∓
1 ). Thus, taking into ac-

count the fact that C−1 = 0, we obtain from the right-hand part of the system in (3.5)-(3.6)

that the equality

C+
2 (γ+

1 − γ+
2 )L

γ+
2

1 = C−2 (γ−2 − γ+
1 )L

γ−2
1 (3.32)

is satisfied. Using the expressions in (3.28)-(3.29), we can therefore conclude that the equation

in (3.32) takes the form

J+
m(b)Lγ

+
m
m−1R

+
m = J−m(b)Lγ

−
m
m−1R

−
m (3.33)

for K2 ∨ Lm−1 < b ≤ Lm , with

R+
m = sgn(γ+

m)
∑ (γ+

m − γ∓m−1)(γ
±
2 − γ+

1 )

γ±2 − γ∓1

m−1∏
i=2

sgn(γ±i )(γ±i − γ∓i−1)
(Li−1

Li

)γ±i
(3.34)

and

R−m = sgn(γ−m)
∑ (γ−m − γ∓m−1)(γ

±
2 − γ+

1 )

γ±2 − γ∓1

m−1∏
i=2

sgn(γ±i )(γ±i − γ∓i−1)
(Li−1

Li

)γ±i
(3.35)

for every m = 3, . . . , n , while R−2 = γ+
1 − γ−2 , R+

2 = γ+
2 − γ+

1 , R−1 = γ+
1 − γ−1 , and R+

1 = 0.

In order to prove the uniqueness of solution of the equation in (3.33), we observe that the

derivatives of the functions in (3.25) are given by the expressions

J+
m
′
(b) =

(γ+
m − 1)(γ−m − 1)(b−K2)

bγ
+
m+1

< 0, J−m
′
(b) =

(γ+
m − 1)(γ−m − 1)(K2 − b)

bγ
−
m+1

> 0 (3.36)

for all 0 < K2,m ∨ Lm−1 < b ≤ Lm , with

K2,m =
γ+
mγ
−
mK2

(γ+
m − 1)(γ−m − 1)

≡ rK2

δm
> K2 (3.37)

so that the function J+
m(b) decreases and the function J−m(b) increases on the interval (K2,m ∨

Lm−1, Lm] . Hence, the equation in (3.33) admits a unique solution if and only if the inequalities

J+
m(K2,m ∨ Lm−1)L

γ+
m
m−1

R−m
>
J−m(K2,m ∨ Lm−1)L

γ−m
m−1

R+
m

,
J+
m(Lm)Lγ

+
m
m−1

R−m
≤
J−m(Lm)Lγ

−
m
m−1

R+
m

(3.38)
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hold with R+
m and R−m given by the expressions in (3.34)-(3.35).

In order to prove the inequalities in (3.38) above, we first assume that K2,m ≤ Lm−1 < Lm

holds. Then, it can be verified by means of the induction principle that the inequalities R−m > 0,

γ+
mR

−
m > −γ−mR+

m and γ+
mR

−
mL

γ+
m−γ−m
m > −γ−mR+

mL
γ+

m−γ−m
m−1 are satisfied for every m = 1, . . . , n .

Hence, it is shown using straightforward computations that there exists a unique solution

b∗m of the equation in (3.33) such that Lm−1 < b∗m ≤ Lm if and only if the relationship

λmLm−1 < K2 ≤ λm+1Lm ∧ δmLm−1/r holds with

λm =
(γ+
m − 1)R−m + (γ−m − 1)R+

m

γ+
mR

−
m + γ−mR

+
m

< 1 (3.39)

for every m = 1, . . . , n , with R+
m and R−m given by (3.34)-(3.35). Thus, the assumption Lm−1 <

b∗m ≤ Lm can equivalently be replaced by the property λmLm−1 < K2 ≤ λm+1Lm ∧ δmLm−1/r .

Observe that the latter inequalities can hold for K2 if either Lm ≤ δmLm−1/(λm+1r) when

ξm ≤ 0, or λmLm−1/λm+1 < Lm ≤ δmLm−1/(λm+1r) when 0 < ξm < 1, or δmLm−1/(λm+1r) <

Lm when ξm < 1, where ξm is given by

ξm = −γ
−
m(γ−m − 1)R+

m

γ+
m(γ+

m − 1)R−m
(3.40)

for every m = 1, . . . , n . However, the property λmLm−1 < K2 ≤ λm+1Lm ∧ δmLm−1/r does not

hold when either Lm−1 < Lm ≤ λmLm−1/λm+1 and 0 < ξm < 1, or ξm ≥ 1 holds, therefore

there is no solution b∗m of the equation in (3.33) in the interval (Lm−1, Lm] .

Let us now assume that Lm−1 < K2,m < Lm holds. In this case, it is shown by means of

straightforward computations and using the relationships between R+
m and R−m referred above

that the equation in (3.33) admits a unique solution b∗m such that K2,m < b∗m ≤ Lm if and only

if the relationship
δmLm−1

r
∨ δmνmLm−1

r
< K2 ≤ λm+1Lm ∧

δmLm
r

(3.41)

holds with λm given by (3.39) and νm = ξm
1/(γ+

m−γ−m)I(ξm > 0), for every m = 1, . . . , n , where

ξm has the form of (3.40). We also observe that the inequalities in (3.41) can hold for K2

if either δmLm−1/(λm+1r) < Lm when ξm ≤ 1, or δmνmLm−1/(λm+1r) < Lm when ξm > 1.

However, the property of (3.41) does not hold if either Lm−1 < Lm ≤ δmLm−1/(λm+1r) when

ξm ≤ 1, or νmLm−1 < Lm ≤ δmνmLm−1/(λm+1r) when ξm > 1, or Lm ≤ νmLm−1 when

ξm > 1 holds. Note that the last two cases are separated due to the fact that the property

λm+1Lm < δmνmLm−1/r excludes δmLm/r < δmνmLm−1/r and vice versa.

Summarising the facts proved above, we can therefore formulate the following algorithm to

specify the location interval (Lm−1, Lm] for the solution b∗ of the equation in (3.33), based on

the corresponding relationships between K2 , r , δi , Li , λm , ξm , and νm for i,m = 1, . . . , n .
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Without loss of generality, let us thus assume that the strike price satisfies Lk−1 < K2 ≤ Lk ,

so that there exists n − k + 1 possible intervals in which the solution b∗ can be located. We

can therefore start the following backward procedure started with m = n :

(n) (searching for a solution in the interval (Ln−1, Ln]):

(I) if δnLn−1/r < K2 holds, then we look for a solution b∗n in the smaller interval

(K2,n, Ln] , when

(a) ξn ≤ 1 holds, that yields the existence of a solution K2,n < b∗n ≤ Ln of the

equation in (3.33) for m = n , proceed with checking whether ξi > 0 and

K2 ≤ λiLi−1 holds for some i = n−1, . . . , k+1, and in that case, continue with

step (i-1),

(b) ξn > 1 and δnνnLn−1/r < K2 hold, that yields the existence of a solution

K2,n < b∗n ≤ Ln of the equation in (3.33) for m = n , proceed with checking

whether ξi > 0 and K2 ≤ λiLi−1 hold for some i = n, . . . , k + 1, and in that

case, continue with step (i-1),

(c) ξn > 1 and K2 ≤ δnνnLn−1/r holds, proceed with checking whether ξi > 0 and

K2 ≤ λiLi−1 hold for some i = n, . . . , k + 1, and in that case, continue with

step (i-1),

(II) if K2 ≤ δnLn−1/r holds, then we observe that if

(a) λnLn−1 < K2 holds, then there exist a solution K2,n < b∗n ≤ Ln of the equation

in (3.33) for m = n , then proceed with checking whether ξi > 0 and K2 ≤ λiLi−1

holds for some i = n− 1, . . . , k + 1, and in that case, continue with step (i-1),

(b) K2 ≤ λnLn−1 holds, then continue with step (n-1);
...

(m) (searching for a solution in the interval (Lm−1, Lm] , for m = n− 1, . . . , k + 1):

(I) if δmLm/r < K2 holds, then the interval (Lm−1, Lm] belongs to the continuation

region, and we proceed further, when

(a) λmLm−1 < K2 holds, with checking whether ξi > 0 and K2 ≤ λiLi−1 holds for

some i = m− 1, . . . , k + 1, and in that case, continue with step (i-1),

(b) K2 ≤ λmLm−1 holds, continue with step (m-1),

(II) if δmLm−1/r < K2 ≤ δmLm/r holds, then we check for a solution b∗m in the smaller

interval (K2,m, Lm] , when

(a) ξm ≤ 1 holds, that yields the existence of a solution K2,m < b∗m ≤ Lm of the

equation in (3.33), proceed with checking whether ξi > 0 and K2 ≤ λiLi−1 hold

for some i = m− 1, . . . , k + 1, and in that case, continue with step (i-1),

(b) ξm > 1 and δmνmLm−1/r < K2 holds, that yields the existence of a solution

K2,m < b∗m ≤ Lm of the equation in (3.33), then proceed with checking whether

13



ξi > 0 and K2 ≤ λiLi−1 holds for some i = m, . . . , k + 1, and in that case,

continue with step (i-1),
(c) ξm > 1 and K2 ≤ δmνmLm−1/r holds, proceed with checking whether ξi > 0

and K2 ≤ λiLi−1 hold for some i = m, . . . , k + 1, and in that case, continue

with step (i-1),
(III) if K2 ≤ δmLm−1/r holds, then observe that if

(a) λmLm−1 < K2 holds, then there exist a solution Lm−1 < b∗m ≤ Lm of the

equation in (3.33), proceed with checking whether ξi > 0 and K2 ≤ λiLi−1 hold

for some i = m− 1, . . . , k + 1, and in that case, continue with step (i-1),
(b) K2 ≤ λmLm−1 holds, then continue with step (m-1);

...

(k) (searching for a solution in the interval (K2,k, Lk]):

(I) if δkLk/r < K2 holds, then the interval (K2, Lk] belongs to the continuation region,
(II) if K2 ≤ δkLk/r holds, then observe that if

(a) either ξk ≤ 1 or ξk > 1 with δkνkLk−1/r < K2 holds, then there exist a solution

K2,k < b∗k ≤ Lk of the equation in (3.33) for m = k ,
(b) ξk > 1 with K2 ≤ δkνkLk−1/r holds, then there is no solution in the interval

(K2,k, Lk] .

Note that, after finding a solution Lm−1 < b∗m ≤ Lm of the equation in (3.33) at one of the

parts of step (m), for some m = n, . . . , k + 2, we can get another solution Li−1 < b∗i ≤ Li

only if ξl > 0 and K2 ≤ λlLl−1 holds for some l = m − 1, . . . , k + 1 and l > i . However,

these facts do not make any impact on the procedure described above, whenever we search

for solutions K2,m ∨ Lm−1 < b∗m ≤ Lm of the equation in (3.33), for certain m = n, . . . , k .

Moreover, we observe that the algorithm presented above shows explicitly that there exist

possible situations in which there does not exist any solution of the equation in (3.33) in the

interval (K2,m ∨ Lm−1, Lm] , for any m = n, . . . , k . For instance, such a situation can occur at

part (I)(c) of step (n), under the conditions λnLn−1 < K2 and ξi < 0, for all i = n−1, . . . , k+1.

We further denote by b∗ the maximum over such solutions b∗m , m = n, . . . , k , whenever they

exist, and set b∗ =∞ otherwise. We then construct the corresponding solution V (s; b∗) of the

form in (3.7), which will dominate the other possible solutions of the second-order ordinary

differential equation in (2.7), satisfying the conditions in (2.8)-(2.9) with b∗m , m = n, . . . , k .

4 Main results and proof

Taking into account the facts proved above, let us now formulate the main assertions of the

paper.

14



Theorem 1 Suppose that the price process S of the underlying risky asset is defined by (2.1)-

(2.2), and let 0 = L0 < L1 < . . . < Ln−1 < Ln = ∞, n ∈ N, be some prescribed levels. Then,

in the optimal stopping problems of (2.3), related to the perpetual American put and call options

with strike prices K1, K2 > 0, the value functions are given by

V ∗(s) =

K1 − s, if s ≤ a∗

V (s; a∗), if s > a∗
or V ∗(s) =

V (s; b∗), if s < b∗

s−K2, if s ≥ b∗
(4.1)

where the functions V (s; a) and V (s; b) and the optimal exercise time τ ∗ have the form of (3.7)

and (2.5), respectively, and the optimal stopping boundaries a∗ and b∗ are specified as follows:

(i) in the put option case, the boundary a∗ satisfies Lj−1 < a∗ ≤ Lj ∧ K1 for a certain

j = 1, . . . , n, and it is specified as the minimal solution of the arithmetic equation in (3.17);

(ii) in the call option case, either the boundary b∗ satisfies K2,m ∨ Lm−1 < b∗ ≤ Lm for a

certain m = 1, . . . , n, and it is specified as the maximal solution of the arithmetic equation in

(3.33), or we have m = n and b∗ =∞ and thus there is no optimal stopping boundary.

Since both parts of the assertion formulated above are proved in a similar way, we only give

a proof for the problem related to the more complicated case of the perpetual American call

option.

Proof of part (ii). In order to verify the assertion stated above, it remains to show that the

function V ∗(s) defined in the right-hand part of (4.1) coincides with the value function in the

right-hand part of (2.3), and that the stopping time τ ∗ in the right-hand part of (2.5) is optimal

with b∗ either being the maximal solution of the equation in (3.33) or b∗ =∞ . For this, let us

denote by V (s) the right-hand side of the right-hand expression in (4.1). Then, applying the

local time-space formula from [18] (see also [19; Chapter II, Section 3.5] for a summary of the

related results as well as further references) and taking into account the smooth-fit condition

in the right-hand part of (2.9), we get that the expression

e−rt V (St) = V (s) +Mt (4.2)

+

∫ t

0

e−ru (LV − rV )(Su) I(Su 6= Li, i = 1, . . . , n− 1, Su 6= b∗) du

holds, where the process M = (Mt)t≥0 defined by

Mt =

∫ t

0

e−ru V ′(Su) Σ(Su)Su dBu (4.3)

is a continuous square integrable martingale with respect to the probability measure P . The

latter fact can easily be observed, since the derivative V ′(s) and Σ(s) are bounded functions.
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By means of straightforward calculations, similar to those of the previous section, it can be

verified that the conditions in the right-hand parts of (2.11) and (2.12) hold with b∗ either being

the maximal solution of the equation in (3.33) or b∗ =∞ . It is also shown using the comparison

arguments for solutions of second-order ordinary differential equations that, in the former case,

V (s) represents the maximal solution of the equation in (2.7) satisfying the conditions in the

right-hand parts of (2.8)-(2.9). These facts together with the condition in the right-hand part

of (2.10) yield that (LV − rV )(s) ≤ 0 holds for all s 6= Li , i = 1, . . . , n−1, and s 6= b∗ , as well

as V (s) ≥ (s−K2)∨ 0 is satisfied for all s > 0. Moreover, since the time spent by the process

S at the boundary b∗ as well as at the levels Li , i = 1, . . . , n− 1, is of Lebesgue measure zero,

the indicator which appears in the integral of (4.2) can be ignored. Hence, it follows from the

expression in (4.2) that the inequalities

e−r(τ∧t) (Sτ∧t −K2) ∨ 0 ≤ e−r(τ∧t) V (Sτ∧t) ≤ V (s) +Mτ∧t (4.4)

hold for any stopping time τ of the process S started at s > 0. Then, taking the expectation

with respect to P in (4.4), we get by means of Doob’s optional sampling theorem (see, e.g. [12;

Chapter I, Theorem 3.22]) that the inequalities

E
[
e−r(τ∧t) (Sτ∧t −K2) ∨ 0

]
≤ E

[
e−r(τ∧t) V (Sτ∧t)

]
≤ V (s) + E

[
Mτ∧t

]
= V (s) (4.5)

hold for all s > 0. Thus, letting t go to infinity and using Fatou’s lemma, we obtain

E
[
e−rτ (Sτ −K2) ∨ 0

]
≤ E

[
e−rτ V (Sτ )

]
≤ V (s) (4.6)

for any stopping time τ and all s > 0. By virtue of the structure of the stopping time τ ∗ in

the right-hand part of (2.5), it is readily seen that the equality in (4.6) holds with τ ∗ instead

of τ when s ≥ b∗ .

It remains to show that the equality is attained in (4.6) when τ ∗ replaces τ for s < b∗ . By

virtue of the fact that the function V (s; b∗) and the boundary b∗ satisfy the conditions in the

right-hand parts of (2.7) and (2.8), it follows from the expression in (4.2) and the structure of

the stopping time τ ∗ in the right-hand part of (2.5) that the equality

e−r(τ
∗∧t) V (Sτ∗∧t) = V (s) +Mτ∗∧t (4.7)

is satisfied for all s < b∗ , where the process M is defined in (4.3). Observe that the variable

e−rτ
∗
(Sτ∗−K2)∨0 is equal to zero on the event {τ ∗ =∞} (P -a.s.), and the process (Mτ∗∧t)t≥0

is a uniformly integrable martingale. Therefore, taking the expectations with respect to P and

letting t go to infinity, we can apply the Lebesgue dominated convergence for the expression

in (4.7) to obtain the equalities

E
[
e−rτ

∗
(Sτ∗ −K2) ∨ 0

]
= E

[
e−rτ

∗
V (Sτ∗)

]
= V (s) (4.8)
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for all s < b∗ . The latter, together with the inequality in (4.6), implies the fact that V (s)

coincides with the function V ∗(s) from the right-hand part of (2.3), and τ ∗ from the right-

hand part of (2.5) is an optimal stopping time. �
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