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Perpetual barrier options in jump-diffusion models*
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Abstract

We present a closed form solution to the perpetual American double barrier call
option problem in a model driven by a Brownian motion and a compound Poisson
process with exponential jumps. The method of proof is based on reducing the initial
irregular optimal stopping problem to an integro-differential free-boundary problem
and solving the latter by using continuous and smooth fit. The obtained solution of
the nontrivial free-boundary problem gives the possibility to observe some special

analytic properties of the value function at the optimal stopping boundaries.
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1 Introduction

The main aim of this paper is to present a closed form solution to the optimal stopping
problem (2.3) for the process S = (S;):>o defined in (2.1)-(2.2). This problem is related

to the option pricing theory in mathematical finance, where the process S can describe
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the price of a risky asset (e.g., a stock) on a financial market. In that case, the value (2.3)
can be interpreted as a fair price of a perpetual double barrier call option of American
type in a jump-diffusion model. The explicit expressions for the value function and the
stopping boundary are derived by means of reducing the initial irregular optimal stopping
problem (2.3) to the corresponding nontrivial integro-differential free-boundary problem
(2.6)-(2.10) and solving the latter by applying continuous- and smooth-fit conditions. We
note that the chosen approach based on reducing the initial optimal stopping problem
to solving the associated free-boundary problem provides more valuable information on
the nature of the solution than the standard so-called guess-and-verify approach. More
precisely, this approach gives the possibility to see the difference of the structure of the
solution under different relationships on the parameters of the model. Moreover, it can
be observed explicitly that the value function (2.3) may not be smooth at the stopping
boundary B, and may not be continuous at the point of discontinuity L of the payoff
function under some relationships on the parameters of the model. Such properties can
be explained by the sample path behavior of the jump-diffusion process S from (2.1)-
(2.2) as well as by the discontinuity of the reward in (2.3). The regularity of the value
function for optimal stopping problems for Markov processes with discontinuous rewards
and viscosity solutions of the related variational inequalities were studied in [2]-[3] and
[5].

For the classical Black-Merton-Scholes model driven by Brownian motion the problem
(2.3) was considered in [4] for the single barrier case and both finite and infinite horizon,
where the influence of the upper barrier on the stopping boundary was observed. The single
upper barrier perpetual American put option problem with and without constraints on the
short-selling of stock was considered in [13]. The closed-form expressions for the prices and
optimal hedging strategies were obtained and the related stochastic optimization problem
of mixed optimal stopping and singular control type in the constrained case was studied.
The barrier version of the Russian option problem, where the decision about stopping
should be taken before the price process reaches a ’"dangerous’ positive level, was recently
studied in [22].

In the present paper we study a more general model by adding a compound Poisson



process as driving term, where to simplify the exposition and aiming at closed form ex-
pressions for the value function and the stopping boundary we consider the perpetual
case and let the jumps be exponentially distributed. Besides the analytical tractability of
this model, it has some other desirable properties. For example, it is able to reproduce
the leptokurtic feature of the return distribution. In addition, taking a HARA-type utility
function and the corresponding utility-based martingale measure, the jumps remain expo-
nentially distributed under the measure transformation (see [14]-[15] and also [16]-[17] for
a detailed description of the model). Note that the obtained perpetual option prices can
be considered as upper estimations for arbitrage-free prices of the related options with
finite expiry which are widely used by practitioners. The barrier options of European type
in more general exponential Lévy models were recently considered in [6], where the precise
link between option prices and related partial integro-differential equations was explored.

The paper is organized as follows. In Section 2 we formulate the corresponding op-
timal stopping problem and reduce it to an equivalent integro-differential free-boundary
problem. In Section 3 we derive an explicit solution to the free-boundary problem that
also prepares the proof of the main result which is stated in Theorem 4.1. In Section 4
we verify that the solution of the free-boundary problem turns out to be a solution of
the initial optimal stopping problem. In Section 5 we give some concluding remarks and
comment the structure of the solution under different relationships on the parameters of

the model.

2 Formulation of the problem

Let us now formulate the related irregular optimal stopping problem for a discontinuous

reward and reduce it to the equivalent free-boundary problem.

2.1. For a precise formulation of the problem let us consider a probability space
(Q, F, P) with a standard Brownian motion W = (W;);>¢ and a jump process J = (J;)1>0
defined by J; = ZlN:tl Yi, where N = (Ny):>0 is a Poisson process with intensity A and
(Y:)ien is a sequence of independent random variables exponentially distributed with pa-

rameter 1 (W, N and (Y;);en are supposed to be independent). The stock price process



S = (S¢)i>0 is given by:

2 A0
S; = s exp r—(S—U——— t+oW,+0J, (2.1)
2 1-46
where 0 > 0, 0 < § < r and 0§ < 1. It follows that S solves the stochastic differential

equation:
dS, = S,_(r—0)dt+S,_c dW;+ S;_ / (eey—1>(,u(dt,dy)—y(dt,dy)) (So = s) (2.2)
0

where r is the riskless interest rate and the dividend rate payed to stockholders is 4.5;.
Here p(dt, dy) is the measure of jumps of the process J with the compensator v(dt, dy) =
AdtI(y > 0)eYdy, which means that we work directly under a martingale measure for S.
Note that the assumption # < 1 guarantees that the jumps of S are integrable under the
martingale measure, which is no restriction.

By using the utility arguments presented in the previous section (see also [12] or [8])
we may conclude that an arbitrage-free price for the perpetual American double barrier

call option coincides with the value of the following optimal stopping problem:
Vi(s) = sup E,[e”"" (S, — K)" I(1 < n)] (2.3)

where the supremum is taken over all stopping times 7 with respect to the natural filtration
of S, and E, denotes the expectation under the assumption that Sy = s for s > 0. Here
we set n = inf{t > 0| S; ¢ (L, H)} for some 0 < L < K < H given and fixed, and observe
that Vi(s) =0 for all 0 < s < L and s > H. We also note that when 6 = 0 the solution
of the problem (2.3) can be trivial (under H T 00), so that we assume that 6 > 0. Taking
into account the structure of the payoff function in the problem (2.3), we will search for

an optimal stopping time in the form:
7. =inf{t > 0[S, ¢ (L, B,)} (2.4)

for some number B, € (K, H) to be determined. The structure of (2.4) can be explained
by the fact that as in the case of standard perpetual American call option the process
S should be stopped after it overlaps the upper boundary B,, but this should be done
before it passes through one of the barriers L or H. Note that, so far the process S has



not passed through the lower barrier L, there should be a possibility for it to reach the

exercise boundary B, € (K, H) when the latter exists.

2.2. By means of standard arguments it can be shown that the infinitesimal operator
IL of the process S acts on an arbitrary bounded function F' € C£(0,00) (or F € C}(0, 00)

when o = 0) according to the rule:

2 ]

(LF)(s) = (r — 6+ O)s F'(s) + "732 F'(s) + / (F(seey) - F(s)) AeVdy  (2.5)
0

for all s > 0, where we denote ( = —A0/(1 — #). In order to find explicit expressions for

the unknown value function V,(s) from (2.3) and the unknown boundary B, from (2.4),

let us use the results of general theory of optimal stopping problems for continuous time

Markov processes (see, e.g., [9], [24, Chapter III, Section 8] and [20]). We can reduce the
optimal stopping problem (2.3) to the free-boundary problem:

(LV)(s) =rV(s) for L<s<B (2.6)
V(B-)=B—-K, V(L+)=0 ifeither 0 >0 or r—0+4+( <0 (2.7)
V(s)=s—K for B<s<H, V(s)=0for 0<s<L and s> H (2.8)
V(s)>(s—K)" for L<s<B (2.9)

for some 0 < K < B < H. The first equality in (2.7) is the instantaneous-stopping
condition playing the role of the continuous-fit condition in case ¢ = 0, and the second
equality in (2.7) is the continuity condition for the value function at the fixed point
L, which is a discontinuity point for the payoff function. The similar properties were
observed in [6] by solving barrier option problems of another European type with fixed
time expiry and discontinuous payoffs in models with jumps. Note that the superharmonic
characterization of the value function (see [7], [24] and [20]) implies that (2.3) is the
smallest function satisfying (2.6)-(2.9). Moreover, we further assume that the smooth-fit

condition:

V'(B—) =1 if either 0 >0 or r—6+¢>0 (2.10)

is satisfied for 0 < K < B < H. The latter can be explained by the fact that in those

cases, leaving the continuation region (L, B,) the process S can pass through the boundary
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B. < H continuously. This property was earlier observed and explained in [18, Section 2]
and [19] by solving some other optimal stopping problems for jump processes (see also [1]
for necessary and sufficient conditions for the occurrence of smooth fit and references to

the related literature, and [20] for an extensive overview).

3 Solution of the free-boundary problem

Let us now derive explicit solutions to the free-boundary problem formulated above under

different relationships on the parameters of the model.

3.1. Let us first consider the continuous case ¢ > 0 and 6 = 0. In this case, by means
of the same arguments as in [23, Section 8] or [25, Chapter VII, Section 2al, it can be

shown that the equation (2.6) has the general solution:
V(s) =C1 8"+ Cys7? (3.1)
where C and C5 are some arbitrary constants, and v, < 0 < 1 < v are given by:

1 r—9 ; 1 r=0\> 2r
%—5—‘;‘—FUVK§‘(ﬂ> t (3:2)

for i = 1,2. Hence, applying the conditions (2.7) and (2.10) to the function (3.1), we get

that the following equalities:

C\B"+CyB”?=B—-K (3.3)
CLL" +Cy L =0 (3.4)
’}/101 B + ’7202 B"”? =18 (35)

hold for some 0 < K < B < H. Thus, solving the system (3.3)-(3.5) we get that the
solution of the problem (2.6)-(2.7)+(2.10) is given by:

vw&wﬂa—Kygﬁﬁiﬁggw (36)

for all 0 < L < s < B,, where B, is determined as the unique solution of the equation:

W(B/L)" —a(B/L) _ B
(B/Ly"— (B/Ly»  B-K

(3.7)
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whenever its unique root belongs to the interval (K, H). The uniqueness of the root of
(3.7) on the interval (K, co) for each L € (0, K) fixed is easier to recognize after we rewrite
the left- and right-hand sides as v, + (y1 — 72)/[(B/L)" ™ — 1] and 1 + 1/(B/K — 1),
respectively, and recall that v < 0 <1 < 7.

Observe that when L = 0, taking into account the fact that 5 < 0 < 1 < 74, it
follows that in (3.1) we have Cy = 0, since otherwise V(s) — o0 as s | 0, which should
be excluded by virtue of the obvious fact that the value function (2.3) is bounded under
s | 0. Note that the same conclusion can be made based on the argument that 0 is a
natural boundary for the process S in this case. Thus, solving the system (3.3)+(3.5)
with Cy = 0, we get that the solution of the problem (2.6)-(2.7)4(2.10) takes the form:

V(s: B,) = (B, — K) (é)“ (3.8)

for all L < s < B,, where B, is given by:

K

B, =1 (3.9)
7 —1
whenever B, € (K, H). The formulas (3.8) and (3.9) were earlier obtained in [4, Section 1].

3.2. From now on let us consider the jump-diffusion case 6 # 0 and for the integrability
of jumps assume that § < 1. By means of straightforward calculations, we reduce the

equation (2.6) to the form:

(r—04¢Q)sV'(s) + %32 V"(s) —aXs®*G(s) = (r+ \) V(s) (3.10)

with & = 1/6 and ¢ = —\0/(1 — ), where taking into account the conditions (2.7)-(2.8)

we set:
B dz
G(s) = —/S V() oy + F(B,HK) i a=1/6>1 (3.11)
G(s) = /SV(z) ijl if a=1/0<0 (3.12)
L z

for all 0 < L < s < B and denote:

aB+(1—a)K aH+(1-a)K

F(B H,K) = Bea(l — «) Hea(l — «)

(3.13)



for each 0 < K < B < H. Then, from (3.10) and (3.11)-(3.12) it follows that the function
G(s) solves the following (third-order) ordinary differential equation:

0.2

733 G"(s)+ [0*(a+1)+7r— 56+ (]s*G(s) (3.14)

+ [(a+1) ((TZTQ+r—5+<> —(r+A)]sG’(S)—aAG(S)=0

for 0 < L < s < B, which has the general solution:
o o st o B2 o 03
s) — L0 Oy 3.15
) ' B ? B ° B (3.15)

where C, Cy and C3 are some arbitrary constants and O3 < 2 < (31, 3; # 0 fori = 1,2, 3,

are the real roots of the corresponding (characteristic) equation:

o? 1
?ﬁ3+|:0'2(04—§)+7“—5+C:|52 (316>

+{a(@er—é—i—C)—(r—i—)\)}ﬁ—a/\:().

Therefore, differentiating both sides of the formulas (3.11)-(3.12) we obtain that the

integro-differential equation (3.10) has the general solution:
V(s)=C1 8"+ Cy8? +C38™ (3.17)

where we set 7; = 3; + « for i = 1,2, 3. Observe that if c = 0 and r — § + { # 0 then it is
seen that (3.14) degenerates into a second-order differential equation, and in that case we
can put C5 = 0 into (3.15) and (3.17), while the roots of the equation (3.16) are explicitly

given by:

r+ A o ; T+ A a\’ al
@:—Q(T_Ho—g—el)\/(m—a) M= T

for i = 1,2. Note that if ¢ = 0 and r — § + = 0 then (3.14) degenerates into a first-order

differential equation, and in that case we can put Cy = C3 = 0 into (3.15) and (3.17),
while the unique root of the equation (3.16) is given by:

a
p = — -

(3.19)



Hence, by applying conditions (3.11)-(3.12), (2.7) and (2.10) to the functions (3.15) and

(3.17), respectively, we obtain that the following equalities:

BN B2 B3
C,— +Cy— + C3 — = B°F(B, H, K) (3.20)

b1 B2 3

Lt L2 L3
C + C +C3— =0 3.21
15 YOG v O (3:21)
CiB" +CyB? +C3B® =B - K (3.22)
Ci L+ Co L +C3L7 =0 (3.23)
’)/101 B -+ ")/202 B -+ ")/303 B =B (324)

hold for some 0 < K < B < H with F(B, H, K) defined in (3.13). Here (3.20) holds
if 0 < 0 < 1, (3.21) holds if # < 0, (3.23) holds if either 0 > 0 or 7 — 0 + ( < 0 with
¢ =—=XM/(1—-0), and (3.24) holds if either ¢ > 0 or r — d + ¢ > 0. Below we determine
the unknown constants C; for ¢ = 1,2,3 and the optimal boundary B, under different

relationships on the parameters of the model.

3.3. Let us now consider the subcase of negative jumps a = 1/6 < 0. If; in addition,
o > 0 holds, then solving the system (3.21)-(3.24), by using straightforward calculations
we obtain that the solution of the system (2.6)-(2.8)+(2.10) is given by:

Bi(Bs — B2)(s/ L) + Ba(Br — B3)(s/ L) + B3(Ba — B1)(s/L)"

Bi(B3 — B2)( B/ L)1 + Ba(B1 — B3)(Bs/ L) + B3(82 — 51)(3*{?{/)2?)

V(s; By) = (B. — K)

for all 0 < L < s < B,, where B, is determined as the unique solution of the equation:

B1(Bs — Ba)y1(B/ L) + Bo(Br — B3)v2(B/L)"? + B5(B2 — B1)vs(B/L)" _ B
B1(Bs — Bo)(B/ L) + Ba(B1 — Bs)(B/ L) + B3(B2 — 1) (B/L) B — I(g) )

whenever its unique root belongs to the interval (K, H). The uniqueness of the root of
(3.26) on the interval (K, 00) for each L € (0, K) fixed is easier to recognize after we
rewrite the left- and right-hand sides as v + [f2(81 — 83)(72 — 11)(B/L)"™ + B3(62 —
B1)(vs =) (B/L)*]/[B1(Bs — B2) (B/ L) + B2(B1 — B3)(B/ L) + B3(82 — 1) (B/L)*] and
1+ 1/(B/K — 1), respectively, and notice that if « =1/0 < 0 then 3 <0< s < —a <
l—a<frsothat 3 <a <y, <0<1l<vy withy, =08 +afori=1,23.

Note that if, in addition, ¢ = 0 holds, then we can put C3 = 0 into (3.15) and

(3.17) and omit the second condition in (2.7) implying (3.23). Thus, solving the system

9



(3.21)-(3.22)+(3.24) with C5 = 0, by using straightforward calculations we obtain that
the solution of the system (2.6)-(2.8)+(2.10) is given by:

Pi(s/L)™ — Ba(s/L)™
Bi(B./ L)1 = BoB./ L)

V(s; By) = (Bx — K) (3.27)

for all 0 < L < s < By, where B, is determined as the unique solution of the equation:

Bin(B/L)" — Bop(B/L)* B
B1(B/L)n — (By(B/ L) B-K

(3.28)

whenever its unique root belongs to the interval (K, H). The uniqueness of the root
of (3.28) on the interval (K, o00) for each L € (0, K) fixed is easier to recognize after
we rewrite the left- and right-hand sides as v, + (y1 — 72)/[(61/B2)(B/L)" 7" — 1] and
1+ 1/(B/K — 1), respectively.

Observe that when L = 0 we omit the second condition in (2.7) implying (3.23) as
well as (3.21) and take into account the fact that if & = 1/6 < 0 then 3 < 0 < Gy <
—a<l—a<pfysothat 13 < a <9 <0<1<vy withy =8 +afori=1,2,3.
It thus follows that in (3.15) as well as in (3.17) we have Cy = C3 = 0, since otherwise
G(s) — xoo and V(s) — +oo as s | 0 that should be excluded by virtue of the facts that
the value function (2.3) so that the function (3.12) are bounded under s | 0. Therefore,
solving the system (3.22)+(3.24) with Cy = C5 = 0 we obtain that the solution of the
system (2.6)-(2.8)+(2.10) is given by the same formulas as in (3.8)-(3.9) with = replaced
by 31 + «, where if o > 0 then (3 is the largest root of the equation (3.16), and if o = 0
then (3 is given by (3.18).

3.4. Let us now consider the subcase of positive jumps o« = 1/6 > 1. If, in addition,
o > 0 holds, then solving the system (3.20)+(3.22)-(3.24), by using straightforward cal-
culations we obtain that the solution of the system (2.6)-(2.8)4(2.10) is given by (3.17)

10



with C; = Cy(By, H, K, L) for i = 1,2,3 defined by:

[A(B., H, K) = (1 5(B. = K)|(L* B — L BY) + 01(B. — K) (6L B> — 5L BP)

@ = 5 — )BT (D2 B — L B) — (s — ) BE (L BT — LvBY)
(3.29)
C, — [A(B., H, K) — 3152(B. — K)|(L"™B}* — L""B}®) + B2( B — K)(1 L B> — 3317 B)*)
: (th— BB (7B — hBT) — (%~ ) BP(LeBE — LwBT)
(3.30)
O3 = [A(B., H, K) — 3233(B. — K)|(L"B}* — L*B]") + (33(B. — K)(82 L7 B)* — L™ B)?)

Bo(B1 — B3)BY (LM BY* — L2 B]*) — B5(61 — B2) B¥* (L BY — L B")
(3.31)

for all 0 < L < s < B, with A(B,H,K) = (16:03B*“F(B,H,K) for each 0 < K <
B < H, where B, is determined as the unique solution of the equation (3.24) with
C;=CyB.,H,K, L) fori = 1,2, 3 given by (3.29)-(3.31) on the interval (K, H) whenever
it exists.

Since in this subcase as well as in the other subcases below it is difficult to give a
direct proof of uniqueness of solution of equation (3.24) as well as (3.33), respectively, let
us clarify this point by means of the following arguments. We first note that in this subcase
as well as in other subcases below the two curves V(s; B') and V(s; B”) do not intersect
on the interval (L, B'] as solutions of the integro-differential equation (3.10) started at two
different points B’ and B” according to the first condition in (2.7) whenever K < B’ <
B" < H. This can be shown by applying the arguments similar to [18, Remark 2.2] and
[19, Theorem 4.1] or by verifying directly. Observe that we also have 0 < V'(K; B) < 1 for
all B € (K, H). Then, by using the fact that the function V'(s; B) is convex on [K, B] for
each B € (K, H) fixed, we may conclude that if limpg;y V'(B—; B) > 1 then there exists
a unique point B, € (K, H) at which the curve V(s; B,) hits the line s — K smoothly
implying that equation (3.24) has a unique solution on the interval (K, H). Observe that
if limpyy V/(B—; B) < 1 then there is no solution on (K, H) of (3.24) as well as (3.33),
respectively. The uniqueness of the roots of equations (3.34) and (3.35) below is verified
straightforwardly.

Note that if, in addition, ¢ = 0 holds with r —d + ¢ > 0 and ( = —\0/(1 — 6),
then we can put C3 = 0 into (3.15) and (3.17) and ignore the second condition in (2.7)

11



implying (3.23). Thus, solving the system (3.20)+(3.22)+(3.24) with C5 = 0, by using
straightforward calculations we obtain that the solution of the system (2.6)-(2.8)+(2.10)

is given by:

V(s;B.) = (B, — K)

B,
(3.32)

Bi(s/B)" — B2(s/B.)" +ﬂ1ﬁngF(B*,H, K) [( S >'Yl B ( s )72]

fr— P2 Or— B2 B,

for all 0 < L < s < B,, where B, is determined as the unique solution of the equation:

— B-K B
F(B,H,K) = i — Bz _ (3.33)

Bi— B2 BB (1B

on the interval (K, H) whenever it exists.

Observe that when L = 0 and either ¢ > 0, or 0 = 0 with r —d + ¢ > 0 holds, we also
ignore the second condition in (2.7) implying (3.23) and take into account the fact that
ifao=1/0>0then 3 < —a<l—-a<f<0<fysothat 3<0<l<mpm<a<m
with v, = 6, + « for i = 1,2,3. It thus follows that in (3.15) as well as in (3.17) we
have C3 = 0, since otherwise V(s) — 400 as s | 0 that should be excluded by virtue
of the fact that the value function (2.3) is bounded under s | 0. Therefore, solving the
system (3.20)+(3.22)+(3.24) with C5 = 0 we obtain that the solution of the system
(2.6)-(2.8)+(2.10) is given by the same formulas as in (3.32)-(3.33).

3.5. Let us finally consider the subcase 0 =0 and a« = 1/0 > 1 with r —§+ ¢ < 0 and
¢ = —M0/(1 —6). Observe that in this case we can put C3 = 0 and omit the smooth-fit
condition (2.10) implying (3.24). If, in addition, r — d + ¢ < 0 holds, then solving the
system (3.20)+(3.22)-(3.23) with C5 = 0, by using straightforward calculations we obtain
that the solution of the system (2.6)-(2.8) is given by the same formula as in (3.6) with
vi = fBi +a and f; for i = 1,2 are given by (3.18), where B, is determined as the unique

solution of the equation:

_ B—K Bi(B/L)" — B,(B/L)"
PR = 55— (B/Ly — (B/Ly .

on the interval (K, H) whenever it exists.

Note that if, in addition, r — § 4+ ¢ = 0 holds, then we can put Cy = C3 = 0 into (3.15)
and (3.17) and ignore the second condition in (2.7) implying (3.23). Thus, solving the
system (3.20)4(3.22) with Cy = C5 = 0, by using straightforward calculations we obtain

12



that the solution of the system (2.6)-(2.8) is given by the same formula as in (3.8) with
v = P1 + « and [ is given by (3.19), where B, is determined as the unique solution of

the equation:
B-K

F(B,H,K) = T

(3.35)

on the interval (K, H) whenever it exists.

Observe that when L = 0 we can take into account that if, in addition, r — 6 +{ < 0
holds, then 6, < —a < 1 —a < (4 < 0 so that v» < 0 < 1 <y with v = 06; + o,
where (3; for i = 1,2 are given by (3.18). It follows that in (3.15) as well as in (3.17) we
have Cy = C3 = 0, since otherwise V(s) — +oo as s | 0 that should be excluded by
virtue of the fact that the function (2.3) is bounded under s | 0. Note that if, in addition,
r— 0+ ¢ =0 holds, then 1 — a < ; < 0 so that vy > 1 with v; = 51 + «, where [ is
given by (3.19). Therefore, solving the system (3.20)+(3.22) with Cy = C3 = 0 we obtain
that the solution of the system (2.6)-(2.8) is given by the same formulas as in (3.8) and
(3.35), where if r — § + ¢ < 0 then f; is given by (3.18), while if r — d + ¢ = 0 then f; is
given by (3.19).

4 Main result and proof

Taking into account the facts proved above, let us now formulate the main assertion of

the paper.

Theorem 4.1. Let the process S be given by (2.1)-(2.2). Then the value function of
the optimal stopping problem (2.3) has the expression:

.

V(s;By), if L <s< B,

Vis)=4s—K, ifB.<s<H (4.1)

0, if 0<s<L or s>H

(
and the optimal stopping time has the structure (2.4) whenever B, belongs to the interval
(K, H), where the function V (s; B.) and the optimal stopping boundary B, are specified

as follows:
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(i) if o > 0 and 0 = 0 then V (s; B,) is given by (3.6) with B, being the unique solution
of (3.7) whenever it belongs to (K, H);

(i) if 0 < 0 and either 0 > 0 or 0 =0 then V (s; B,) is given by (3.25) or (3.27) with
B, being the unique solution of (3.26) or (3.28) whenever it belongs to (K, H), respectively;

(i11) if 0 < 6 < 1 and either 0 > 0, or o =0 withr —§ —\0/(1—0) > 0, then V (s; By)
is given by (3.17) with C; = Cy(B,, H,K, L) for i = 1,2,3 defined by (3.29)-(5.31), or
(8.32), with B, being the unique solution of (3.24) or (3.33) on (K, H) whenever it exists,
respectively;

(iv) ifo =0 and 0 < 0 < 1 with eitherr—0—X0/(1—60) <0 orr—30—X/(1—0) =0
then V (s; By) is given by (3.6) or (3.8) with B, being the unique solution of (3.34) or
(3.35) on (K, H) whenever it exists, respectively, where ~y; are replaced by ; + o and 3;
for i =1,2 are given by (3.18) in case r — 9 — N0/(1 — 0) < 0, and [y is given by (3.19)
in caser —9d — N0/(1 —0) =0.

Proof. In order to verify the assertions stated above, it remains to show that the
function (4.1) coincides with the value function (2.3) and the stopping time 7, from (2.4)
with the boundary B, specified above is optimal. For this, let us denote by V' (s) the right-
hand side of the expression (4.1). In this case, by means of straightforward calculations
and the assumptions above it follows that the function V(s) solves the system (2.6)-(2.8),
and the smooth-fit condition (2.10) is satisfied when either ¢ > 0 or r—§—X0/(1—6) > 0
holds. In addition, we observe that when either o > 0 or r—d —A0/(1—6) < 0 holds, then
V(s) turns out to be a convex function on the set [L, H'| for each H' € (K, H). Hence,
by applying Ito-Tanaka-Meyer formula (see, e.g., [10, Chapter V, Theorem 5.52] or [21,
Chapter IV, Theorem 70]) to e "V (S;) we obtain:

t
e "V (Sy) =V(s)+ / e " (LV —rV)(Su) (S, # B.)du+ M, (4.2)
0
for all 0 <t <7, where n = inf{t > 0| 5; ¢ (L, H)} and the process (M;)o<t<, given by:
¢
M, = / e "V (Su)I(Sy # By) oS, dW, (4.3)
0

b e (VS0 V(S (uld ) — vl )
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is a local martingale with respect to P, being a probability measure under which the
process S defined in (2.1)-(2.2) starts at s € (L, H). Remark that when o > 0, the
smooth-fit condition (2.10) holds, so that there is no local time term in the formula (4.2).
Observe that when ¢ = 0 and 6 # 0 with r — 6 — A\0/(1 — 0) > 0, the function V(s) is
continuously differentiable on (L, H). Thus, the expression (4.2) remains true by virtue
of the classical change-of-variable formula (see, e.g., [21, Chapter II, Theorem 31]). Note
that when 0 = 0 and r — 0 — A0/(1 —6) = 0, the indicators in the formulas (4.2) and (4.3)
can be set to one.

By using straightforward calculations and the arguments from the previous section,
it can be verified that (LV —rV)(s) < 0 for all L < s < H and s # B,. Moreover, by
means of standard arguments it can be shown that the function V' (s; B,) is increasing on
the interval (L, B.), and thus the property (2.9) also holds that together with (2.7)-(2.8)
yields V(s) > (s — K)* for all L < s < H. Observe that from (2.1) it is seen that when
either o > 0 or r—§ — \/(1 — @) # 0, the time spent by the process S at the point B, is
of Lebesgue measure zero. Thus, in those cases, the indicators appearing in the integrals
in (4.2)-(4.3) can be also ignored. Hence, from the expression (4.2) and the structure of

the stopping time in (2.4) with K < B, < H it follows that the inequalities:
e (S, —K)T <eV(S,) < V(s)+ M, (4.4)

hold for any stopping time 7 < n of the process S started at s € (L, H).
Let (7,)nen be an arbitrary localizing sequence of stopping times for the process
(My)o<i<y. Taking in (4.4) the expectation with respect to the measure P, by means

of the optional sampling theorem (see, e.g., [11, Chapter I, Theorem 1.39]) we get:

By [e7 ") (S prn — K)T] < B [e7"T ™ V(Sonn)] (4.5)
<V (s)+ Eg[Monr,] = V(s)

for all L < s < H. Hence, letting n go to infinity and using Fatou’s lemma, we obtain

that for any stopping time 7 < 7 the inequalities:
E, e (S, — K)T]| < E, [e7V(S;)] < V(s) (4.6)
are satisfied for all L < s < H.
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By virtue of the fact that the function V'(s) together with the boundary B, satisfy
the system (2.6)-(2.10) and taking into account the structure of 7, in (2.4), from the
expression (4.2) it follows that the equalities:

e~ T(TeATn) (Sfr*/\’rn _ K)+ — o T(TATR) V(ST*/\TTL) = V(S) + MT*/\Tn (47)

hold for all L < s < H and any localizing sequence (7, )nen of (M;)o<i<y. Observe that
by the structure of 7, and 71 as well as by the integrability of jumps of the process S, by
using the independence of the processes W and J in the expression (2.1), it can be shown
that the property:

Ei|supe ™M S | < oo (4.8)
>0

holds for all L < s < H and the variable e~"™ S, is equal to zero on the set {7, = oo}.
Hence, letting n go to infinity and using conditions (2.7)-(2.8), we can apply the Lebesgue

dominated convergence theorem for (4.7) to obtain the equality:
E,[e7™ (S, — K)t] =V(s) (4.9)

for all L < s < H, which together with (4.6) directly implies the desired assertion. OJ

By using the facts proved in the previous section and by applying the same arguments
as in the proof of Theorem 4.1, it is shown that the following assertion holds, which can

be formally obtained as the limiting case of the main result under L | 0.

Corollary 4.2. Suppose that in the conditions of Theorem 4.1 we have L = 0. Then
the value function of the problem (2.3) takes the form.:

(

V(s;B,), if 0<s< B,
Vi(s) = s — K, if B <s<H (4.10)

0, if or s> H

\
and the optimal stopping time is given by (2.4) whenever B, belongs to the interval (K, H),
where V (s; By) and the optimal stopping boundary B, are specified as follows:

(i) if c > 0 and 6 = 0 then V (s; By) is given by (3.8) with B, from (3.9) whenever it
belongs to (K, H), where v, is given by (3.2);
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(i) if 0 < 0 then V(s; By) is given by (3.8) with B, from (3.9) whenever it belongs to
(K, H) and v1 replaced by 1 + 1/0, where (31 is the largest root of the equation (3.16) in
case 0 > 0, and [ is given by (3.18) in case 0 = 0;

(#i) if 0 < 0 < 1 and either 0 >0, oro =0 withr—56—N0/(1—0) > 0, then V (s; B,)
is given by (3.32) with B, being the unique solution of (3.33) on (K, H) whenever it exists,
where v; = B; + 1/0 and (; for i = 1,2 are the largest roots of the equation (3.16) in case
o >0, and §; fori=1,2 are given by (3.18) in case 0 = 0;

() ifo =0 and0 < 0 < 1 with either r—6—X0/(1—60) < 0 orr—3d—X\0/(1—0) = 0 then
V (s; By) is given by (3.8) with B, being the unique solution of (3.35) on (K, H) whenever it
exists and vy replaced by $1+1/6, where By is given by (3.18) in case r—0—N0/(1—0) < 0,
and By is given by (3.19) in case r — 6 — A\0/(1 — ) = 0.

Let us now consider the question how changes in the volatility coefficient o affect the

optimal exercise boundary B,.

Remark 4.3. From the results of Theorem 4.1 it follows that the increase in ¢ may
expand the exercise (stopping) region [Bi,o0) of the perpetual American double barrier
call option with irregular (non-convex) payoff function, since it may result into a faster
exit of the process S from (L, H) after which the option become valueless. This stays in
contrast with the general fact that increased volatility increases the values and expands

the continuation regions of perpetual American options with convex exercise payoffs.
Let us finally consider the dependence of the solution on the lower barrier L.

Remark 4.4. Let us denote by V,(s; L) the fair price of the perpetual American double
barrier call option from (2.3) and by B,(L) the exercise boundary from (2.4), where we
underline the dependence on L € (0, K). Then, by the structure of the payoff in (2.3)
it follows that V,(s; L) decreases in L on (0, K'). Hence, a simple comparison argument
yields that B,(L) also decreases in L on (0, K). The intuition behind these properties is
that the holder should exercise an option with a higher floor L earlier than an option with

a lower one.
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5 Conclusion

We have considered the perpetual American double barrier call option problem in a jump-
diffusion model with infinite time horizon. The related irregular optimal stopping problem
has been reduced to a nontrivial free-boundary problem which has been solved under
different relationships on the parameters of the model. The behavior of the solution under
the changing lower barrier has been also studied. Let us finally make some concluding
remarks concerning the analytic properties of the obtained solution of the free-boundary

problem under several relationships on the parameters of the model.

Remark 5.1. Observe that when 0 =0 and 0 <0 < 1 withr—6 —X/(1 —0) <0 we
have V/(B,—) < 1 and thus the smooth-fit condition (2.10) fails to hold (see Figure 1).
This property can be explained by the fact that in this case, leaving the continuation
region (L, B,) the process S can pass through the boundary B, < H only by jumping.
Such an effect was earlier observed and explained in [18, Section 2] and [19] by solving

other optimal stopping problems for jump processes.

]

Y

L K B, H

V>

Figure 1. A computer drawing of the value function V,(s) and
the boundaries L and B, in the case of Remark 5.1.
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Remark 5.2. Note that when either ¢ > 0 or r —§ — A\0/(1 — 0) > 0, the solution B,
of equations (3.5) and (3.24) may coincide with the given upper barrier H. This means
that V/(H—) = 1 may hold, which is equivalent to the smooth-fit condition (2.10) (see
Figure 2), but at the same time, the boundary H is not optimal. This property can be
explained by the discontinuity of the payoff function in (2.3) at the point H in these cases.

L K B.=H 5

Figure 2. A computer drawing of the value function V,(s) and
the boundaries L and B, in the case of Remark 5.2.

Remark 5.3. Observe that when o = 0 and 6 < 0 we have V,(L+) > 0 and thus the
second condition in (2.7) fails to hold (see Figure 3). This property can be explained by
the fact that r — 0 — A0/(1 — 6) > 0 under 6 < 0, so that leaving the continuation region
(L, B,) the process S can pass through the fixed boundary L only by jumping. Such an

effect was earlier observed and explained in [18, Section 3] (see also [1] and [6]).

The continuity of the value function in optimal stopping problems with discontinuous
rewards was studied in [2]-[3] and [5]. According to the results in [1] and [6] we may con-
clude that the properties described in Remarks 5.1-5.3 appear because of finite intensity

of jumps and exponential distribution of jump sizes of the compound Poisson process J.

Remark 5.4. Note that when ¢ =0 with 0 <6 <1 and r —9J — A\0/(1 —0) > 0 the
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value function V,(s) and the stopping boundary B, do not depend on the lower barrier
L. This property can be explained by the fact that in this case the process S is strictly
increasing and thus it can never pass through the fixed boundary L after being started at

se (L, H).

i i
Tt

L K B, H

VAR 4

Figure 3. A computer drawing of the value function V,(s) and
the boundaries L and B, in the case of Remark 5.3.
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