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Abstract

We present a closed form solution to the perpetual American double barrier call

option problem in a model driven by a Brownian motion and a compound Poisson

process with exponential jumps. The method of proof is based on reducing the initial

irregular optimal stopping problem to an integro-differential free-boundary problem

and solving the latter by using continuous and smooth fit. The obtained solution of

the nontrivial free-boundary problem gives the possibility to observe some special

analytic properties of the value function at the optimal stopping boundaries.
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1 Introduction

The main aim of this paper is to present a closed form solution to the optimal stopping

problem (2.3) for the process S = (St)t≥0 defined in (2.1)-(2.2). This problem is related

to the option pricing theory in mathematical finance, where the process S can describe
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the price of a risky asset (e.g., a stock) on a financial market. In that case, the value (2.3)

can be interpreted as a fair price of a perpetual double barrier call option of American

type in a jump-diffusion model. The explicit expressions for the value function and the

stopping boundary are derived by means of reducing the initial irregular optimal stopping

problem (2.3) to the corresponding nontrivial integro-differential free-boundary problem

(2.6)-(2.10) and solving the latter by applying continuous- and smooth-fit conditions. We

note that the chosen approach based on reducing the initial optimal stopping problem

to solving the associated free-boundary problem provides more valuable information on

the nature of the solution than the standard so-called guess-and-verify approach. More

precisely, this approach gives the possibility to see the difference of the structure of the

solution under different relationships on the parameters of the model. Moreover, it can

be observed explicitly that the value function (2.3) may not be smooth at the stopping

boundary B∗ and may not be continuous at the point of discontinuity L of the payoff

function under some relationships on the parameters of the model. Such properties can

be explained by the sample path behavior of the jump-diffusion process S from (2.1)-

(2.2) as well as by the discontinuity of the reward in (2.3). The regularity of the value

function for optimal stopping problems for Markov processes with discontinuous rewards

and viscosity solutions of the related variational inequalities were studied in [2]-[3] and

[5].

For the classical Black-Merton-Scholes model driven by Brownian motion the problem

(2.3) was considered in [4] for the single barrier case and both finite and infinite horizon,

where the influence of the upper barrier on the stopping boundary was observed. The single

upper barrier perpetual American put option problem with and without constraints on the

short-selling of stock was considered in [13]. The closed-form expressions for the prices and

optimal hedging strategies were obtained and the related stochastic optimization problem

of mixed optimal stopping and singular control type in the constrained case was studied.

The barrier version of the Russian option problem, where the decision about stopping

should be taken before the price process reaches a ’dangerous’ positive level, was recently

studied in [22].

In the present paper we study a more general model by adding a compound Poisson
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process as driving term, where to simplify the exposition and aiming at closed form ex-

pressions for the value function and the stopping boundary we consider the perpetual

case and let the jumps be exponentially distributed. Besides the analytical tractability of

this model, it has some other desirable properties. For example, it is able to reproduce

the leptokurtic feature of the return distribution. In addition, taking a HARA-type utility

function and the corresponding utility-based martingale measure, the jumps remain expo-

nentially distributed under the measure transformation (see [14]-[15] and also [16]-[17] for

a detailed description of the model). Note that the obtained perpetual option prices can

be considered as upper estimations for arbitrage-free prices of the related options with

finite expiry which are widely used by practitioners. The barrier options of European type

in more general exponential Lévy models were recently considered in [6], where the precise

link between option prices and related partial integro-differential equations was explored.

The paper is organized as follows. In Section 2 we formulate the corresponding op-

timal stopping problem and reduce it to an equivalent integro-differential free-boundary

problem. In Section 3 we derive an explicit solution to the free-boundary problem that

also prepares the proof of the main result which is stated in Theorem 4.1. In Section 4

we verify that the solution of the free-boundary problem turns out to be a solution of

the initial optimal stopping problem. In Section 5 we give some concluding remarks and

comment the structure of the solution under different relationships on the parameters of

the model.

2 Formulation of the problem

Let us now formulate the related irregular optimal stopping problem for a discontinuous

reward and reduce it to the equivalent free-boundary problem.

2.1. For a precise formulation of the problem let us consider a probability space

(Ω,F , P ) with a standard Brownian motion W = (Wt)t≥0 and a jump process J = (Jt)t≥0

defined by Jt =
∑Nt

i=1 Yi, where N = (Nt)t≥0 is a Poisson process with intensity λ and

(Yi)i∈N is a sequence of independent random variables exponentially distributed with pa-

rameter 1 (W , N and (Yi)i∈N are supposed to be independent). The stock price process
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S = (St)t≥0 is given by:

St = s exp

((
r − δ − σ2

2
− λθ

1− θ

)
t + σ Wt + θ Jt

)
(2.1)

where σ ≥ 0, 0 ≤ δ < r and θ < 1. It follows that S solves the stochastic differential

equation:

dSt = St−(r−δ) dt+St−σ dWt +St−

∫ ∞

0

(
eθy−1

)
(µ(dt, dy)−ν(dt, dy)) (S0 = s) (2.2)

where r is the riskless interest rate and the dividend rate payed to stockholders is δSt.

Here µ(dt, dy) is the measure of jumps of the process J with the compensator ν(dt, dy) =

λdtI(y > 0)e−ydy, which means that we work directly under a martingale measure for S.

Note that the assumption θ < 1 guarantees that the jumps of S are integrable under the

martingale measure, which is no restriction.

By using the utility arguments presented in the previous section (see also [12] or [8])

we may conclude that an arbitrage-free price for the perpetual American double barrier

call option coincides with the value of the following optimal stopping problem:

V∗(s) = sup
τ

Es

[
e−rτ (Sτ −K)+ I(τ < η)

]
(2.3)

where the supremum is taken over all stopping times τ with respect to the natural filtration

of S, and Es denotes the expectation under the assumption that S0 = s for s > 0. Here

we set η = inf{t ≥ 0 |St /∈ (L, H)} for some 0 < L < K < H given and fixed, and observe

that V∗(s) = 0 for all 0 < s ≤ L and s ≥ H. We also note that when δ = 0 the solution

of the problem (2.3) can be trivial (under H ↑ ∞), so that we assume that δ > 0. Taking

into account the structure of the payoff function in the problem (2.3), we will search for

an optimal stopping time in the form:

τ∗ = inf{t ≥ 0 |St /∈ (L, B∗)} (2.4)

for some number B∗ ∈ (K, H) to be determined. The structure of (2.4) can be explained

by the fact that as in the case of standard perpetual American call option the process

S should be stopped after it overlaps the upper boundary B∗, but this should be done

before it passes through one of the barriers L or H. Note that, so far the process S has
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not passed through the lower barrier L, there should be a possibility for it to reach the

exercise boundary B∗ ∈ (K,H) when the latter exists.

2.2. By means of standard arguments it can be shown that the infinitesimal operator

L of the process S acts on an arbitrary bounded function F ∈ C2
b (0,∞) (or F ∈ C1

b (0,∞)

when σ = 0) according to the rule:

(LF )(s) = (r − δ + ζ)s F ′(s) +
σ2

2
s2 F ′′(s) +

∫ ∞

0

(
F

(
seθy

)
− F (s)

)
λe−y dy (2.5)

for all s > 0, where we denote ζ = −λθ/(1 − θ). In order to find explicit expressions for

the unknown value function V∗(s) from (2.3) and the unknown boundary B∗ from (2.4),

let us use the results of general theory of optimal stopping problems for continuous time

Markov processes (see, e.g., [9], [24, Chapter III, Section 8] and [20]). We can reduce the

optimal stopping problem (2.3) to the free-boundary problem:

(LV )(s) = rV (s) for L < s < B (2.6)

V (B−) = B −K, V (L+) = 0 if either σ > 0 or r − δ + ζ < 0 (2.7)

V (s) = s−K for B ≤ s < H, V (s) = 0 for 0 < s ≤ L and s ≥ H (2.8)

V (s) ≥ (s−K)+ for L < s < B (2.9)

for some 0 < K < B < H. The first equality in (2.7) is the instantaneous-stopping

condition playing the role of the continuous-fit condition in case σ = 0, and the second

equality in (2.7) is the continuity condition for the value function at the fixed point

L, which is a discontinuity point for the payoff function. The similar properties were

observed in [6] by solving barrier option problems of another European type with fixed

time expiry and discontinuous payoffs in models with jumps. Note that the superharmonic

characterization of the value function (see [7], [24] and [20]) implies that (2.3) is the

smallest function satisfying (2.6)-(2.9). Moreover, we further assume that the smooth-fit

condition:

V ′(B−) = 1 if either σ > 0 or r − δ + ζ > 0 (2.10)

is satisfied for 0 < K < B < H. The latter can be explained by the fact that in those

cases, leaving the continuation region (L, B∗) the process S can pass through the boundary
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B∗ < H continuously. This property was earlier observed and explained in [18, Section 2]

and [19] by solving some other optimal stopping problems for jump processes (see also [1]

for necessary and sufficient conditions for the occurrence of smooth fit and references to

the related literature, and [20] for an extensive overview).

3 Solution of the free-boundary problem

Let us now derive explicit solutions to the free-boundary problem formulated above under

different relationships on the parameters of the model.

3.1. Let us first consider the continuous case σ > 0 and θ = 0. In this case, by means

of the same arguments as in [23, Section 8] or [25, Chapter VII, Section 2a], it can be

shown that the equation (2.6) has the general solution:

V (s) = C1 sγ1 + C2 sγ2 (3.1)

where C1 and C2 are some arbitrary constants, and γ2 < 0 < 1 < γ1 are given by:

γi =
1

2
− r − δ

σ2
− (−1)i

√(
1

2
− r − δ

σ2

)2

+
2r

σ2
(3.2)

for i = 1, 2. Hence, applying the conditions (2.7) and (2.10) to the function (3.1), we get

that the following equalities:

C1 Bγ1 + C2 Bγ2 = B −K (3.3)

C1 Lγ1 + C2 Lγ2 = 0 (3.4)

γ1C1 Bγ1 + γ2C2 Bγ2 = B (3.5)

hold for some 0 < K < B < H. Thus, solving the system (3.3)-(3.5) we get that the

solution of the problem (2.6)-(2.7)+(2.10) is given by:

V (s; B∗) = (B∗ −K)
(s/L)γ1 − (s/L)γ2

(B∗/L)γ1 − (B∗/L)γ2
(3.6)

for all 0 < L < s < B∗, where B∗ is determined as the unique solution of the equation:

γ1(B/L)γ1 − γ2(B/L)γ2

(B/L)γ1 − (B/L)γ2
=

B

B −K
(3.7)
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whenever its unique root belongs to the interval (K, H). The uniqueness of the root of

(3.7) on the interval (K,∞) for each L ∈ (0, K) fixed is easier to recognize after we rewrite

the left- and right-hand sides as γ1 + (γ1 − γ2)/[(B/L)γ1−γ2 − 1] and 1 + 1/(B/K − 1),

respectively, and recall that γ2 < 0 < 1 < γ1.

Observe that when L = 0, taking into account the fact that γ2 < 0 < 1 < γ1, it

follows that in (3.1) we have C2 = 0, since otherwise V (s) → ±∞ as s ↓ 0, which should

be excluded by virtue of the obvious fact that the value function (2.3) is bounded under

s ↓ 0. Note that the same conclusion can be made based on the argument that 0 is a

natural boundary for the process S in this case. Thus, solving the system (3.3)+(3.5)

with C2 = 0, we get that the solution of the problem (2.6)-(2.7)+(2.10) takes the form:

V (s; B∗) = (B∗ −K)
( s

B∗

)γ1

(3.8)

for all L < s < B∗, where B∗ is given by:

B∗ =
γ1K

γ1 − 1
(3.9)

whenever B∗ ∈ (K, H). The formulas (3.8) and (3.9) were earlier obtained in [4, Section 1].

3.2. From now on let us consider the jump-diffusion case θ 6= 0 and for the integrability

of jumps assume that θ < 1. By means of straightforward calculations, we reduce the

equation (2.6) to the form:

(r − δ + ζ)s V ′(s) +
σ2

2
s2 V ′′(s)− αλsα G(s) = (r + λ) V (s) (3.10)

with α = 1/θ and ζ = −λθ/(1− θ), where taking into account the conditions (2.7)-(2.8)

we set:

G(s) = −
∫ B

s

V (z)
dz

zα+1
+ F (B, H, K) if α = 1/θ > 1 (3.11)

G(s) =

∫ s

L

V (z)
dz

zα+1
if α = 1/θ < 0 (3.12)

for all 0 < L < s ≤ B and denote:

F (B, H, K) =
αB + (1− α)K

Bαα(1− α)
− αH + (1− α)K

Hαα(1− α)
(3.13)
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for each 0 < K < B < H. Then, from (3.10) and (3.11)-(3.12) it follows that the function

G(s) solves the following (third-order) ordinary differential equation:

σ2s3

2
G′′′(s) +

[
σ2(α + 1) + r − δ + ζ

]
s2 G′′(s) (3.14)

+

[
(α + 1)

(
σ2α

2
+ r − δ + ζ

)
− (r + λ)

]
s G′(s)− αλ G(s) = 0

for 0 < L < s < B, which has the general solution:

G(s) = C1
sβ1

β1

+ C2
sβ2

β2

+ C3
sβ3

β3

(3.15)

where C1, C2 and C3 are some arbitrary constants and β3 < β2 < β1, βi 6= 0 for i = 1, 2, 3,

are the real roots of the corresponding (characteristic) equation:

σ2

2
β3 +

[
σ2

(
α− 1

2

)
+ r − δ + ζ

]
β2 (3.16)

+

[
α

(
σ2(α− 1)

2
+ r − δ + ζ

)
− (r + λ)

]
β − αλ = 0.

Therefore, differentiating both sides of the formulas (3.11)-(3.12) we obtain that the

integro-differential equation (3.10) has the general solution:

V (s) = C1 sγ1 + C2 sγ2 + C3 sγ3 (3.17)

where we set γi = βi + α for i = 1, 2, 3. Observe that if σ = 0 and r− δ + ζ 6= 0 then it is

seen that (3.14) degenerates into a second-order differential equation, and in that case we

can put C3 = 0 into (3.15) and (3.17), while the roots of the equation (3.16) are explicitly

given by:

βi =
r + λ

2(r − δ + ζ)
− α

2
− (−1)i

√(
r + λ

2(r − δ + ζ)
− α

2

)2

+
αλ

r − δ + ζ
(3.18)

for i = 1, 2. Note that if σ = 0 and r− δ + ζ = 0 then (3.14) degenerates into a first-order

differential equation, and in that case we can put C2 = C3 = 0 into (3.15) and (3.17),

while the unique root of the equation (3.16) is given by:

β1 = − αλ

r + λ
. (3.19)
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Hence, by applying conditions (3.11)-(3.12), (2.7) and (2.10) to the functions (3.15) and

(3.17), respectively, we obtain that the following equalities:

C1
Bγ1

β1

+ C2
Bγ2

β2

+ C3
Bγ3

β3

= BαF (B, H, K) (3.20)

C1
Lγ1

β1

+ C2
Lγ2

β2

+ C3
Lγ3

β3

= 0 (3.21)

C1 Bγ1 + C2 Bγ2 + C3 Bγ3 = B −K (3.22)

C1 Lγ1 + C2 Lγ2 + C3 Lγ3 = 0 (3.23)

γ1C1 Bγ1 + γ2C2 Bγ2 + γ3C3 Bγ3 = B (3.24)

hold for some 0 < K < B < H with F (B, H, K) defined in (3.13). Here (3.20) holds

if 0 < θ < 1, (3.21) holds if θ < 0, (3.23) holds if either σ > 0 or r − δ + ζ < 0 with

ζ = −λθ/(1 − θ), and (3.24) holds if either σ > 0 or r − δ + ζ > 0. Below we determine

the unknown constants Ci for i = 1, 2, 3 and the optimal boundary B∗ under different

relationships on the parameters of the model.

3.3. Let us now consider the subcase of negative jumps α = 1/θ < 0. If, in addition,

σ > 0 holds, then solving the system (3.21)-(3.24), by using straightforward calculations

we obtain that the solution of the system (2.6)-(2.8)+(2.10) is given by:

V (s; B∗) = (B∗ −K)
β1(β3 − β2)(s/L)γ1 + β2(β1 − β3)(s/L)γ2 + β3(β2 − β1)(s/L)γ3

β1(β3 − β2)(B∗/L)γ1 + β2(β1 − β3)(B∗/L)γ2 + β3(β2 − β1)(B∗/L)γ3

(3.25)

for all 0 < L < s < B∗, where B∗ is determined as the unique solution of the equation:

β1(β3 − β2)γ1(B/L)γ1 + β2(β1 − β3)γ2(B/L)γ2 + β3(β2 − β1)γ3(B/L)γ3

β1(β3 − β2)(B/L)γ1 + β2(β1 − β3)(B/L)γ2 + β3(β2 − β1)(B/L)γ3
=

B

B −K
(3.26)

whenever its unique root belongs to the interval (K, H). The uniqueness of the root of

(3.26) on the interval (K,∞) for each L ∈ (0, K) fixed is easier to recognize after we

rewrite the left- and right-hand sides as γ1 + [β2(β1 − β3)(γ2 − γ1)(B/L)γ2 + β3(β2 −

β1)(γ3−γ1)(B/L)γ3 ]/[β1(β3−β2)(B/L)γ1 +β2(β1−β3)(B/L)γ2 +β3(β2−β1)(B/L)γ3 ] and

1 + 1/(B/K − 1), respectively, and notice that if α = 1/θ < 0 then β3 < 0 < β2 < −α <

1− α < β1 so that γ3 < α < γ2 < 0 < 1 < γ1 with γi = βi + α for i = 1, 2, 3.

Note that if, in addition, σ = 0 holds, then we can put C3 = 0 into (3.15) and

(3.17) and omit the second condition in (2.7) implying (3.23). Thus, solving the system
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(3.21)-(3.22)+(3.24) with C3 = 0, by using straightforward calculations we obtain that

the solution of the system (2.6)-(2.8)+(2.10) is given by:

V (s; B∗) = (B∗ −K)
β1(s/L)γ1 − β2(s/L)γ2

β1(B∗/L)γ1 − β2(B∗/L)γ2
(3.27)

for all 0 < L < s < B∗, where B∗ is determined as the unique solution of the equation:

β1γ1(B/L)γ1 − β2γ2(B/L)γ2

β1(B/L)γ1 − β2(B/L)γ2
=

B

B −K
(3.28)

whenever its unique root belongs to the interval (K, H). The uniqueness of the root

of (3.28) on the interval (K,∞) for each L ∈ (0, K) fixed is easier to recognize after

we rewrite the left- and right-hand sides as γ1 + (γ1 − γ2)/[(β1/β2)(B/L)γ1−γ2 − 1] and

1 + 1/(B/K − 1), respectively.

Observe that when L = 0 we omit the second condition in (2.7) implying (3.23) as

well as (3.21) and take into account the fact that if α = 1/θ < 0 then β3 < 0 < β2 <

−α < 1 − α < β1 so that γ3 < α < γ2 < 0 < 1 < γ1 with γi = βi + α for i = 1, 2, 3.

It thus follows that in (3.15) as well as in (3.17) we have C2 = C3 = 0, since otherwise

G(s) → ±∞ and V (s) → ±∞ as s ↓ 0 that should be excluded by virtue of the facts that

the value function (2.3) so that the function (3.12) are bounded under s ↓ 0. Therefore,

solving the system (3.22)+(3.24) with C2 = C3 = 0 we obtain that the solution of the

system (2.6)-(2.8)+(2.10) is given by the same formulas as in (3.8)-(3.9) with γ1 replaced

by β1 + α, where if σ > 0 then β1 is the largest root of the equation (3.16), and if σ = 0

then β1 is given by (3.18).

3.4. Let us now consider the subcase of positive jumps α = 1/θ > 1. If, in addition,

σ > 0 holds, then solving the system (3.20)+(3.22)-(3.24), by using straightforward cal-

culations we obtain that the solution of the system (2.6)-(2.8)+(2.10) is given by (3.17)
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with Ci = Ci(B∗, H,K, L) for i = 1, 2, 3 defined by:

C1 =
[A(B∗, H,K)− β1β3(B∗ −K)](Lγ2Bγ3

∗ − Lγ3Bγ2
∗ ) + β1(B∗ −K)(β3L

γ3Bγ2
∗ − β2L

γ2Bγ3
∗ )

β3(β2 − β1)B
γ1
∗ (Lγ2Bγ3

∗ − Lγ3Bγ2
∗ )− β1(β2 − β3)B

γ3
∗ (Lγ2Bγ1

∗ − Lγ1Bγ2
∗ )

(3.29)

C2 =
[A(B∗, H,K)− β1β2(B∗ −K)](Lγ3Bγ1

∗ − Lγ1Bγ3
∗ ) + β2(B∗ −K)(β1L

γ1Bγ3
∗ − β3L

γ3Bγ1
∗ )

β1(β3 − β2)B
γ2
∗ (Lγ3Bγ1

∗ − Lγ1Bγ3
∗ )− β2(β3 − β1)B

γ1
∗ (Lγ3Bγ2

∗ − Lγ2Bγ3
∗ )

(3.30)

C3 =
[A(B∗, H,K)− β2β3(B∗ −K)](Lγ1Bγ2

∗ − Lγ2Bγ1
∗ ) + β3(B∗ −K)(β2L

γ2Bγ1
∗ − β1L

γ1Bγ2
∗ )

β2(β1 − β3)B
γ3
∗ (Lγ1Bγ2

∗ − Lγ2Bγ1
∗ )− β3(β1 − β2)B

γ2
∗ (Lγ1Bγ3

∗ − Lγ3Bγ1
∗ )

(3.31)

for all 0 < L < s < B∗ with A(B, H, K) = β1β2β3B
αF (B, H, K) for each 0 < K <

B < H, where B∗ is determined as the unique solution of the equation (3.24) with

Ci = Ci(B∗, H,K, L) for i = 1, 2, 3 given by (3.29)-(3.31) on the interval (K, H) whenever

it exists.

Since in this subcase as well as in the other subcases below it is difficult to give a

direct proof of uniqueness of solution of equation (3.24) as well as (3.33), respectively, let

us clarify this point by means of the following arguments. We first note that in this subcase

as well as in other subcases below the two curves V (s; B′) and V (s; B′′) do not intersect

on the interval (L, B′] as solutions of the integro-differential equation (3.10) started at two

different points B′ and B′′ according to the first condition in (2.7) whenever K < B′ <

B′′ < H. This can be shown by applying the arguments similar to [18, Remark 2.2] and

[19, Theorem 4.1] or by verifying directly. Observe that we also have 0 < V ′(K; B) < 1 for

all B ∈ (K,H). Then, by using the fact that the function V (s; B) is convex on [K, B] for

each B ∈ (K, H) fixed, we may conclude that if limB↑H V ′(B−; B) > 1 then there exists

a unique point B∗ ∈ (K, H) at which the curve V (s; B∗) hits the line s − K smoothly

implying that equation (3.24) has a unique solution on the interval (K, H). Observe that

if limB↑H V ′(B−; B) < 1 then there is no solution on (K, H) of (3.24) as well as (3.33),

respectively. The uniqueness of the roots of equations (3.34) and (3.35) below is verified

straightforwardly.

Note that if, in addition, σ = 0 holds with r − δ + ζ > 0 and ζ = −λθ/(1 − θ),

then we can put C3 = 0 into (3.15) and (3.17) and ignore the second condition in (2.7)
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implying (3.23). Thus, solving the system (3.20)+(3.22)+(3.24) with C3 = 0, by using

straightforward calculations we obtain that the solution of the system (2.6)-(2.8)+(2.10)

is given by:

V (s; B∗) = (B∗−K)
β1(s/B∗)

γ1 − β2(s/B∗)
γ2

β1 − β2

+
β1β2B

α
∗ F (B∗, H,K)

β1 − β2

[( s

B∗

)γ1

−
( s

B∗

)γ2
]

(3.32)

for all 0 < L < s < B∗, where B∗ is determined as the unique solution of the equation:

F (B, H, K) =
β1γ1 − β2γ2

β1 − β2

B −K

β1β2Bα
− B

β1β2Bα
(3.33)

on the interval (K, H) whenever it exists.

Observe that when L = 0 and either σ > 0, or σ = 0 with r− δ + ζ > 0 holds, we also

ignore the second condition in (2.7) implying (3.23) and take into account the fact that

if α = 1/θ > 0 then β3 < −α < 1 − α < β2 < 0 < β1 so that γ3 < 0 < 1 < γ2 < α < γ1

with γi = βi + α for i = 1, 2, 3. It thus follows that in (3.15) as well as in (3.17) we

have C3 = 0, since otherwise V (s) → ±∞ as s ↓ 0 that should be excluded by virtue

of the fact that the value function (2.3) is bounded under s ↓ 0. Therefore, solving the

system (3.20)+(3.22)+(3.24) with C3 = 0 we obtain that the solution of the system

(2.6)-(2.8)+(2.10) is given by the same formulas as in (3.32)-(3.33).

3.5. Let us finally consider the subcase σ = 0 and α = 1/θ > 1 with r− δ + ζ ≤ 0 and

ζ = −λθ/(1 − θ). Observe that in this case we can put C3 = 0 and omit the smooth-fit

condition (2.10) implying (3.24). If, in addition, r − δ + ζ < 0 holds, then solving the

system (3.20)+(3.22)-(3.23) with C3 = 0, by using straightforward calculations we obtain

that the solution of the system (2.6)-(2.8) is given by the same formula as in (3.6) with

γi = βi + α and βi for i = 1, 2 are given by (3.18), where B∗ is determined as the unique

solution of the equation:

F (B, H, K) =
B −K

β1β2Bα

β1(B/L)γ1 − β2(B/L)γ2

(B/L)γ1 − (B/L)γ2
(3.34)

on the interval (K,H) whenever it exists.

Note that if, in addition, r− δ + ζ = 0 holds, then we can put C2 = C3 = 0 into (3.15)

and (3.17) and ignore the second condition in (2.7) implying (3.23). Thus, solving the

system (3.20)+(3.22) with C2 = C3 = 0, by using straightforward calculations we obtain
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that the solution of the system (2.6)-(2.8) is given by the same formula as in (3.8) with

γ1 = β1 + α and β1 is given by (3.19), where B∗ is determined as the unique solution of

the equation:

F (B, H, K) =
B −K

β1Bα
(3.35)

on the interval (K, H) whenever it exists.

Observe that when L = 0 we can take into account that if, in addition, r − δ + ζ < 0

holds, then β2 < −α < 1 − α < β1 < 0 so that γ2 < 0 < 1 < γ1 with γi = βi + α,

where βi for i = 1, 2 are given by (3.18). It follows that in (3.15) as well as in (3.17) we

have C2 = C3 = 0, since otherwise V (s) → ±∞ as s ↓ 0 that should be excluded by

virtue of the fact that the function (2.3) is bounded under s ↓ 0. Note that if, in addition,

r − δ + ζ = 0 holds, then 1 − α < β1 < 0 so that γ1 > 1 with γ1 = β1 + α, where β1 is

given by (3.19). Therefore, solving the system (3.20)+(3.22) with C2 = C3 = 0 we obtain

that the solution of the system (2.6)-(2.8) is given by the same formulas as in (3.8) and

(3.35), where if r − δ + ζ < 0 then β1 is given by (3.18), while if r − δ + ζ = 0 then β1 is

given by (3.19).

4 Main result and proof

Taking into account the facts proved above, let us now formulate the main assertion of

the paper.

Theorem 4.1. Let the process S be given by (2.1)-(2.2). Then the value function of

the optimal stopping problem (2.3) has the expression:

V∗(s) =


V (s; B∗), if L < s < B∗

s−K, if B∗ ≤ s < H

0, if 0 < s ≤ L or s ≥ H

(4.1)

and the optimal stopping time has the structure (2.4) whenever B∗ belongs to the interval

(K, H), where the function V (s; B∗) and the optimal stopping boundary B∗ are specified

as follows:

13



(i) if σ > 0 and θ = 0 then V (s; B∗) is given by (3.6) with B∗ being the unique solution

of (3.7) whenever it belongs to (K, H);

(ii) if θ < 0 and either σ > 0 or σ = 0 then V (s; B∗) is given by (3.25) or (3.27) with

B∗ being the unique solution of (3.26) or (3.28) whenever it belongs to (K, H), respectively;

(iii) if 0 < θ < 1 and either σ > 0, or σ = 0 with r− δ−λθ/(1−θ) > 0, then V (s; B∗)

is given by (3.17) with Ci = Ci(B∗, H,K, L) for i = 1, 2, 3 defined by (3.29)-(3.31), or

(3.32), with B∗ being the unique solution of (3.24) or (3.33) on (K, H) whenever it exists,

respectively;

(iv) if σ = 0 and 0 < θ < 1 with either r− δ−λθ/(1−θ) < 0 or r− δ−λθ/(1−θ) = 0

then V (s; B∗) is given by (3.6) or (3.8) with B∗ being the unique solution of (3.34) or

(3.35) on (K, H) whenever it exists, respectively, where γi are replaced by βi + α and βi

for i = 1, 2 are given by (3.18) in case r − δ − λθ/(1− θ) < 0, and β1 is given by (3.19)

in case r − δ − λθ/(1− θ) = 0.

Proof. In order to verify the assertions stated above, it remains to show that the

function (4.1) coincides with the value function (2.3) and the stopping time τ∗ from (2.4)

with the boundary B∗ specified above is optimal. For this, let us denote by V (s) the right-

hand side of the expression (4.1). In this case, by means of straightforward calculations

and the assumptions above it follows that the function V (s) solves the system (2.6)-(2.8),

and the smooth-fit condition (2.10) is satisfied when either σ > 0 or r−δ−λθ/(1−θ) > 0

holds. In addition, we observe that when either σ > 0 or r−δ−λθ/(1−θ) < 0 holds, then

V (s) turns out to be a convex function on the set [L, H ′] for each H ′ ∈ (K, H). Hence,

by applying Itô-Tanaka-Meyer formula (see, e.g., [10, Chapter V, Theorem 5.52] or [21,

Chapter IV, Theorem 70]) to e−rtV (St) we obtain:

e−rt V (St) = V (s) +

∫ t

0

e−ru (LV − rV )(Su)I(Su 6= B∗) du + Mt (4.2)

for all 0 ≤ t < η, where η = inf{t ≥ 0 |St /∈ (L, H)} and the process (Mt)0≤t<η given by:

Mt =

∫ t

0

e−ru V ′(Su)I(Su 6= B∗) σSu dWu (4.3)

+

∫ t

0

∫ ∞

0

e−ru
(
V

(
Su−eθy

)
− V (Su−)

)
(µ(du, dy)− ν(du, dy))
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is a local martingale with respect to Ps being a probability measure under which the

process S defined in (2.1)-(2.2) starts at s ∈ (L, H). Remark that when σ > 0, the

smooth-fit condition (2.10) holds, so that there is no local time term in the formula (4.2).

Observe that when σ = 0 and θ 6= 0 with r − δ − λθ/(1 − θ) ≥ 0, the function V (s) is

continuously differentiable on (L, H). Thus, the expression (4.2) remains true by virtue

of the classical change-of-variable formula (see, e.g., [21, Chapter II, Theorem 31]). Note

that when σ = 0 and r− δ−λθ/(1− θ) = 0, the indicators in the formulas (4.2) and (4.3)

can be set to one.

By using straightforward calculations and the arguments from the previous section,

it can be verified that (LV − rV )(s) ≤ 0 for all L < s < H and s 6= B∗. Moreover, by

means of standard arguments it can be shown that the function V (s; B∗) is increasing on

the interval (L, B∗), and thus the property (2.9) also holds that together with (2.7)-(2.8)

yields V (s) ≥ (s −K)+ for all L < s < H. Observe that from (2.1) it is seen that when

either σ > 0 or r− δ− λθ/(1− θ) 6= 0, the time spent by the process S at the point B∗ is

of Lebesgue measure zero. Thus, in those cases, the indicators appearing in the integrals

in (4.2)-(4.3) can be also ignored. Hence, from the expression (4.2) and the structure of

the stopping time in (2.4) with K < B∗ < H it follows that the inequalities:

e−rτ (Sτ −K)+ ≤ e−rτ V (Sτ ) ≤ V (s) + Mτ (4.4)

hold for any stopping time τ < η of the process S started at s ∈ (L, H).

Let (τn)n∈N be an arbitrary localizing sequence of stopping times for the process

(Mt)0≤t<η. Taking in (4.4) the expectation with respect to the measure Ps, by means

of the optional sampling theorem (see, e.g., [11, Chapter I, Theorem 1.39]) we get:

Es

[
e−r(τ∧τn) (Sτ∧τn −K)+

]
≤ Es

[
e−r(τ∧τn) V (Sτ∧τn)

]
(4.5)

≤ V (s) + Es

[
Mτ∧τn

]
= V (s)

for all L < s < H. Hence, letting n go to infinity and using Fatou’s lemma, we obtain

that for any stopping time τ < η the inequalities:

Es

[
e−rτ (Sτ −K)+

]
≤ Es

[
e−rτ V (Sτ )

]
≤ V (s) (4.6)

are satisfied for all L < s < H.
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By virtue of the fact that the function V (s) together with the boundary B∗ satisfy

the system (2.6)-(2.10) and taking into account the structure of τ∗ in (2.4), from the

expression (4.2) it follows that the equalities:

e−r(τ∗∧τn) (Sτ∗∧τn −K)+ = e−r(τ∗∧τn) V (Sτ∗∧τn) = V (s) + Mτ∗∧τn (4.7)

hold for all L < s < H and any localizing sequence (τn)n∈N of (Mt)0≤t<η. Observe that

by the structure of τ∗ and η as well as by the integrability of jumps of the process S, by

using the independence of the processes W and J in the expression (2.1), it can be shown

that the property:

Es

[
sup
t≥0

e−r(τ∗∧t) Sτ∗∧t

]
< ∞ (4.8)

holds for all L < s < H and the variable e−rτ∗Sτ∗ is equal to zero on the set {τ∗ = ∞}.

Hence, letting n go to infinity and using conditions (2.7)-(2.8), we can apply the Lebesgue

dominated convergence theorem for (4.7) to obtain the equality:

Es

[
e−rτ∗ (Sτ∗ −K)+

]
= V (s) (4.9)

for all L < s < H, which together with (4.6) directly implies the desired assertion. �

By using the facts proved in the previous section and by applying the same arguments

as in the proof of Theorem 4.1, it is shown that the following assertion holds, which can

be formally obtained as the limiting case of the main result under L ↓ 0.

Corollary 4.2. Suppose that in the conditions of Theorem 4.1 we have L = 0. Then

the value function of the problem (2.3) takes the form:

V∗(s) =


V (s; B∗), if 0 < s < B∗

s−K, if B∗ ≤ s < H

0, if or s ≥ H

(4.10)

and the optimal stopping time is given by (2.4) whenever B∗ belongs to the interval (K, H),

where V (s; B∗) and the optimal stopping boundary B∗ are specified as follows:

(i) if σ > 0 and θ = 0 then V (s; B∗) is given by (3.8) with B∗ from (3.9) whenever it

belongs to (K, H), where γ1 is given by (3.2);
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(ii) if θ < 0 then V (s; B∗) is given by (3.8) with B∗ from (3.9) whenever it belongs to

(K, H) and γ1 replaced by β1 + 1/θ, where β1 is the largest root of the equation (3.16) in

case σ > 0, and β1 is given by (3.18) in case σ = 0;

(iii) if 0 < θ < 1 and either σ > 0, or σ = 0 with r− δ−λθ/(1−θ) > 0, then V (s; B∗)

is given by (3.32) with B∗ being the unique solution of (3.33) on (K,H) whenever it exists,

where γi = βi + 1/θ and βi for i = 1, 2 are the largest roots of the equation (3.16) in case

σ > 0, and βi for i = 1, 2 are given by (3.18) in case σ = 0;

(iv) if σ = 0 and 0 < θ < 1 with either r−δ−λθ/(1−θ) < 0 or r−δ−λθ/(1−θ) = 0 then

V (s; B∗) is given by (3.8) with B∗ being the unique solution of (3.35) on (K,H) whenever it

exists and γ1 replaced by β1+1/θ, where β1 is given by (3.18) in case r−δ−λθ/(1−θ) < 0,

and β1 is given by (3.19) in case r − δ − λθ/(1− θ) = 0.

Let us now consider the question how changes in the volatility coefficient σ affect the

optimal exercise boundary B∗.

Remark 4.3. From the results of Theorem 4.1 it follows that the increase in σ may

expand the exercise (stopping) region [B∗,∞) of the perpetual American double barrier

call option with irregular (non-convex) payoff function, since it may result into a faster

exit of the process S from (L, H) after which the option become valueless. This stays in

contrast with the general fact that increased volatility increases the values and expands

the continuation regions of perpetual American options with convex exercise payoffs.

Let us finally consider the dependence of the solution on the lower barrier L.

Remark 4.4. Let us denote by V∗(s; L) the fair price of the perpetual American double

barrier call option from (2.3) and by B∗(L) the exercise boundary from (2.4), where we

underline the dependence on L ∈ (0, K). Then, by the structure of the payoff in (2.3)

it follows that V∗(s; L) decreases in L on (0, K). Hence, a simple comparison argument

yields that B∗(L) also decreases in L on (0, K). The intuition behind these properties is

that the holder should exercise an option with a higher floor L earlier than an option with

a lower one.
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5 Conclusion

We have considered the perpetual American double barrier call option problem in a jump-

diffusion model with infinite time horizon. The related irregular optimal stopping problem

has been reduced to a nontrivial free-boundary problem which has been solved under

different relationships on the parameters of the model. The behavior of the solution under

the changing lower barrier has been also studied. Let us finally make some concluding

remarks concerning the analytic properties of the obtained solution of the free-boundary

problem under several relationships on the parameters of the model.

Remark 5.1. Observe that when σ = 0 and 0 < θ < 1 with r− δ−λθ/(1− θ) ≤ 0 we

have V ′
∗(B∗−) < 1 and thus the smooth-fit condition (2.10) fails to hold (see Figure 1).

This property can be explained by the fact that in this case, leaving the continuation

region (L, B∗) the process S can pass through the boundary B∗ < H only by jumping.

Such an effect was earlier observed and explained in [18, Section 2] and [19] by solving

other optimal stopping problems for jump processes.

-
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V

sL K B∗ H

H −K

V∗(s)

Figure 1. A computer drawing of the value function V∗(s) and
the boundaries L and B∗ in the case of Remark 5.1.
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Remark 5.2. Note that when either σ > 0 or r− δ− λθ/(1− θ) > 0, the solution B∗

of equations (3.5) and (3.24) may coincide with the given upper barrier H. This means

that V ′
∗(H−) = 1 may hold, which is equivalent to the smooth-fit condition (2.10) (see

Figure 2), but at the same time, the boundary H is not optimal. This property can be

explained by the discontinuity of the payoff function in (2.3) at the point H in these cases.

-
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V

sL K B∗ = H

H −K

V∗(s)

Figure 2. A computer drawing of the value function V∗(s) and
the boundaries L and B∗ in the case of Remark 5.2.

Remark 5.3. Observe that when σ = 0 and θ < 0 we have V∗(L+) > 0 and thus the

second condition in (2.7) fails to hold (see Figure 3). This property can be explained by

the fact that r − δ − λθ/(1− θ) > 0 under θ < 0, so that leaving the continuation region

(L, B∗) the process S can pass through the fixed boundary L only by jumping. Such an

effect was earlier observed and explained in [18, Section 3] (see also [1] and [6]).

The continuity of the value function in optimal stopping problems with discontinuous

rewards was studied in [2]-[3] and [5]. According to the results in [1] and [6] we may con-

clude that the properties described in Remarks 5.1-5.3 appear because of finite intensity

of jumps and exponential distribution of jump sizes of the compound Poisson process J .

Remark 5.4. Note that when σ = 0 with 0 < θ < 1 and r − δ − λθ/(1− θ) ≥ 0 the
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value function V∗(s) and the stopping boundary B∗ do not depend on the lower barrier

L. This property can be explained by the fact that in this case the process S is strictly

increasing and thus it can never pass through the fixed boundary L after being started at

s ∈ (L, H).

-
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sL K B∗ H

H −K

V∗(s)

Figure 3. A computer drawing of the value function V∗(s) and
the boundaries L and B∗ in the case of Remark 5.3.
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