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We study the Bayesian problems of detecting a change in the drift rate of an observable

diffusion process with linear and exponential penalty costs for a detection delay. The

optimal times of alarms are found as the first times at which the weighted likelihood ratios

hit stochastic boundaries depending on the current observations. The proof is based on

the reduction of the initial problems into appropriate three-dimensional optimal stopping

problems and the analysis of the associated parabolic-type free-boundary problems. We

provide closed form estimates for the value functions and the boundaries, under certain

nontrivial relations between the coefficients of the observable diffusion.

1. Introduction

The problem of quickest disorder detection for an observable diffusion process seeks to

determine a stopping time of alarm τ which is as close as possible to the unknown time of

disorder (or change-point) θ at which the local drift rate of the process changes from µ0(·) to

µ1(·). In the classical Bayesian formulation, it is assumed that the random time θ takes the

value 0 with probability π and is exponentially distributed with parameter λ > 0 given that

θ > 0. An optimality criterion was proposed in [22]-[23] for the time of alarm to minimize

a linear combination of the false alarm probability and the expected time delay in detecting
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the disorder correctly, for sequences of i.i.d. observations. An explicit solution of the problem

of detecting a change in the constant drift rate of an observable Wiener process with the

same optimality criterion was derived in [25]-[26]. The appropriate optimal stopping problem

for the posterior probability of the occurrence of disorder was reduced to the associated free-

boundary problem for an ordinary differential operator (see also [27; Chapter IV, Section 4] or

[17; Chapter VI, Section 22]). A finite time horizon version of the Wiener disorder problem

was studied in [9].

The idea of replacing the initial average time delay by a certain non-additive detection

delay penalty criterion was originally introduced in [24]. The resulting Bayesian risk function

was expressed through the current state of a multi-dimensional Markovian sufficient statistic

having state space components which are different from the posterior probability. Such a process

contained all the necessary information to determine the structure of the optimal time of alarm

(see also more recent works [29], [30] and [6]). In the case of exponential penalty costs for a

delay, it was observed by Poor [18] that the weighted likelihood ratio process turns out to be

a one-dimensional Markovian sufficient statistic, for sequences of i.i.d. observations. This idea

was taken further by Beibel [4], who solved the corresponding problem of detecting a change

in the drift rate of an observable Wiener process as a generalized parking problem. Bayraktar

and Dayanik [1] recognized the same property from the structure of the ordinary differential-

difference equation in the free-boundary problem associated with the Bayesian problem of

detecting a change in the constant intensity rate of an observable Poisson process. Some

other formulations of the problem for the case of detecting a change in the arrival rate of a

Poisson process, leading to the appearance of essentially multi-dimensional Markovian sufficient

statistics, were studied by Bayraktar, Dayanik, and Karatzas [2]-[3]. Extensive overviews of

these and other related quickest sequential change-point detection methods were provided in

the monographs [28] and [19].

In the present paper, we study the Bayesian quickest disorder detection problems for observ-

able diffusions with linear and exponential delay penalty costs. We reduce the initial problems

to extended optimal stopping problems for three-dimensional Markov diffusion processes, hav-

ing the posterior probability, weighted likelihood ratio, and the observations as their state space

components. We show that the optimal stopping times are expressed as the first times at which

the weighted likelihood ratio processes hit stochastic boundaries depending on the current state

of the observation process only. We verify that the value functions and the optimal stopping

boundaries are characterized by means of the associated free-boundary problem for a second-

order partial differential operator. The latter turns out to be of parabolic type, because the
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observation process is a one-dimensional diffusion. We also derive closed form estimates for

the value functions and the boundaries for a special nontrivial subclass of observable diffusions.

The Bayesian sequential testing problem for such processes was recently solved in [10]. Another

related problem of transient signal detection and identification of two-sided changes in the drift

rates of observable diffusion processes was considered by Pospisil, Vecer and Hadjiliadis [20].

The paper is organized as follows. In Section 2, we formulate the Bayesian quickest disorder

detection problem for observable diffusion processes with linear and exponential delay penalty

costs and construct the associated multi-dimensional optimal stopping problem. In Sections 3

and 4, we present the associated free-boundary problem and reduce the resulting parabolic-type

partial differential operator to the normal form, which is amenable for further considerations.

Applying the change-of-variable formula with local time on surfaces, obtained by Peskir [16],

we verify that the solution of the free-boundary problem, which satisfies certain additional

conditions, provides the solution of the initial optimal stopping problem. We derive closed form

estimates for the value function and the boundary, which are uniquely determined as solutions

of ordinary differential equations, under certain nontrivial relations between the coefficients of

the observable diffusion. The main results are stated in Theorems 3.4 and 4.2.

2. Preliminaries

In this section, we give the Bayesian formulation of the problem (see [27; Chapter IV,

Section 4] or [17; Chapter VI, Section 22] for the case of Wiener processes) in which it is

assumed that one observes a sample path of the diffusion process X = (Xt)t≥0 with the drift

rate changing from µ0(·) to µ1(·) at some random time θ taking the value 0 with probability

π and being exponentially distributed with parameter λ > 0 under θ > 0.

2.1. (Formulation of the problem.) Suppose that, on a probability space (Ω,F , Pπ), there

exists a standard Brownian motion B = (Bt)t≥0 independent of a nonnegative random variable

θ such that Pπ(θ = 0) = π and Pπ(θ > t | θ > 0) = e−λt , for all t ≥ 0 and some λ > 0 fixed.

Let X = (Xt)t≥0 be a continuous process solving the stochastic differential equation:

dXt =
(
µ0(Xt) + I(θ ≤ t)(µ1(Xt)− µ0(Xt))

)
dt+ σ(Xt) dBt (2.1)

with X0 = x , where µi(x), i = 0, 1, and σ(x) > 0 are some continuously differentiable functions

on (0,∞), satisfying the conditions:

|µi(x)|+ |σ(x)| ≤ K (1 + |x|) and 0 <

∣∣∣∣µ1(x)− µ0(x)

σ(x)

∣∣∣∣ ≤ K (2.2)
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for all x > 0 and some K > 0 fixed. In order to facilitate the considerations of the examples

below, we assume the state space of the process X to be the positive half line (0,∞). It

thus follows from [14; Theorem 4.6] that the equation in (2.1) admits a unique strong solution

under θ = s , and hence, Pπ(X ∈ · | θ = s ) = P s(X ∈ · ) is the distribution law of a time-

homogeneous diffusion process started at some x > 0, with diffusion coefficient σ(x) and the

drift rate changing from µ0(x) to µ1(x) at time s ∈ [0,∞] . In this case, we may conclude that

the probability measure Pπ has the structure:

Pπ(X ∈ · ) = πP 0(X ∈ · ) + (1− π)

∫ ∞
0

P s(X ∈ · )λe−λs ds (2.3)

for any π ∈ [0, 1) fixed.

Based upon the continuous observation of the process X , our task is to find among the

stopping times τ of X (i.e. stopping times with respect to the natural filtration Ft = σ(Xs | 0 ≤
s ≤ t) of the process X ) an optimal time at which an alarm should be sounded as close as

possible to the unobservable time of disorder θ . More precisely, the Bayesian quickest detection

problem consists of computing the Bayesian risk function:

V (π) = inf
τ

(
Pπ(τ < θ) + Eπ[F (τ − θ)I(τ ≥ θ)]

)
(2.4)

and finding the optimal stopping time, called the π -Bayesian time, at which the infimum is

attained in (2.4). Here Pπ(τ < θ) is the probability of a false alarm, and Eπ[F (τ − θ)I(τ ≥ θ)]

is the expected costs of delay in detecting of the disorder correctly (i.e. when τ ≥ θ), where

the delay penalty function F (t) satisfies the conditions F (t) ≥ 0 for t ≥ 0, and F (t) = 0 for

t ≤ 0. We will further assume that either F (t) = ct or F (t) = c(eαt − 1) holds in (2.4) for all

t ≥ 0.

Remark 2.1. It was shown in [24], [29] and [6] that, when the Laplace transforms of de-

lay penalty functions are of rational structure, there exist finite-dimensional processes called

Markovian sufficient statistics in the corresponding Bayesian quickest detection problems. Such

(time-homogeneous strong) Markov processes containing all the necessary information to de-

termine the optimal stopping times (see [27; Chapter II, Section 15] for an extensive discussion

of this notion). For example, the function F (t) = ctδ for t ≥ 0, with some c, δ > 0, δ ∈ N ,

is of such type, while the assumption δ /∈ N leads to the appearance of an infinite-dimensional

Markovian sufficient statistic in that case.

2.2. (Likelihood ratio and posterior probability.) In order to derive Markovian sufficient

statistics for the problem of (2.4), for the cases of linear and exponential delay penalty functions
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indicated above, let us define the posterior probability process (πt)t≥0 by πt = P (θ ≤ t | Ft) for

t ≥ 0. Taking into account the fact that the probability measure P s is equivalent to Pπ on Ft
by construction, for any s ∈ [0,∞] , using Bayes’ formula (see, e.g. [14; Theorem 7.23]), we get

that (πt)t≥0 admits the representation:

πt = π
d(P 0 | Ft)
d(Pπ | Ft)

+ (1− π)

∫ t

0

d(P s | Ft)
d(Pπ | Ft)

λe−λs ds. (2.5)

Moreover, since the measure P u coincides with P t on Ft , for all 0 ≤ t ≤ u , we see that:

1− πt = (1− π)

∫ ∞
t

d(P u | Ft)
d(Pπ | Ft)

λe−λu du = (1− π) e−λt
d(P t | Ft)
d(Pπ | Ft)

(2.6)

is satisfied. By means of Girsanov’s theorem for diffusion processes (see, e.g. [14; Theo-

rem 7.19]), it follows from the structure of the observation process X in (2.1) that the likelihood

ratio process L = (Lt)t≥0 defined by:

Lt =
d(P 0 | Ft)
d(P t | Ft)

≡ d(P 0 | Ft)
d(P∞ | Ft)

(2.7)

admits the representation:

Lt = exp

(∫ t

0

µ1(Xs)− µ0(Xs)

σ2(Xs)
dXs −

1

2

∫ t

0

µ2
1(Xs)− µ2

0(Xs)

σ2(Xs)
ds

)
. (2.8)

Hence, the expressions in (2.7) and (2.8) yield that the properties:

d(P s | Ft)
d(Pπ | Ft)

d(Pπ | Ft)
d(P t | Ft)

=
d(P s | Ft)
d(P 0 | Ft)

d(P 0 | Ft)
d(P t | Ft)

=
d(P s | Fs)
d(P 0 | Fs)

d(P 0 | Ft)
d(P t | Ft)

≡ Lt
Ls

(2.9)

hold for each 0 ≤ s ≤ t . We therefore obtain from the representations in (2.5) and (2.6) that

the weighted likelihood ratio process (ϕt)t≥0 defined by ϕt = πt/(1− πt) has the form:

ϕt = eλtLt

(
π

1− π
+

∫ t

0

λe−λs

Ls
ds

)
. (2.10)

2.3. (Stochastic differential equations.) Applying Itô’s formula (see, e.g. [14; Chapter IV,

Theorem 4.4] or [21; Chapter IV, Theorem 3.3]) to the expression in (2.8), we get that the

process L admits the representation:

dLt =
µ1(Xt)− µ0(Xt)

σ2(Xt)
Lt (dXt − µ0(Xt) dt) (2.11)

with L0 = 1. Then, using the integration by parts formula, we see that the process (ϕt)t≥0

from (2.10) solves the stochastic differential equation:

dϕt =

(
λ(1 + ϕt) +

(
µ1(Xt)− µ0(Xt)

σ(Xt)

)2
ϕ2
t

1 + ϕt

)
dt+

µ1(Xt)− µ0(Xt)

σ(Xt)
ϕt dBt (2.12)
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with ϕ0 = ϕ ≡ π/(1− π). Hence, using Itô’s formula again, we obtain that the process (πt)t≥0

admits the representation:

dπt = λ(1− πt) dt+
µ1(Xt)− µ0(Xt)

σ(Xt)
πt(1− πt) dBt (2.13)

with π0 = π . Here, the innovation process B = (Bt)t≥0 defined by:

Bt =

∫ t

0

dXs

σ(Xs)
−
∫ t

0

(
µ0(Xs)

σ(Xs)
+ πs

µ1(Xs)− µ0(Xs)

σ(Xs)

)
ds (2.14)

is a standard Brownian motion under the measure Pπ , with respect to the filtration (Ft)t≥0 ,

according to P. Lévy’s characterization theorem (see, e.g. [14; Theorem 4.1] or [21; Chapter IV,

Theorem 3.6]). It thus follows from (2.14) that the process X admits the representation:

dXt =
(
µ0(Xt) + πt (µ1(Xt)− µ0(Xt))

)
dt+ σ(Xt) dBt (2.15)

with X0 = x . Taking into account the assumptions in (2.2), we may conclude by virtue of

Remark to [14; Chapter IV, Theorem 4.6] (see also [15; Chapter V, Theorem 5.2.1]) that the

processes (πt, Xt)t≥0 and (ϕt, Xt)t≥0 turn out to be unique strong solutions of the correspond-

ing systems of stochastic differential equations in (2.12), (2.13), and (2.15). According to

[15; Chapter VII, Theorem 7.2.4], such processes have the (time-homogeneous strong) Markov

property with respect to its natural filtration, which inherently coincides with (Ft)t≥0 .

2.4. (Some examples.) Let us now present some expressions for the Bayesian risk func-

tions and the appropriate Markovian sufficient statistics in the corresponding quickest disorder

detection problems for observable diffusion processes.

Example 2.2. Assume that we have F (t) = ct with some c > 0 fixed (see [25], [26],

[27; Chapter IV], and [17; Chapter VI, Section 22]). It is then shown by means of standard

arguments from [27; Chapter IV, Section 3] that the Bayesian risk function V (π) in (2.4) admits

the representation:

V ′(π, ϕ, x) = inf
τ
Eπ,ϕ,x

[
1− πτ +

∫ τ

0

(1− πt) cϕt dt
]

(2.16)

where the infimum is taken over all stopping times τ such that Eπ,ϕ,xτ <∞ holds. Here, Pπ,ϕ,x

is a measure of the diffusion process (πt, ϕt, Xt)t≥0 , started at some (π, ϕ, x) ∈ [0, 1)× [0,∞)×
(0,∞) and solving the equations in (2.12), (2.13), and (2.15), which is a Markovian sufficient

statistic in the problem.
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Example 2.3. Assume now that F (t) = c(eαt − 1) with some c, α > 0 fixed (see [24;

Example 4], [18], [4], and [1]). It can be shown following the schema of arguments from [1] that

the Bayesian risk function V (π) in (2.4) admits the representation:

V∗(π, φ, x) = inf
τ
Eπ,φ,x

[
1− πτ +

∫ τ

0

(1− πt) cαφt dt
]

(2.17)

where the infimum is taken over all stopping times τ such that the integral above has a finite

expectation, so that Eπ,φ,xτ < ∞ holds. Here, the weighted likelihood ratio process (φt)t≥0

defined by:

φt = e(α+λ)tLt

(
π

1− π
+

∫ t

0

λe−(α+λ)s

Ls
ds

)
(2.18)

solves the stochastic differential equation:

dφt =

(
λ+ (λ+ α)φt +

(
µ1(Xt)− µ0(Xt)

σ(Xt)

)2

πt φt

)
dt+

µ1(Xt)− µ0(Xt)

σ(Xt)
φt dBt (2.19)

with φ0 = φ ≡ π/(1−π). In this case, Pπ,φ,x is a measure of the diffusion process (πt, φt, Xt)t≥0 ,

started at some (π, φ, x) ∈ [0, 1)× [0,∞)× (0,∞) and solving the equations in (2.13), (2.19),

and (2.15), which is a Markovian sufficient statistic in the problem.

3. The case of exponential delay penalty costs

In this section, we formulate and prove the main assertions of the paper, which are related

to the quickest detection problem with exponential delay penalty costs of Example 2.3 above.

3.1. By means of the results of general theory of optimal stopping (see, e.g. [27; Chapter III]

or [17; Chapter I, Section 2.1]), it follows from the structure of the reward functional in (2.17)

that the optimal stopping time is given by:

τ∗ = inf{t ≥ 0 |V∗(πt, φt, Xt) = 1− πt} (3.1)

whenever the corresponding integral there is of finite expectation, so that Eπ,φ,xτ∗ <∞ holds.

In order to specify the structure of the stopping time in (3.1), we follow the arguments from

[9; Subsection 2.5] and use Itô’s formula to get:

1− πt = 1− π −
∫ t

0

λ (1− πs) ds+Nt (3.2)

where the process N = (Nt)t≥0 defined by:

Nt = −
∫ t

0

µ1(Xs)− µ0(Xs)

σ(Xs)
πs(1− πs) dBs (3.3)
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is a continuous local martingale under Pπ,φ,x . It follows directly from (3.2) that the process

(Nτ∧t)t≥0 is a uniformly integrable martingale for any stopping time τ satisfying Eπ,φ,xτ <

∞ . Then, applying Doob’s optional sampling theorem (see, e.g. [14; Theorem 3.6] or [21;

Chapter II, Theorem 3.2]), we get from the expression in (3.2) that:

Eπ,φ,x

[
1− πτ +

∫ τ

0

(1− πt) cαφt dt
]

= 1− π + Eπ,φ,x

∫ τ

0

(1− πt) (cαφt − λ) dt (3.4)

holds for all (π, φ, x) ∈ [0, 1) × [0,∞) × (0,∞) and any τ such that Eπ,φ,xτ < ∞ . Taking

into account the structure of the reward in (2.17), it is seen from (3.4) that it is never optimal

to stop when φt < λ/(cα) for any t ≥ 0. This shows that all the points (π, φ, x) such that

φ < λ/(cα) belong to the continuation region:

C∗ = {(π, φ, x) ∈ [0, 1)× [0,∞)× (0,∞) |V∗(π, φ, x) < 1− π}. (3.5)

3.2. In order to describe the structure of the set in (3.5), let us fix some (π, φ, x) ∈ C∗ and

denote by τ∗ = τ∗(π, φ, x) the optimal stopping time in the problem of (2.17). Then, by means

of the general optimal stopping theory for Markov processes (see, e.g. [27; Chapter III] or [17;

Chapter I, Section 2.2]), we conclude that:

V∗(π, φ, x) = Eπ,φ,x

[
1− πτ∗ +

∫ τ∗

0

(1− πt) cαφt dt
]
< 1− π (3.6)

holds. Hence, taking any φ′ such that φ′ < φ and using the explicit expression for the process

(φt)t≥0 through its starting point φ ≡ π/(1 − π) in (2.18), we obtain from (2.17) that the

inequalities:

V∗(π, φ
′, x) ≤ Eπ,φ′,x

[
1− πτ∗ +

∫ τ∗

0

(1− πt) cαφt dt
]

(3.7)

≤ Eπ,φ,x

[
1− πτ∗ +

∫ τ∗

0

(1− πt) cαφt dt
]

are satisfied. Thus, by virtue of the inequality in (3.6), we see that (π, φ′, x) ∈ C∗ . Taking

into account the multiplicative structure of the integrand in (2.17), we can therefore extend

the approach used in [18], [4], and [1], and further assume that there exists a function g∗(x)

such that 0 < λ/(cα) ≤ g∗(x) for x > 0, and the continuation region in (3.5) for the optimal

stopping problem of (2.17) takes the form:

C∗ = {(π, φ, x) ∈ [0, 1)× [0,∞)× (0,∞) |φ < g∗(x)} (3.8)

so that the corresponding stopping region is the closure of the set:

D∗ = {(π, φ, x) ∈ [0, 1)× [0,∞)× (0,∞) |φ > g∗(x)}. (3.9)
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3.3. In order to characterize the behavior of the boundary g∗(x) in (3.8)-(3.9), we observe

from the equation in (2.19) that the expression:∫ τ∗

0

(1− πt)φt dt =

∫ τ∗

0

1− πt
λ+ α

dφt −
∫ τ∗

0

1− πt
λ+ α

(λ+ ρ(Xt) πt φt) dt+N∗τ∗ (3.10)

holds for the optimal stopping time τ∗ = τ∗(π, φ, x) in (2.17) such that (π, φ, x) ∈ C∗ . Here,

the process N∗ = (N∗t )t≥0 defined by:

N∗t = −
∫ t

0

µ1(Xs)− µ0(Xs)

σ(Xs)

1− πs
λ+ α

φs dBs (3.11)

is a continuous local martingale under Pπ,φ,x , and ρ(x) is the so-called signal/noise ratio func-

tion given by:

ρ(x) =

(
µ1(x)− µ0(x)

σ(x)

)2

(3.12)

for any x > 0. Observe that the assumption that the integral in (2.17) taken up to the optimal

stopping time τ∗ is of finite expectation and the third inequality in (2.2) yield that the integral

in the left-hand side and the second integral on the right-hand side of (3.10) are of finite

expectation too. Then, taking into account the fact that 0 ≤ πt ≤ 1 holds for all t ≥ 0, and

assuming that the process (N∗τ∗∧t)t≥0 is a uniformly integrable martingale under Pπ,φ,x (which

is the case for the process (Mτ∗∧t)t≥0 from (3.37) under the conditions of Lemma 3.3 below),

by means of Doob’s optional sampling theorem, we get from the expression in (3.10) that:

Eπ,φ,x

∫ τ∗

0

(1− πt)φt dt = Eπ,φ,x

∫ τ∗

0

1− πt
λ+ α

dφt − Eπ,φ,x
∫ τ∗

0

1− πt
λ+ α

(λ+ ρ(Xt) πt φt) dt (3.13)

is satisfied. Let us now take x′ > 0 such that x < x′ and recall the fact that (πt, φt, Xt)t≥0 is

a time-homogeneous Markov process. Assume that (π, φ, x) ∈ C∗ is chosen sufficiently close to

the stopping boundary g∗(x), and note that τ∗ = τ∗(π, φ, x) does not depend on x′ . Hence,

applying the comparison results from [31] for solutions of stochastic differential equations, we

obtain that the expression in (3.13) yields that:

V∗(π, φ, x
′) ≤ Eπ,φ,x′

[
1− πτ∗ +

∫ τ∗

0

(1− πt) cαφt dt
]

(3.14)

≤ Eπ,φ,x

[
1− πτ∗ +

∫ τ∗

0

(1− πt) cαφt dt
]

= V∗(π, φ, x)

holds, whenever ρ(x) is an increasing function on (0,∞). By virtue of the inequality in (3.14),

we may therefore conclude that (π, φ, x′) ∈ C∗ , so that the boundary g∗(x) is increasing

(decreasing) in (3.8)-(3.9) whenever ρ(x) is increasing (decreasing) on (0,∞), respectively.
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Summarizing the facts proved above, we are now ready to formulate the following assertion.

Lemma 3.1. Suppose that µi(x), i = 0, 1, and σ(x) > 0 are continuously differentiable

functions on (0,∞) in (2.1) satisfying (2.2). Assume that the process (N∗τ∗∧t)t≥0 from (3.11) is

a uniformly integrable martingale. Then the optimal Bayesian time of alarm τ∗ in the quickest

disorder detection problem of (2.17) has the structure:

τ∗ = inf{t ≥ 0 |φt ≥ g∗(Xt)} (3.15)

whenever the corresponding integral has finite expectation, so that Eπ,φ,xτ∗ < ∞ holds, for all

(π, φ, x) ∈ [0, 1)× [0,∞)× (0,∞), and τ∗ = 0 otherwise. Moreover, the property:

g∗(x) : (0,∞)→ (λ/(cα),∞) is increasing/decreasing if ρ(x) is increasing/decreasing (3.16)

holds with ρ(x) defined in (3.12), for all x > 0.

3.4. By means of standard arguments based on the application of Itô’s formula, it is shown

that the infinitesimal operator L(π,φ,X) of the process (πt, φt, Xt)t≥0 from (2.13), (2.19), and

(2.15) has the structure:

L(π,φ,X) = λ(1− π)
∂

∂π
+

(
λ+ (λ+ α)φ+

(
µ1(x)− µ0(x)

σ(x)

)2

π φ

)
∂

∂φ
(3.17)

+
(
µ0(x) + (µ1(x)− µ0(x)) π

) ∂

∂x
+ (µ1(x)− µ0(x))

(
π(1− π)

∂2

∂π∂x
+ φ

∂2

∂φ∂x

)
+

1

2

(
µ1(x)− µ0(x)

σ(x)

)2(
π2(1− π)2 ∂

2

∂π2
+ 2π(1− π)φ

∂2

∂π∂φ
+ φ2 ∂2

∂φ2

)
+

1

2
σ2(x)

∂2

∂x2

for all (π, φ, x) ∈ [0, 1)× [0,∞)× (0,∞).

According to the results of the general theory of optimal stopping problems for continuous

time Markov processes (see, e.g. [11], [27; Chapter III, Section 8] and [17; Chapter IV, Sec-

tion 8]), we can formulate the associated free-boundary problem for the unknown value function

V∗(π, φ, x) from (2.17) and the boundary g∗(x) from (3.15):

(L(π,φ,X)V )(π, φ, x) = −(1− π) cαφ for (π, φ, x) ∈ C (3.18)

V (π, φ, x)
∣∣
φ=g(x)− = 1− π (instantaneous stopping) (3.19)

V (π, φ, x) = 1− π for (π, φ, x) ∈ D (3.20)

V (π, φ, x) < 1− π for (π, φ, x) ∈ C (3.21)

where C and D are defined as C∗ and D∗ in (3.8) and (3.9) with g(x) instead of g∗(x), and

the condition in (3.19) is satisfied for all π ∈ [0, 1) and x > 0.

10



Note that the superharmonic characterization of the value function (see [7], [27; Chapter III,

Section 8] and [17; Chapter IV, Section 9]) implies that V∗(π, φ, x) from (2.17) is the largest

function satisfying (3.18)-(3.21) with the boundary g∗(x).

Remark 3.2. Observe that, since the system in (3.18)-(3.21) admits multiple solutions, we

need to find some additional conditions which would specify the appropriate solution providing

the value function and the optimal stopping boundary for the initial problem of (2.17). In order

to derive such conditions, we shall reduce the operator in (3.17) to the normal form. We also

note that the fact that the stochastic differential equations for the posterior probability, the

weighted likelihood ratio, and the observation process in (2.13), (2.19), and (2.15), respectively,

are driven by the same (one-dimensional) innovation Brownian motion yields the property that

the infinitesimal operator in (3.17) turns out to be of parabolic type.

3.5. In order to find the normal form of the operator in (3.17) and formulate the appropriate

optimal stopping and free-boundary problem, we use the one-to-one correspondence transfor-

mation of processes proposed by A.N. Kolmogorov in [12]. For this, let us define the process

Y = (Yt)t≥0 by:

Yt = log φt −
∫ Xt

z

µ1(w)− µ0(w)

σ2(w)
dw (3.22)

for all t ≥ 0, and any z > 0 fixed. Then, taking into account the assumption that the functions

µi(x), i = 0, 1, and σ(x) are continuously differentiable on (0,∞), by means of Itô’s formula,

we get that the process Y admits the representation:

dYt =

(
λ

φt
+ λ+ α− σ2(Xt)

2

[
µ2

1(Xt)− µ2
0(Xt)

σ4(Xt)
+

∂

∂x

(
µ1(x)− µ0(x)

σ2(x)

) ∣∣∣∣
x=Xt

])
dt (3.23)

with Y0 = y and

y = log φ−
∫ x

z

µ1(w)− µ0(w)

σ2(w)
dw (3.24)

for any z > 0 fixed. It is seen from the equation in (3.23) that the process Y started at y ∈ R
is of bounded variation. By virtue of the second inequality in (2.2), it follows from the relation

in (3.22) that there exists a one-to-one correspondence between the processes (π, φ,X) and

(π, φ, Y ). Hence, for any z > 0 fixed, the value function V∗(π, φ, x) from (2.17) is equal to the

one of the optimal stopping problem:

U∗(π, φ, y) = inf
τ
Eπ,φ,y

[
1− πτ +

∫ τ

0

(1− πt) cαφt dt
]

(3.25)

where the infimum is taken over all stopping times τ such that the integral is of finite expecta-

tion, so that Eπ,φ,yτ <∞ holds. Here, Pπ,φ,y is a measure of the diffusion process (πt, φt, Yt)t≥0 ,
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started at some (π, φ, y) ∈ [0, 1)× (0,∞)× R and solving the equations in (2.10), (2.18), and

(3.22). It thus follows from (3.8)-(3.9) that there exists a continuous function h∗(y) such that

0 < λ/(cα) ≤ h∗(y) holds for y ∈ R , and the optimal stopping time in the problem of (3.25)

has the structure:

τ∗ = inf{t ≥ 0 |φt ≥ h∗(Yt)} (3.26)

whenever the corresponding integral is of finite expectation, so that Eπ,φ,yτ∗ < ∞ holds, and

τ∗ = 0 otherwise.

3.6. Standard arguments then show that the infinitesimal operator L(π,φ,Y ) of the process

(π, φ, Y ) from (2.13), (2.19), and (3.23) has the structure:

L(π,φ,Y ) = λ(1− π)
∂

∂π
+

(
λ+ (λ+ α)φ+

(
µ1(x(φ, y))− µ0(x(φ, y))

σ(x(φ, y))

)2

π φ

)
∂

∂φ
(3.27)

+
1

2

(
µ1(x(φ, y))− µ0(x(φ, y))

σ(x(φ, y))

)2(
π2(1− π)2 ∂

2

∂π2
+ 2π(1− π)φ

∂2

∂π∂φ
+ φ2 ∂2

∂φ2

)
+

(
λ

φ
+ λ+ α− σ2(x(φ, y))

2

[
µ2

1(x(φ, y))− µ2
0(x(φ, y))

σ4(x(φ, y))
+

∂

∂x

(
µ1(x)− µ0(x)

σ2(x)

) ∣∣∣∣
x=x(φ,y)

])
∂

∂y

for all (π, φ, y) ∈ [0, 1) × (0,∞) × R . Here, because of the second inequality in (2.2), the

expression for x(φ, y) ≡ x(φ, y; z) is uniquely determined by the relation in (3.24), for any

z > 0.

We are now ready to formulate the associated free-boundary problem for the unknown value

function U∗(π, φ, y) ≡ U∗(π, φ, y; z) from (3.25) and the boundary h∗(y) ≡ h∗(y; z) from (3.26):

(L(π,φ,Y )U)(π, φ, y) = −(1− π) cαφ for φ < h(y) (3.28)

U(π, φ, y)
∣∣
φ=h(y)− = 1− π (instantaneous stopping) (3.29)

U(π, φ, y) = 1− π for φ > h(y) (3.30)

U(π, φ, y) < 1− π for φ < h(y) (3.31)

where the condition in (3.29) is satisfied for all π ∈ [0, 1) and y ∈ R . Moreover, we assume

that the following conditions hold:

∂U

∂φ
(π, φ, y)

∣∣∣∣
φ=h(y)−

= 0 (smooth fit) (3.32)

∂U

∂φ
(π, φ, y)

∣∣∣
φ=0+

is finite (3.33)

and the one-sided derivative:

∂U

∂y
(π, φ, y)

∣∣∣∣
φ=h(y)−

exists (3.34)
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for all π ∈ (0, 1), y ∈ R , and any z > 0 fixed.

We further search for solutions of the parabolic-type free-boundary problem in (3.28)-(3.31)

satisfying the conditions in (3.32)-(3.34) and such that the resulting boundaries are continuous

and of bounded variation. Since such free-boundary problems cannot, in general, be solved

explicitly, the existence and uniqueness of classical as well as viscosity solutions of the related

variational inequalities and their connection with the optimal stopping problems have been

extensively studied in the literature (see, e.g. [8], [5], [13] or [15]). It particularly follows from

the results of [8; Chapter XVI, Theorem 11.1] as well as [13; Chapter V, Section 3, Theorem 14]

with [13; Chapter VI, Section 4, Theorem 12] that the free-boundary problem of (3.28)-(3.31)

with (3.32)-(3.34) admits a unique solution.

3.7. We continue with the following verification assertion related to the free-boundary

problem in (3.28)-(3.34).

Lemma 3.3. Suppose that µi(x), i = 0, 1, and σ(x) > 0 are continuously differentiable

functions on (0,∞) in (2.1) satisfying (2.2). Assume that the function U(π, φ, y;h∗(y)) ≡
(1 − π)H(φ, y;h∗(y)) and the continuous boundary of bounded variation h∗(y) form a unique

solution of the free-boundary problem in (3.28)-(3.31) satisfying the conditions of (3.32)-(3.34).

Then, the value function of the optimal stopping problem in (3.25) takes the form:

U∗(π, φ, y) =

(1− π)H(φ, y;h∗(y)), if 0 ≤ φ < h∗(y)

1− π, if φ ≥ h∗(y)
(3.35)

and h∗(y) provides the optimal stopping boundary for (3.26), whenever the corresponding inte-

gral is of finite expectation, so that Eπ,φ,yτ∗ <∞ holds, for all (π, φ, y) ∈ [0, 1)× (0,∞)× R.

Proof. Let us denote by U(π, φ, y) the right-hand side of the expression in (3.35). Hence,

applying the change-of-variable formula with local time on surfaces from [16] to U(π, φ, y) and

h∗(y), and taking into account the smooth-fit condition in (3.32), we obtain:

U(πt, φt, Yt) = U(π, φ, y) +

∫ t

0

(L(π,φ,Y )U)(πs, φs, Ys) I(φs 6= h∗(Ys)) ds+Mt (3.36)

where the process M = (Mt)t≥0 defined by:

Mt =

∫ t

0

∂U

∂π
(πs, φs, Ys)

µ1(Xs)− µ0(Xs)

σ(Xs)
πs(1− πs) dBs (3.37)

+

∫ t

0

∂U

∂φ
(πs, φs, Ys)

µ1(Xs)− µ0(Xs)

σ(Xs)
φs dBs

is a continuous local martingale under Pπ,φ,y with respect to (Ft)t≥0 .
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It follows from the equation in (3.28) and the conditions of (3.30)-(3.31) that the inequality

(L(π,φ,Y )U)(π, φ, y) ≥ −(1 − π)cαφ holds for any (π, φ, y) ∈ [0, 1) × (0,∞) × R such that

φ 6= h∗(y), as well as U(π, φ, y) ≤ 1 − π is satisfied for all (π, φ, y) ∈ [0, 1) × (0,∞) × R .

Recall the assumption that the boundary h∗(y) is continuous and of bounded variation and the

fact that the process Y from (3.22) is of bounded variation too. We thus conclude from the

assumption of continuous differentiability of the functions µi(x), i = 0, 1, and σ(x) that the

time spent by the process (φt)t≥0 at the boundary h∗(Y ) is of Lebesgue measure zero, so that

the indicator which appears in (3.36) can be ignored. Hence, the expression in (3.36) yields

that the inequalities:

1− πτ +

∫ τ

0

(1− πt) cαφt dt (3.38)

≥ U(πτ , φτ , Yτ ) +

∫ τ

0

(1− πt) cαφt dt ≥ U(π, φ, y) +Mτ

hold for any stopping time τ of the process (π, φ, Y ) started at (π, φ, y) ∈ [0, 1)× (0,∞)×R .

Let (τn)n∈N be an arbitrary localizing sequence of stopping times for the processes M .

Taking the expectations with respect to the probability measure Pπ,φ,y in (3.38), by means of

Doob’s optional sampling theorem, we get that the inequalities:

Eπ,φ,y

[
1− πτ∧τn +

∫ τ∧τn

0

(1− πt) cαφt dt
]

(3.39)

≥ Eπ,φ,y

[
U(πτ∧τn , φτ∧τn , Yτ∧τn) +

∫ τ∧τn

0

(1− πt) cαφt dt
]

≥ U(π, φ, y) + Eπ,φ,y
[
Mτ∧τn

]
= U(π, φ, y)

hold for all (π, φ, y) ∈ [0, 1) × (0,∞) × R . Hence, letting n go to infinity and using Fatou’s

lemma, we obtain:

Eπ,φ,y

[
1− πτ +

∫ τ

0

(1− πt) cαφt dt
]

(3.40)

≥ Eπ,φ,y

[
U(πτ , φτ , Yτ ) +

∫ τ

0

(1− πt) cαφt dt
]
≥ U(π, φ, y)

for any stopping time τ and all (π, φ, y) ∈ [0, 1)× (0,∞)×R . By virtue of the structure of the

stopping time in (3.26), it is readily seen that the inequalities in (3.40) hold with τ∗ instead of

τ when φ ≥ h∗(y).

It remains to show that the equalities are attained in (3.40) when τ∗ replaces τ , for

(π, φ, y) ∈ [0, 1) × (0,∞) × R such that φ < h∗(y). By virtue of the fact that the func-

tion U(π, φ, y) and the boundary h∗(y) satisfy the conditions in (3.28) and (3.29), it follows

14



from the expression in (3.36) and the structure of the stopping time in (3.26) that the equalities:

U(πτ∗∧τn , φτ∗∧τn , Yτ∗∧τn) +

∫ τ∗∧τn

0

(1− πt) cαφt dt = U(π, φ, y) +Mτ∗∧τn (3.41)

hold for all (π, φ, y) ∈ [0, 1) × (0,∞) × R and any localizing sequence (τn)n∈N of M . Hence,

taking into account the assumption that the integral in (2.17) taken up to τ∗ is of finite

expectation and using the fact that 0 ≤ U(π, φ, y) ≤ 1 holds, we conclude from the expression

in (3.41) that the process (Mτ∗∧t)t≥0 is a uniformly integrable martingale. Therefore, taking

the expectations in (3.41) and letting n go to infinity, we apply the Lebesgue dominated

convergence theorem to obtain the equalities:

Eπ,φ,y

[
1− πτ∗ +

∫ τ∗

0

(1− πt) cαφt dt
]

(3.42)

= Eπ,φ,y

[
U(πτ∗ , φτ∗ , Yτ∗) +

∫ τ∗

0

(1− πt) cαφt dt
]

= U(π, φ, y)

for all (π, φ, y) ∈ [0, 1) × (0,∞) × R , which together with the inequalities in (3.40) directly

imply the desired assertion. �

3.8. We are now in a position to formulate the main assertion of the paper, which fol-

lows from a straightforward combination of Lemma 3.3 above and standard change-of-variable

arguments. More precisely, after obtaining the solution U∗(π, φ, y) ≡ (1 − π)H∗(φ, y; z) with

h∗(y) ≡ h∗(y; z) of the free-boundary problem in (3.28)-(3.31), which satisfies the conditions in

(3.32)-(3.34), we put y = y(π, x; z) and z = x , in order to get the solution of the initial quickest

detection problem with exponential penalty costs for a detection delay stated in (2.17).

Theorem 3.4. Suppose that the assumptions of Lemmas 3.1 and 3.3 hold. Then, in

the quickest disorder detection problem of (2.17) for the observation process X from (2.1), the

Bayesian risk function takes the form V∗(π, φ, x) = U∗(π, φ, y(φ, x)) ≡ (1−π)H∗(φ, y(φ, x;x);x)

and the optimal stopping boundary 0 < λ/(cα) ≤ g∗(x) in (3.15) satisfying (3.16) is uniquely

determined by the equation g(x) = h∗(y(g(x), x)) ≡ h∗(y(g(x), x;x);x), for each x > 0 fixed.

Here the function U∗(π, φ, y) ≡ (1 − π)H∗(φ, y; z) and the continuous boundary of bounded

variation h∗(y) ≡ h∗(y; z) form a unique solution of the free-boundary problem in (3.28)-(3.34),

and the expression for y(φ, x) ≡ y(φ, x; z) is explicitly determined by the relation in (3.24), for

all (π, φ, y) ∈ [0, 1)× (0,∞)× R and any z > 0 fixed.

Remark 3.5. Observe that the optimal stopping time in the problem of (2.17) does not

depend on the dynamics of the process (πt)t≥0 , so that the two-dimensional process (φt, Xt)t≥0

turns out to be a sufficient statistic. This fact is recognized as a consequence of the structure
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of the partial differential equation in (3.17)-(3.18). However, the process (φt, Xt)t≥0 is not

Markovian, and thus, in order to solve the optimal stopping problem of (2.17), we need to add

the component (πt)t≥0 and then operate with the resulting Markov process (πt, φt, Xt)t≥0 .

Let us now give a short note concerning the case of bounded signal/noise ratio function

ρ(x) from (3.12).

Remark 3.6. Suppose that there exist some 0 < ρ < ρ < ∞ such that ρ ≤ ρ(x) ≤ ρ

holds for all x > 0. Let us denote by V ∗(π, φ, x) with g∗(x) and by V ∗(π, φ, x) with g∗(x) the

solution of the Bayesian quickest disorder detection problem with exponential delay penalty,

under ρ(x) ≡ ρ and ρ(x) ≡ ρ , respectively. In those cases, the problem of (2.17) degenerates

into an optimal stopping problem for the two-dimensional Markov process (πt, φt)t≥0 , and the

value functions V ∗(π, φ, x) ≡ V ∗(π, φ) and V ∗(π, φ, x) ≡ V ∗(π, φ) with the stopping boundaries

g∗(x) ≡ h∗ and g∗(x) ≡ h∗ are given by the expressions in (3.55) and (3.54) below, whenever

η = 1/ρ and η = 1/ρ , respectively. Taking into account the properties of the boundary g∗(x)

in (3.16) and the fact that V∗(π, φ, x) = 1 − π for all φ ≥ g∗(x) and 0 ≤ π < 1, we therefore

conclude by standard comparison arguments that the inequalities V ∗(π, φ) ≤ V∗(π, φ, x) ≤
V ∗(π, φ) and thus 0 < λ/(cα) ≤ h∗ ≤ g∗(x) ≤ h∗ hold for all (π, φ, x) ∈ [0, 1)× [0,∞)×(0,∞).

3.9. In order to pick up some special cases in which the free-boundary problem in (3.28)-

(3.34) can admit a simpler structure, for the rest of the section, in addition to the conditions

in (2.2), we suppose that the property:

µi(x) =
ηiσ

2(x)

x
for some ηi ∈ R, i = 0, 1, such that η0 6= η1 and η0 + η1 = 1 (3.43)

holds for all x > 0. Moreover, we assume that the diffusion coefficient σ(x) satisfies:

σ(x) ∼ A0 x
α as x ↓ 0 and σ(x) ∼ A∞ x

β as x ↑ ∞ (3.44)

with some A0, A∞ > 0 and α, β ∈ R such that (1 − α)η ≤ 0 and (1 − β)η ≥ 0 holds, where

we set η = 1/(η1 − η0). In this case, the process Y = (Yt)t≥0 takes the form:

Yt = log φt −
1

η
log

Xt

z
≡ log φ+

∫ t

0

(
λ

φs
+ λ+ α

)
ds with η =

1

η1 − η0

(3.45)

for any z > 0 fixed. It is easily seen from the structure of the expression in (3.45) that the

one-to-one correspondence between the processes (πt, φt, Xt)t≥0 and (πt, φt, Yt)t≥0 remains true

in this case. Hence, getting the expression for Xt from (3.45) and substituting it into the

equations of (2.13) and (2.19), we obtain:

dπt = λ(1− πt) dt+
σ(ze−ηYtφηt )

ηze−ηYtφηt
πt(1− πt) dBt (3.46)
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with π0 = π and

dφt =

(
λ+ (λ+ α)φt +

σ2(ze−ηYtφηt )

η2z2e−2ηYtφ2η
t

πt φt

)
dt+

σ(ze−ηYtφηt )

ηze−ηYtφηt
φt dBt (3.47)

with φ0 = φ , for any z > 0 fixed. Applying Itô’s formula to the expression in (3.45) and taking

into account the representations in (2.13) and (2.15) as well as the assumption of (3.43), we

get:

dYt =

(
λ

φt
+ λ+ α

)
dt (3.48)

with Y0 = y . It thus follows that the infinitesimal operator L(π,φ,Y ) from (3.27) takes the form:

L(π,φ,Y ) = λ(1− π)
∂

∂π
+

(
λ+ (λ+ α)φ+

σ2(ze−ηyφη)

η2z2e−2ηyφ2η
π φ

)
∂

∂φ
(3.49)

+
1

2

σ2(ze−ηyφη)

η2z2e−2ηyφ2η

(
π2(1− π)2 ∂

2

∂π2
+ 2π(1− π)φ

∂2

∂π∂φ
+ φ2 ∂2

∂φ2

)
+

(
λ

φ
+ λ+ α

)
∂

∂y

for all (π, φ, y) ∈ [0, 1)× (0,∞)× R and any z > 0 fixed.

3.10. Let us now introduce the function Û(π, φ, y) ≡ (1−π)Ĥ(φ, y) and the boundary ĥ(y)

as a solution of the free-boundary problem consisting of the differential equation:((
λ+ (λ+ α)φ

) ∂H
∂φ

+
1

2

σ2(ze−ηyφη)

η2z2e−2ηyφ2η
φ2 ∂

2H

∂φ2
− λH

)
(φ, y) = −cαφ for φ < h(y) (3.50)

instead of the one in (3.28), for each y > 0 fixed, and the conditions of (3.29)-(3.31) as well as

(3.32)-(3.34). The general solution of the resulting second-order ordinary differential equation

in (3.50) takes the form:

H(φ, y) = C0(y)H0(φ, y) + C∞(y)H∞(φ, y)− c(1 + φ) (3.51)

where Hi(φ, y), i = 0,∞ , form a system of fundamental positive solutions (i.e. nontrivial

linearly independent particular solutions) of the corresponding homogeneous differential equa-

tion, and Ci(y), i = 0,∞ , are some arbitrary continuously differentiable functions, so that the

condition in (3.34) holds. By virtue of the assumptions of (2.2) and taking into account the

arguments from [10; Section 4], we can identify by H0(φ, y) a decreasing solution that has a

singularity at zero and by H∞(φ, y) an increasing solution that has a singularity at infinity.

Observe that we should have C0(y) = 0 in (3.51), since otherwise U(π, φ, y) ≡ (1 −
π)H(φ, y) → ±∞ as φ ↓ 0, that must be excluded by virtue of the obvious fact that the

value function in (3.25) is bounded at φ = 0, for any y ∈ R fixed. Then, applying the condi-

tions of (3.29) and (3.32) to the function in (3.51) with C0(y) = 0, we get that the equalities:

C∞(y)H∞(h(y), y) = c(1 + h(y)) + 1 and C∞(y)
∂H∞
∂φ

(φ, y)

∣∣∣∣
φ=h(y)

= c (3.52)
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hold for y ∈ R fixed. Hence, solving the equations of (3.52), we get that the solution of the

system of (3.50) with (3.29) and (3.32)-(3.33) is given by:

H(φ, y; ĥ(y)) =
(
c(1 + ĥ(y)) + 1

) H∞(φ, y)

H∞(ĥ(y), y)
− c(1 + φ) (3.53)

for all 0 ≤ φ < ĥ(y), so that 0 ≤ H(φ, y; ĥ(y)) ≡ H(φ, y; z; ĥ(y; z)) ≤ 1 holds, where ĥ(y)

satisfies the equation:
∂H∞
∂φ

(φ, y)

∣∣∣∣
φ=h(y)

=
cH∞(h(y), y)

c(1 + h(y)) + 1
(3.54)

for any y ∈ R fixed.

Taking into account the facts proved above, let us formulate the following assertion.

Corollary 3.7. Suppose that µi(x), i = 0, 1, and σ(x) > 0 are continuously differentiable

functions on (0,∞) in (2.1) satisfying (2.2) and (3.43)-(3.44) with α, β ∈ R such that (1 −
α)η ≤ 0 and (1−β)η ≥ 0, where η = 1/(η1−η0). Assume that ĥ(y) provides a unique solution

of the equation in (3.54) for all y ∈ R. Then, using the same arguments as in the proof of

Lemma 3.3 above, it is shown that the function:

Û(π, φ, y) ≡ (1− π)Ĥ(φ, y) with Ĥ(φ, y) =

H(φ, y; ĥ(y)), if 0 ≤ φ < ĥ(y)

1, if φ ≥ ĥ(y)
(3.55)

coincides with the value function of the optimal stopping problem:

Û(π, φ, y) (3.56)

= inf
τ
Eπ,φ,y

[
1− πτ +

∫ τ

0

(1− πt)
(
cαφt −

(
λ

φt
+ λ+ α

)
∂Ĥ

∂y
(φt, Yt) I(φt < ĥ(Yt))

)
dt

]
which corresponds to the Bayesian risk function in (3.25). Moreover, ĥ(y) ≡ ĥ(y; z) determined

by (3.54) provides a hitting boundary for the stopping time:

τ̂ = inf{t ≥ 0 |φt ≥ ĥ(Yt)} (3.57)

which turns out to be optimal in (3.56) whenever the integral above is of finite expectation, and

τ̂ = 0 otherwise, for any z > 0 fixed.

Remark 3.8. Note that the function Û(π, φ, y) in (3.56) and the boundary ĥ(y) in (3.57)

provide lower (upper) and upper (lower) estimates for the initial value function U∗(π, φ, y) in

(3.25) and the optimal stopping boundary h∗(y) in (3.26), whenever the function y 7→ Ĥ(φ, y)

is increasing (decreasing) on R . According to Remark 3.6 above and the structure of the

change of variables in (3.24), such a situation occurs when ρ(x) from (3.12) is an increasing

(decreasing) function on (0,∞) and η0 < η1 (η0 > η1 ) in (3.43), respectively.
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4. The case of linear delay penalty costs

In this section, we provide some results, which are related to the quickest detection problem

with linear delay penalty costs of Example 2.2 above.

4.1. Following the arguments of Subsection 3.1 above and applying Doob’s optional sampling

theorem, we get from (3.2) that the equality:

Eπ,ϕ,x

[
1− πτ +

∫ τ

0

(1− πt) cϕt dt
]

= 1− π + Eπ,ϕ,x

∫ τ

0

(1− πt) (cϕt − λ) dt (4.1)

holds for all (π, ϕ, x) ∈ [0, 1)× [0,∞)× (0,∞) and any stopping time τ satisfying Eπ,ϕ,x <∞ .

Taking into account the structure of the reward in (2.16), it is also seen from (4.1) that it is

never optimal to stop when ϕt < λ/c for any t ≥ 0. This shows that all the points (π, ϕ, x)

such that ϕ < λ/c belong to the continuation region:

C ′ = {(π, ϕ, x) ∈ [0, 1)× [0,∞)× (0,∞) |V ′(π, ϕ, x) < 1− π}. (4.2)

Then, combining the arguments in [27; Chapter IV, Section 3] with the ones in Subsection

3.2 above, we obtain that the continuation region in (4.2) for the optimal stopping problem of

(2.16) takes the form:

C ′ = {(π, ϕ, x) ∈ [0, 1)× [0,∞)× (0,∞) |ϕ < g′(x)} (4.3)

so that the corresponding stopping region is the closure of the set:

D′ = {(π, ϕ, x) ∈ [0, 1)× [0,∞)× (0,∞) |ϕ > g′(x)}. (4.4)

4.2. In order to characterize the behavior of the boundary g′(x) in (4.3)-(4.4), we observe

from the equation in (2.12) that the expression:∫ τ ′

0

(1− πt)ϕt dt =

∫ τ ′

0

1− πt
λ

dϕt −
∫ τ ′

0

1− πt
λ

(λ+ ρ(Xt) πt ϕt) dt+N ′τ ′ (4.5)

holds for the optimal stopping time τ ′ = τ ′(π, ϕ, x) in (2.16) such that (π, ϕ, x) ∈ C ′ . Here

the process N ′ = (N ′t)t≥0 defined by:

N ′t = −
∫ t

0

µ1(Xs)− µ0(Xs)

σ(Xs)

1− πs
λ

ϕs dBs (4.6)

is a continuous local martingale under Pπ,ϕ,x , and the function ρ(x) is given by (3.12). Note

that the assumption that Eπ,ϕ,xτ
′ < ∞ holds and the third inequality in (2.2) yield that the

integral in the left-hand side and the second integral on the right-hand side of (4.5) are of finite
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expectation. Moreover, by virtue of the facts that (1− πt)ϕt = πt and 0 ≤ πt ≤ 1 holds for all

t ≥ 0, and taking into account the third inequality in (2.2), we see from (4.6) that the process

(N ′τ ′∧t)t≥0 is a uniformly integrable martingale under Pπ,ϕ,x . Then, applying Doob’s optional

sampling theorem, we get from the expression in (4.5) that:

Eπ,ϕ,x

∫ τ ′

0

(1− πt)ϕt dt = Eπ,ϕ,x

∫ τ ′

0

1− πt
λ

dϕt − Eπ,ϕ,x
∫ τ ′

0

1− πt
λ

(λ+ ρ(Xt) πt ϕt) dt (4.7)

is satisfied. Let us now take x′ > 0 such that x < x′ and recall the fact that (πt, ϕt, Xt)t≥0

is a time-homogeneous Markov process. Assume that (π, ϕ, x) ∈ C ′ is chosen sufficiently close

to the stopping boundary g′(x), and note that τ ′ = τ ′(π, ϕ, x) does not depend on x′ . Hence,

by means of the comparison results for solutions of stochastic differential equations, we obtain

that the expression in (4.7) yields:

V ′(π, ϕ, x′)− (1− π) ≤ Eπ,ϕ,x′

[
1− πτ∗ +

∫ τ∗

0

(1− πt) cϕt dt
]

(4.8)

≤ Eπ,ϕ,x

[
1− πτ∗ +

∫ τ∗

0

(1− πt) cϕt dt
]

= V ′(π, ϕ, x)− (1− π)

whenever ρ(x) is an increasing function on (0,∞). By virtue of the inequality in (4.8), we may

therefore conclude that (π, ϕ, x′) ∈ C ′ , so that the boundary g′(x) is increasing (decreasing)

in (4.3)-(4.4) whenever ρ(x) is increasing (decreasing) on (0,∞), respectively.

Summarizing the facts proved above, we now formulate the assertions related to the Bayesian

quickest detection problem with linear penalty costs for a detection delay, which are proved

using the arguments from the previous section.

Lemma 4.1. Suppose that µi(x), i = 0, 1, and σ(x) > 0 are continuously differentiable

functions on (0,∞) in (2.1) satisfying (2.2). Then the optimal Bayesian time of alarm τ ′ in

the quickest disorder detection problem (2.16) has the structure:

τ ′ = inf{t ≥ 0 |ϕt ≥ g′(Xt)} (4.9)

whenever Eπ,ϕ,xτ
′ <∞ holds, for all (π, ϕ, x) ∈ [0, 1)× [0,∞)× (0,∞), and τ ′ = 0 otherwise.

Moreover, the property:

g′(x) : (0,∞)→ (λ/c,∞) is increasing/decreasing if ρ(x) is increasing/decreasing (4.10)

holds with ρ(x) defined in (3.12), for all x > 0.

Theorem 4.2. Suppose that the assumptions of Lemmas 4.1 and 3.3 hold with φ = ϕ,

α = 0 in (3.27), and α = 1 in (3.28). Then, in the quickest disorder detection problem of
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(2.16) for the observation process X from (2.1), the Bayesian risk function takes the form

V ′(π, ϕ, x) = U ′(π, ϕ, y(ϕ, x)) ≡ (1 − π)H ′(ϕ, y(ϕ, x;x);x) and the optimal stopping boundary

0 < λ/c ≤ g′(x) in (4.9) satisfying (4.10) is uniquely determined by the equation g(x) =

h′(y(g(x), x)) ≡ h′(y(g(x), x;x);x), for each x > 0 fixed. Here the function U ′(π, ϕ, y) ≡
(1 − π)H ′(ϕ, y; z) and the bounded continuous boundary of bounded variation h′(y) ≡ h′(y; z)

form a unique solution of the free-boundary problem in (3.28)-(3.34), and the expression for

y(ϕ, x) ≡ y(ϕ, x; z) is explicitly determined by the relation in (3.24) with φ = ϕ, for all

(π, ϕ, y) ∈ [0, 1)× (0,∞)× R and any z > 0 fixed.

Remark 4.3. Suppose that there exist some 0 < ρ < ρ <∞ such that ρ ≤ ρ(x) ≤ ρ holds

for all x > 0. Let us denote by V ′(π, ϕ, x) with g′(x) and by V
′
(π, ϕ, x) with g′(x) the solution

of the Bayesian quickest disorder detection problem with linear delay penalty, under ρ(x) ≡ ρ

and ρ(x) ≡ ρ , respectively. In those cases, the problem of (2.16) degenerates into an optimal

stopping problem for the one-dimensional Markov process (πt)t≥0 being equivalent to (ϕt)t≥0 ,

and the value functions V ′(π, ϕ, x) ≡ V ′(π, ϕ) ≡ V ′(ϕ/(1+ϕ), ϕ) and V
′
(π, ϕ, x) ≡ V

′
(π, ϕ) ≡

V
′
(ϕ/(1 + ϕ), ϕ) with the stopping boundaries g′(x) ≡ h′ and g′(x) ≡ h

′
are given by the

expressions in (4.15) and (4.14) below, whenever η = 1/ρ and η = 1/ρ , respectively. Taking

into account the properties of the boundary g′(x) in (4.10) and the fact that V ′(π, ϕ, x) = 1−π
for all ϕ ≥ g′(x) and 0 ≤ π < 1, we therefore conclude by standard comparison arguments

that the inequalities V
′
(π, ϕ) ≤ V ′(π, ϕ, x) ≤ V ′(π, ϕ) and thus 0 < λ/c ≤ h′ ≤ g′(x) ≤ h

′

hold for all (π, ϕ, x) ∈ [0, 1)× [0,∞)× (0,∞).

4.4. Let us finally introduce the function Ũ(ϕ/(1 + ϕ), ϕ, y) ≡ G̃(ϕ, y) and the boundary

ĥ(y) as a solution of the free-boundary problem consisting of the differential equation:(
λ(1+ϕ)

∂G

∂ϕ
+
σ2(ze−ηyϕη)

η2z2e−2ηyϕ2η

(
ϕ2

1 + ϕ

∂G

∂ϕ
+
ϕ2

2

∂2G

∂ϕ2

))
(ϕ, y) = − cϕ

1 + ϕ
for ϕ < h(y) (4.11)

instead of the one in (3.28), for each y > 0 fixed, and the conditions of (3.29)-(3.31) as well as

(3.32)-(3.34) with φ = ϕ and π = ϕ/(1 + ϕ). The general solution of the resulting first-order

linear ordinary differential equation for ϕ 7→ (∂G/∂ϕ)(ϕ, y) takes the form:

∂G

∂ϕ
(ϕ, y) =

C(y)

(1 + ϕ)2
exp

(∫ w

ϕ

λ(1 + u)

u2

2η2z2e−2ηyu2η

σ2(ze−ηyuη)
du

)
(4.12)

−
∫ ϕ

0

c(1 + u)

u(1 + ϕ)2

2η2z2e−2ηyu2η

σ2(ze−ηyuη)
exp

(
−
∫ ϕ

u

λ(1 + v)

v2

2η2z2e−2ηyv2η

σ2(ze−ηyvη)
dv

)
du

where C(y) is an arbitrary continuously differentiable function, for each y ∈ R and any z, w > 0

fixed. By virtue of the assumptions of (2.2), we see that the term in the first line of (4.12)
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above tends to infinity as ϕ ↓ 0, so that (∂G/∂ϕ)(ϕ, y) → ±∞ as C(y) 6= 0, for any y ∈ R
fixed. We should thus choose C(y) = 0, that is equivalent to the property in (3.33). Hence,

integrating the equation in (4.12), we therefore obtain that the solution of the system of (4.11)

with (3.29) and (3.32)-(3.33) is given by:

G(ϕ, y; h̃(y)) = 1/(1 + h̃(y)) (4.13)

+

∫ h̃(y)

ϕ

∫ w

0

c(1 + u)

u(1 + w)2

2η2z2e−2ηyu2η

σ2(ze−ηyuη)
exp

(
−
∫ w

u

λ(1 + v)

v2

2η2z2e−2ηyv2η

σ2(ze−ηyvη)
dv

)
du dw

for all 0 ≤ ϕ < h̃(y), so that 0 ≤ G(ϕ, y; h̃(y)) ≡ G(ϕ, y; z; h̃(y; z)) ≤ 1/(1 + ϕ) holds, where

h̃(y) satisfies the equation:∫ h(y)

0

c(1 + u)

u

2η2z2e−2ηyu2η

σ2(ze−ηyuη)
exp

(
−
∫ h(y)

u

λ(1 + v)

v2

2η2z2e−2ηyv2η

σ2(ze−ηyvη)
dv

)
du = 1 (4.14)

for each y ∈ R and any z > 0 fixed.

Summarizing these facts above, let us formulate the following assertion.

Corollary 4.4. Suppose that µi(x), i = 0, 1, and σ(x) > 0 are continuously differentiable

functions on (0,∞) in (2.1) satisfying (2.2) and (3.43)-(3.44) with α, β ∈ R such that (1 −
α)η ≤ 0 and (1−β)η ≥ 0, where η = 1/(η1−η0). Assume that h̃(y) provides a unique solution

of the equation in (4.14) for all y ∈ R. Then, using the same arguments as in the proof of

Lemma 3.3 above, it is shown that the function:

Ũ(π, ϕ, y) ≡ G̃(ϕ, y) =

G(ϕ, y; h̃(y)), if 0 ≤ ϕ < h̃(y)

1/(1 + ϕ), if ϕ ≥ h̃(y)
(4.15)

coincides with the value function of the optimal stopping problem:

Ũ(π, ϕ, y) = inf
τ
Eπ,ϕ,y

[
1

1 + ϕτ
+

∫ τ

0

(
cϕt

1 + ϕt
−
(
λ

ϕt
+λ

)
∂G̃

∂y
(ϕt, Yt) I(ϕt < h̃(Yt))

)
dt

]
(4.16)

with π = ϕ/(1 + ϕ), which corresponds to the Bayesian risk function in (2.16). Moreover,

0 < λ/c ≤ h̃(y) ≡ h̃(y; z) determined by (4.14) provides a hitting boundary for the stopping

time:

τ̃ = inf{t ≥ 0 |ϕt ≥ h̃(Yt)} (4.17)

which turns out to be optimal in (4.16) whenever the integral above is of finite expectation, for

any z > 0 fixed.

Remark 4.5. Note that the function Ũ(π, ϕ, y) in (4.16) and the boundary h̃(y) in (4.17)

provide lower (upper) and upper (lower) estimates for the initial value function U ′(π, ϕ, y)

22



defined as in (3.25) with α = 1 and the optimal stopping boundary h′(y) defined as in (3.26)

with φ = ϕ , whenever the function y 7→ G̃(ϕ, y) is increasing (decreasing) on R . According to

Remark 4.1 and the structure of the change of variables in (3.24) with φ = ϕ , such a situation

occurs when ρ(x) from (3.12) is an increasing (decreasing) function on (0,∞) and η0 < η1

(η0 > η1 ) in (3.43), respectively.
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