
ar
X

iv
:1

01
1.

01
74

v1
  [

st
at

.A
P]

  3
1 

O
ct

 2
01

0

Two switching multiple disorder

problems for Brownian motions

Pavel V. Gapeev∗

The multiple disorder problem seeks to determine a sequence of stopping times which

are as close as possible to the unknown times of disorders at which the observation process

changes its probability characteristics. We derive closed form solutions in two formula-

tions of the multiple disorder problem for an observable Brownian motion with switching

constant drift rates. The method of proof is based on the reduction of the initial problems

to appropriate optimal switching problems and the analysis of the associated coupled free-

boundary problems. We also describe the sequential switching multiple disorder detection

procedures resulting from these formulations.

1. Introduction

Suppose that at time t = 0 we begin to observe a sample path of some continuous process

X = (Xt)t≥0 with probability characteristics changing at some unknown disorder times (ηn)n∈N

at which an unobservable two-state process Θ = (Θt)t≥0 switches between one state and the

other. The switching multiple disorder problem is to decide at which time instants (τn)n∈N

one should give alarm signals to indicate the occurrence of changes in the current state of the
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process Θ as close as possible to the initial disorder times (ηn)n∈N . Such disorder (or change-

point) detection problems have originally arisen and still play a prominent role in quality

control, where one observes the output of a production line and wishes to detect deviations

from acceptable levels. After the introduction of the original control charts by Shewhart [29],

various modifications of the disorder problem have been recognized (see, e.g. Pages [23]) and

implemented in a number of applied sciences (see, e.g. Carlstein, Müller and Siegmund [12]).

The problem of detecting a single change in the constant drift rate of a Brownian motion

(Wiener process) was formulated and explicitly solved by Shiryaev [30]-[31] and [34]-[35] (see

also Shiryaev [36; Chapter IV] and Peskir and Shiryaev [24; Chapter VI, Section 22] for further

references). The optimal time of alarm was sought as a stopping time minimising a linear

combination of the false alarm probability and the average time delay in detecting of the disorder

correctly. Shiryaev [30] and [32] also proposed another formulation of the problem in which the

occurrence of a single change should be preceded by a long period of observations under which

a stationary regime has been established. The resulting optimal multistage detection procedure

consisted in searching for a sequence of stopping times minimising the average time delay given

that the mean time between two false alarms is fixed. More recently, Feinberg and Shiryaev

[16] derived an explicit solution of the quickest detection problem in the generalized Bayesian

formulation and proved the asymptotic optimality of the associated detection procedure for the

related minimax formulation. Extensive overviews of these and other related sequential quickest

change-point detection methods were provided in Shiryaev [37] and Poor and Hadjiliadis [26].

In the present paper, we formulate and solve the switching multiple disorder problem for

an observed Wiener process X changing its drift rate from µj to µ1−j when Θ changes its

state from j to 1 − j , for every j = 0, 1. In contrast to the problem of detecting a single

change, in the switching multiple disorder problem, one looks for an infinite sequence of the

alarm times (τn)n∈N minimising a series of linear combinations of discounted average losses due

to false alarms and delay penalties in detecting of the disorder times (ηn)n∈N correctly. We

propose two different formulations of the problem based on a specification of dynamics of the

process Θ. In the first formulation, Θ is assumed to be a continuous time Markov chain of

intensity λ , the dynamics of which are not influenced by the alarm times (τn)n∈N . In the second

formulation, it is assumed that the subsequent time ηn , at which Θ changes its state, can only

occur after the previous alarm is sounded at τn−1 . Moreover, it is assumed that the differences

(ηn − τn−1)n∈N form a sequence of (conditionally) independent exponential random variables.
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Apart from other possible areas of application, such a situation usually happens in models

of liquid financial markets having trading investors of different kinds. It is natural to assume

that the small investors can only influence little fluctuations of the market prices of risky assets,

while the large investors can affect the pricing trends as well, by means of either buying or selling

substantial amounts of assets. More precisely, the pricing trends should either rise up or fall

down at some random times, after essential amounts of assets are bought or sold, respectively.

We can thus consider a model of a financial market of such kind in which the dynamics (of the

logarithms) of the asset prices are described by a Brownian motion with switching drift rates.

We may further assume that our model allows for an infinite number of transactions (free on

charge) on the infinite time interval and use an exponential constant discounting rate r , which

can be chosen equal to the riskless short rate of a bank account. The problem of detecting of a

single change in the probability characteristics of accessible financial data, which is associated

with the appearance of arbitrage opportunities in the market, was considered by Shiryaev [37].

In the present paper, we reduce the initial multiple disorder problems to appropriate optimal

switching problems for filtering estimates of the current state of the unobservable drift rate of

a Brownian motion. The use of exponential discounting makes our problem well connected to

the problem of single disorder detection with exponential delay penalty costs studied by Poor

[25], Beibel [8], and Bayraktar and Dayanik [3]. We show that the optimal switching times

can be expressed as the first times at which the appropriate posterior probability processes hit

certain constant boundaries. We derive closed form expressions for the resulting Bayesian risk

functions and the optimal switching boundaries by means of solving the associated coupled free-

boundary problems for ordinary differential operators. We also construct sequential switching

multiple disorder detection procedures resulting from the two formulations.

Optimal switching problems represent extensions of stopping problems and games in which

one looks for an infinite sequence of optimal stopping times. A general approach for studying

such problems was developed in Bensoussan and Friedman [9]-[10] and Friedman [17] (see also

Friedman [18; Chapter XVI]). This investigation was continued by Brekke and Øksendal [11],

Duckworth and Zervos [14], Yushkevich and Gordienko [40], and Hamadène and Jeanblanc [19]

among others for the continuous time case, and by Yushkevich [38]-[39] for the discrete time

case. Other optimal switching and impulse control problems involving hidden Markov chains

in the observable jump processes were recently studied by Bayraktar and Ludkovski [6]-[7].

The paper is organized as follows. In Section 2, for the initial multiple disorder problems, we
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construct the appropriate optimal switching problems and reduce the latter to their equivalent

coupled optimal stopping problems. In Section 3, we derive closed form solutions of the associ-

ated coupled free-boundary problems, which are expressed in terms of Heun’s double confluent

functions and Kummer’s confluent hypergeometric functions. In Section 4, we verify that the

solutions of the coupled free-boundary problems provide the solutions of the initial optimal

switching problems, and describe the resulting sequential switching multiple disorder detection

procedures. The main results of the paper are stated in Theorems 4.1 and 4.2. The optimal

sequential detecting schemes are displayed more explicitly in Remark 4.3.

2. Formulation of the problems

In this section, we give two formulations of the switching multiple disorder problem for an

observed Brownian motion (see, e.g. [36; Chapter IV, Section 4] or [24; Chapter VI, Section 22]

for the single disorder case). In these formulations, it is assumed that one observes a sample

path of the Brownian motion X with the drift rate switching between µ0 and µ1 at some

random times (ηn)n∈N .

2.1. (The setting.) Let us assume that all the considerations take place on a probability

space (Ω,G, Pπ) with a standard Brownian motion (Wiener process) B = (Bt)t≥0 started at

zero under Pπ . Suppose that there exists a right-continuous process Θ with two states 0 and

1, having the initial distribution {1 − π, π} under Pπ , for π ∈ [0, 1]. It is assumed that the

process Θ is unobservable, so that the switching times ηn = inf{t ≥ ηn−1 |Θt 6= Θηn−1
} , for

n ∈ N, with η0 = 0, at which Θ changes its state from j to 1 − j , for every j = 0, 1, are

unknown, that is, they cannot be observed directly.

Suppose that we observe a continuous process X = (Xt)t≥0 solving the stochastic differential

equation:

dXt =
(
µ0 + (µ1 − µ0) Θt

)
dt+ σ dBt (X0 = 0) (2.1)

where µ0 6= µ1 and σ > 0 are some given constants. Being based upon the continuous

observation of X , our task is to find among non-decreasing sequences of stopping times (τn)n∈N

of X (i.e., stopping times with respect to the natural filtration Ft = σ(Xs | 0 ≤ s ≤ t) of the

process X , for t ≥ 0) at which the alarms should be sounded as close as possible to the

unknown switching times of the process Θ. More precisely, the switching multiple disorder

4



problem consists of computing the Bayesian risk functions:

V ∗
0 (π) = inf

(τ0,n)

∞∑

k=1

Eπ

[
a e−rτ0,2k−1 I(Θτ0,2k−1

= 1) + b e−rτ0,2k I(Θτ0,2k = 0) (2.2)

+
1∑

j=0

∫ τ0,2k−1+j

τ0,2k−2+j

e−rt I(Θt = j) dt

]

V ∗
1 (π) = inf

(τ1,n)

∞∑

k=1

Eπ

[
b e−rτ1,2k−1 I(Θτ1,2k−1

= 0) + a e−rτ1,2k I(Θτ1,2k = 1) (2.3)

+

1∑

j=0

∫ τ1,2k−1+j

τ1,2k−2+j

e−rt I(Θt = 1− j) dt

]

and finding the non-decreasing sequences of optimal stopping times (τ ∗i,n)n∈N such that τ ∗i,0 = 0,

i = 0, 1, at which the infima in (2.2) and (2.3) are attained, respectively, where I(·) denotes

the indicator function. Note that the function V ∗
i (π) expresses the Bayesian risk of the whole

sequence (τi,n)n∈N in the case in which the process Θ starts at Θ0 = 1 − i, for every i = 0, 1

fixed, and all π ∈ [0, 1]. We therefore see that Eπ

[
e−rτi,n I(Θτi,n = j)

]
is the average discounted

loss due to a false alarm, and Eπ

[ ∫ τi,n

τi,n−1
e−rt I(Θt = 1− j) dt

]
expresses the average discounted

loss due to a delay in detecting of the time at which Θ changes its state from j to 1 − j

correctly, for every i, j = 0, 1 and any n ∈ N. In this case, a, b > 0 are costs of false alarms

and r > 0 is a discounting rate.

Using the fact that (τi,n)n∈N is a non-decreasing sequence of stopping times with respect to

the filtration (Ft)t≥0 , by means of standard arguments, which are similar to those presented in

[36; pages 195-197], we get that:

Eπ

[
e−rτi,n I(Θτi,n = j)

]
= Eπ

[
Eπ

[
e−rτi,n I(Θτi,n = j)

∣∣Fτi,n

]]
= Eπ

[
e−rτi,n Pπ(Θτi,n = j | Fτi,n)

]

(2.4)

and

Eπ

[ ∫ τi,n

τi,n−1

e−rt I(Θτi,n = j) dt

]
= Eπ

[ ∫ ∞

0

e−rt I(τi,n−1 ≤ t,Θt = j, t < τi,n) dt

]
(2.5)

= Eπ

[ ∫ ∞

0

Eπ

[
e−rt I(τi,n−1 ≤ t,Θt = j, t < τi,n)

∣∣Ft

]
dt

]
= Eπ

[ ∫ τi,n

τi,n−1

e−rt Pπ(Θt = j | Ft) dt

]

holds for every i, j = 0, 1 and any n ∈ N.

We further consider two different formulations of the problem, depending on the specified

dynamics of the process Θ. The first formulation does not involve any influence of the alarm
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times τi,n on the times of changes ηn . In the second formulation, it is assumed that the change

at ηn can occur only after the previous alarm is sounded at τi,n−1 , for every i = 0, 1 and any

n ∈ N.

2.2. (The first formulation.) Suppose that Θ is a continuous time Markov chain which

is independent of the Brownian motion B and has the initial distribution {1 − π, π} under

Pπ . Assume that Θ has the transition-probability matrix {e−λt, 1 − e−λt; 1 − e−λt, e−λt} and

the intensity-matrix {−λ, λ;λ,−λ} , for all t ≥ 0 and some λ > 0 fixed. In other words, the

Markov chain Θ changes its state at exponentially distributed times of intensity λ , which are

independent of the dynamics of the Brownian motion B . Such a process Θ is called telegraphic

signal of intensity λ in the literature (see, e.g. [21; Chapter IX, Section 4] or [15; Chapter VIII]).

It thus follows from [21; Chapter IX, Theorem 9.1] (see also [21; Chapter IX, Example 3])

that the posterior probability process Π = (Πt)t≥0 defined by Πt = Pπ(Θt = 1 | Ft) solves the

stochastic differential equation:

dΠt = λ(1− 2Πt) dt+
µ1 − µ0

σ
Πt(1− Πt) dBt (Π0 = π) (2.6)

where the innovation process B = (Bt)t≥0 defined by:

Bt =
1

σ

(
Xt −

∫ t

0

(
µ0 + (µ1 − µ0) Πs

)
ds

)
(2.7)

is a standard Brownian motion according to P. Lévy’s characterization theorem (see, e.g. [21;

Chapter IV, Theorem 4.1]). It is also seen from (2.6) that Π is a (time-homogeneous strong)

Markov process with respect to its natural filtration, which obviously coincides with (Ft)t≥0 .

Taking into account the expressions in (2.4) and (2.5), we therefore conclude that the

Bayesian risk functions from (2.2) and (2.3) admit the representations:

V ∗
0 (π) = inf

(τ0,n)

∞∑

k=1

Eπ

[
a e−rτ0,2k−1 Πτ0,2k−1

+

∫ τ0,2k−1

τ0,2k−2

e−rt (1− Πt) dt (2.8)

+ b e−rτ0,2k (1− Πτ0,2k) +

∫ τ0,2k

τ0,2k−1

e−rtΠt dt

]

V ∗
1 (π) = inf

(τ1,n)

∞∑

k=1

Eπ

[
b e−rτ1,2k−1 (1− Πτ1,2k−1

) +

∫ τ1,2k−1

τ1,2k−2

e−rtΠt dt (2.9)

+ a e−rτ1,2k Πτ1,2k +

∫ τ1,2k

τ1,2k−1

e−rt (1− Πt) dt

]
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where the infima are taken over all sequences of stopping times (τi,n)n∈N , i = 0, 1, of the process

Π. By virtue of the strong Markov property of the process Π, we can reduce the system of

(2.8) and (2.9) to the following coupled optimal stopping problem:

V ∗
0 (π) = inf

τ0
Eπ

[
a e−rτ0 Πτ0 +

∫ τ0

0

e−rt (1− Πt) dt+ V ∗
1 (Πτ0)

]
(2.10)

V ∗
1 (π) = inf

τ1
Eπ

[
b e−rτ1 (1− Πτ1) +

∫ τ1

0

e−rtΠt dt+ V ∗
0 (Πτ1)

]
(2.11)

where the infima are taken over all stopping times τi , i = 0, 1, of the process Π with Pπ(Π0 =

π) = 1. We further search for optimal stopping times in (2.10) and (2.11) of the form:

τ ∗0 = inf{t ≥ 0 |Πt ≤ g∗} and τ ∗1 = inf{t ≥ 0 |Πt ≥ h∗} (2.12)

for some 0 < g∗ < h∗ < 1, where g∗ is the largest and h∗ is the smallest number π from [0, 1]

such that V ∗
0 (π) = aπ + V ∗

1 (π) and V ∗
1 (π) = b(1 − π) + V ∗

0 (π) holds, respectively. This fact

implies that the sequences of stopping times (τ ∗i,n)n∈N given by:

τ ∗i,2k−1+i = inf{t ≥ τ ∗i,2k−2+i |Πt ≤ g∗} and τ ∗i,2k−i = inf{t ≥ τ ∗i,2k−1−i |Πt ≥ h∗} (2.13)

for every i = 0, 1 and any k ∈ N, are optimal in the problems of (2.8) and (2.9).

2.3. (The second formulation.) As that is the case in the previous formulation, for every

i = 0, 1, let us denote by (ζi,2k−i)k∈N and (ζi,2k−1+i)k∈N the sequences of alarm times sounded

to indicate that the state of Θ has been changed from 0 to 1 or from 1 to 0, respectively. Let

us now assume that the switching time ηn of the process Θ can only occur after the previous

alarm is sounded at ζi,n−1 , for any n ∈ N. Suppose that (ξi,n)n∈N defined by ξi,n = ηn − τi,n−1

forms a sequence of (conditionally) independent non-negative random variables such that ξi,n is

independent of the Brownian motion B on the time interval [ζi,n−1, ζi,n]. Moreover, we assume

that the properties Pπ(ηn = ζi,n−1 | Fζi,n−1
) = Πζi,n−1

and Pπ(ηn > t | ηn > ζi,n−1,Fζi,n−1
) =

e−λ(t−ζi,n−1) hold for all t ≥ ζi,n−1 and some λ > 0 fixed. In other words, the process Θ

changes its state in the exponential time ξi,n = ηn − ζi,n−1 of intensity λ after the time of the

previous alarm ζi,n−1 , where ξi,n does not depend on the subsequent fluctuations of the process

B .

It thus follows from [21; Chapter IX, Theorem 9.1] (see also [21; Chapter IX, Example 2] or

[15; Chapter VIII]) that the posterior probability process Π solves the stochastic differential

equation:

dΠ
(0)
t = −λΠ

(0)
t dt+

µ1 − µ0

σ
Π

(0)
t (1− Π

(0)
t ) dBt (Π

(0)
ζi,2k−2+i

= Π
(1)
ζi,2k−2+i

) (2.14)
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for ζi,2k−2+i ≤ t ≤ ζi,2k−1+i and

dΠ
(1)
t = λ(1− Π

(1)
t ) dt+

µ1 − µ0

σ
Π

(1)
t (1− Π

(1)
t ) dBt (Π

(1)
ζi,2k−1−i

= Π
(0)
ζi,2k−1−i

) (2.15)

for ζi,2k−1−i ≤ t ≤ ζi,2k−i , where the process B is defined in (2.7) and turns out to be a standard

Brownian motion on the time intervals [ζi,n−1, ζi,n], for every i = 0, 1 and any k, n ∈ N.

Taking into account the expressions in (2.4) and (2.5), we may conclude that the Bayesian

risk functions in this formulation are given by:

U∗
0 (π) = inf

(ζ0,n)

∞∑

k=1

Eπ

[
a e−rζ0,2k−1 Π

(0)
ζ0,2k−1

+

∫ ζ0,2k−1

ζ0,2k−2

e−rt (1− Π
(0)
t ) dt (2.16)

+ b e−rζ0,2k (1− Π
(1)
ζ0,2k

) +

∫ ζ0,2k

ζ0,2k−1

e−rtΠ
(1)
t dt

]

U∗
1 (π) = inf

(ζ1,n)

∞∑

k=1

Eπ

[
b e−rζ1,2k−1 (1− Π

(1)
ζ1,2k−1

) +

∫ ζ1,2k−1

ζ1,2k−2

e−rtΠ
(1)
t dt (2.17)

+ a e−rτ1,2k Π
(0)
ζ1,2k

+

∫ ζ1,2k

ζ1,2k−1

e−rt (1−Π
(0)
t ) dt

]

where the infima are taken over all sequences of stopping times (ζi,n)n∈N of the processes

Π(i) = (Π
(i)
t )t≥0 , i = 0, 1, solving the stochastic differential equations in (2.14) and (2.15),

respectively. By virtue of the strong Markov property of the processes Π(i) , i = 0, 1, we can

reduce the system of (2.16) and (2.17) to the following coupled optimal stopping problem:

U∗
0 (π) = inf

ζ0
Eπ

[
a e−rζ0 Π

(0)
ζ0

+

∫ ζ0

0

e−rt (1− Π
(0)
t ) dt+ U∗

1 (Π
(0)
ζ0
)

]
(2.18)

U∗
1 (π) = inf

ζ1
Eπ

[
b e−rζ1 (1−Π

(1)
ζ1
) +

∫ ζ1

0

e−rtΠ
(1)
t dt+ U∗

0 (Π
(1)
ζ1
)

]
(2.19)

where the infima are taken over all stopping times ζi of the processes Π
(i) , i = 0, 1, respectively.

We further search for the optimal stopping times in (2.18) and (2.19) of the form:

ζ∗0 = inf{t ≥ 0 |Π
(0)
t ≤ p∗} and ζ∗1 = inf{t ≥ 0 |Π

(1)
t ≥ q∗} (2.20)

for some 0 < p∗ < q∗ < 1, where p∗ is the largest and q∗ is the smallest number π from [0, 1]

such that U∗
0 (π) = aπ + U∗

1 (π) and U∗
1 (π) = b(1 − π) + U∗

0 (π) holds, respectively. This fact

implies that the sequences of stopping times (ζ∗i,n)n∈N given by:

ζ∗i,2k−1+i = inf{t ≥ ζ∗i,2k−2+i |Π
(0)
t ≤ p∗} and ζ∗i,2k−i = inf{t ≥ ζ∗i,2k−1−i |Π

(1)
t ≥ q∗} (2.21)
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for every i = 0, 1 and any k ∈ N, are optimal in the problems of (2.16) and (2.17).

Remark 2.1. Recall that (ζi,n)n∈N is a non-decreasing sequence of stopping times with

respect to the filtration (Ft)t≥0 . Then, by virtue of the assumption that ηn ≥ ζi,n−1 holds,

standard arguments show that the equalities:

Eπ

[ ∫ ζi,n

ζi,n−1

e−rt I(Θt = j) dt

]
= Eπ

[ ∫ ∞

0

e−rt I(ζi,n−1 ≤ t, ηn ≤ t, t < ζi,n) dt

]
(2.22)

= Eπ

[
I(ηn < ζi,n)

∫ ζi,n

ηn

e−rt dt

]
=

1

r
Eπ

[
e−rζi,n

(
er(ζi,n−ηn)+ − 1

)]

are satisfied for every i, j = 0, 1 and any n ∈ N. This fact builds a connection between

the introduction of exponential discounting into the switching multiple disorder problem of

(2.16)-(2.17) and the consideration of single disorder detection problems with exponential delay

penalty costs studied in [25], [8] and [3].

2.4. (Coupled free-boundary problems.) Standard arguments based on an application of

Itô’s formula (see, e.g. [20; Chapter V, Section 5.1] or [22; Chapter VII, Section 7.3]) imply that

the infinitesimal operator L of the process Π from (2.6) acts on an arbitrary twice continuously

differentiable (locally) bounded function F (π) according to the rule:

(LF )(π) = λ (1− 2π)F ′(π) +
1

2

(µ1 − µ0

σ

)2

π2(1− π)2 F ′′(π) (2.23)

for all π ∈ (0, 1). In order to find the unknown value functions V ∗
0 (π) and V ∗

1 (π) from (2.18)

and (2.19) as well as the unknown boundaries g∗ and h∗ from (2.12), we may use the results

of the general theory of optimal stopping problems for continuous time Markov processes (see,

e.g. [36; Chapter III, Section 8] and [24; Chapter IV, Section 8]). More precisely, we formulate

the associated coupled free-boundary problem:

(LV0 − rV0)(π) = −(1− π) for π > g, (LV1 − rV1)(π) = −π for π < h (2.24)

V0(g+) = a g + V1(g+), V1(h−) = b (1− h) + V0(h−) (2.25)

V ′
0(g+) = a+ V ′

1(g+), V ′
1(h−) = −b+ V ′

0(h−) (2.26)

V0(π) = a π + V1(π) for π < g, V1(π) = b (1− π) + V0(π) for π > h (2.27)

V0(π) < aπ + V1(π) for π > g, V1(π) < b (1− π) + V0(π) for π < h (2.28)

(LV0 − rV0)(π) > −(1− π) for π < g, (LV1 − rV1)(π) > −π for π > h (2.29)

with 0 < g < h < 1, where the instantaneous-stopping and smooth-fit conditions of (2.25) and

(2.26) are satisfied at g∗ and h∗ . Note that the superharmonic characterisation of the value
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function (see, e.g. [36; Chapter III, Section 8] and [24; Chapter IV, Section 9]) implies that

V ∗
0 (π) from (2.10) and V ∗

1 (π) from (2.11) are the largest functions satisfying the expressions

in (2.24)-(2.25) and (2.27)-(2.28) with the boundaries g∗ and h∗ .

Furthermore, standard arguments show that the infinitesimal operator Li of the process

Π(i) from (2.14)-(2.15) acts on an arbitrary twice continuously differentiable (locally) bounded

function F (π) according to the rule:

(L0F )(π) = −λ π F ′(π) +
1

2

(µ1 − µ0

σ

)2

π2(1− π)2 F ′′(π) (2.30)

(L1F )(π) = λ (1− π)F ′(π) +
1

2

(µ1 − µ0

σ

)2

π2(1− π)2 F ′′(π) (2.31)

for all π ∈ (0, 1) and every i = 0, 1. In order to find the unknown value functions U∗
0 (π) and

U∗
1 (π) from (2.18) and (2.19) as well as the unknown boundaries p∗ and q∗ from (2.12), we

formulate the associated coupled free-boundary problem:

(L0U0 − rU0)(π) = −(1 − π) for π > p, (L1U1 − rU1)(π) = −π for π < q (2.32)

U0(p+) = a p+ U1(p+), U1(q−) = b (1− q) + U0(q−) (2.33)

U ′
0(p+) = a+ U ′

1(p+), U ′
1(q−) = −b+ U ′

0(q−) (2.34)

U0(π) = a π + U1(π) for π < p, U1(π) = b (1− π) + U0(π) for π > q (2.35)

U0(π) < aπ + U1(π) for π > p, U1(π) < b (1− π) + U0(π) for π < q (2.36)

(L0U0 − rU0)(π) > −(1 − π) for π < p, (L1U1 − rU1)(π) > −π for π > q (2.37)

with 0 < p < q < 1, where the instantaneous-stopping and smooth-fit conditions of (2.33) and

(2.34) are satisfied at p∗ and q∗ . The superharmonic characterisation of the value function

implies that U∗
0 (π) from (2.18) and U∗

1 (π) from (2.19) are the largest functions satisfying the

expressions in (2.32)-(2.33) and (2.35)-(2.36) with the boundaries p∗ and q∗ .

3. Solutions of the coupled free-boundary problems

In this section we solve the systems of (2.24)-(2.29) and (2.32)-(2.37) and prove the exis-

tence and uniqueness of solutions of those coupled free-boundary problems associated to the

corresponding formulations of the switching multiple disorder problem.

3.1. (Existence in the first formulation.) The general solutions of the second order ordinary

10



differential equations in (2.24) are given by:

Vi(π) = Ci0Qi0(π) + Ci1Qi1(π) +
λ

r(2λ+ r)
+

iπ

2λ+ r
+

(1− i)(1− π)

2λ+ r
(3.1)

where Cij , j = 0, 1, are some arbitrary constants, and the functions Qi(π), i = 0, 1, are given

by:

Qi(π) =
√
π(1− π) exp

(
i2λ

ρ(1− π)
+

(1− i)2λ

ρπ

)
Hi

(
(−1)i+1 ϕ, ψ, 0, ξ;

1

1− 2π

)
(3.2)

for all π ∈ (0, 1) with

ρ =

(
µ1 − µ0

σ

)2

, ϕ =
8λ

ρ
, ψ =

ϕ2

4
+ ϕ−

8r

ρ
− 1 and ξ = 4ϕ− ψ. (3.3)

Here, the functions Hi(α, β, γ, δ; x), i = 0, 1, are two positive fundamental solutions (i.e. non-

trivial linearly independent particular solutions) of Heun’s double confluent ordinary differential

equation:

H ′′(x) +
2x5 − αx4 − 4x3 + 2x+ α

(x− 1)3(x+ 1)3
H ′(x) +

βx2 + (2α+ γ)x+ δ

(x− 1)3(x+ 1)3
H(x) = 0 (3.4)

with the boundary conditions H(0) = 1 and H ′(0) = 0. Note that the series expansion of the

solution of the equation in (3.4) converges under all −1 < x < 1, and the appropriate analytic

continuation can be obtained through the identity H(α, β, γ, δ; x) = H(−α,−δ,−γ,−β; 1/x).

The (irregular) singularities at −1 and 1 of the equation in (3.4) are of unit rank and can

be transformed into that of a confluent hypergeometric equation (see, e.g. [13] and [28] for

an extensive overview and further details). According to the results from [27; Chapter V,

Section 50], we can specify the positive (strictly) convex functions Qi(π), i = 0, 1, as (strictly)

decreasing and increasing on the interval (0, 1) and having singularities at 0 and 1, respectively.

Taking into account the fact that the function V0(π) should be bounded as π ↑ 1 while

the function V1(π) should be bounded at π ↓ 0, we must put C01 = C10 = 0 in (3.1). Then,

applying the instantaneous-stopping and smooth-fit conditions from (2.25) and (2.26) to the

function in (3.1), we get that the equalities:

C11Q1(g)− C00Q0(g) = R0(g) and C11Q1(h)− C00Q0(h) = R1(h) (3.5)

C11Q
′
1(g)− C00Q

′
0(g) = R′

0(g) and C11Q
′
1(h)− C00Q

′
0(h) = R′

1(h) (3.6)

hold for some 0 < g < h < 1, where we set:

R0(π) = −a π +
1− 2π

2λ+ r
and R1(π) = b (1− π) +

1− 2π

2λ+ r
(3.7)

11



for all π ∈ [0, 1]. Solving the left-hand part of the system in (3.5)-(3.6), we obtain:

Ĉ00(g) =
R0(g)Q

′
1(g)−R′

0(g)Q1(g)

Q1(g)Q′
0(g)−Q′

1(g)Q0(g)
and Ĉ11(g) =

R0(g)Q
′
0(g)−R′

0(g)Q0(g)

Q1(g)Q′
0(g)−Q′

1(g)Q0(g)
(3.8)

and the solution of the right-hand part there gives:

C̃00(h) =
R1(h)Q

′
1(h)−R′

1(h)Q1(h)

Q1(h)Q
′
0(h)−Q′

1(h)Q0(h)
and C̃11(h) =

R1(h)Q
′
0(h)− R′

1(h)Q0(h)

Q1(h)Q
′
0(h)−Q′

1(h)Q0(h)
(3.9)

so that the system in (3.5)-(3.6) is equivalent to:

Ĉ00(g) = C̃00(h) and Ĉ11(g) = C̃11(h) (3.10)

for 0 < g < h < 1. It thus follows that the functions:

V0(π; g) = Ĉ00(g)Q0(π) +
λ+ r(1− π)

r(2λ+ r)
and V1(π; h) = C̃11(h)Q1(π) +

λ+ rπ

r(2λ+ r)
(3.11)

provide a solution of the system in (2.24)-(2.26) for any 0 < g < h < 1 fixed.

3.2. (Uniqueness in the first formulation.) Let us now show that the system in (3.10)

with (3.8)-(3.9) admits a unique solution g∗ and h∗ . For this, using the standard comparison

arguments for solutions of the second order ordinary differential equations in (2.24), we conclude

that the resulting curves π 7→ V0(π; g) and π 7→ V1(π; h) from (3.11) do not intersect each other

on the intervals [g, 1) and (0, h], respectively, for different 0 < g < h < 1 fixed. We also observe

by virtue of the properties of the functions Qi(π), i = 0, 1, in (3.2) that V0(π; g) and V1(π; h)

are bounded and concave on [g, 1) and (0, h], respectively, and such that V ′
0(π; g) → ∞ as

π ↓ 0 and V ′
1(π; h) → −∞ as π ↑ 1. On the other hand, using the conditions in (2.27), we

obtain by means of straightforward computations that the inequalities in (2.29) are satisfied

whenever 0 < g < g and h < h < 1, where we set:

g =
1 + λa

2 + a(2λ+ r)
and h =

1 + b(λ+ r)

2 + b(2λ+ r)
(3.12)

and note that 0 < g < 1/2 < h < 1 holds. Hence, we may conclude that if the conditions:

V ′
0(g+; g) < a+ V ′

1(g+; h) and V ′
1(h−; h) > −b + V ′

0(h−; g) (3.13)

are satisfied, then the boundaries g∗ and h∗ belong to the intervals (0, g) and (h, 1), respec-

tively. In other words, the assumptions in (3.13) describe the set of all admissible parameters

a, b > 0 for which the free-boundary problem of (2.24)-(2.29) admits a unique solution, so that

the optimal stopping and switching times are given by (2.12) and (2.13), respectively.
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3.3. (Existence in the second formulation.) The general solutions of the second order

ordinary differential equations in (2.32) have the form:

Ui(π) = Di0Gi0(π) +Di1Gi1(π) +
λ

r(λ+ r)
+

iπ

λ+ r
+

(1− i)(1− π)

λ+ r
(3.14)

where Dij are some arbitrary constants and the functions Gij(π), i, j = 0, 1, are given by:

G00(π) = (1− π)

(
π

1− π

)γ+

Ψ

(
γ+ − 1, γ+ − γ− + 1;

2λπ

ρ(1− π)

)
(3.15)

G01(π) = (1− π)

(
π

1− π

)γ+

Φ

(
γ+ − 1, γ+ − γ− + 1;

2λπ

ρ(1− π)

)
(3.16)

and

G10(π) = π

(
1− π

π

)γ+

Φ

(
γ+ − 1, γ+ − γ− + 1;

2λ(1− π)

ρπ

)
(3.17)

G11(π) = π

(
1− π

π

)γ+

Ψ

(
γ+ − 1, γ+ − γ− + 1;

2λ(1− π)

ρπ

)
(3.18)

with

ρ =

(
µ1 − µ0

σ

)2

and γ± =
1

2
+
λ

ρ
±

√(
1

2
+
λ

ρ

)2

+
2r

ρ
(3.19)

for all π ∈ (0, 1). Here, we denote by:

Φ(α, β; x) = 1 +

∞∑

k=1

(α)k
(β)k

xk

k!
(3.20)

Ψ(α, β; x) =
π

sin(πβ)

(
Φ(α, β; x)

Γ(1 + α− β)Γ(β)
− x1−β Φ(1 + α− β, 2− β; x)

Γ(α)Γ(2− β)

)
(3.21)

Kummer’s confluent hypergeometric functions of the first and second kind, respectively, for

β 6= 0,−1,−2, . . . and (β)k = β(β+1) · · · (β+k−1), k ∈ N, where the series in (3.20) converges

under all x > 0 (see, e.g. [1; Chapter XIII] and [2; Chapter VI]), and Γ denotes Euler’s Gamma

function. According to the results from [27; Chapter V, Section 50], we can specify the positive

(strictly) convex functions Gi0(π), i = 0, 1, and Gi1(π), i = 0, 1, as (strictly) decreasing and

increasing on the interval (0, 1) with singularities at 0 and 1, respectively.

Taking into account the fact that the function U0(π) should be bounded as π ↑ 1 while the

function U1(π) should be bounded at π ↓ 0, we must put D01 = D10 = 0 in (3.14). Then,

applying the instantaneous-stopping and smooth-fit conditions from (2.33) and (2.34) to the

function in (3.14), we get that the equalities:

D11G11(p)−D00G00(p) = S0(p) and D11G11(q)−D00G00(q) = S1(q) (3.22)

D11G
′
11(p)−D00G

′
00(p) = S ′

0(p) and D11G
′
11(q)−D00G

′
00(q) = S ′

1(q) (3.23)
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hold for some 0 < p < q < 1, where we set:

S0(π) = −a π +
1− 2π

λ+ r
and S1(π) = b (1− π) +

1− 2π

λ+ r
(3.24)

for all π ∈ [0, 1]. Solving the left-hand part of the system in (3.22)-(3.23), we obtain:

D̂00(p) =
S0(p)G

′
11(p)− S ′

0(p)G11(p)

G11(p)G′
00(p)−G′

11(p)G00(p)
and D̂11(p) =

S0(p)G
′
00(p)− S ′

0(p)G00(p)

G11(p)G′
00(p)−G′

11(p)G00(p)
(3.25)

and the solution of the right-hand part there gives:

D̃00(q) =
S1(q)G

′
11(q)− S ′

1(q)G11(q)

G11(q)G′
00(q)−G′

11(q)G00(q)
and D̃11(q) =

S1(q)G
′
00(q)− S ′

1(q)G11(q)

G11(q)G′
00(q)−G′

11(q)G00(q)
(3.26)

so that the system in (3.22)-(3.23) is equivalent to:

D̂00(p) = D̃00(q) and D̂11(p) = D̃11(q) (3.27)

for 0 < p < q < 1. It thus follows that the functions:

U0(π; p) = D̂00(p)G00(π) +
λ+ r(1− π)

r(λ+ r)
and U1(π; q) = D̃11(q)G11(π) +

λ+ rπ

r(λ+ r)
(3.28)

provide a solution of the system in (2.32)-(2.34) for any 0 < p < q < 1 fixed.

3.4. (Uniqueness in the second formulation.) Let us finally follow the schema of arguments

above, to prove that the system of equations in (3.27) with (3.25)-(3.26) admits a unique

solution p∗ and q∗ . For this, we use the standard comparison arguments for solutions of the

second order ordinary differential equations in (2.32) to conclude that the curves π 7→ U0(π; p)

and π 7→ U1(π; q) from (3.28) do not intersect each other on the intervals [p, 1) and (0, q],

respectively, for different 0 < p < q < 1 fixed. We also observe by virtue of the properties

of the functions Gii(π), i = 0, 1, in (3.15) and (3.18) that U0(π; p) and U1(π; q) are bounded

and concave on [p, 1) and (0, q], respectively, and such that U ′
0(π; p) → ∞ as π ↓ 0 and

U ′
1(π; q) → −∞ as π ↑ 1. Moreover, using the conditions in (2.35), we obtain by means of

straightforward computations that the inequalities in (2.37) are equivalent to:

(2 + a(λ+ r))p−
r

λ+ r
< −λD̃11(q)G

′
11(p) (3.29)

(2 + b(λ + r))(1− q)−
r

λ+ r
< λD̂00(p)G

′
00(q) (3.30)

for 0 < p < q < 1. Note that since the derivative G′
11(π) is positive and increasing from zero to

infinity, while the derivative G′
00(π) is negative and increasing from minus infinity to zero, it is
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shown by means of standard arguments that the inequalities in (3.29) and (3.30) hold whenever

0 < p < p and q < q < 1, where the numbers p and q are set by:

p = p̂ ∧
r

(λ+ r)(2 + a(λ+ r))
<

1

2
and q = q̂ ∨

λ+ (λ+ r)(1 + b(λ+ r))

(λ+ r)(2 + b(λ + r))
>

1

2
. (3.31)

Here, the couple p̂ and q̂ is determined as a unique solution of the corresponding equations

instead of the inequalities in (3.29) and (3.30) whenever it exists, and p̂ = q̂ = 1/2 otherwise.

Hence, we may conclude that if the conditions:

U ′
0(p+; p) < a + U ′

1(p+; q) and U ′
1(q−; q) > −b+ U ′

0(q−; p) (3.32)

hold, then the system in (3.27) admits a unique solution p∗ and q∗ such that 0 < p∗ < p and

q < q∗ < 1. Therefore, the assumptions in (3.32) describe the set of all admissible parameters

a, b > 0 for which the free-boundary problem of (2.32)-(2.37) admits a unique solution, so that

the optimal stopping and switching times are given by (2.20) and (2.21), respectively.

4. Main results and proofs

Taking into account the facts proved above, we are now ready to formulate and prove the

main assertions of the paper.

Theorem 4.1. Assume that the conditions in (3.13) are satisfied with g and h defined in

(3.12). Then, in the switching multiple disorder problem of (2.8)-(2.9) and (2.10)-(2.11) for

the process X from (2.1), the Bayesian risk functions V ∗
i (π), i = 0, 1, take the form:

V ∗
0 (π) =




V0(π; g∗), if g∗ < π ≤ 1

a π + V1(π; h∗), if 0 ≤ π ≤ g∗

(4.1)

V ∗
1 (π) =




V1(π; h∗), if 0 ≤ π < h∗

b (1− π) + V0(π; g∗), if h∗ ≤ π ≤ 1
(4.2)

and the optimal switching times (τ ∗i,n)n∈N , i = 0, 1, have the structure of (2.13). Here, the

functions V0(π; g) and V1(π; h) are given by (3.11), and the optimal stopping boundaries g∗ and

h∗ , such that 0 < g∗ < g < 1/2 < h < h∗ < 1, are uniquely determined by the coupled system of

the equations in (3.10) with Ĉii(g) and C̃ii(h) given by (3.8)-(3.9), where the functions Qi(π)

and Ri(π), i = 0, 1, are defined in (3.2) and (3.7), respectively.
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Theorem 4.2. Assume that the conditions in (3.32) are satisfied with p and q defined by

(3.31), where p̂ and q̂ is a unique solution of the system of equations replacing the inequalities

in (3.29)-(3.30) whenever it exists, and p̂ = ĝ = 1/2 otherwise. Then, in the switching multiple

disorder problem of (2.16)-(2.17) and (2.18)-(2.19) for the process X from (2.1), the Bayesian

risk functions U∗
i (π), i = 0, 1, take the form:

U∗
0 (π) =




U0(π; p∗), if p∗ < π ≤ 1

a π + U1(π; q∗), if 0 ≤ π ≤ p∗

(4.3)

U∗
1 (π) =




U1(π; q∗), if 0 ≤ π < q∗

b (1− π) + U0(π; p∗), if q∗ ≤ π ≤ 1
(4.4)

and the optimal switching times (ζ∗i,n)n∈N , i = 0, 1, have the structure of (2.21). Here, the

functions U0(π; p) and U1(π; q) are given by (3.28), and the optimal stopping boundaries p∗

and q∗ , such that 0 < p∗ < p < 1/2 < q < q∗ < 1, are uniquely determined by the coupled

system of the equations in (3.27) with D̂ii(p) and D̃ii(q), i = 0, 1, given by (3.25)-(3.26), where

the functions Gii(π) and Si(π), i = 0, 1, are defined in (3.15)-(3.18) and (3.24), respectively.

Proof. Since the verification of the assertions stated above can be done using similar ways

of arguments, we present the proof of the second one only. Namely, we show that the functions

in (4.3) and (4.4) coincide with the value functions in (2.18) and (2.19), respectively, and the

stopping times ζ∗i , i = 0, 1, from (2.20) and thus the switching times (ζ∗i,n)n∈N from (2.21) are

optimal with the boundaries p∗ and q∗ specified above. For this, let us denote by U0(π) and

U1(π) the right-hand sides of the expressions in (4.3) and (4.4), respectively. Hence, applying

Itô’s formula to e−rtUi(Π
(i)
t ), i = 0, 1, and taking into account the smooth-fit conditions in

(2.34), we obtain:

e−rt Ui(Π
(i)
t ) = Ui(π) +

∫ t

0

e−rs (LiUi − rUi)(Π
(i)
s ) I(Π(i)

s 6= p∗,Π
(i)
s 6= q∗) ds+M

(i)
t (4.5)

where the processes M (i) = (M
(i)
t )t≥0 defined by:

M
(i)
t =

∫ t

0

e−rs U ′
i(Π

(i)
s )

µ1 − µ0

σ
Π(i)

s (1− Π(i)
s ) dBs (4.6)

are continuous square integrable martingales under the probability measure Pπ with respect

to the filtration (Ft)t≥0 , for every i = 0, 1. The latter fact can easily be observed, since the

derivatives U ′
i(π), i = 0, 1, are bounded functions.

16



Taking into account the assumptions in (3.32), it is shown by means straightforward com-

putations and using the properties of the functions Ui(π), i = 0, 1, that the conditions of

(2.36) and (2.37) hold with 0 < p∗ < p and q < q∗ < 1. These facts together with the

conditions in (2.32)-(2.33) and (2.35) yield that the inequalities (L0U0 − rU0)(π) ≥ −(1 − π)

and (L1U1 − rU1)(π) ≥ −π hold for all π ∈ [0, 1] such that π 6= p∗ and π 6= q∗ , as well as

U0(π) ≤ aπ+U1(π) and U1(π) ≤ b(1−π)+U0(π) are satisfied for all π ∈ [0, 1]. It also follows

from the regularity of the diffusion processes Π(i) , i = 0, 1, solving the stochastic differential

equations in (2.14) and (2.15), that the indicator which appears in the formula (4.5) can be

ignored. We therefore obtain from the expression in (4.5) that the inequalities:

a e−rζ0 Π
(0)
ζ0

+

∫ ζ0

0

e−rs (1− Π(0)
s ) ds+ e−rζ0 U1(Π

(0)
ζ0
) (4.7)

≥ e−rζ0 U0(Π
(0)
ζ0
) +

∫ ζ0

0

e−rs (1− Π(0)
s ) ds ≥ U0(π) +M

(0)
ζ0

b e−rζ1 (1− Π
(1)
ζ1
) +

∫ ζ1

0

e−rsΠ(1)
s ds+ e−rζ1 U0(Π

(1)
ζ1
) (4.8)

≥ e−rζ1 U1(Π
(1)
ζ1
) +

∫ ζ1

0

e−rsΠ(1)
s ds ≥ U1(π) +M

(1)
ζ1

hold for any stopping times ζi of the processes Π(i) , i = 0, 1, respectively.

For every i = 0, 1, let (κi,n)n∈N be an arbitrary localizing sequence of stopping times for

the processes M (i) . Then, taking the expectations with respect to the probability measure Pπ

in (4.7)-(4.8), by means of the optional sampling theorem (see, e.g. [21; Theorem 3.6] or [20;

Chapter I, Theorem 3.22]), we get:

Eπ

[
a e−r(ζ0∧κ0,n) Π

(0)
ζ0∧κ0,n

+

∫ ζ0∧κ0,n

0

e−rs (1− Π(0)
s ) ds+ e−r(ζ0∧κ0,n) U1(Π

(0)
ζ0∧κ0,n

)

]
(4.9)

≥ Eπ

[
e−r(ζ0∧κ0,n) U0(Π

(0)
ζ0∧κ0,n

) +

∫ ζ0∧κ0,n

0

e−rs (1−Π(0)
s ) ds

]
≥ U0(π) + Eπ

[
M

(0)
ζ0∧κ0,n

]
= U0(π)

Eπ

[
b e−r(ζ1∧κ1,n) (1− Π

(1)
ζ1∧κ1,n

) +

∫ ζ1∧κ1,n

0

e−rsΠ(1)
s ds+ e−r(ζ1∧κ1,n) U0(Π

(1)
ζ1∧κ1,n

)

]
(4.10)

≥ Eπ

[
e−r(ζ1∧κ1,n) U1(Π

(1)
ζ1∧κ1,n

) +

∫ ζ1∧κ1,n

0

e−rsΠ(1)
s ds

]
≥ U1(π) + Eπ

[
M

(1)
ζ1∧κ1,n

]
= U1(π)

for all π ∈ [0, 1]. Thus, letting n go to infinity and using Fatou’s lemma, we obtain that the
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inequalities:

Eπ

[
a e−rζ0 Π

(0)
ζ0

+

∫ ζ0

0

e−rs (1−Π(0)
s ) ds+ e−rζ0 U1(Π

(0)
ζ0
)

]
≥ U0(π) (4.11)

Eπ

[
b e−rζ1 (1−Π

(1)
ζ1
) +

∫ ζ1

0

e−rsΠ(1)
s ds+ e−rζ1 U0(Π

(1)
ζ1
)

]
≥ U1(π) (4.12)

are satisfied for any stopping times ζi , i = 0, 1, and all π ∈ [0, 1]. By virtue of the structure

of the stopping times in (2.20), it is readily seen that the equalities in (4.11) and (4.12) hold

with ζ∗i instead of ζi , i = 0, 1, when either π ≤ p∗ or π ≥ q∗ , respectively.

It remains to show that the equalities are attained in (4.11) and (4.12) when ζ∗i replaces

ζi , i = 0, 1, for p∗ < π < q∗ . By virtue of the fact that the functions Ui(π), i = 0, 1, with the

boundaries p∗ and q∗ satisfy the conditions in (2.32) and (2.33), it follows from the expression

in (4.5) and the structure of the stopping times in (2.20) that the equalities:

e−r(ζ∗0∧κ0,n) U0(Π
(0)
ζ∗
0
∧κ0,n

) +

∫ ζ∗0∧κ0,n

0

e−rs (1−Π(0)
s ) ds = U0(π) +M

(0)
ζ∗
0
∧κ0,n

(4.13)

e−r(ζ∗
1
∧κ1,n) U1(Π

(1)
ζ∗
1
∧κ1,n

) +

∫ ζ∗1∧κ1,n

0

e−rs Π(1)
s ds = U1(π) +M

(1)
ζ∗
1
∧κ1,n

(4.14)

are satisfied for all π ∈ [0, 1]. Observe that the integrals here are finite (Pπ -a.s.) as well as

the processes (M
(i)
ζ∗i ∧t

)t≥0 , i = 0, 1, are uniformly integrable martingales. Therefore, taking

the expectations in (4.13) and (4.14) and letting n go to infinity, we can apply the Lebesgue

dominated convergence theorem to obtain the equalities:

Eπ

[
a e−rζ∗

0 Π
(0)
ζ∗
0
+

∫ ζ∗0

0

e−rs (1− Π(0)
s ) ds+ e−rζ∗

0 U1(Π
(0)
ζ∗
0
)

]
= U0(π) (4.15)

Eπ

[
b e−rζ∗1 (1−Π

(1)
ζ∗
1
) +

∫ ζ∗1

0

e−rsΠ(1)
s ds+ e−rζ∗1 U0(Π

(1)
ζ∗
1
)

]
= U1(π) (4.16)

for all π ∈ [0, 1]. The latter, together with the inequalities in (4.11) and (4.12), directly imply

the desired assertion. �

Remark 4.3. The results formulated above show that the following sequential procedure is

optimal. Being based on the observations of X , we construct the posterior probability process

Π and stop the latter for the first time as soon as it exits either the region (g∗, h∗) or (p∗, q∗),

appropriately, and then conclude that the process Θ has switched either from 0 to 1 or from

1 to 0, respectively. Then, we continue to observe the process Π which is currently located

either in the regions [0, g∗] and [h∗, 1] or in [0, p∗] and [q∗, 1], and stop the observations as soon

18



as it comes to the opposite region. We may thus conclude that Θ should have switched either

from 0 to 1 or from 1 to 0, respectively, and continue the procedure from the beginning.

Remark 4.4. Taking into account the results obtained above, we may also conclude that

the appropriate minimal Bayesian risk functions take the form:

V ∗(π) = min{V ∗
0 (π), V

∗
1 (π)} and U∗(π) = min{U∗

0 (π), U
∗
1 (π)} (4.17)

for π ∈ [0, 1], where the functions V ∗
i (π) and U∗

i (π), i = 0, 1, are defined in (2.8)-(2.9) and

(2.18)-(2.19), respectively. It is also seen that if either V ∗(π) = V ∗
i (π) or U∗(π) = U∗

i (π) holds

for any π ∈ [0, 1] fixed, then the sequences (τ ∗i,n)n∈N or (ζ∗i,n)n∈N given by (2.13) and (2.21) are

optimal in (4.17), appropriately.
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Annales de la Société Scientifique de Bruxelles 92 (53–78).

[14] Duckworth, K. and Zervos, M. (2001). A model for investment decisions with

switching costs. Annals of Applied Probability 11(1) (239–260).

[15] Elliott, R. J., Aggoun, L. and Moore, J. B. (1995). Hidden Markov Models:

Estimation and Control. Springer, New York.

[16] Feinberg, E. A. and Shiryaev, A. N. (2006). Quickest detection of drift change for

Brownian motion in generalized Bayesian and minimax settings. Statistics and Decisions

24 (445–470).

20



[17] Friedman, A. (1973). Stochastic games and variational inequalities. Archive for Ra-

tional Mechanics and Analysis 51 (321–346).

[18] Friedman, A. (1976). Stochastic Differential Equations and Applications II. Aca-

demic Press, New York.

[19] Hamadène, S. and Jeanblanc, M. (2007). On the stopping and starting problem:

application to reversible investment. Mathematics of Operations Research 32 (182–192).

[20] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus.

(Second Edition) Springer, New York.

[21] Liptser, R. S. and Shiryaev, A. N. (1977). Statistics of Random Processes I.

Springer, Berlin.

[22] Øksendal, B. (1998). Stochastic Differential Equations. An Introduction with Appli-

cations. (Fifth Edition) Springer, Berlin.

[23] Page, E. S. (1954). Continuous inspection schemes. Biometrika 41 (100–115).

[24] Peskir, G. and Shiryaev, A. N. (2006). Optimal Stopping and Free-Boundary Prob-

lems. Birkhäuser, Basel.
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