Optimal Projective Algorithms for the
List Update Problermn

Christoph Amtiihl' Bernd Gartnef Bernhard von Stengel
January 16, 2010

Abstract

The list update problem is a classical online problem, wittoptimal competi-
tive ratio that is still open, known to be somewhere betweérand1.6. An algo-
rithm with competitive ratid .6, the smallest known to date, ZOVB, a randomized
combination ofBl T andTlI MESTAMP(0). This and many other known algorithms,
like MTF, areprojectivein the sense that they can be defined by looking only at any
pair of list items at a time. Projectivity simplifies both tbescription of the algo-
rithm and its analysis, and so far seems to be the only wayftoeda good online
algorithm for lists of arbitrary length. In this paper we cheterize all projective list
update algorithms and show that their competitive raticeigen smaller than.6 in
the partial cost model. Therefor€OMB is a best possible projective algorithm in
this model.

Keywords: linear lists, online algorithms, competitive analysis.

AMS subiject classifications:68W27, 68W40, 68P05, 68P10.

arXiv:1002.2440v1 [cs.CC] 11 Feb 2010

*A preliminary version of this paper appeared[ih [5].

tDepartment of Computer Science, University of Liverpodierpool L69 3BX, United Kingdom.
Email: christoph.ambuhl@googlemail.com

fInstitute for Theoretical Computer Science, ETH Ziiriob98 Ziirich, Switzerland.
Email: gaertner@inf.ethz.ch

§Department of Mathematics, London School of Economics,domnWC2A 2AE, United Kingdom.
Email: stengel@maths.lse.ac.uk

http://arxiv.org/abs/1002.2440v1

1 Introduction

Thelist update problenis an online problem in the area of self-organizing datacstmes
[3]. Requests to items in an unsorted linear list must beeskby accessing the requested
item. We assume thgartial cost modeilvhere accessing thigh item in the list incurs a
cost ofi — 1 units. This is simpler to analyze than the origifidl cost mode[10] where
that cost isi. The goal is to keep access costs small by rearranging tims itethe list.
After an item has been requested, it may be moved free of elwdoger to the front of the
list. This is called dree exchangeAny other exchange of two consecutive items in the
list incurs cost one and is calledhaid exchange

An onlinealgorithm must serve the sequencef requests one item at a time, without
knowledge of future requests. An optimuwfilinealgorithm knows the entire sequence
in advance and can serve it with minimum c@BIT (o). If the online algorithm serves
with costA(o), then it is called:-competitivef for a suitable constarit

Alo) <c-OPT(o) +b (1)

for all request sequencesand all initial list states. The constants also called the
competitive ratio If the above inequality holds even for= 0, the algorithmA is called
strictly c-competitive

The move-to-frontrule MTF, for example, which moves each item to the front of
the list after it has been requested, is strictly 2-competiflQ,[11]. This is also the
best possible competitiveness for any deterministic endilgorithm for the list update
problem [10]. Another 2-competitive deterministic algbm isTS, which is the simplest
member of thell MESTANMP class due to Albers [1]TS moves the requested itemin
front of all items which have been requested at most once $irelast request to.

As shown first by Irani([9],randomizedalgorithms can perform better on average.
Such an algorithm is calledcompetitive if

E[A(0)] < ¢- OPT(0) + b,

for all & and all initial list states, where the expectation is takeardhe randomized
choices of the online algorithm. The best randomized listate algorithm known
to date is thel.6-competitive algorithmCOMB [2]. It serves the request sequence with
probability 4/5 using the algorithnBI T [10]. With probability 1/5, COVB treats the
request sequence usif.

Lower bounds for the competitive ratio of randomized aldons are harder to find;
the first nontrivial bounds are due to Karp and Raghavan,lseesmark in[[10]. In the
partial cost model, a lower bound of 1.5 is easy to find as ambyitems are needed. Teia
[12] generalized this idea to prove the same bound in thectigt model, which requires
long lists. The authors [6] showed a lower bound of 1.5008%(oved to 1.50115 in
[4, p. 38]) for lists with five items in the partial cost modeising game trees and a
modification of Teia’s approach. The optimal competitivigaréor the list update problem
(in the partial cost model) is therefore betweleb0115 and 1.6, but the true value is as
yet unknown.

Our results. With the exception of Irani’s algorithr®PLI T [9], all the specific list
update algorithms mentioned above prejective meaning that the relative order of any
two itemsz andy in the list after a request sequencenly depends on the initial list state
and the requests toandy in 0. The simplest example of a projective algorithnMBF.

In order to determine whetheris in front of y aftero, all that matters is whether the last
request tar was before the last requestgoThe requests to other items are irrelevant.

A simple example of a non-projective algorithmT&ANSPOSE, which moves the
requested item just one position further to the front.

The main result of this paper is a proof tHaf is the best possible competitive ratio
attainable by a projective algorithm. As a tool, we develogaplicit characterization of
deterministic projective algorithms.

These results are significant in two respects. First, thewdhat the successful ap-
proach of combining existing projective algorithms to abtanproved ones has reached
its limit with the development of th€OVB algorithm. New and better algorithms (if they
exist) have to be non-projective, and must derive from n@wty be discovered, design
principles.

Second, the characterization of projective algorithmsstea forward in understand-
ing the structural properties of list update algorithms. tAAthis characterization, the
largest and so far most significant class of algorithms ajggaa new, unified way.

The complete characterization of projective algorithnmegwout to be rather involved.
However, there is a simple subclass of projective algorithwrhich already covers all rea-
sonable projective algorithms. We call thamitical request algorithms A list update
algorithm is completely described by the list state afteeguest sequence has been
served, without specifying the particular rearrangeméritieons after each request; this
can be done since we can assume that all changes in the tstastadue to paid ex-
changes, as explained in further detail at the beginning@fniext section. For critical
request algorithms, thenary projectiondo individual items suffice to describe that list
state. For a request sequemcand list itemz, deleting all requests to other items defines
the unary projectiowr,, which is ani-fold repetition of requests to, written asxz?, for
somei > 0. In Section 5 it will be necessary to consider unary progewic’ andy® of
length zero as different if the itemsandy are different; for the moment, this distinction
does not matter. Witk as the set of list items, let the set of these unary projestoen

U={z"|z€L,i>0}. (2)

Definition 1 (Critical request algorithm).
A deterministiccritical request algorithm is defined by a function

F:U—1{0,1,2,...}, with F(z') <iforanyx € L.

We call the F'(0,,)th request tor in o the critical requestto x. If F(o,) is zero (for
example ifo, is the empty sequend®, thenx has no critical request. In the list state
aftero, all items with a critical request are grouped togetheramfiof the items without
critical request. The items with critical requests are cedeaccording to the time of the

3

F(o,)threquestta in o. The later a critical request took place in the sequence|tiser
the item is to the front. The items without critical request placed at the end of the list
according to their order in the initial sequencerahdomized critical request algorithm
is a probability distribution on the set of deterministidiceal request algorithms.

As an example, consider the online algorithm for three iteing andc with the
function £ shown in the following table for requests up to four items.

i |0 1 2 3 4
Fa@)l 0O 1 0 2 2
Fb)y| o o 2 2 4
F¢)l 0o 1 2 2 2

In the rest of this paper, list states are writterjzas; . . . z,,] wherez; is the item at the
front of the list. Let the initial list state bbc|]. Consider the list state after= abbcab.
We haveF'(o,) = F(aa) = 0, hencea does not have a critical request. Fowe have
F(op) = F(bbb) = 2, therefore the second requesbtio ¢ is its critical request. Farwe
haveF'(o.) = F(c) = 1. Thus after, the list state iscba]. If we augment by another
request ta:, itema moves to the front, because its critical request is the skcon

Algorithms based on critical request functions are cleprbjective, since the relative
order of any pair of items just depends on the relative orfiénerequests ta andy in
o and the relative order of andy in the initial list state.

In good online algorithms, the critical requests are veoeng, like inMIF which is
described by the critical request functiéiiz’) = i for all itemsx. We define the critical
requestelativeto the current position by

fla') =i—F(2), 3)

from which the critical request function is recovered&ds’) = i — f(z%). ThenMIF is
given by f(z*) = 0. Algorithm TS is described byf (z?) = 1 for all items and all > 0
(and f(0) = 0). Because th8&I T algorithm [10] is randomized, its critical requests are
also randomized. For every item its relative critical request function can be written as
f(0) =0 and, fori > 0,

f(@") = (by +i) mod 2 4)

whereb, € {0, 1} is chosen once uniformly at random. Hence the critical retjisethe
last or the second-to-last request with equal probability.

The structure of the paper is as follows. In the next sectiom explain projective
algorithms in more detail and how they can be analyzed. Ini@e8, we give a char-
acterization ofM -regular projective algorithms, followed by the lower bduof 1.6 for
this class of algorithms in Section 4. In Section 5, we chiaraae projective algorithms
completely. We extend the lower bound to the full class intisad.

2 Projective Algorithms

In order to characterize list update algorithms, we firstpdity their formal definition.
The standard definition (of the partial cost model) consi@elist state and a sequence of
requests. For each request to one of the items to the listteimecan be accessed with
access cost— 1 if the item is in position, and then moved free of charge closer to the
front. In addition, paid exchanges are allowed which candpdied both before and after
accessing the item, at a cost of one unit for exchanging anybmsecutive items.

Contrary to the claim of [11, Theorem 3], paid exchanges ntégtly improve costs.
For example, let the initial list state Bebc] ando = cbbe. Then an optimal algorithm
movesa behindb andc before the first request to This requires paid exchanges.

On the other hand, free exchanges can be mimicked by paichegeb as follows:
Instead of first paying: units in order to access itemand then moving it at no charge
t positions closer to the front, one can first move the itepositions forward and then
access the item. In both cases, one pays exaailyits.

Furthermore, one can restrict paid exchanges to take platdgfore the access to
a requested item. This holds because after accessing anatencan postpone paid
exchanges until the next request is revealed.

The above considerations lead to a simplified but still egjent model of list update
algorithms. With the simplified model, we can specify anyedetinistic online algorithm
A by a function

AN Ny

Here, > denotes the set of finite request sequences, whérenotes the set of the
states the list of: items can attain. By definitiorﬁA(a) denotes the list state after the
last request of has been served by algorithin

Consider a request sequencand assume it is followed by a request to itenthe
extended sequence denotedday Then the cost of serving requests defined by: the
cost of re-arranging the list from staﬁ@(o—) to SA(ax) by paid exchanges, plus the cost
of accessing: in stateSA(ax).

Using this notation, the initial list state can be denotedsﬂ(@). We will omit the
superscripA in SA(O’) when the algorithm used is determined by the context.

In order to describe projective algorithms, we have to ihtice the concept giro-
jectionsof request sequences and list states. Let a request sequéecgiven and fix a
pair of itemsz, y. The projectiorv,, of o to z andy is the request sequeneevhere all
requests which are not toor y are removed. Similarlyy,. is o with all requests other
thanz removed.

Given a list statd., the projection ta: andy is obtained by removing all items except
for z andy from the list. This is denoted bg,,,.

Definition 2. Let S,, (o) be the projection of (o) to 2 andy. A deterministic algorithm
Ais calledprojectiveif for all pairs of itemsz, y and all request sequences

Sry(a) = Sry(ary)- 5)

A randomized algorithm is projective if all deterministigarithms that it chooses with
positive probability are projective.

Thus, an algorithm is projective if the relative positionasfy pair of items depends
only on the initial list state and the requeststandy in the request sequence.

Projective algorithms have a natural generalization, eliee relative order of ank-
tuple of list items depends only on the requests to tihasems. It turns out that for lists
with more thank items, only projective ajgorithms satisfy this conditiofhis follows
from the fact that, for example fdr = 3, S7) (o) = Sﬁ}z(axyz) (so the relative position

of z andy does not depend on requestsuip andS@w(a) = Sﬁ/w(amyw) (so the relative
position ofx andy does not depend og), which implies thatS,, (o) depends only on
Ogy-

Already in [7], Bentley and McGeoch observed thiiF is projective: Itemz is in
front of y if and only if y has not been requested yet or if the last requestttmk place
after the last request tp

With the exception of Irani'SPLI T algorithm [9], projective algorithms are the only
family of algorithms that have been analyzed so far, tyjhaading the following theorem,

for example in([1] 2, 8].

Theorem 3. If a (strictly) projective algorithm ig-competitive on lists with two items,
then it is also (strictlyy-competitive on lists of arbitrary length.

Proof. Consider first an arbitrary list update algorithAn We define theprojected cost
A, (o) thatA serves a request sequencerojected to the pait, y, as follows: Letr'z
be any prefix ofo. ThenA,,(o) is the number of times, for all requesisn o, where
Szy(0') andS,, (o' 2) differ (which counts the necessary paid exchanges afidy; this
may happen even i ¢ {x,y} in caseA is not projective), plus the number of times
wherez = x andS,,(¢'z) = [yx] or z = y and S, (0'z) = [zy]. Let L be the set of list

items. Then
Ao)= Y Aylo), (6)

{z,y}CL

because the costgo) are given by the update costs for changf{g’) to S(¢’z), which
is the sum of the costs of paid exchanges of pairs of items,tpkicost of accessingn
stateS(o'z).

For a projective algorithnA the relative behavior of a pair of items is, according
to (5), independent of the requests to other items. It is=floee easy to see thAf, (o) =
A,,(o0.,) for projective algorithms: Becaugeis projective A, (o) is also the cost of\
for servingo,,, on the two-item list containing andy starting froms,,,(0).

For the algorithnOPT, one can interpre®PT,,(o,,) as the cost of optimally serving
0.y 0N the two-item listS,, (0). To see this, note that in order to sesv@ptimally, one
can always start by moving the items not requested to the tail of the list, without
changing their relative order. Concerni@gT, we haveOPT,,(c) > OPT,,(0,,). Then

OPT(0)= > OPT,(0)> > OPT,(0,) = OPT(0). 7)

{z,y}CL {z,y}CL

6

Let A be a projective algorithm that iscompetitive on two items. Then for every pair
of itemsz, y there is a constart,, such that for alb

Avy(0zy) < - OPTLy(00y) + bay.

Then

Alo) = Z Avy(0ay)

{zy}CL

Z (¢ OPTyy(0ay) + bay)

{zy}CL
> bay

{zy}CL
c-OPT(o)+b
c-OPT (o) + b.

IN

IN

IN

For the strict case, just set &ll, := 0. O

Not all algorithms are projective. L&MTF be the algorithm that moves the requested
itemx in front of all items which have not been requested since theipus request to,
if there has been such a request.

It is easy to prove that on lists with two items, combinloglF andMTI'F with equal
probability would lead to a 1.5-competitive randomizedoaitnm. Obviously, ifLMI'F
was projective, this bound would hold for lists of arbitréength.

However,LMTF is not projective. This can be seen from the request sequenee
baacbc with initial list Ly = abc]MTt hoIdsthatSLMTF() = cab, whereassl F(ch) =
SLMIF (bebe) = bea. HenceSt +4 SEMIF).

3 Critical Requests andM -regular Algorithms

In this section, we consider deterministic projective liptlate algorithms. In order to
refer to the individual requests to an itemwe write unary projections as

{L'i = 1’(1)1'(2) .. .x(i),

that is,z(,) is thegth request ta: in o if o, = 2, for1 < ¢ <.

Let P(o) be the set of all permuations of the sequenceln particular, P(z'y’)
consists of all sequences witlequests ta: and; requests tg.

Swappingwo requests;, andy, in a request sequenecemeans that ;) andy),
which are assumed to be adjacent, change their position itf two requests are not
adjacent, they cannot be swapped.

Definition 4. A pair of unary projections?, 3’ is calledagile if there exist two request
sequences and7’ in P(x'y’) with S,.,(7) = [zy] andS,,(7') = [yx].

Definition 5. We call a pair of requests,, y) anagile pair of o if z,) andy) are
adjacent inr and swapping: ;) andy; in o changesS,, (o).

Clearly, if z* andy’ are agile, then there exists an agile pair in at least oneesegu
belonging toP (z'y?).

Lemma 6. If z(,), y() is an agile pair obr, thenz andy are adjacent it¥ (o).

Proof. Let o’ be o with z(, andy, swapped. Clearlys,, (o) # S.,(¢') andSy (o) =
Ss(d’) holds for all{s,t} C L except{z,y}. But this is possible only if: andy are
adjacent inS(o). O

Definition 7. For everyz’ € U let R(z") be the set defined as follows;,) € R(z") if
and only if there existg, ando such thatr,), 3 is an agile pair inv.

Lemma 8. If both pairsz?, ¢/ andz?, z* are agile, thenR(z?)| = 1.

Proof. Obviously, R(z') > 0. Suppose thak(z') > 1; we will show that this leads to
a contradiction. IfR(z") > 1 then there exists € P(z'y’) with an agile paitz), ().
Similarly, there exists a sequengec P(z'z*) with an agile paitzy), z,) andq # ¢'.
By suitably insertingt requests to into 7, we create a sequeneewith o, = 7 and
0z. = Ainwhich bothz), yo) andz .y, 2 are adjacent pairs.

By (B), swapping the agile pair),y will changesS,, (o), but leave the relative
order of the pairs of items unchanged. The same holds fordite@airz), z(,,,) and the
pairz, z.

Lemmal6 enforces to be adjacent to both andz in S(o). By swappingz,), yq),
we obtain a sequeneg in whichz,, 2, is still an agile pair, but andz are no longer
adjacent inS(o”’), which contradicts Lemnmid 6. O

Lemma 9. If z,),y() is an agile pair i\ € P(z'y’) and|R(z")| = 1 and|R(y’)| = 1,
then swapping:(, andy changesS,,(o) in any sequence € P(z'y’) wherex,
andy(; are adjacent.

Proof. |R(z")| = 1and|R(y’)| = 1 implies that the only swap of requests that can change
the relative order of andy in a request sequence is swapping andy ;. If the lemma
does not hold, there exists a sequence in which we can swap, andy; to obtain

o’ with S;,(0) = S.y(¢’). Then we can obtain any sequencef(r) by successively
transposing adjacent requests, starting from eith@ro’, without ever swapping,) and

ya)- Thus, the relative order of andy would be the same for all request sequences. But
we know that swapping, andy changesS,,()). This is a contradiction. 0J

In this and the next section, we consider online list updégerahms that move an
item to the front of the list after sufficiently many conseeetequests to that item. This
behavior is certainly expected for algorithms with a smakhpetitive ratio. In this sec-
tion, we show that such algorithms, which we callregular, can be characterized in
terms of “critical requests”. In the next section, we uss tthiaracterization to show that
such algorithms are at bekst-competitive.

Definition 10. For a given intege®/ > 0, a deterministic algorithm is callety -regular
if for each itemz and each request sequencatem x is in front of all other items after
the sequencez?.

A randomized algorithm is called/-regular if it is a probability distribution over
deterministic)M -regular algorithms.

The algorithms discussed at the end of the introduction laferagular or 2-regular.
A projective algorithm that is nat/-regular isSFREQUENCY COUNT, which maintains
the items sorted according to decreasing number of pasestgjuwo items which have
been requested equally often are ordered by recency of ldstirequest, like ifMT'F.
Hence, after serving the request sequenteé!y™, item z is still in front of y, which
shows thaFREQUENCY COUNT is not M-regular for anyM. Algorithms that are not
M-regular are characterized in Section 5 below, but suchdufar” behavior must vanish
in the long run for any algorithm with a good competitive oatsee Section 6). Hence,
the important projective algorithms afé-regular.

The following theorem asserts the existence of criticaliess, essentially the unique
element of R(z*) in Lemmal8, for those unary projectiomswhere this lemma applies.
For projectivity, the list items may also be maintained iverse order, described as case
(b) in the following theorem; competitive algorithms do mathave like this, as we will
show later.

Theorem 11. Let A be a deterministic projective algorithm over a #etf list items.
Then there exists a function

F:U — N, F(z")<i foralli

so that the following holds:

Let @ be a set of unary projections containing unary projectiorst east three dif-
ferent items. Let all unary projections to different itemgJ be pairwise agile. Then one
of the following two cases (a) or (b) applies.

(@) For all pairs of unary projectionsg, 3’ from @ it holds that if¢ = F(z%) and
[= F(y’), then
Suy(0) = [zy] ?f T(q) ?s requested aftey, in.a ®)
[yz] if x(y is requested beforg,) in o

(b) For all pairs of unary projectiong’, 3’ from @ it holds that if¢ = F(z') and
[= F(y’), then
S, (0) = [zy] if x(q is requested beforg,) in o)
xy [yz] if z(, is requested aftey;) in o

Proof. Since all pairs of unary projections i) are pairwise agile, we can conclude
|R(z")] = 1 for all z* € Q by Lemmal8. This allows us to defin(z’) = ¢ if
z(g € R(z"). From Lemmd&D we can conclude that for every pair’, either 8) or[(9)
holds.

It remains to prove that either all pairs are operated by (&)yo(9). If this was not
the case, then it would be a possible to construct a sequewtéch has a pair of critical
requests adjacent to each otherwimwithout the corresponding items being adjacent in
S(c), which contradicts Lemnid 6. O

The following theorem asserts that afiregular algorithm operates, aftéf or more
requests to a items in a list with at least three items, aaogrid critical requests as in
Definition[d. That s, case (b) of Theorém 11, where the k&t are arranged backwards,
does not apply.

Theorem 12. Let A be a deterministic projectivé/-regular algorithm over a sét of at
least three list items. Then there exists a function

F:U—=N, F(z')<i foralli

so that the following holds. Let,y € L. Leto be any request sequence wijth| > M
and|o,| > M. Then

S, (0) [xy] if 2 is requested aftay) in o
zy\0) = . . .
Y [yz] if 2, is requested beforg,) in o

Proof. Let (Q be the set of all unary projections with i > M. This set has the
all the properties of the sép in Theoren 1L, where clearly case (a) applies because
Sy (My™) = [ya]. 0

10

4 The Lower Bound for M-regular Algorithms

In this section, we use Theoréml 11 to prove the followingltesu
Theorem 13. No M-regular projective algorithm is better thars-competitive.

We first give an outline of the proof. Given aay> 0 andb, we will show that there
is a probability distributionr on a finite sef\ of request sequences so that

AN
A;mmm >1.6—¢, (10)

for any deterministid\/-regular algorithmA. ThenYao’s theorenj13] asserts that also
any randomized//-regular algorithm has competitive raticc — ¢ or larger. This holds
for anye > 0, so the competitive ratio is at lealst. This ratio is achieved bgQOVB, and
thereforel .6 is a tight bound for the competitive ratio 6f-regular algorithms.

All X € A will consist only of requests to two itemsandy. In what follows, let
M > M andM > 3 and let the request sequentbe

¢ = aMyaM ™M zy™M oM yayr™ yM zyzy™ . 11
Let K andT be positive integers and |&f be the number of requestsiqand toy) in ¢,
that is,
H :=|¢|/2 = 4M + 4. (12)

Then the sef\ of sequences in (10) is given by
A=AK,T) = {a"+yMheK |0 < h< HO0<t<HT}, (13)

wherer chooses any in A with equal probabilityr(\) = 1/H?T.

OPT pays exactly ten units for each repetitiongofwhich always starts in offline list
stateyz]). Assuming that also the initial list state[igr|, all sequences iA have offline
cost10K + 2. This and the fact that(\) for A € A is constant allows us to shoW (10)
once we can prove

STAM) > 16K HT — o K H2T). s
AEA
because then
Z () AN 2 aea AR 16K H?>T — o(KH?T)

TN 15— S (OPTON +0) — (10K + 24 byer = 07°

A€A

for K andT large enough.

Definition 14. A request sequence ends atstate(s, j) if |o,| = ¢ and|o,| = j. The
request sequencepassestate(i, j) if there is a proper prefix of A\, with A = o7 for
non-emptyr, so thatr ends atz, j). The request in\ after (¢, j) is the first request in.

11

Definition 15. Let A, (i,) denote the online cost of serving the request ifter (7, j).
If A does not pas§, j), letA,(i,j) = 0.

Definition 16. A state(:,j) is calledgood if for every proper pArefix(r of ¢ (that is,
0 < |o| < 2H) there is exactly oné € A so that a prefix: M+ ¢ks of \ ends at

(i,7)-

After proving that good states incur large costs in Lenimlawl& will only need to
prove that almost all states are good to complete the probhebren 1B.

Lemma 17. Let (7, j) be a good state. Then

> A,) > 16.

A€A

Proof. Consider anyA € A. We can assume thatpasses:, j) (otherwiseA, (i,) =

0). The request in\ after (7, j) is some request i. The costA,(i,7) of serving that
request depends on whether the requested it@my is in front or not. This, in turn, is
determined by the termg(z’) and f(y’) as defined in[{3), which determine the relative
critical requests ta andy in A (recall that the item with the more recent critical request
is in front).

Becaus€i, j) is a good state, we obtain exactly all the requesis a&s the requests
after (i, 7) in A when considering al\ in A that pass(i, 7). Therefore, the total cost
> xea An(i, j) is the cost of serving exactly the requestspiraccording to the critical
requests as given bf(z*) and f (7).

FE) [Jya™ g™ ay™ o™ yaya |y |eyay™ || S er A, J)
of o0 1. 1. [11. |1. |111i. |[1.. |111l.. 16
o >1t1. |1. |11. |t11.|1.. |101.. |1l.. [11011.. >16
1) 1|11 |1. |1t |1. |11. |1011.. |11.. |101L.. 16
1| >2|11.. |1.. [111.|1.. |11.. |101.. |[111..|10111.. >18
>9| >2|111..[1.. |111.]1.. [111..|101.. |111..|101.. >18

Table 1: Online costé, (i, 7) for all A that pass a good stat& j), which are the costs of
serving the requests in They depend on the relative critical requests’) and f (7).

The rows in Tablé]1 show the cosAs(i, j) for the possible combinations gf(z*)
and f(y?), up to symmetry inc andy. For example, consider the first cagger’) = 0
andf(y’) = 0, where the critical request to an item is always the mostte@guest to
that item. Suppose that the request afiey) is the first request, to, in the subsequence
xyM of ¢. The critical request ta is the last request to earlier inyxM, and the critical
request tqy is the last request tg earlier (and more recent) W The critical request
to y is later than that ta;, soy is in front of z, and servinge incurs costl, which is the

12

first 1 in the table entryi1.. in the column forxyM. The second in 11.. is the cost of
serving the firsty. It is 1 because here the critical requestitéis more recent than the
critical request tg). The “.” in 11.. correspond to the costs of later requests tn yM
which are zero forf (z') = 0 andf(y7) = 0 (so for M = 4 the complete cost sequence
would be11000). In a good state, each cdsbr 1 in the table (in correspondence to the
respective position ig) is incurred by a sequencein A.

By construction of\, the requests before in the first column of Tablg]1 are of the
formy™, soy is in front of z, and the first request of has always cost.

In the second row in Table 1f(z) = 0 and f(y?’) > 1. As an illustration of a
more complicated case, consider the subsequeneg 1 of ¢ in the last column, with
associated costslO11... The firstl is the cost of servmg the first requestitpbecause
the preceding requests aé > M requests tas in y™ and because the algorithm is

M-regular, which meang(y’) < M, soy is in front of z. Becausef(z?) = 0, the cost of
serving the firsy in xyxyM is alsol, because: is in front of y. The second request 1o
has cosb (the first0 in 11011..) because is not moved in front of: (the critical request
to y is earlier than that ta because (y?) > 1). The next two cost$1 are for the second
and third request tg in zyzy™, because the critical requestitds more recent.

The rows in Tabl€ll describe all possible casesffaf) and f(37), because the costs
for requests ta: andy apply in the same manner whenandy are interchanged. The
respective costs in Table 1 are easily verified. The rightrool shows that the total cost
> rea Av(i, j) is at least 16 in all these cases, which proves the claim. O

Proof of Theorerh 13We only have to proved (14). Because of Lemima 17, it suffices to
show that the number of good states is at least

KH?T — o(KH>T).
By Definition[16, state, j) is good if for every proper prefix ongb thgre exist unique
kh,twith0 < k < K,0 < h < Hand0 <t < HT so thatz™tyM+hgks ends in
(4,7). This is equivalent to
i = MA4t+EH+ |0,
j = M+h+EkH+|o,,
or equivalently
t = i+h—j—(loz| = loyl),
h+kH = j—M—|o,.
ForO0 < k < K and0 < h < H, the termh + kH takes the value8,... KH — 1.
The second equation i_(15) therefore has a unique solutién #, for anya (where
0 < |o,| < H)wheneverM + H —1 < j < M + KH. Becausé < |o,| — |o,| < H,

the first equation in(15) has a unique solutidn {0, ..., HT —1}if j+ H -1<i <
j+ HT — H, for every fixed;. Hence the number of good states is at least

(KH—H+1)-(HT —2H +1) = KH’T — o(KHT). O

(15)

13

5 The Full Characterization

In this section, we give the full characterization of detiristic projective algorithms.
We consider the séf of unary projections of request sequences defined in (2)easeh
of nodes of the directed gragh = (U, E) with arcs(z’,y’) in £ whenever there is a
request sequeneein P(z'y’) with S(o) = [zy].

For any two distinct items andy and anyi, j > 0, there is at least one arc between
2t andy’. If the pairz?, v’ is agile according to Definitionl 4, then there are arcs in both
directions. Only pairs of nodes of the forriy 27 do not have arcs between them.

Let W be the set of strongly connected components cdnd letC'(z*) be the strongly
connected component thetbelongs to. We think of’(z*) as a “container” that contains
z' and all other unary projectiong with C(y?) = C(x%).

There exists a total ordet on these containers so thatz') < C(y’) if S, (0) =
[zy] after serving any € P(x'y’). To see this, we define the following binary relatiBn
onW: Let C(z") P C(y’) if there is a path irG from z* to y/. ThenP defines a partial
order onW. The only pairs of containers which are not ordere®iare those of the form
{x%}, {#7} for which there does not exist a contairi&fy”*) with C'(z?) < C(y*) < C(a7)
or C(z7) < C(y*) < C(z"). By stipulating{z‘} < {27} if and only if i < j for such
pairs, we can extenf to the desired total ordet.

An easy case are the empty unary projectiohfor itemsz: Note thatz® andy’ are
never in the same container because there is only a singlesegp in P (z%’) which
determiness,, (o) uniquely, so there cannot be paths in both directions betwandy’
in G. HenceC(z°) = {z°}, andC(2") < C(3°) if and only if z is in front of y in the
initial list.

In summary, for a request sequencethe total order< on)V determines the list
order between two items andy whose unary projections, ando, belong to different
containers inV.

If o, ando, belong to the same container, then the list order betwesmdy can be
described by essentially two possibilities. First, if themtainer contains only projections
to at most two itemg andy, nothing further can be said because the algorithm is tiyvia
projective with respect to andy; the set of these containers will be denoted/by.

Second, if a container contains unary projections for tbreaore distinct items, then
the algorithm’s behavior can be described by critical retmeimilar to Theorem 11; the
set of such containers will be denoted Wy". There is a symmetric sét/~ where the
algorithm behaves in the same manner but with the list orelersed (which does not
define competitive algorithms).

These assertions are summarized in the following theorem.

Theorem 18. Consider a deterministic projective list update algorithfimen there are
pairwise disjoint set3V*, W~, W, whose union igV and a total ordex on)V and a
functionC : U — W with

(1) C(2%) = {2} e Whforallz € L.

14

(Il) for any three items:, y, z, if C(2%) = C(y?) = C(2*) = w, thenw & W.

Furthermore, ifC(z") & W, then there existé'(z') € {1,...,i} with the following
properties: For all request sequeneesith o, = z* ando, = ¢/,

() if C(2%) < C(y7) thenS,, (o) = [zy);

)
(IVa) if C(z") = C(y?) € W thenS,, (o) = [zy] if and only if the F'(z*)th request ta:
is afterthe F'(y’)th request tg; in o;
)

(IVb) if C(z") = C(y’) € W~ thenS,, (o) = [zy] if and only if the F'(z*)th request ta:
is beforethe F'(y’)th request tg, in o.

Proof. The setV and the ordek have been defined above with the help of the gri@ph
which shows (Ill). We have also shown () above.

As before, letV, be the set of containers with unary projections to at mosthstnct
items, which implies (11).

It remains to show (IVa) and (IVb). Consider a request seggienwith o, = 2*
ando, = y/. LetC(z") = C(y’) € W;, so that there is a third item ¢ {z,y} with
C(z') = C(y) = C(2*). We want to apply Lemmid 8. To this end, we first show:

(') e E and (y,2")e B = (2',2F)e€E. (16)

Let (z%,y7) € E, so thatS,,(c) = [zy] for someos € P(z'y?). If (y7, 2*) € E, then one
can insert requests ta into o so thatS,.(c) = [yz]. Adding the requests todoes not
changes,, (o), s0S(o) = [zyz], which implies(z?, 2¥) € E. This shows[(I6).

With the help of[(I6), we now show thatdf(z') = C(y’), then the pair’, 3’ is agile
according to Definitionl4. We will prove this by showing that

(z',y) e E and (y/,2") € E. (17)

To prove [(17), recall thaf'(z?) is a strongly connected component of the grépWwhich
also containg’ andz*. Therefore there exists a pathdhfrom z* to 3’ via 2*. This path
is a sequence of unary projectioms . . . , u,, With ug = z*, u; = 27 for somel < [< n,
andu, = y’. Lets; be the item of the corresponding unary projectidnin particular
S0 =X, 8 = 2,8, =Y.

We call a path; . .. u,, between:’ andy? validif |{si,...,s,}| > 3. We claim that
if there exists a valid path betweehandy’ of lengthn > 3, then there also exists a valid
path of lengthn — 1.

To show this claim, consider the smallesto thats,_;, s,, ands,;, are three distinct
items. Because of (16), clearly,_1, s,+1) € E. If the pathu, ... u, remains valid after
removingu,, we are done.

Otherwise, clearly{sy,...,s,}| = 3, and¢g = 2 because otherwisg, = s, and
one could remove,,. We consider the two cases= 4 andn > 4. If n = 4, then
s1,...,84 Must be of the formu, b, ¢, s, and it is easy to see that ¢ {a,b,c}. Hence

15

this case cannot occur. 4f > 4, thens, ..., s, is of the forma, b, ¢, a, ¢, ... and one can
apply (16) in order to remove; and still get a valid path. This shows the claim.

It follows from the claim that there is a valid path of lengifotbetween: andy’. A
final application of[(I6) then gives’, ') € E. The same argument showg, z°) € E.
This proves[(1]7).

Because all pairs of unary projections are agil€imx?), we can apply Theorem 1.1,
whose cases (a) and (b) prove (IVa) and (IVb). This provesiteerem. O

6 The Lower Bound for Irregular Algorithms

In Sectiori4, we showed that no deterministicregular projective list update algorithm
can be better thah6-competitive. For this we gave, for amy> 0, a suitable distribution
on request sequences that bound the competitive ratio ddlgwgithm from below by
1.6 —e.

We extend this analysis to arbitrary randomized projedistepdate algorithms using
the full characterization from the previous section.

In brief, the proof works as follows. Using the crucial natiof a good stat¢i, j) in
Definition[I6, we call a deterministic algorithid-regularin state(i,) if it fulfills a cer-
tain condition,[(1B) below, where the algorithm only usesdbntainers from Theorém|18
in the normal way that one expects from competitive algargh The lower bound from
Lemma 1Y applies in expectation for algorithms that fulfilhdition (18). If the condition
fails, we can give simple request sequences that show #hettidlomized algorithm is not
1.6-competitive, so the old analysis and the lower boursd- = do apply in expectation.

Theorem 19. Any randomized projective list update algorithm that asessa list of at
least three items is at bekt-competitive.

Proof. Assume the list has at least three items. Consider a raneédmpinjective algo-
rithm A4 and assume thad is c-competitive withc < 1.6. That is, there exists a constant
b such thatd(o) < ¢- OPT(o) + b for all request sequences

We adapt the proof fob/-regular algorithms of Sectidn 4. Lét > 3, considerA in
(13) and consider a good stdte;) as defined in Definition 16.

Let A be a deterministic projective algorithm. We say that akiponiA is M -regular
in state(s, 5) if, with W as in Theorerh 18,

Cla')=Cy) e Wwt, fa') <M, f(y')<M. (18)

Itis easy to see that the proof of Lemma 17 appliesii M -regular in(z, 7).

Recall thatA is just a probability distribution on the set of determiigtrojective
algorithms. Letr;; be the event thatl is M-regular in statéi, j). Then in a good state
(i, 7), then the expected cost gfis bounded as follows:

E

Z A,\(i,j)] > 16 - prob(r;;). (19)

A€A

16

Analogous to the analysis far -regular deterministic algorithms, generalizing inedfyal
(14), the right-hand side df (1.9) fulfills

> 16prob(ry) > KHT — o(KH*T) —) 16(1 — prob(ry)). (20)
(¢,5) good (i,5) good

Let X := H(K +T) + M andY := KH + M. For all good state§, j) we have
1<i<Xandl<j;<Y. (21)
If we can prove that, with growing/, K, andT’,

Z 16(1 — prob(r;;)) Z Z (1 — prob(ry;)) = o(K H*T), (22)

(4,4) good

then we have proved (1L4) for irregular algorithms. This cambne by analyzing where
(18) fails, that is, for each of the six cases according to

prob(C(z") < C(y’))
+ prob(C(a?) > C(y7))
. o~ | +prob(C(z') = C(y') € W)
1 — prob(TU . .
; ; g ; ; +prob(C(z') = C(y’) € Wa)
+prob(C(z') = C(y)) e WH, f(a') > M)
+prob(C(z') = C(y’) e W*, f(y?) > M)
We start by proving
D) prob(C(a') < C(y)) < o KHT). (23)

j=1 i=1

To this aim, consider the sequence® for 1 < i < X. When serving this sequence,
a request ta; will be served in each of the statés 1), (¢,2), ..., (i,Y). Since every
deterministic algorithm withC'(z*) < C(y’) pays one unit for accessingin state(s, j),
the expected cost od for serving a request tgin a state(i, j) is at leasprob(C/(z) <
C(y?)). Therefore

Zprob C (). (24)

On the other hand, it must hold t hm(x yY) < ¢ OPT(z'yY) + b becauseA is c-
competitive. Sinc€PT(z'y") = 1 it follows that

D> prob (Cla') < C(y)) < Z A(z'yY) < X - (c+b) = o(KH?T). (25)

i=1 j=1

17

The bound omprob(C(z%) > C(y?)) is very similar.

For prob(C(z") = C(y!) € W™), we also use request sequences of the form
xiyY. Clearly, from the first request tpon, the critical requests tois always earlier in
o than the critical request tg. ThereforeC'(x") = C(y’) € W~ implies thaty is behind
x in the list.

If C(z") = C(y?) € W, the containet’(z%) does not contain any unary projections
to items other tham or 3. The list has at least a third itemand eitherC(z%) < C/(2*)
or C(z*) < C(a%) for any k. We consider only the first case, where we can bound
prob(C(z") < C(z*)) similarly to (23). By considering the request sequence” for
1 < i < X, we obtain in the same way as with124) and] (25) that | A(2%2Y) =
o(KH>T).

We have

prob(C(z%) = C(y?) € Wy) < prob(C(z') < C(2%)) + prob(C(z") > C ("))

for all z* with z # z, 3. Hence the left hand side can be bounded by the bound on the firs
two cases. A
In a similar fashion, we boungrob(C(z') = C(y?) € W*, f(a') > M):

ZZprob(C(xi) = C(y)) e WH, f(a') > M)

zy: i{: prob(C(z') = C(y?) € W*, f(a') > M)

j=1 izyM 1 o | | '
=0 ; M ; =0 prob(C(z*) = C(y) e W*, f(a™") > M)
< Y LS iy

— M ©

<
Il
—
-
Il
,_.

MX(C -OPT(2'y 2™) + b) = o(KH?T).

)

<

The bound orprob(C(z') = C(y/) € W+, f(y/) > M) is similar to the previous
bound. O

18

7 Conclusion

An open problem is to extend the lower bound to the full costiehoeven though this
model is not very natural in connection with projective algons. This would require
request sequences over arbitrarily many items, and it i<lear whether an approach
similar to the one given here can work.

Another ambitious goal is to further improve the lower boumdase of non-projective
algorithms. Here, the techniques of the paper do not apal,and to get improvements
that are substantially larger than the ones obtainabletivéimethods of [6] requires new
insights.

Finally, the search for good non-projective algorithms beasome an issue with our
result. Irani’s SPLIT algorithm [9] is the only one known &ig kind with a competitive
ratio below 2. A major obstacle for finding such algorithmghis difficulty of their anal-
ysis, because pairwise methods are not applicable, and mithods (e.g. the potential
function method) have not been studied in depth. We hopeotiratesult can stimulate
further research in this direction.

References

[1] S. Albers. Improved randomized on-line algorithms fbe tlist update problem.
SIAM Journal on Computin@®7(3):682—-693, 1998.

[2] S. Albers, B. von Stengel, and R. Werchner. A combined Bhti TIMESTAMP
algorithm for the list update problemninformation Processing Letter$6(3):135—
139, 1995.

[3] S. Albers and J. Westbrook. Self-organizing data stmeg. In A. Fiat and G. J.
Woeginger, editorg)nline Algorithmsvolume 1442 of_ecture Notes in Computer
Sciencepages 13-51. Springer, 1998.

[4] C. Ambuhl. On the List Update ProblenPhD thesis, ETH Zirich, 2002.

[5] C. Ambuhl, B. Gartner, and B. von Stengel. Optimal pwdjve algorithms for the
list update problem. lIiProceedings of 27th International Colloquium on Automata,
Languages and Programming (ICALRages 305-316, 2000.

[6] C. Ambunhl, B. Gartner, and B. von Stengel. A new loweuhd for the list up-
date problem in the partial cost mod@&heoretical Computer Scienc268(1):3-16,
2001.

[7] J. L. Bentley and C. C. McGeoch. Amortized analyses dfsrjanizing sequential
search heuristiccCommunications of the ACN28(4):404-411, 1985.

[8] A. Borodin and R. El-Yaniv.Online Computation and Competitive AnalysizZam-
bridge University Press, New York, NY, USA, 1998.

19

[9] S. Irani. Two results on the list update problenmformation Processing Letters
38(6):301-306, 1991. Corrected version appeared as TadReport 96-53, ICS
Department, U.C. Irvine, CA, USA 1996.

[10] N. Reingold, J. Westbrook, and D. D. Sleator. Randoohizempetitive algorithms
for the list update problemAlgorithmicg 11(1):15-32, 1994.

[11] D. D. Sleator and R. E. Tarjan. Amortized efficiency &t lupdate and paging rules.
Communications of the ACN28(2):202—208, 1985.

[12] B. Teia. A lower bound for randomized list update algfoms. Information Pro-
cessing Letters47(1):5-9, 1993.

[13] A. C.-C. Yao. Probabilistic computations: Toward afied measure of complexity
(extended abstract). IRroceedings of 19th Annual Symposium on Foundations of
Computer Science (FOCS)ages 222-227, 1977.

20

	1 Introduction
	2 Projective Algorithms
	3 Critical Requests and M-regular Algorithms
	4 The Lower Bound for M-regular Algorithms
	5 The Full Characterization
	6 The Lower Bound for Irregular Algorithms
	7 Conclusion

