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Abstract

The list update problem is a classical online problem, with an optimal competi-
tive ratio that is still open, known to be somewhere between1.5 and1.6. An algo-
rithm with competitive ratio1.6, the smallest known to date, isCOMB, a randomized
combination ofBIT andTIMESTAMP(0). This and many other known algorithms,
like MTF, areprojectivein the sense that they can be defined by looking only at any
pair of list items at a time. Projectivity simplifies both thedescription of the algo-
rithm and its analysis, and so far seems to be the only way to define a good online
algorithm for lists of arbitrary length. In this paper we characterize all projective list
update algorithms and show that their competitive ratio is never smaller than1.6 in
the partial cost model. Therefore,COMB is a best possible projective algorithm in
this model.
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1 Introduction

Thelist update problemis an online problem in the area of self-organizing data structures
[3]. Requests to items in an unsorted linear list must be served by accessing the requested
item. We assume thepartial cost modelwhere accessing theith item in the list incurs a
cost ofi− 1 units. This is simpler to analyze than the originalfull cost model[10] where
that cost isi. The goal is to keep access costs small by rearranging the items in the list.
After an item has been requested, it may be moved free of charge closer to the front of the
list. This is called afree exchange. Any other exchange of two consecutive items in the
list incurs cost one and is called apaid exchange.

An onlinealgorithm must serve the sequenceσ of requests one item at a time, without
knowledge of future requests. An optimumofflinealgorithm knows the entire sequenceσ
in advance and can serve it with minimum costOPT(σ). If the online algorithm servesσ
with costA(σ), then it is calledc-competitiveif for a suitable constantb

A(σ) ≤ c · OPT(σ) + b (1)

for all request sequencesσ and all initial list states. The constantc is also called the
competitive ratio. If the above inequality holds even forb = 0, the algorithmA is called
strictly c-competitive.

The move-to-frontrule MTF, for example, which moves each item to the front of
the list after it has been requested, is strictly 2-competitive [10, 11]. This is also the
best possible competitiveness for any deterministic online algorithm for the list update
problem [10]. Another 2-competitive deterministic algorithm isTS, which is the simplest
member of theTIMESTAMP class due to Albers [1].TS moves the requested itemx in
front of all items which have been requested at most once since the last request tox.

As shown first by Irani [9],randomizedalgorithms can perform better on average.
Such an algorithm is calledc-competitive if

E[A(σ)] ≤ c · OPT(σ) + b,

for all σ and all initial list states, where the expectation is taken over the randomized
choices of the online algorithm. The best randomized list update algorithm known
to date is the1.6-competitive algorithmCOMB [2]. It serves the request sequence with
probability 4/5 using the algorithmBIT [10]. With probability 1/5, COMB treats the
request sequence usingTS.

Lower bounds for the competitive ratio of randomized algorithms are harder to find;
the first nontrivial bounds are due to Karp and Raghavan, see the remark in [10]. In the
partial cost model, a lower bound of 1.5 is easy to find as only two items are needed. Teia
[12] generalized this idea to prove the same bound in the fullcost model, which requires
long lists. The authors [6] showed a lower bound of 1.50084 (improved to 1.50115 in
[4, p. 38]) for lists with five items in the partial cost model,using game trees and a
modification of Teia’s approach. The optimal competitive ratio for the list update problem
(in the partial cost model) is therefore between1.50115 and1.6, but the true value is as
yet unknown.
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Our results. With the exception of Irani’s algorithmSPLIT [9], all the specific list
update algorithms mentioned above areprojective, meaning that the relative order of any
two itemsx andy in the list after a request sequenceσ only depends on the initial list state
and the requests tox andy in σ. The simplest example of a projective algorithm isMTF.
In order to determine whetherx is in front ofy afterσ, all that matters is whether the last
request tox was before the last request toy. The requests to other items are irrelevant.

A simple example of a non-projective algorithm isTRANSPOSE, which moves the
requested item just one position further to the front.

The main result of this paper is a proof that1.6 is the best possible competitive ratio
attainable by a projective algorithm. As a tool, we develop an explicit characterization of
deterministic projective algorithms.

These results are significant in two respects. First, they show that the successful ap-
proach of combining existing projective algorithms to obtain improved ones has reached
its limit with the development of theCOMB algorithm. New and better algorithms (if they
exist) have to be non-projective, and must derive from new, yet to be discovered, design
principles.

Second, the characterization of projective algorithms is astep forward in understand-
ing the structural properties of list update algorithms. With this characterization, the
largest and so far most significant class of algorithms appears in a new, unified way.

The complete characterization of projective algorithms turns out to be rather involved.
However, there is a simple subclass of projective algorithms which already covers all rea-
sonable projective algorithms. We call themcritical request algorithms. A list update
algorithm is completely described by the list state after a request sequenceσ has been
served, without specifying the particular rearrangement of items after each request; this
can be done since we can assume that all changes in the list state are due to paid ex-
changes, as explained in further detail at the beginning of the next section. For critical
request algorithms, theunary projectionsto individual items suffice to describe that list
state. For a request sequenceσ and list itemx, deleting all requests to other items defines
the unary projectionσx, which is ani-fold repetition of requests tox, written asxi, for
somei ≥ 0. In Section 5 it will be necessary to consider unary projectionsx0 andy0 of
length zero as different if the itemsx andy are different; for the moment, this distinction
does not matter. WithL as the set of list items, let the set of these unary projections be

U = {xi | x ∈ L, i ≥ 0}. (2)

Definition 1 (Critical request algorithm).
A deterministiccritical request algorithm is defined by a function

F : U → {0, 1, 2, . . .}, with F (xi) ≤ i for anyx ∈ L.

We call theF (σx)th request tox in σ the critical requestto x. If F (σx) is zero (for
example ifσx is the empty sequence∅), thenx has no critical request. In the list state
afterσ, all items with a critical request are grouped together in front of the items without
critical request. The items with critical requests are ordered according to the time of the
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F (σx)th request tox in σ. The later a critical request took place in the sequence, thecloser
the item is to the front. The items without critical request are placed at the end of the list
according to their order in the initial sequence. Arandomized critical request algorithm
is a probability distribution on the set of deterministic critical request algorithms.

As an example, consider the online algorithm for three itemsa, b, andc with the
functionF shown in the following table for requests up to four items.

i 0 1 2 3 4

F (ai) 0 1 0 2 2

F (bi) 0 0 2 2 4

F (ci) 0 1 2 2 2

In the rest of this paper, list states are written as[x1x2 . . . xn] wherex1 is the item at the
front of the list. Let the initial list state be[abc]. Consider the list state afterσ = abbcab.
We haveF (σa) = F (aa) = 0, hencea does not have a critical request. Forb we have
F (σb) = F (bbb) = 2, therefore the second request tob in σ is its critical request. Forc we
haveF (σc) = F (c) = 1. Thus afterσ, the list state is[cba]. If we augmentσ by another
request toa, itema moves to the front, because its critical request is the second.

Algorithms based on critical request functions are clearlyprojective, since the relative
order of any pair of items just depends on the relative order of the requests tox andy in
σ and the relative order ofx andy in the initial list state.

In good online algorithms, the critical requests are very recent, like inMTF which is
described by the critical request functionF (xi) = i for all itemsx. We define the critical
requestrelativeto the current position by

f(xi) = i− F (xi), (3)

from which the critical request function is recovered asF (xi) = i − f(xi). ThenMTF is
given byf(xi) = 0. Algorithm TS is described byf(xi) = 1 for all items and alli > 0
(andf(∅) = 0). Because theBIT algorithm [10] is randomized, its critical requests are
also randomized. For every itemx, its relative critical request function can be written as
f(∅) = 0 and, fori > 0,

f(xi) = (bx + i) mod 2 (4)

wherebx ∈ {0, 1} is chosen once uniformly at random. Hence the critical request is the
last or the second-to-last request with equal probability.

The structure of the paper is as follows. In the next section,we explain projective
algorithms in more detail and how they can be analyzed. In Section 3, we give a char-
acterization ofM-regular projective algorithms, followed by the lower bound of 1.6 for
this class of algorithms in Section 4. In Section 5, we characterize projective algorithms
completely. We extend the lower bound to the full class in Section 6.
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2 Projective Algorithms

In order to characterize list update algorithms, we first simplify their formal definition.
The standard definition (of the partial cost model) considers a list state and a sequence of
requests. For each request to one of the items to the list, theitem can be accessed with
access costi − 1 if the item is in positioni, and then moved free of charge closer to the
front. In addition, paid exchanges are allowed which can be applied both before and after
accessing the item, at a cost of one unit for exchanging any two consecutive items.

Contrary to the claim of [11, Theorem 3], paid exchanges may strictly improve costs.
For example, let the initial list state be[abc] andσ = cbbc. Then an optimal algorithm
movesa behindb andc before the first request toc. This requires paid exchanges.

On the other hand, free exchanges can be mimicked by paid exchanges as follows:
Instead of first payingk units in order to access itemx and then moving it at no charge
t positions closer to the front, one can first move the itemt positions forward and then
access the item. In both cases, one pays exactlyk units.

Furthermore, one can restrict paid exchanges to take place just before the access to
a requested item. This holds because after accessing an item, one can postpone paid
exchanges until the next request is revealed.

The above considerations lead to a simplified but still equivalent model of list update
algorithms. With the simplified model, we can specify any deterministic online algorithm
A by a function

SA : Σ → L.

Here,Σ denotes the set of finite request sequences, whereasL denotes the set of then!
states the list ofn items can attain. By definition,SA(σ) denotes the list state after the
last request ofσ has been served by algorithmA.

Consider a request sequenceσ and assume it is followed by a request to itemx, the
extended sequence denoted byσx. Then the cost of serving requestx is defined by: the
cost of re-arranging the list from stateSA(σ) to SA(σx) by paid exchanges, plus the cost
of accessingx in stateSA(σx).

Using this notation, the initial list state can be denoted bySA(∅). We will omit the
superscriptA in SA(σ) when the algorithm used is determined by the context.

In order to describe projective algorithms, we have to introduce the concept ofpro-
jectionsof request sequences and list states. Let a request sequenceσ be given and fix a
pair of itemsx, y. The projectionσxy of σ to x andy is the request sequenceσ where all
requests which are not tox or y are removed. Similarly,σx is σ with all requests other
thanx removed.

Given a list stateL, the projection tox andy is obtained by removing all items except
for x andy from the list. This is denoted byLxy.

Definition 2. Let Sxy(σ) be the projection ofS(σ) to x andy. A deterministic algorithm
A is calledprojectiveif for all pairs of itemsx, y and all request sequencesσ

Sxy(σ) = Sxy(σxy). (5)
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A randomized algorithm is projective if all deterministic algorithms that it chooses with
positive probability are projective.

Thus, an algorithm is projective if the relative position ofany pair of items depends
only on the initial list state and the requests tox andy in the request sequence.

Projective algorithms have a natural generalization, where the relative order of anyk-
tuple of list items depends only on the requests to thesek items. It turns out that for lists
with more thank items, only projective algorithms satisfy this condition.This follows
from the fact that, for example fork = 3, SAxyz(σ) = SAxyz(σxyz) (so the relative position

of x andy does not depend on requests tow), andSAxyw(σ) = SAxyw(σxyw) (so the relative
position ofx andy does not depend onz), which implies thatSxy(σ) depends only on
σxy.

Already in [7], Bentley and McGeoch observed thatMTF is projective: Itemx is in
front of y if and only if y has not been requested yet or if the last request tox took place
after the last request toy.

With the exception of Irani’sSPLIT algorithm [9], projective algorithms are the only
family of algorithms that have been analyzed so far, typically using the following theorem,
for example in [1, 2, 8].

Theorem 3. If a (strictly) projective algorithm isc-competitive on lists with two items,
then it is also (strictly)c-competitive on lists of arbitrary length.

Proof. Consider first an arbitrary list update algorithmA. We define theprojected cost
Axy(σ) thatA serves a request sequenceσ, projected to the pairx, y, as follows: Letσ′z
be any prefix ofσ. ThenAxy(σ) is the number of times, for all requestsz in σ, where
Sxy(σ

′) andSxy(σ
′z) differ (which counts the necessary paid exchanges ofx andy; this

may happen even ifz 6∈ {x, y} in caseA is not projective), plus the number of times
wherez = x andSxy(σ

′z) = [yx] or z = y andSxy(σ
′z) = [xy]. LetL be the set of list

items. Then
A(σ) =

∑

{x,y}⊆L

Axy(σ), (6)

because the costsA(σ) are given by the update costs for changingS(σ′) to S(σ′z), which
is the sum of the costs of paid exchanges of pairs of items, plus the cost of accessingz in
stateS(σ′z).

For a projective algorithmA the relative behavior of a pair of items is, according
to (5), independent of the requests to other items. It is therefore easy to see thatAxy(σ) =
Axy(σxy) for projective algorithms: BecauseA is projective,Axy(σxy) is also the cost ofA
for servingσxy on the two-item list containingx andy starting fromSxy(∅).

For the algorithmOPT, one can interpretOPTxy(σxy) as the cost of optimally serving
σxy on the two-item listSxy(∅). To see this, note that in order to serveσ optimally, one
can always start by moving the items not requested inσ to the tail of the list, without
changing their relative order. ConcerningOPT, we haveOPTxy(σ) ≥ OPTxy(σxy). Then

OPT(σ) =
∑

{x,y}⊆L

OPTxy(σ) ≥
∑

{x,y}⊆L

OPTxy(σxy) =: OPT(σ). (7)
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LetA be a projective algorithm that isc-competitive on two items. Then for every pair
of itemsx, y there is a constantbxy such that for allσ

Axy(σxy) ≤ c · OPTxy(σxy) + bxy.

Then

A(σ) =
∑

{x,y}⊆L

Axy(σxy)

≤
∑

{x,y}⊆L

(c · OPTxy(σxy) + bxy)

≤ c · OPT(σ) +
∑

{x,y}⊆L

bxy

= c · OPT(σ) + b

≤ c · OPT(σ) + b.

For the strict case, just set allbxy := 0.

Not all algorithms are projective. LetLMTF be the algorithm that moves the requested
itemx in front of all items which have not been requested since the previous request tox,
if there has been such a request.

It is easy to prove that on lists with two items, combiningLMTF andMTF with equal
probability would lead to a 1.5-competitive randomized algorithm. Obviously, ifLMTF
was projective, this bound would hold for lists of arbitrarylength.

However,LMTF is not projective. This can be seen from the request sequenceσ =
baacbc with initial list L0 = [abc]. It holds thatSLMTF(σ) = cab, whereasSLMTF(σbc) =
SLMTF(bcbc) = bca. HenceSLMTFbc (σ) 6= SLMTFbc (σbc).

7



3 Critical Requests andM -regular Algorithms

In this section, we consider deterministic projective listupdate algorithms. In order to
refer to the individual requests to an itemx, we write unary projections as

xi = x(1)x(2) . . . x(i),

that is,x(q) is theqth request tox in σ if σx = xi, for 1 ≤ q ≤ i.
Let P(σ) be the set of all permuations of the sequenceσ. In particular,P(xiyj)

consists of all sequences withi requests tox andj requests toy.
Swappingtwo requestsx(q) andy(l) in a request sequenceσ means thatx(q) andy(l),

which are assumed to be adjacent, change their position inσ. If two requests are not
adjacent, they cannot be swapped.

Definition 4. A pair of unary projectionsxi, yj is calledagile if there exist two request
sequencesτ andτ ′ in P(xiyj) with Sxy(τ) = [xy] andSxy(τ

′) = [yx].

Definition 5. We call a pair of requestsx(q), y(l) an agile pair ofσ if x(q) andy(l) are
adjacent inσ and swappingx(q) andy(l) in σ changesSxy(σ).

Clearly, if xi andyj are agile, then there exists an agile pair in at least one sequence
belonging toP(xiyj).

Lemma 6. If x(q), y(l) is an agile pair ofσ, thenx andy are adjacent inS(σ).

Proof. Let σ′ beσ with x(q) andy(l) swapped. Clearly,Sxy(σ) 6= Sxy(σ
′) andSst(σ) =

Sst(σ
′) holds for all{s, t} ⊆ L except{x, y}. But this is possible only ifx andy are

adjacent inS(σ).

Definition 7. For everyxi ∈ U let R(xi) be the set defined as follows:x(q) ∈ R(xi) if
and only if there existsy(l) andσ such thatx(q), y(l) is an agile pair inσ.

Lemma 8. If both pairsxi, yj andxi, zk are agile, then|R(xi)| = 1.

Proof. Obviously,R(xi) > 0. Suppose thatR(xi) > 1; we will show that this leads to
a contradiction. IfR(xi) > 1 then there existsτ ∈ P(xiyj) with an agile pairx(q), y(l).
Similarly, there exists a sequenceλ ∈ P(xizk) with an agile pairx(q′), z(m) andq 6= q′.
By suitably insertingk requests toz into τ , we create a sequenceσ with σxy = τ and
σxz = λ in which bothx(q), y(l) andx(q′), z(m) are adjacent pairs.

By (5), swapping the agile pairx(q), y(l) will changeSxy(σ), but leave the relative
order of the pairs of items unchanged. The same holds for the agile pairx(q′), z(m) and the
pairx, z.

Lemma 6 enforcesx to be adjacent to bothy andz in S(σ). By swappingx(q), y(l),
we obtain a sequenceσ′ in whichx(q′), z(m) is still an agile pair, butx andz are no longer
adjacent inS(σ′), which contradicts Lemma 6.
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Lemma 9. If x(q), y(l) is an agile pair inλ ∈ P(xiyj) and|R(xi)| = 1 and|R(yj)| = 1,
then swappingx(q) and y(l) changesSxy(σ) in any sequenceσ ∈ P(xiyj) wherex(q)

andy(l) are adjacent.

Proof. |R(xi)| = 1 and|R(yj)| = 1 implies that the only swap of requests that can change
the relative order ofx andy in a request sequence is swappingx(q) andy(l). If the lemma
does not hold, there exists a sequence inσ in which we can swapx(q) andy(l) to obtain
σ′ with Sxy(σ) = Sxy(σ

′). Then we can obtain any sequence inP(σ) by successively
transposing adjacent requests, starting from eitherσ orσ′, without ever swappingx(q) and
y(l). Thus, the relative order ofx andy would be the same for all request sequences. But
we know that swappingx(q) andy(l) changesSxy(λ). This is a contradiction.

In this and the next section, we consider online list update algorithms that move an
item to the front of the list after sufficiently many consecutive requests to that item. This
behavior is certainly expected for algorithms with a small competitive ratio. In this sec-
tion, we show that such algorithms, which we callM-regular, can be characterized in
terms of “critical requests”. In the next section, we use this characterization to show that
such algorithms are at best1.6-competitive.

Definition 10. For a given integerM > 0, a deterministic algorithm is calledM-regular
if for each itemx and each request sequenceσ, itemx is in front of all other items after
the sequenceσxM .

A randomized algorithm is calledM-regular if it is a probability distribution over
deterministicM-regular algorithms.

The algorithms discussed at the end of the introduction are all 1-regular or 2-regular.
A projective algorithm that is notM-regular isFREQUENCY COUNT, which maintains
the items sorted according to decreasing number of past requests; two items which have
been requested equally often are ordered by recency of theirlast request, like inMTF.
Hence, after serving the request sequencexM+1yM , item x is still in front of y, which
shows thatFREQUENCY COUNT is notM-regular for anyM . Algorithms that are not
M-regular are characterized in Section 5 below, but such “irregular” behavior must vanish
in the long run for any algorithm with a good competitive ratio (see Section 6). Hence,
the important projective algorithms areM-regular.

The following theorem asserts the existence of critical requests, essentially the unique
element ofR(xi) in Lemma 8, for those unary projectionsxi where this lemma applies.
For projectivity, the list items may also be maintained in reverse order, described as case
(b) in the following theorem; competitive algorithms do notbehave like this, as we will
show later.

Theorem 11. Let A be a deterministic projective algorithm over a setL of list items.
Then there exists a function

F : U → N, F (xi) ≤ i for all i

so that the following holds:
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Let Q be a set of unary projections containing unary projections to at least three dif-
ferent items. Let all unary projections to different items inQ be pairwise agile. Then one
of the following two cases (a) or (b) applies.

(a) For all pairs of unary projectionsxi, yj from Q it holds that if q = F (xi) and
l = F (yj), then

Sxy(σ) =

{

[xy] if x(q) is requested aftery(l) in σ

[yx] if x(q) is requested beforey(l) in σ
(8)

(b) For all pairs of unary projectionsxi, yj from Q it holds that if q = F (xi) and
l = F (yj), then

Sxy(σ) =

{

[xy] if x(q) is requested beforey(l) in σ

[yx] if x(q) is requested aftery(l) in σ
(9)

Proof. Since all pairs of unary projections inQ are pairwise agile, we can conclude
|R(xi)| = 1 for all xi ∈ Q by Lemma 8. This allows us to defineF (xi) = q if
x(q) ∈ R(xi). From Lemma 9 we can conclude that for every pairxi, yj, either (8) or (9)
holds.

It remains to prove that either all pairs are operated by (8) or by (9). If this was not
the case, then it would be a possible to construct a sequenceσ which has a pair of critical
requests adjacent to each other inσ without the corresponding items being adjacent in
S(σ), which contradicts Lemma 6.

The following theorem asserts that anM-regular algorithm operates, afterM or more
requests to a items in a list with at least three items, according to critical requests as in
Definition 1. That is, case (b) of Theorem 11, where the list items are arranged backwards,
does not apply.

Theorem 12. Let A be a deterministic projectiveM-regular algorithm over a setL of at
least three list items. Then there exists a function

F : U → N, F (xi) ≤ i for all i

so that the following holds. Letx, y ∈ L. Let σ be any request sequence with|σx| ≥ M
and|σy| ≥ M . Then

Sxy(σ) =

{

[xy] if x(q) is requested aftery(l) in σ

[yx] if x(q) is requested beforey(l) in σ

Proof. Let Q be the set of all unary projectionsxi with i ≥ M . This set has the
all the properties of the setQ in Theorem 11, where clearly case (a) applies because
Sxy(x

MyM) = [yx].
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4 The Lower Bound for M -regular Algorithms

In this section, we use Theorem 11 to prove the following result.

Theorem 13. No M-regular projective algorithm is better than1.6-competitive.

We first give an outline of the proof. Given anyε > 0 andb, we will show that there
is a probability distributionπ on a finite setΛ of request sequences so that

∑

λ∈Λ

π(λ)
A(λ)

OPT(λ) + b
≥ 1.6− ε, (10)

for any deterministicM-regular algorithmA. ThenYao’s theorem[13] asserts that also
any randomizedM-regular algorithm has competitive ratio1.6 − ε or larger. This holds
for anyε > 0, so the competitive ratio is at least1.6. This ratio is achieved byCOMB, and
therefore1.6 is a tight bound for the competitive ratio ofM-regular algorithms.

All λ ∈ Λ will consist only of requests to two itemsx andy. In what follows, let
M̂ > M andM̂ ≥ 3 and let the request sequenceφ be

φ := xM̂ yxM̂ yM̂ xyM̂ xM̂ yxyxM̂ yM̂ xyxyM̂ . (11)

LetK andT be positive integers and letH be the number of requests tox (and toy) in φ,
that is,

H := |φ|/2 = 4M̂ + 4. (12)

Then the setΛ of sequences in (10) is given by

Λ = Λ(K, T ) := {xM̂+tyM̂+hφK | 0 ≤ h < H, 0 ≤ t < HT}, (13)

whereπ chooses anyλ in Λ with equal probabilityπ(λ) = 1/H2T .
OPT pays exactly ten units for each repetition ofφ (which always starts in offline list

state[yx]). Assuming that also the initial list state is[yx], all sequences inΛ have offline
cost10K + 2. This and the fact thatπ(λ) for λ ∈ Λ is constant allows us to show (10)
once we can prove

∑

λ∈Λ

A(λ) ≥ 16KH2T − o(KH2T ). (14)

because then

∑

λ∈Λ

π(λ)
A(λ)

OPT(λ) + b
=

∑

λ∈Λ A(λ)
∑

λ∈Λ(OPT(λ) + b)
≥

16KH2T − o(KH2T )

(10K + 2 + b)H2T
≥ 1.6− ε

for K andT large enough.

Definition 14. A request sequenceσ ends atstate(i, j) if |σx| = i and |σy| = j. The
request sequenceλ passesstate(i, j) if there is a proper prefixσ of λ, with λ = στ for
non-emptyτ , so thatσ ends at(i, j). The request inλ after (i, j) is the first request inτ .
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Definition 15. Let Aλ(i, j) denote the online cost of serving the request inλ after(i, j).
If λ does not pass(i, j), letAλ(i, j) = 0.

Definition 16. A state(i, j) is calledgood if for every proper prefixσ of φ (that is,
0 ≤ |σ| < 2H) there is exactly oneλ ∈ Λ so that a prefixxM̂+tyM̂+hφkσ of λ ends at
(i, j).

After proving that good states incur large costs in Lemma 17,we will only need to
prove that almost all states are good to complete the proof ofTheorem 13.

Lemma 17. Let (i, j) be a good state. Then

∑

λ∈Λ

Aλ(i, j) ≥ 16.

Proof. Consider anyλ ∈ Λ. We can assume thatλ passes(i, j) (otherwiseAλ(i, j) =
0). The request inλ after (i, j) is some request inφ. The costAλ(i, j) of serving that
request depends on whether the requested itemx or y is in front or not. This, in turn, is
determined by the termsf(xi) andf(yj) as defined in (3), which determine the relative
critical requests tox andy in λ (recall that the item with the more recent critical request
is in front).

Because(i, j) is a good state, we obtain exactly all the requests inφ as the requests
after (i, j) in λ when considering allλ in Λ that pass(i, j). Therefore, the total cost
∑

λ∈Λ Aλ(i, j) is the cost of serving exactly the requests inφ according to the critical
requests as given byf(xi) andf(yj).

f(xi) f(yj) xM̂ yxM̂ yM̂ xyM̂ xM̂ yxyxM̂ yM̂ xyxyM̂
∑

λ∈Λ Aλ(i, j)

0 0 1.. 11.. 1.. 11.. 1.. 1111.. 1.. 1111.. 16

0 ≥1 1.. 1.. 11.. 111.. 1.. 101.. 11.. 11011.. ≥16

1 1 11.. 1.. 11.. 1.. 11.. 1011.. 11.. 1011.. 16

1 ≥2 11.. 1.. 111.. 1.. 11.. 101.. 111.. 10111.. ≥18

≥2 ≥2 111.. 1.. 111.. 1.. 111.. 101.. 111.. 101.. ≥18

Table 1: Online costsAλ(i, j) for all λ that pass a good state(i, j), which are the costs of
serving the requests inφ. They depend on the relative critical requestsf(xi) andf(yj).

The rows in Table 1 show the costsAλ(i, j) for the possible combinations off(xi)
andf(yj), up to symmetry inx andy. For example, consider the first casef(xi) = 0
andf(yj) = 0, where the critical request to an item is always the most recent request to
that item. Suppose that the request after(i, j) is the first request, tox, in the subsequence
xyM̂ of φ. The critical request tox is the last request tox earlier inyxM̂ , and the critical
request toy is the last request toy earlier (and more recent) inyM̂ . The critical request
to y is later than that tox, soy is in front ofx, and servingx incurs cost1, which is the
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first 1 in the table entry11.. in the column forxyM̂ . The second1 in 11.. is the cost of
serving the firsty. It is 1 because here the critical request tox is more recent than the
critical request toy. The “..” in 11.. correspond to the costs of later requests toy in yM̂ ,
which are zero forf(xi) = 0 andf(yj) = 0 (so forM̂ = 4 the complete cost sequence
would be11000). In a good state, each cost0 or 1 in the table (in correspondence to the
respective position inφ) is incurred by a sequenceλ in Λ.

By construction ofΛ, the requests beforexM̂ in the first column of Table 1 are of the
form yM̂ , soy is in front ofx, and the first request ofxM̂ has always cost1.

In the second row in Table 1,f(xi) = 0 and f(yj) ≥ 1. As an illustration of a
more complicated case, consider the subsequencexyxyM̂ of φ in the last column, with
associated costs11011... The first1 is the cost of serving the first request tox, because
the preceding requests arêM ≥ M requests toy in yM̂ and because the algorithm is
M-regular, which meansf(yj) ≤ M , soy is in front ofx. Becausef(xi) = 0, the cost of
serving the firsty in xyxyM̂ is also1, becausex is in front of y. The second request tox
has cost0 (the first0 in 11011..) becausey is not moved in front ofx (the critical request
to y is earlier than that tox becausef(yj) ≥ 1). The next two costs11 are for the second
and third request toy in xyxyM̂ , because the critical request tox is more recent.

The rows in Table 1 describe all possible cases forf(xi) andf(yj), because the costs
for requests tox andy apply in the same manner whenx andy are interchanged. The
respective costs in Table 1 are easily verified. The right column shows that the total cost
∑

λ∈Λ Aλ(i, j) is at least 16 in all these cases, which proves the claim.

Proof of Theorem 13.We only have to prove (14). Because of Lemma 17, it suffices to
show that the number of good states is at least

KH2T − o(KH2T ).

By Definition 16, state(i, j) is good if for every proper prefixσ of φ there exist unique
k, h, t with 0 ≤ k < K, 0 ≤ h < H and0 ≤ t < HT so thatxM̂+tyM̂+hφkσ ends in
(i, j). This is equivalent to

i = M̂ + t+ kH + |σx|,

j = M̂ + h+ kH + |σy|,

or equivalently

t = i+ h− j − (|σx| − |σy|),

h+ kH = j − M̂ − |σy|.
(15)

For 0 ≤ k < K and0 ≤ h < H, the termh + kH takes the values0, . . . , KH − 1.
The second equation in (15) therefore has a unique solution in h, k, for anyσ (where
0 ≤ |σy| < H) wheneverM̂ +H − 1 ≤ j < M̂ +KH. Because0 ≤ |σx| − |σy| < H,
the first equation in (15) has a unique solutiont in {0, . . . , HT − 1} if j +H − 1 ≤ i <
j +HT −H, for every fixedj. Hence the number of good states is at least

(KH −H + 1) · (HT − 2H + 1) = KH2T − o(KH2T ).
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5 The Full Characterization

In this section, we give the full characterization of deterministic projective algorithms.
We consider the setU of unary projections of request sequences defined in (2) as the set
of nodes of the directed graphG = (U,E) with arcs(xi, yj) in E whenever there is a
request sequenceσ in P(xiyj) with S(σ) = [xy].

For any two distinct itemsx andy and anyi, j ≥ 0, there is at least one arc between
xi andyj. If the pairxi, yj is agile according to Definition 4, then there are arcs in both
directions. Only pairs of nodes of the formxi, xj do not have arcs between them.

LetW be the set of strongly connected components ofG, and letC(xi) be the strongly
connected component thatxi belongs to. We think ofC(xi) as a “container” that contains
xi and all other unary projectionsyj with C(yj) = C(xi).

There exists a total order< on these containers so thatC(xi) < C(yj) if Sxy(σ) =
[xy] after serving anyσ ∈ P(xiyj). To see this, we define the following binary relationP
onW: Let C(xi)P C(yj) if there is a path inG from xi to yj. ThenP defines a partial
order onW. The only pairs of containers which are not ordered inP are those of the form
{xi}, {xj} for which there does not exist a containerC(yk) with C(xi) < C(yk) < C(xj)
or C(xj) < C(yk) < C(xi). By stipulating{xi} < {xj} if and only if i < j for such
pairs, we can extendP to the desired total order<.

An easy case are the empty unary projectionsx0 for itemsx: Note thatx0 andyj are
never in the same container because there is only a single sequenceσ in P(x0yj) which
determinesSxy(σ) uniquely, so there cannot be paths in both directions betweenx0 andyj

in G. HenceC(x0) = {x0}, andC(x0) < C(y0) if and only if x is in front of y in the
initial list.

In summary, for a request sequenceσ, the total order< on W determines the list
order between two itemsx andy whose unary projectionsσx andσy belong to different
containers inW.

If σx andσy belong to the same container, then the list order betweenx andy can be
described by essentially two possibilities. First, if the container contains only projections
to at most two itemsx andy, nothing further can be said because the algorithm is trivially
projective with respect tox andy; the set of these containers will be denoted byW2.

Second, if a container contains unary projections for threeor more distinct items, then
the algorithm’s behavior can be described by critical requests similar to Theorem 11; the
set of such containers will be denoted byW+. There is a symmetric setW− where the
algorithm behaves in the same manner but with the list order reversed (which does not
define competitive algorithms).

These assertions are summarized in the following theorem.

Theorem 18. Consider a deterministic projective list update algorithm. Then there are
pairwise disjoint setsW+, W−, W2 whose union isW and a total order< onW and a
functionC : U → W with

(I) C(x0) = {x0} ∈ W2 for all x ∈ L.
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(II) for any three itemsx, y, z, if C(xi) = C(yj) = C(zk) = w, thenw 6∈ W2.

Furthermore, ifC(xi) 6∈ W2, then there existsF (xi) ∈ {1, . . . , i} with the following
properties: For all request sequencesσ with σx = xi andσy = yj,

(III) if C(xi) < C(yj) thenSxy(σ) = [xy];

(IVa) if C(xi) = C(yj) ∈ W+ thenSxy(σ) = [xy] if and only if theF (xi)th request tox
is after theF (yj)th request toy in σ;

(IVb) if C(xi) = C(yj) ∈ W− thenSxy(σ) = [xy] if and only if theF (xi)th request tox
is beforetheF (yj)th request toy in σ.

Proof. The setW and the order< have been defined above with the help of the graphG,
which shows (III). We have also shown (I) above.

As before, letW2 be the set of containers with unary projections to at most twodistinct
items, which implies (II).

It remains to show (IVa) and (IVb). Consider a request sequence σ with σx = xi

andσy = yj. Let C(xi) = C(yj) 6∈ W2, so that there is a third itemz 6∈ {x, y} with
C(xi) = C(yj) = C(zk). We want to apply Lemma 8. To this end, we first show:

(xi, yj) ∈ E and (yj, zk) ∈ E =⇒ (xi, zk) ∈ E. (16)

Let (xi, yj) ∈ E, so thatSxy(σ) = [xy] for someσ ∈ P(xiyj). If (yj, zk) ∈ E, then one
can insertk requests toz into σ so thatSyz(σ) = [yz]. Adding the requests toz does not
changeSxy(σ), soS(σ) = [xyz], which implies(xi, zk) ∈ E. This shows (16).

With the help of (16), we now show that ifC(xi) = C(yj), then the pairxi, yj is agile
according to Definition 4. We will prove this by showing that

(xi, yj) ∈ E and (yj, xi) ∈ E. (17)

To prove (17), recall thatC(xi) is a strongly connected component of the graphG which
also containsyj andzk. Therefore there exists a path inG from xi to yj via zk. This path
is a sequence of unary projectionsu1, . . . , un with u0 = xi, ul = zj for some1 < l < n,
andun = yj. Let si be the item of the corresponding unary projectionui, in particular
s0 = x, sl = z, sn = y.

We call a pathu1 . . . un betweenxi andyj valid if |{s1, . . . , sn}| ≥ 3. We claim that
if there exists a valid path betweenxi andyj of lengthn > 3, then there also exists a valid
path of lengthn− 1.

To show this claim, consider the smallestq so thatsq−1, sq, andsq+1 are three distinct
items. Because of (16), clearly(sq−1, sq+1) ∈ E. If the pathu1 . . . un remains valid after
removinguq, we are done.

Otherwise, clearly|{s1, . . . , sn}| = 3, andq = 2 because otherwisesq = s2 and
one could removeu2. We consider the two casesn = 4 andn > 4. If n = 4, then
s1, . . . , s4 must be of the forma, b, c, s4 and it is easy to see thats4 6∈ {a, b, c}. Hence
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this case cannot occur. Ifn > 4, thens1, . . . , sn is of the forma, b, c, a, c, . . . and one can
apply (16) in order to removeu3 and still get a valid path. This shows the claim.

It follows from the claim that there is a valid path of length two betweenxi andyj. A
final application of (16) then gives(xi, yj) ∈ E. The same argument shows(yj, xi) ∈ E.
This proves (17).

Because all pairs of unary projections are agile inC(xi), we can apply Theorem 11,
whose cases (a) and (b) prove (IVa) and (IVb). This proves thetheorem.

6 The Lower Bound for Irregular Algorithms

In Section 4, we showed that no deterministicM-regular projective list update algorithm
can be better than1.6-competitive. For this we gave, for anyε > 0, a suitable distribution
on request sequences that bound the competitive ratio of thealgorithm from below by
1.6− ε.

We extend this analysis to arbitrary randomized projectivelist update algorithms using
the full characterization from the previous section.

In brief, the proof works as follows. Using the crucial notion of a good state(i, j) in
Definition 16, we call a deterministic algorithm̂M -regularin state(i, j) if it fulfills a cer-
tain condition, (18) below, where the algorithm only uses the containers from Theorem 18
in the normal way that one expects from competitive algorithms. The lower bound from
Lemma 17 applies in expectation for algorithms that fulfill condition (18). If the condition
fails, we can give simple request sequences that show that the randomized algorithm is not
1.6-competitive, so the old analysis and the lower bound1.6− ε do apply in expectation.

Theorem 19. Any randomized projective list update algorithm that accesses a list of at
least three items is at best1.6-competitive.

Proof. Assume the list has at least three items. Consider a randomized projective algo-
rithmA and assume thatA is c-competitive withc < 1.6. That is, there exists a constant
b such thatA(σ) ≤ c · OPT(σ) + b for all request sequencesσ.

We adapt the proof forM-regular algorithms of Section 4. Let̂M ≥ 3, considerΛ in
(13) and consider a good state(i, j) as defined in Definition 16.

Let A be a deterministic projective algorithm. We say that algorithmA is M̂ -regular
in state(i, j) if, with W+ as in Theorem 18,

C(xi) = C(yj) ∈ W+, f(xi) < M̂, f(yj) < M̂. (18)

It is easy to see that the proof of Lemma 17 applies ifA is M̂-regular in(i, j).
Recall thatA is just a probability distribution on the set of deterministic projective

algorithms. Letrij be the event thatA is M̂ -regular in state(i, j). Then in a good state
(i, j), then the expected cost ofA is bounded as follows:

E

[

∑

λ∈Λ

Aλ(i, j)

]

≥ 16 · prob(rij). (19)
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Analogous to the analysis for̂M -regular deterministic algorithms, generalizing inequality
(14), the right-hand side of (19) fulfills

∑

(i,j) good

16 prob(rij) ≥ KH2T − o(KH2T )−
∑

(i,j) good

16(1− prob(rij)). (20)

Let X := H(K + T ) + M̂ andY := KH + M̂ . For all good states(i, j) we have

1 ≤ i ≤ X and1 ≤ j ≤ Y. (21)

If we can prove that, with growinĝM , K, andT ,

∑

(i,j) good

16(1− prob(rij)) ≤
Y
∑

j=1

X
∑

i=1

16(1− prob(rij)) = o(KH2T ), (22)

then we have proved (14) for irregular algorithms. This can be done by analyzing where
(18) fails, that is, for each of the six cases according to

Y
∑

j=1

X
∑

i=1

1− prob(rij) ≤
Y
∑

j=1

X
∑

i=1

























prob(C(xi) < C(yj))

+ prob(C(xi) > C(yj))

+ prob(C(xi) = C(yj) ∈ W−)

+ prob(C(xi) = C(yj) ∈ W2)

+ prob(C(xi) = C(yj) ∈ W+, f(xi) ≥ M̂)

+ prob(C(xi) = C(yj) ∈ W+, f(yj) ≥ M̂)

























.

We start by proving

Y
∑

j=1

X
∑

i=1

prob(C(xi) < C(yj)) ≤ o(KH2T ). (23)

To this aim, consider the sequencexiyY for 1 ≤ i ≤ X. When serving this sequence,
a request toy will be served in each of the states(i, 1), (i, 2), . . . , (i, Y ). Since every
deterministic algorithm withC(xi) < C(yj) pays one unit for accessingy in state(i, j),
the expected cost ofA for serving a request toy in a state(i, j) is at leastprob(C(xi) <
C(yj)). Therefore

A(xiyY ) ≥
Y
∑

j=1

prob(C(xi) < C(yj)). (24)

On the other hand, it must hold thatA(xiyY ) ≤ c · OPT(xiyY ) + b becauseA is c-
competitive. SinceOPT(xiyY ) = 1 it follows that

X
∑

i=1

Y
∑

j=1

prob
(

C(xi) < C(yj)
)

≤
X
∑

i=1

A(xiyY ) ≤ X · (c+ b) = o(KH2T ). (25)
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The bound onprob(C(xi) > C(yj)) is very similar.
For prob(C(xi) = C(yj) ∈ W−), we also use request sequences of the formσ =

xiyY . Clearly, from the first request toy on, the critical requests tox is always earlier in
σ than the critical request toy. ThereforeC(xi) = C(yj) ∈ W− implies thaty is behind
x in the list.

If C(xi) = C(yj) ∈ W2, the containerC(xi) does not contain any unary projections
to items other thanx or y. The list has at least a third itemz and eitherC(xi) < C(zk)
or C(zk) < C(xi) for any k. We consider only the first case, where we can bound
prob(C(xi) < C(zk)) similarly to (23). By considering the request sequencexizY for
1 ≤ i ≤ X, we obtain in the same way as with (24) and (25) that

∑X

i=1A(xizY ) =
o(KH2T ).

We have

prob(C(xi) = C(yj) ∈ W2) ≤ prob(C(xi) < C(zk)) + prob(C(xi) > C(zk))

for all zk with z 6= x, y. Hence the left hand side can be bounded by the bound on the first
two cases.

In a similar fashion, we boundprob(C(xi) = C(yj) ∈ W+, f(xi) ≥ M̂):

Y
∑

j=1

X
∑

i=1

prob(C(xi) = C(yj) ∈ W+, f(xi) ≥ M̂)

=
Y
∑

j=1

M̂−1
∑

i=1

prob(C(xi) = C(yj) ∈ W+, f(xi) ≥ M̂) +

Y
∑

j=1

X
∑

i=M̂

prob(C(xi) = C(yj) ∈ W+, f(xi) ≥ M̂)

≤ 0 +

Y
∑

j=1

1

M̂

X
∑

i=1

M̂−1
∑

ℓ=0

prob(C(xi+ℓ) = C(yj) ∈ W+, f(xi+ℓ) ≥ M̂)

≤
Y
∑

j=1

1

M̂

X
∑

i=1

A(xiyjxM̂)

≤ Y
1

M̂
X(c · OPT(xiyjxM̂) + b) = o(KH2T ).

The bound onprob(C(xi) = C(yj) ∈ W+, f(yj) ≥ M̂) is similar to the previous
bound.
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7 Conclusion

An open problem is to extend the lower bound to the full cost model, even though this
model is not very natural in connection with projective algorithms. This would require
request sequences over arbitrarily many items, and it is notclear whether an approach
similar to the one given here can work.

Another ambitious goal is to further improve the lower boundin case of non-projective
algorithms. Here, the techniques of the paper do not apply atall, and to get improvements
that are substantially larger than the ones obtainable withthe methods of [6] requires new
insights.

Finally, the search for good non-projective algorithms hasbecome an issue with our
result. Irani’s SPLIT algorithm [9] is the only one known of this kind with a competitive
ratio below 2. A major obstacle for finding such algorithms isthe difficulty of their anal-
ysis, because pairwise methods are not applicable, and other methods (e.g. the potential
function method) have not been studied in depth. We hope thatour result can stimulate
further research in this direction.
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