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Abstract

The list update problem is a classical online problem, with an optimal competi-
tive ratio that is still open, known to be somewhere between 1.5 and 1.6. An algo-
rithm with competitive ratio 1.6, the smallest known to date, is COMB, a randomized
combination of BIT and the TIMESTAMP algorithm TS. This and almost all other
list update algorithms, like MTF, are projective in the sense that they can be defined
by looking only at any pair of list items at a time. Projectivity (also known as “list
factoring”) simplifies both the description of the algorithm and its analysis, and so
far seems to be the only way to define a good online algorithm for lists of arbitrary
length. In this paper we characterize all projective list update algorithms and show
that their competitive ratio is never smaller than 1.6 in the partial cost model. There-
fore, COMB is a best possible projective algorithm in this model.
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1 Introduction
The list update problem is a classical online problem in the area of self-organizing data
structures [4]. Requests to items in an unsorted linear list must be served by accessing the
requested item. We assume the partial cost model where accessing the ith item in the list
incurs a cost of i − 1 units. This is simpler to analyze than the original full cost model
[14] where that cost is i. The goal is to keep access costs small by rearranging the items
in the list. After an item has been requested, it may be moved free of charge closer to the
front of the list. This is called a free exchange. Any other exchange of two consecutive
items in the list incurs cost one and is called a paid exchange.

An online algorithm must serve the sequence σ of requests one item at a time, without
knowledge of future requests. An optimum offline algorithm knows the entire sequence σ
in advance and can serve it with minimum cost OPT(σ). If the online algorithm serves σ
with cost A(σ), then it is called c-competitive if for a suitable constant b

A(σ) ≤ c · OPT(σ) + b (1)

for all request sequences σ and all initial list states. The infimum over all c so that (1)
holds for A is also called the competitive ratio of A . If the above inequality holds even for
b = 0, the algorithm A is called strictly c-competitive [9].

The move-to-front rule MTF, for example, which moves each item to the front of
the list after it has been requested, is strictly 2-competitive [14, 15]. This is also the
best possible competitiveness for any deterministic online algorithm for the list update
problem [14]. Another 2-competitive deterministic algorithm is TS, which is the simplest
member of the TIMESTAMP class due to Albers [1]. TS moves the requested item x in
front of all items which have been requested at most once since the last request to x.

As shown first by Irani [13], randomized algorithms can perform better on average.
Such an algorithm is called c-competitive if

E[A(σ)] ≤ c · OPT(σ) + b,

for all σ and all initial list states, where the expectation is taken over the randomized
choices of the online algorithm; this definition implies that the request sequences σ are
generated by an oblivious adversary that does not observe the choices of the online al-
gorithm. The best randomized list update algorithm known to date is the 1.6-competitive
algorithm COMB [2]. It serves the request sequence with probability 4/5 using the algo-
rithm BIT [14]. With probability 1/5, COMB treats the request sequence using TS.

Lower bounds for the competitive ratio of randomized algorithms are harder to find;
the first nontrivial bounds are due to Karp and Raghavan, see the remark in [14]. In the
partial cost model, a lower bound of 1.5 is easy to find as only two items are needed. Teia
[16] generalized this idea to prove the same bound in the full cost model, which requires
long lists. The authors [7] showed a lower bound of 1.50084 (improved to 1.50115 in
[5, p. 38]) for lists with five items in the partial cost model, using game trees and a
modification of Teia’s approach. The optimal competitive ratio for the list update problem
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(in the partial cost model) is therefore between 1.50115 and 1.6, but the true value is as
yet unknown.

With the exception of Irani’s algorithm SPLIT [13], all the specific list update algo-
rithms mentioned above are projective, meaning that the relative order of any two items
x and y in the list after a request sequence σ only depends on the initial list state and the
requests to x and y in σ. The simplest example of a projective algorithm is MTF. In order
to determine whether x is in front of y after σ, all that matters is whether the last request
to x was before the last request to y. The requests to other items are irrelevant.

A simple example of a non-projective algorithm is TRANSPOSE, which moves the
requested item just one position further to the front.

Projection to pairs of items, also known as “list factoring”, is the main tool for analyz-
ing list update algorithms. It has also been applied recently to other performance models
of list processing [10, 11].

Our results. The main result of this paper (Theorem 18) states that 1.6 is the best pos-
sible competitive ratio attainable by a projective algorithm. As a tool for proving it, we
develop an explicit characterization of deterministic projective algorithms.

These results are significant in two respects. First, they show that the successful ap-
proach of combining existing projective algorithms to obtain improved ones has reached
its limit with the development of the COMB algorithm. New and better algorithms (if they
exist) have to be non-projective, and must derive from new, yet to be discovered, design
principles.

Second, the characterization of projective algorithms is a step forward in understand-
ing the structural properties of list update algorithms. With this characterization, the
largest and so far most significant class of algorithms appears in a new, unified way.

The complete characterization of projective algorithms turns out to be rather involved.
However, there is a simple subclass of projective algorithms which already covers all
projective algorithms that can be expected to have a good competitive ratio. We call them
critical request algorithms. A list update algorithm is completely described by the list
state after a request sequence σ has been served; this can be done because we can assume
that all changes in the list state are due to paid exchanges, as explained in further detail at
the beginning of the next section. For critical request algorithms, the unary projections to
individual items suffice to describe that list state. For a request sequence σ and list item
x, deleting all requests to other items defines the unary projection σx, which is an i-fold
repetition of requests to x, written as xi, for some i ≥ 0. In Section 5 it will be necessary
to consider unary projections x0 and y0 of length zero as different if the items x and y are
different; for the moment, this distinction does not matter. With L as the set of list items,
let the set of these unary projections be

U = {xi | x ∈ L, i ≥ 0}. (2)

Definition 1 (Critical request algorithm).
A deterministic critical request algorithm is defined by a function

F : U → {0, 1, 2, . . .}, with F (xi) ≤ i for any x ∈ L, i ≥ 0.
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We call the F (σx)th request to x in σ the critical request to x. If F (σx) is zero (for
example if σx is the empty sequence ε), then x has no critical request. In the list state
after σ, all items with a critical request are grouped together in front of the items without
critical request. The items with critical requests are ordered according to the time of the
F (σx)th request to x in σ. The later a critical request took place in the sequence, the
closer the item is to the front. The items without critical request are placed at the end
of the list according to their order in the initial sequence. A randomized critical request
algorithm is a discrete probability distribution on the set of deterministic critical request
algorithms.

As an example, consider the online algorithm for three items a, b, and c with the
function F shown in the following table for requests up to four items.

i 0 1 2 3 4

F (ai) 0 1 0 2 2

F (bi) 0 0 2 2 4

F (ci) 0 1 2 2 2

In the rest of this paper, list states are written as [x1x2 . . . xn] where x1 is the item at the
front of the list. Let the initial list state be [abc]. Consider the list state after σ = abbcab.
We have F (σa) = F (aa) = 0, hence a does not have a critical request. For b we have
F (σb) = F (bbb) = 2, therefore the second request to b in σ is its critical request. For c we
have F (σc) = F (c) = 1. Thus after σ, the list state is [cba]. If we augment σ by another
request to a, item a moves to the front, because its critical request is the second.

Algorithms based on critical request functions are clearly projective, since the relative
order of any pair of items just depends on the relative order of the requests to x and y in
σ and the relative order of x and y in the initial list state.

In good online algorithms, the critical requests are very recent, like in MTF which is
described by the critical request function F (xi) = i for all items x. We define the critical
request relative to the current position by

f(xi) = i− F (xi), (3)

from which the critical request function is recovered as F (xi) = i− f(xi). Then MTF is
given by f(xi) = 0. Algorithm TS is described by f(xi) = 1 for all items and all i > 0
(and f(ε) = 0). Because the BIT algorithm [14] is randomized, its critical requests are
also randomized. For every item x, its relative critical request function can be written as
f(ε) = 0 and, for i > 0,

f(xi) = (bx + i) mod 2 (4)

where bx ∈ {0, 1} is chosen once uniformly at random; so for a list with n items, BIT is
the uniform distribution over 2n different deterministic algorithms. For BIT, the critical
request is the last or the second-to-last request with equal probability.
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The structure of the paper is as follows. In the next section, we explain projective
algorithms in more detail and how they can be analyzed. In Section 3, we give a char-
acterization of so-called M -regular projective algorithms, followed by the lower bound
of 1.6 for this important class of algorithms in Section 4. In Section 5, we characterize
projective algorithms completely. We extend the lower bound to the full class in Section 6.

2 Projective Algorithms
In order to characterize list update algorithms, we first simplify their formal definition.
The standard definition (of the partial cost model) considers a list state and a sequence of
requests. For each request to one of the items of the list, the item can be accessed with
access cost i − 1 if the item is in position i, and then moved free of charge closer to the
front. In addition, paid exchanges are allowed which can be applied both before and after
accessing the item, at a cost of one unit for exchanging any two consecutive items.

Contrary to the claim of [15, Theorem 3], paid exchanges may strictly improve costs.
For example, let the initial list state be [abc] and σ = cbbc. Then an optimal algorithm
moves a behind b and c before the first request to c. This requires paid exchanges.

In order to simplify the description of a list update algorithm, we assume that it oper-
ates using only paid exchanges, as follows: The list is in a certain state. The algorithm is
informed about the next request, and then performs a number of paid exchanges, and is
charged for their cost. It then accesses the requested item at cost i−1 when the item is the
ith item in the list, without any further changes to the list. This mimicks free exchanges
as well: Instead of first paying k units in order to access item x and then moving it at no
charge t positions closer to the front, one can first move the item t positions forward and
then access the item at cost k − t. In both cases, one pays exactly k units.

The above description ignores paid exchanges immediately before learning the next
request; if the algorithm performs them after the request, it has only more information.
In addition, paid exchanges also allow the transposition of items at unrealistic low costs
that are behind the requested item in the list. This does not matter for our lower bound
considerations.

The above considerations lead to a simplified but still equivalent model of list update
algorithms: Any deterministic online algorithm A is specified by a function

SA : Σ→ L.

Here, Σ denotes the set of finite request sequences (including the empty sequence ε), and
L denotes the set of the n! states the list of n items can attain. By definition, SA(σ) is the
list state after the last request of σ has been served by algorithm A.

Consider a request sequence σ and assume it is followed by a request to item x, the
extended sequence denoted by σx. Then the cost of serving request x is defined by: the
cost of re-arranging the list from state SA(σ) to SA(σx) by paid exchanges, plus the cost
of accessing x in state SA(σx).
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Using this notation, the initial list state can be denoted by SA(ε). We will omit the
superscript A in SA(σ) when the algorithm used is determined by the context.

In order to describe projective algorithms, we have to introduce the concept of pro-
jections of request sequences and list states. Let a request sequence σ be given and fix a
pair of items x, y. The projection σxy of σ to x and y is the request sequence σ where all
requests which are not to x or y are removed. Similarly, σx is σ with all requests other
than those to x removed.

Given a list state L, the projection to x and y is obtained by removing all items except
for x and y from the list. This is denoted by Lxy.

Definition 2. Let Sxy(σ) be the projection of S(σ) to x and y. A deterministic algorithm
A is called projective if for all pairs of items x, y and all request sequences σ

Sxy(σ) = Sxy(σxy). (5)

A randomized algorithm is projective if all deterministic algorithms that it chooses with
positive probability are projective.

For any list update algorithm A, define the projected cost Axy(σ) that A serves a re-
quest sequence σ, projected to the pair x, y, as follows: Consider all requests z in σ with
corresponding prefix σ′z of σ. Then Axy(σ) is the number of times where Sxy(σ′) and
Sxy(σ

′z) differ (which counts the necessary paid exchanges of x and y; this may happen
even if z 6∈ {x, y} in case A is not projective), plus the number of times where z = x and
Sxy(σ

′z) = [yx] or z = y and Sxy(σ′z) = [xy].

Thus, an algorithm is projective if the relative position of any pair of items depends
only on the initial list state and the requests to x and y in the request sequence.

Projective algorithms have a natural generalization, where the relative order of any k-
tuple of list items depends only on the requests to these k items. It turns out that for lists
with more than k items, only projective algorithms satisfy this condition. This follows
from the fact that, for example for k = 3, Sxyz(σ) = Sxyz(σxyz) (so the relative position
of x and y does not depend on requests to w), and Sxyw(σ) = Sxyw(σxyw) (so the relative
position of x and y does not depend on requests to z), which implies that Sxy(σ) depends
only on σxy.

Already in [8], Bentley and McGeoch observed that MTF is projective: Item x is in
front of y if and only if y has not been requested yet or if the last request to x took place
after the last request to y.

With the exception of Irani’s SPLIT algorithm [13], projective algorithms are the
only family of algorithms that have been analyzed so far, typically using the following
theorem, for example in [1, 2, 9].

Theorem 3. If a (strictly) projective algorithm is c-competitive on lists with two items,
then it is also (strictly) c-competitive on lists of arbitrary length.
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Proof. Consider first an arbitrary list update algorithm A. Let L be the set of list items.
Then

A(σ) =
∑
{x,y}⊆L

Axy(σ), (6)

because the costs A(σ) are given by the update costs for changing S(σ′) to S(σ′z), which
is the sum of the costs of paid exchanges of pairs of items, plus the cost of accessing z in
state S(σ′z).

For a projective algorithm A the relative behavior of a pair of items is, according
to (5), independent of the requests to other items. It is therefore easy to see that Axy(σ) =
Axy(σxy) for projective algorithms: Because A is projective, Axy(σxy) is also the cost of A
for serving σxy on the two-item list containing x and y starting from Sxy(ε).

For the algorithm OPT, the term OPTxy(σxy) is the cost of optimally serving σxy on
the two-item list Sxy(ε). Hence, OPTxy(σ) ≥ OPTxy(σxy). Then

OPT(σ) =
∑
{x,y}⊆L

OPTxy(σ) ≥
∑
{x,y}⊆L

OPTxy(σxy) =: OPT(σ). (7)

Let A be a projective algorithm that is c-competitive on two items. Then for every pair
of items x, y there is a constant bxy such that for all σ

Axy(σxy) ≤ c · OPTxy(σxy) + bxy.

Then

A(σ) =
∑
{x,y}⊆L

Axy(σxy)

≤
∑
{x,y}⊆L

(c · OPTxy(σxy) + bxy)

≤ c · OPT(σ) +
∑
{x,y}⊆L

bxy

= c · OPT(σ) + b

≤ c · OPT(σ) + b.

For the strict case, just set all bxy := 0.

Not all algorithms are projective. Let LMTF be the algorithm that moves the requested
item x in front of all items which have not been requested since the previous request to x,
if there has been such a request.

It is easy to prove that on lists with two items, combining LMTF and MTF with equal
probability would lead to a 1.5-competitive randomized algorithm. Obviously, if LMTF
was projective, this bound would hold for lists of arbitrary length.

However, LMTF is not projective. This can be seen from the request sequence σ =
baacbcwith initial listL0 = [abc]. It holds that SLMTF(σ) = cab, whereas SLMTF(σbc) =
SLMTF(bcbc) = bca. Hence SLMTFbc (σ) 6= SLMTFbc (σbc).
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3 Critical Requests and M -regular Algorithms
In this section, we provide technical preliminaries for our results, and introduceM -regular
algorithms, which move an item to the front of the list when it has been requestedM times
in succession.

Throughout this section, we consider deterministic projective list update algorithms.
In order to refer to the individual requests to an item x, we write unary projections as

xi = x(1)x(2) . . . x(i),

that is, x(q) is the qth request to x in σ if σx = xi, for 1 ≤ q ≤ i.
Let P(σ) be the set of all permutations of the sequence σ. In particular, P(xiyj)

consists of all sequences with i requests to x and j requests to y.
Swapping two requests x(q) and y(l) in a request sequence σ means that x(q) and y(l),

which are assumed to be adjacent, change their position in σ. If two requests are not
adjacent, they cannot be swapped.

Definition 4. Consider a deterministic projective list update algorithm A. A pair of unary
projections xi, yj is called agile if there exist two request sequences τ and τ ′ in P(xiyj)
with Sxy(τ) = [xy] and Sxy(τ ′) = [yx].

We call a pair of requests x(q), y(l) an agile pair of σ if x(q) and y(l) are adjacent in σ
and so that σ′ obtained by swapping x(q) and y(l) in σ gives Sxy(σ′) 6= Sxy(σ).

Clearly, if xi and yj are agile, then there exists an agile pair in at least one sequence
belonging to P(xiyj).

Lemma 5. If x(q), y(l) is an agile pair of σ, then x and y are adjacent in S(σ).

Proof. Let σ′ be σ with x(q) and y(l) swapped. Then Sxy(σ) 6= Sxy(σ
′) and Sst(σ) =

Sst(σ
′) for all {s, t} ⊆ L except {x, y}. But this is possible only if x and y are adjacent

in S(σ).

Definition 6. For every xi ∈ U let R(xi) be the set defined as follows: x(q) ∈ R(xi) if
and only if there exists y(l) and σ with σx = xi such that x(q), y(l) is an agile pair of σ.

Lemma 7. Let xi be unary projection and suppose that xi forms agile pairs involving at
least two distinct items. Then |R(xi)| = 1.

Proof. Obviously, |R(xi)| > 0. Suppose that |R(xi)| > 1; we will show that this leads to
a contradiction. Then there are two distinct items y, z and a sequence τ ∈ P(xiyj) with
an agile pair x(q), y(l), and similarly λ ∈ P(xizk) with an agile pair x(q′), z(m) with q 6= q′

(if q = q′ for all choices of y(l) and z(m), then |R(xi)| = 1). We insert k requests to z
into τ , but not between x(q) and y(l), to create a sequence σ with σxy = τ and σxz = λ in
which both x(q), y(l) and x(q′), z(m) are adjacent pairs.
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Swap the agile pair x(q), y(l) in σ to obtain σ′ with {Sxy(σ), Sxy(σ
′)} = {[xy], [yx]}.

We have σxz = σ′xz = λ. Suppose that Sxz(σ) = [zx] and Sxy(σ) = [xy] (and hence
Sxyz = [zxy]), or that Sxz(σ) = [xz] and Sxy(σ) = [yx] (and hence Sxyz = [yxz]),
otherwise exchange σ and σ′. Now consider the sequence σ′′ obtained from σ by swapping
both agile pairs x(q), y(l) and x(q′), z(m). This reverses the three-element list Sxyz, that is,
{Sxyz(σ), Sxyz(σ

′′)} = {[zxy], [yxz]}, so that Syz(σ) 6= Syz(σ
′′), but σyz = σ′′yz, which

contradicts the projectivity of the algorithm with respect to y and z.

Lemma 8. If x(q), y(l) is an agile pair in λ ∈ P(xiyj) and |R(xi)| = 1 and |R(yj)| = 1,
then the only swap of requests that can change the relative order of x and y in a request se-
quence in P(xiyj) is swapping x(q) and y(l), and this changes Sxy(σ) in any such sequence
σ where x(q) and y(l) are adjacent.

Proof. Only x(q) and y(l) can be swapped to affect the order of x and y because |R(xi)| =
|R(yj)| = 1. If the lemma does not hold, then there exists a sequence σ in P(xiyj) in
which we can swap x(q) and y(l) to obtain σ′ with Sxy(σ) = Sxy(σ

′). Then we can obtain
any sequence in P(σ) by successively transposing adjacent requests, starting from either
σ or σ′, without ever swapping x(q) and y(l). Thus, the relative order of x and y would be
the same for all request sequences in P(xiyj). But we know that swapping x(q) and y(l)

changes Sxy(λ). This is a contradiction.

In this and the next section, we consider online list update algorithms that move an
item to the front of the list after sufficiently many consecutive requests to that item. This
behavior is certainly expected for algorithms with a small competitive ratio. In this sec-
tion, we show that such algorithms, which we call M -regular, can be characterized in
terms of “critical requests”. In the next section, we use this characterization to show that
such algorithms are at best 1.6-competitive.

Definition 9. For a given integer M > 0, a deterministic algorithm is called M -regular
if for each item x and each request sequence σ, item x is in front of all other items after
the sequence σxM .

A randomized algorithm is called M -regular if it is a discrete probability distribution
over deterministic M -regular algorithms.

The algorithms discussed at the end of the introduction are all 1-regular or 2-regular. A
projective algorithm that is not M -regular is FREQUENCY COUNT, which maintains the
items sorted according to decreasing number of past requests; two items which have been
requested equally often are ordered by recency of their last request, like in MTF. Hence,
after serving the request sequence xM+1yM , item x is still in front of y, which shows that
FREQUENCY COUNT is not M -regular for any M . Projective algorithms that are not M -
regular are characterized in Section 5 below, but such “irregular” behavior must vanish in
the long run for any algorithm with a good competitive ratio (see Section 6). Hence, the
important projective algorithms are M -regular.

The following theorem asserts the existence of critical requests, essentially the unique
element of R(xi) in Lemma 7, for those unary projections xi where this lemma applies.
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For projectivity, the list items may also be maintained in reverse order, described as case
(b) in the following theorem; competitive algorithms do not behave like this, as we will
show later.

Theorem 10. Let A be a deterministic projective algorithm over a set L of list items.
Then there exists a function

F : U → N, F (xi) ≤ i for all i

so that the following holds:
Let Q be a set of unary projections containing projections to at least three different

items. Let all unary projections to different items in Q be pairwise agile. Then one of the
following two cases (a) or (b) applies.

(a) For all pairs of unary projections xi, yj from Q it holds that if q = F (xi) and
l = F (yj), then

Sxy(σ) =

{
[xy] if x(q) is requested after y(l) in σ
[yx] if x(q) is requested before y(l) in σ

(8)

(b) For all pairs of unary projections xi, yj from Q it holds that if q = F (xi) and
l = F (yj), then

Sxy(σ) =

{
[xy] if x(q) is requested before y(l) in σ
[yx] if x(q) is requested after y(l) in σ

(9)

Proof. Since all pairs of unary projections in Q are pairwise agile, we can conclude
|R(xi)| = 1 for all xi ∈ Q by Lemma 7. This allows us to define F (xi) = q if
x(q) ∈ R(xi). From Lemma 8 we can conclude that for every pair xi, yj , either (8) or (9)
holds.

It remains to prove that either all pairs are operated by (8) or by (9). If this was not
the case, then it is not hard to see that one can construct a sequence σ which has a pair
of critical requests adjacent to each other in σ (which define an agile pair) without the
corresponding items being adjacent in S(σ), which contradicts Lemma 5: For example,
suppose F (xi) = q, F (yj) = r, and F (zk) = s, consider σ in P(xiyjzk) so that σ has
the three consecutive requests x(q)z(s)y(r), and assume that Sxyz(σ) = [xyz] because x(q)

is requested before y(r) according to (9) and because y(r) is requested after z(s) according
to (8); then the critical requests x(q) and z(s) are adjacent in σ but x and z are not adjacent
in S(σ).

The following theorem asserts that, in a list with at least three items, an M -regular
algorithm operates according to critical requests as in Definition 1 for all pairs of items
that have been requested M or more times. That is, case (b) of Theorem 10, where the
list items are arranged backwards, does not apply. In addition, the critical request to any
item must be one of the last M requests to that item, which means that the relative critical
request f(xi) in (3) is less than M .
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Theorem 11. Let A be a deterministic projective M -regular algorithm over a set L of at
least three list items. Then there exists a function

F : U → N, F (xi) ≤ i for all i

so that the following holds. Let x, y ∈ L. Let σ be any request sequence with |σx| ≥ M
and |σy| ≥M . Then, with q = F (xi) and l = F (yj),

Sxy(σ) =

{
[xy] if x(q) is requested after y(l) in σ
[yx] if x(q) is requested before y(l) in σ

Moreover, with f(xi) defined as in (3), we have f(xi) < M for all i.

Proof. Let Q be the set of all unary projections xi with i ≥ M . This set has all the prop-
erties of the set Q in Theorem 10, where clearly case (a) applies because Sxy(xMyM) =
[yx]. Because A is M -regular, for i ≥ M the critical request F (xi) is one of the last M
requests to x, which shows that f(xi) < M ; for i < M this holds trivially.

4 The Lower Bound for M -regular Algorithms
In this section, we use Theorem 10 to prove the following result.

Theorem 12. No M -regular projective algorithm is better than 1.6-competitive.

We first give an outline of the proof. Given any ε > 0 and b, we will show that there
is a discrete probability distribution π on a finite set Λ of request sequences so that∑

λ∈Λ

π(λ)
A(λ)

OPT(λ) + b
≥ 1.6− ε, (10)

for any deterministic M -regular algorithm A. Then Yao’s theorem [17] asserts that also
any randomized M -regular algorithm has competitive ratio 1.6 − ε or larger. This holds
for any ε > 0, so the competitive ratio is at least 1.6. This ratio is achieved by COMB, and
therefore 1.6 is a tight bound for the competitive ratio of M -regular algorithms.

All λ ∈ Λ will consist only of requests to two items x and y. In what follows, let
M̂ ≥M and M̂ ≥ 3 and let the request sequence φ be

φ := xM̂ yxM̂ yM̂ xyM̂ xM̂ yxyxM̂ yM̂ xyxyM̂ . (11)

By the last observation in Theorem 11, x will be in front of the list after any subsequence
xM̂ of requests, and y after any subsequence yM̂ . The purpose of the following construc-
tion is to obscure to the algorithm (which operates according to critical requests defined
by the unary projections) the exact location of a request to x or y in a repetition of φ.
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Let K and T be positive integers and let H be the number of requests to x (and to y)
in φ, that is,

H := |φ|/2 = 4M̂ + 4. (12)

Then the set Λ of sequences in (10) is given by

Λ = Λ(K,T ) := {xM̂+tyM̂+hφK | 0 ≤ h < H, 0 ≤ t < HT}, (13)

where π chooses any λ in Λ with equal probability π(λ) = 1/H2T . Note that in (13), K
is the number of repetitions of φ, the number H depends on M̂ but is otherwise constant,
h creates a prefix for y so as to achieve any possible position inside φ for a given request
to y, and T is a second parameter that defines the range of t so that the number of requests
to x can vary widely relative to y; it is not necessary to introduce such a parameter for y.

It is easy to see that OPT pays exactly ten units for each repetition of φ (which always
starts in offline list state [yx]). Assuming that the initial list state is also [yx], all sequences
in Λ have offline cost 10K + 2. This and the fact that π(λ) for λ ∈ Λ is constant allows
us to show (10) once we can prove – which we will do in the course of our argument –∑

λ∈Λ

A(λ) ≥ 16KH2T − o(KH2T ), (14)

because then∑
λ∈Λ

π(λ)
A(λ)

OPT(λ) + b
=

∑
λ∈Λ A(λ)∑

λ∈Λ(OPT(λ) + b)
≥ 16KH2T − o(KH2T )

(10K + 2 + b)H2T
≥ 1.6− ε

for K and T large enough.
Recall that by Theorem 11, the algorithm uses critical requests that depend only on

the unary projections xi and yj to x and y of a sequence in Λ. We refer to the pair (i, j)
as a state, according to the following definition.

Definition 13. A request sequence σ ends at state (i, j) if |σx| = i and |σy| = j. The
request sequence λ passes state (i, j) if there is a proper prefix σ of λ, with λ = στ for
non-empty τ , so that σ ends at (i, j). The request in λ after (i, j) is the first request in τ .

Definition 14. Let Aλ(i, j) denote the online cost of serving the requests in λ after (i, j).
If λ does not pass (i, j), let Aλ(i, j) = 0.

We will show that the set Λ in (13) is constructed in such a way that almost all states
which are passed by some sequence λ in Λ are so-called good states, defined as follows.

Definition 15. A state (i, j) is called good if for every proper prefix σ of φ (that is,
0 ≤ |σ| < 2H) there exist unique h, k, t with 0 ≤ h < H , 0 ≤ k < K and 0 ≤ t < HT

so that xM̂+tyM̂+hφkσ ends at state (i, j).
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Note that H is the number of requests to y in φ, so given (i, j) and the prefix σ of φ
in Definition 15, there is at most one choice of h and k, and therefore at most one t, so
that xM̂+tyM̂+hφkσ ends at state (i, j) (see also (16) below). The state (i, j) is good if
these h, k, t exist for all proper prefixes σ of φ, which means that each position inside the
repetition of φ in the sequence chosen randomly from Λ is equally likely.

The following Lemma 16 states that good states incur large costs. After that we prove
that almost all states are good and thus complete the proof of Theorem 12.

Lemma 16. Let (i, j) be a good state. Then∑
λ∈Λ

Aλ(i, j) ≥ 16.

Proof. Consider any sequence λ in Λ so that λ passes (i, j); there are 2H such sequences
by Definition 15. The request in λ after (i, j) is some request in φ. The cost Aλ(i, j) of
serving that request depends on whether the requested item x or y is in front or not. This,
in turn, is determined by the terms f(xi) and f(yj) as defined in (3), which determine the
relative critical requests to x and y in λ. Recall that the item with the more recent critical
request is in front, and that f(xi) and f(yj) are less than M̂ by Theorem 11.

Because (i, j) is a good state, we obtain exactly all the requests in φ as the requests
after (i, j) in λ when considering all λ in Λ that pass (i, j). Therefore, the total cost∑

λ∈Λ Aλ(i, j) is the cost of serving exactly the requests in φ according to the critical
requests as given by f(xi) and f(yj).

f(xi) f(yj) xM̂ yxM̂ yM̂ xyM̂ xM̂ yxyxM̂ yM̂ xyxyM̂
∑

λ∈Λ Aλ(i, j)

0 0 1.. 11.. 1.. 11.. 1.. 1111.. 1.. 1111.. 16

0 ≥1 1.. 1.. 11.. 111.. 1.. 101.. 11.. 11011.. ≥16

1 1 11.. 1.. 11.. 1.. 11.. 1011.. 11.. 1011.. 16

1 ≥2 11.. 1.. 111.. 1.. 11.. 101.. 111.. 10111.. ≥18

≥2 ≥2 111.. 1.. 111.. 1.. 111.. 101.. 111.. 101.. ≥18

Table 1: Online costs Aλ(i, j) for all λ that pass a good state (i, j), which are the costs of
serving the requests in φ. They depend on the relative critical requests f(xi) and f(yj).

The rows in Table 1 show the costs Aλ(i, j) for the possible combinations of f(xi)
and f(yj), up to symmetry in x and y (explained further at the end of this proof). For
example, consider the first case f(xi) = 0 and f(yj) = 0, where the critical request to an
item is always the most recent request to that item, which is the MTF algorithm. Suppose
that the request after (i, j) is the first request, to x, in the subsequence xyM̂ of φ. The
critical request to x is the last request to x earlier in yxM̂ , and the critical request to y is
the last request to y earlier (and more recent) in yM̂ . The critical request to y is later than
that to x, so y is in front of x, and serving x incurs cost 1, which is the first 1 in the table
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entry 11.. in the column for xyM̂ . The second 1 in 11.. is the cost of serving the first y.
It is 1 because here the critical request to x is more recent than the critical request to y.
The “..” in 11.. correspond to the costs of later requests to y in yM̂ , which are zero for
f(xi) = 0 and f(yj) = 0 (so for M̂ = 4 the complete cost sequence would be 11000).
In a good state, each cost 0 or 1 in the table (in correspondence to the respective position
in φ) is incurred by a sequence λ in Λ.

By construction of Λ, the requests before xM̂ in the first column of Table 1 are of the
form yM̂ , so y is in front of x, and the first request of xM̂ has always cost 1.

In the second row in Table 1, f(xi) = 0 and f(yj) ≥ 1; if f(yj) = 1, then the request
to y is handled as in the TS algorithm. As an illustration of a more complicated case,
consider the subsequence xyxyM̂ of φ in the last column, with associated costs 11011...
The first 1 is the cost of serving the first request to x, because the preceding requests
are M̂ ≥ M requests to y in yM̂ and because the algorithm is M -regular, which means
f(yj) < M by Theorem 11, so y is in front of x. Because f(xi) = 0, the cost of serving
the first y in xyxyM̂ is also 1, because x is in front of y. The second request to x has
cost 0 (the first 0 in 11011..) because y is not moved in front of x (the critical request to y
is earlier than that to x because f(yj) ≥ 1). The next two costs 11 are for the second and
third request to y in xyxyM̂ , because the critical request to x is more recent.

The rows in Table 1 describe all cases for f(xi) and f(yj) with i ≤ j. They describe
in fact all possible cases because for each column in Table 1 there is another column with
x and y interchanged, where the costs for requests to x and y apply in the same manner
when x is exchanged with y. The respective costs in Table 1 are easily verified. The right
column shows that the total cost

∑
λ∈Λ Aλ(i, j) is at least 16 in all these cases, which

proves the claim.

The preceding proof of Lemma 16 also shows that 1.6-competitive algorithms can
only be expected when the relative critical requests fulfill f(xi) ∈ {0, 1}, as in the MTF
and TS algorithms.

Proof of Theorem 12. We only have to prove (14), which we will do by showing∑
λ∈Λ

A(λ) ≥
∑

(i,j) good

∑
λ∈Λ

Aλ(i, j) ≥ 16KH2T − o(KH2T ). (15)

The first inequality in (15) is immediate. For the second inequality we use Lemma 16. It
suffices to show that the number of good states is at least

KH2T − o(KH2T ).

By Definition 15, state (i, j) is good if and only if

i = M̂ + t+ kH + |σx|,
j = M̂ + h+ kH + |σy|,

(16)
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or equivalently
t = i+ h− j − (|σx| − |σy|),

h+ kH = j − M̂ − |σy|.
(17)

For 0 ≤ k < K and 0 ≤ h < H , the term h + kH takes the values 0, . . . , KH − 1.
The second equation in (17) therefore has a unique solution in h, k, for any σ (where
0 ≤ |σy| < H) whenever M̂ + H − 1 ≤ j < M̂ + KH . Because by (11), 0 ≤
|σx| − |σy| < H , the first equation in (17) has a unique solution t in {0, . . . , HT − 1} if
j + H − 1 ≤ i ≤ j + HT −H , for every fixed j. Hence the number of good states is at
least

(KH −H + 1) · (HT − 2H + 2) = KH2T − o(KH2T )

because for sufficiently large K (the number of repetitions of φ) and T (the number of
initial repetitions of x) all other terms are arbitrarily small relative to KH2T .

5 The Full Characterization
In this section, we give the full characterization of deterministic projective algorithms.
We consider the set U of unary projections of request sequences defined in (2) as the set
of nodes of the directed graph G = (U,E) with arcs (xi, yj) in E whenever there is a
request sequence σ in P(xiyj) with S(σ) = [xy].

For any two distinct items x and y and any i, j ≥ 0, there is at least one arc between
xi and yj . If the pair xi, yj is agile according to Definition 4, then there are arcs in both
directions. Only pairs of nodes of the form xi, xj do not have arcs between them.

LetW be the set of strongly connected components ofG, and letC(xi) be the strongly
connected component that xi belongs to. We think of C(xi) as a “container” that contains
xi and all other unary projections yj with C(yj) = C(xi).

There exists a total order < on these containers so that C(xi) < C(yj) if Sxy(σ) =
[xy] after serving any σ ∈ P(xiyj). To see this, we define the following binary relation P
onW: Let C(xi)P C(yj) if there is a path in G from xi to yj . Then P defines a partial
order onW . It is acyclic because cycles in G belong to strongly connected components,
which are the elements of W . The only pairs of containers which are not ordered in P
are those of the form {xi}, {xj} for which there does not exist a container C(yk) with
C(xi) < C(yk) < C(xj) or C(xj) < C(yk) < C(xi). By stipulating {xi} < {xj} if and
only if i < j for such pairs, we can extend P to the desired total order <.

A specific case is given by the empty unary projections x0 for items x: Note that x0 and
yj for any j ≥ 0 are never in the same container because P(x0yj) contains only a single
sequence σ = yj; the state Sxy(σ) is therefore either [xy] or [yx], so there cannot be paths
in both directions between x0 and yj in G. Hence C(x0) = {x0}, and C(x0) < C(y0) if
and only if x is in front of y in the initial list.

In summary, for a request sequence σ, the total order < on W determines the list
order between two items x and y whose unary projections σx and σy belong to different
containers inW .
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If σx and σy belong to the same container, then the list order between x and y can be
described by essentially two possibilities. First, if the container contains only projections
to at most two items x and y, nothing further can be said because the relative order be-
tween x and y for these requests is arbitrary without violating projectivity (for the same
reason that on a two-item list, any algorithm is projective); the set of these containers will
be denoted byW2.

Second, if a container contains unary projections for three or more distinct items, then
the algorithm’s behavior can be described by critical requests similar to Theorem 10; the
set of such containers will be denoted by W+. There is a symmetric set W− where the
algorithm behaves in the same manner but with the list order reversed (which does not
define competitive algorithms).

These assertions are summarized in the following theorem.

Theorem 17. Consider a deterministic projective list update algorithm. Then there are
pairwise disjoint sets W+, W−, W2 whose union is W and a total order < on W and a
function C : U →W with

(I) C(x0) = {x0} ∈ W2 for all x ∈ L;

(II) for any three items x, y, z, if C(xi) = C(yj) = C(zk) = w, then w 6∈ W2.

Furthermore, if C(xi) 6∈ W2, then there exists F (xi) ∈ {1, . . . , i} with the following
properties: For all request sequences σ with σx = xi and σy = yj ,

(III) if C(xi) < C(yj) then Sxy(σ) = [xy];

(IVa) if C(xi) = C(yj) ∈ W+ then Sxy(σ) = [xy] if and only if the F (xi)th request to x
is after the F (yj)th request to y in σ;

(IVb) if C(xi) = C(yj) ∈ W− then Sxy(σ) = [xy] if and only if the F (xi)th request to x
is before the F (yj)th request to y in σ.

Proof. The setW and the order < have been defined above with the help of the graph G,
which shows (III). We have also shown (I) above.

As before, letW2 be the set of containers with unary projections to at most two distinct
items, which implies (II).

It remains to show (IVa) and (IVb). Consider a request sequence σ with σx = xi

and σy = yj . Let C(xi) = C(yj) 6∈ W2, so that there is a third item z 6∈ {x, y} with
C(xi) = C(yj) = C(zk). We want to apply Lemma 7. To this end, we first show the
“mixed transitivity” (note that x, y, z are distinct items)

(xi, yj) ∈ E and (yj, zk) ∈ E =⇒ (xi, zk) ∈ E. (18)

Let (xi, yj) ∈ E, so that Sxy(σ) = [xy] for some σ ∈ P(xiyj). If (yj, zk) ∈ E, then one
can insert k requests to z into σ so that Syz(σ) = [yz]. Adding the requests to z does not
change Sxy(σ), so S(σ) = [xyz], which implies (xi, zk) ∈ E. This shows (18).

16



With the help of (18), we now show that if C(xi) = C(yj), then the pair xi, yj is agile
according to Definition 4. We will prove this by showing that

(xi, yj) ∈ E and (yj, xi) ∈ E. (19)

To prove (19), recall that C(xi) is a strongly connected component of the graph G which
also contains yj and zk. Therefore there exists a path inG from xi to yj via zk. This path is
a sequence of unary projections u0, . . . , un with u0 = xi, ul = zk for some 0 < l < n, and
un = yj . Let si be the item of the corresponding unary projection ui, in particular s0 = x,
sl = z, sn = y. Ignoring the superscripts of the unary projections, we are essentially
looking at a sequence of items s0s1s2 . . . sn where si 6= si+1 for 0 ≤ i < n. We can
shorten that sequence whenever sq−1, sq, and sq+1 are three distinct items by removing
sq, because then (sq−1, sq+1) ∈ E by (18). The problem is that we do not want to shorten
it in such a way that we cannot apply (18) any more.

We call a path u0 . . . un between xi and yj valid if |{s0, . . . , sn}| ≥ 3. We claim that
if there exists a valid path between xi and yj of length n > 2, then there exists also a valid
path of length n− 1.

To show this claim, consider the smallest q so that sq−1, sq, and sq+1 are three distinct
items. If the path u0 . . . un remains valid after removing uq, we are done. Otherwise,
clearly |{s0, . . . , sn}| = 3, and removing uq makes the path invalid, which means sq = z
for some z 6∈ {x, y}, and sq is the only occurrence of z in s0s1s2 . . . sn, because s0 = x
and sn = y. We claim that q = 1, because if q > 1 then the sequence s0s1 . . . sq is either
of the form xyxy . . . xyz or xyx . . . yxz, and in both cases sq−1 can be removed, but q was
chosen smallest. So indeed s1 = z, and this is the only occurrence of z. Then s0s1s2 . . . sn
is either of the form xzxy . . . xy or xzyx . . . y, and in each case we can repeatedly remove
s2 using (18), until we arrive at n = 2 with the sequence xzy. This proves the claim.

A final application of (18) then gives (xi, yj) ∈ E. The same argument shows
(yj, xi) ∈ E. This proves (19).

Because all pairs of unary projections are agile in C(xi), we can apply Theorem 10,
whose cases (a) and (b) prove (IVa) and (IVb). This proves the theorem.

6 The Lower Bound for Irregular Algorithms
In Section 4 we considered deterministic M -regular projective list update algorithms. In
this section, we consider randomized algorithms, which may select deterministic algo-
rithms that are not M -regular. If this happens sufficiently rarely, the algorithm may still
be competitive. For example, consider an algorithm that operates according to some rule
(for example MTF), keeps track of its incurred costs, and whenever this is a square num-
ber Q2, does not move any item for the next Q requests, and then resumes its normal
operation. This does not change its competitive ratio, but makes the algorithm no longer
M -regular.

In Theorem 12 we showed that no deterministicM -regular projective list update algo-
rithm is better than 1.6-competitive. For this we gave, for any ε > 0, a suitable distribu-
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tion on request sequences that bound the competitive ratio of the algorithm from below by
1.6− ε. These request sequences are drawn from a set Λ defined in (13) with parameters
K,T that are chosen sufficiently large depending on ε.

We extend this analysis to arbitrary randomized projective list update algorithms using
the full characterization from the previous section. Part of this extension involves also a
sufficiently large choice of the parameter M̂ in (13) to cope with algorithms that are not
M̂ -regular.

In brief, the proof works as follows. Using the crucial notion of a good state (i, j) in
Definition 15, we call a deterministic algorithm M̂ -regular in state (i, j) if it fulfills a cer-
tain condition, (20) below, where the algorithm only uses the containers from Theorem 17
in the normal way that one expects from competitive algorithms. The lower bound from
Lemma 16 applies in expectation for algorithms that fulfill condition (20).

The proof of the following theorem is mostly concerned with the cases where the
deterministic algorithm A is “irregular”, that is, condition (20) fails. Here we use the fol-
lowing argument, spelled out in detail following (25): We give simple request sequences
(which depend on the growing parameters K,T, M̂ ) that have constant offline cost but
arbitrarily large cost for deterministic “irregular” algorithms; hence, these deterministic
algorithms must be chosen with vanishing probability.

Theorem 18. Any randomized projective list update algorithm that accesses a list of at
least three items is at best 1.6-competitive.

Proof. Assume the list has at least three items. Consider a randomized projective algo-
rithm A and assume that A is c-competitive with c < 1.6. That is, there exists a constant
b such that A(σ) ≤ c · OPT(σ) + b for all request sequences σ.

We adapt the proof for M -regular algorithms of Section 4. Let M̂ ≥ 3, consider Λ in
(13) and consider a good state (i, j) as defined in Definition 15.

Let A be a deterministic projective algorithm. We say that algorithm A is M̂ -regular
in state (i, j) if, withW+ as in Theorem 17 and f(xi) defined as in (3),

C(xi) = C(yj) ∈ W+, f(xi) < M̂, f(yj) < M̂. (20)

It is easy to see that the proof of Lemma 16 applies if A is M̂ -regular in (i, j).
Recall that A is just a discrete probability distribution on the set of deterministic pro-

jective algorithms. Let rij be the event that A is M̂ -regular in state (i, j). Analogous to
(15), the expected cost of A is bounded by considering the good states (i, j) as follows:

E

[∑
λ∈Λ

A(λ)

]
≥

∑
(i,j) good

E

[∑
λ∈Λ

Aλ(i, j)

]
≥ 16KH2T − o(KH2T )−

∑
(i,j) good

16(1− prob(rij)).
(21)

Let
X := HT +KH + M̂ and Y := (K + 1)H + M̂, (22)
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and recall that H is a linear function of M̂ by (12). For all good states (i, j) we have, by
(16),

1 ≤ i ≤ X and 1 ≤ j ≤ Y. (23)

If we can prove that, with growing M̂ , K, and T ,

∑
(i,j) good

16(1− prob(rij)) ≤
Y∑
j=1

X∑
i=1

16(1− prob(rij)) = o(KH2T ), (24)

then we have proved (14) for irregular algorithms.
We proceed to prove (24) by analyzing where (20) fails, that is, for each of the six

cases according to

Y∑
j=1

X∑
i=1

(1− prob(rij)) ≤
Y∑
j=1

X∑
i=1



prob(C(xi) < C(yj))

+ prob(C(xi) > C(yj))

+ prob(C(xi) = C(yj) ∈ W−)

+ prob(C(xi) = C(yj) ∈ W2)

+ prob(C(xi) = C(yj) ∈ W+, f(xi) ≥ M̂)

+ prob(C(xi) = C(yj) ∈ W+, f(yj) ≥ M̂)


.

We start by proving

Y∑
j=1

X∑
i=1

prob(C(xi) < C(yj)) ≤ o(KH2T ). (25)

To this aim, consider the sequence xiyY for 1 ≤ i ≤ X . When serving this sequence, a
request to y will be served in each of the states (i, 1), . . . , (i, j), . . . , (i, Y ). Since every
deterministic algorithm with C(xi) < C(yj) pays one unit for accessing y in state (i, j),
the expected cost of A for serving a request to y in a state (i, j) is at least prob(C(xi) <
C(yj)). Therefore

A(xiyY ) ≥
Y∑
j=1

prob(C(xi) < C(yj)). (26)

On the other hand, A(xiyY ) ≤ c · OPT(xiyY ) + b because A is c-competitive. Since
OPT(xiyY ) = 1 (the initial list state is [xy]) it follows that

X∑
i=1

Y∑
j=1

prob
(
C(xi) < C(yj)

)
≤

X∑
i=1

A(xiyY ) ≤ X · (c+ b) = o(KH2T ) (27)

as desired.
The bound on prob(C(xi) > C(yj)) is very similar, using request sequences of the

form yjxX for 1 ≤ j ≤ Y .
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For prob(C(xi) = C(yj) ∈ W−), we use, like for (25), request sequences of the form
σ = xiyY . Clearly, from the first request to y onwards, the critical request to x is always
earlier in σ than the critical request to y. Therefore C(xi) = C(yj) ∈ W− implies that y
is behind x in the list, so

A(xiyY ) ≥
Y∑
j=1

prob(C(xi) = C(yj) ∈ W−),

and the same argument as after (26) applies.
If C(xi) = C(yj) ∈ W2, the container C(xi) does not contain any unary projections

to items other than x or y. The list has at least a third item z and either C(xi) < C(zk)
or C(zk) < C(xi) for any k. We consider only the first case, where we can bound
prob(C(xi) < C(zk)) similarly to (25). By considering the request sequence xizY for
1 ≤ i ≤ X , we obtain in the same way as with (26) and (27) that

∑X
i=1A(xizY ) =

o(KH2T ).
As explained, ifC(xi) andC(yj) are two containers inW2, then eitherC(xi) < C(zk)

or C(xi) > C(zk) for all zk with z 6= x, y, so that

prob(C(xi) = C(yj) ∈ W2) ≤ prob(C(xi) < C(zk)) + prob(C(xi) > C(zk)).

Hence the left hand side can be bounded by the bound on the first two cases.
In a similar fashion, we bound prob(C(xi) = C(yj) ∈ W+, f(xi) ≥ M̂). First of

all, C(xi) = C(yj) ∈ W+ implies that both xi and yj are in the same container and have
critical requests, that is, F (xi) > 0 and F (yj) > 0, so the relative requests in (3) fulfill
f(xi) < i and f(yj) < j. So f(xi) ≥ M̂ implies i > M , and therefore

Y∑
j=1

X∑
i=1

prob(C(xi) = C(yj) ∈ W+, f(xi) ≥ M̂)

=
Y∑
j=1

X∑
i=M̂+1

prob(C(xi) = C(yj) ∈ W+, f(xi) ≥ M̂).

(28)

Next, we show

X∑
i=M̂+1

prob(C(xi) = C(yj) ∈ W+, f(xi) ≥ M̂)

≤ 1

M̂

X∑
i′=1

M̂∑
`=1

prob(C(xi
′+`) = C(yj) ∈ W+, f(xi

′+`) ≥ M̂).

(29)

Namely, for each i = M̂ + 1, . . . , X there are at least M̂ choices i′, ` so that i = i′ + `,
because for each ` = 1, . . . , M̂ the term i′ = i− ` fulfills 1 ≤ i′ ≤ X . This shows (29).
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Let 1 ≤ j ≤ Y and 1 ≤ i′ ≤ X and consider in the request sequence xi′yjxM̂ (which
has constant offline cost) the last M̂ requests to x. If their critical request is before the
critical request to y (which exists), they incur online cost one, so

M̂∑
`=1

prob(C(xi
′+`) = C(yj) ∈ W+, f(xi

′+`) ≥ M̂)

≤ A(xi
′
yjxM̂) ≤ c · OPT(xi

′
yjxM̂) + b = O(1).

(30)

Consider (28), (29), and (30) and note that Y/M̂ = O(K) by (22) and (12), so Y/M̂ ·X =
O(KHT +K2H). This shows

Y∑
j=1

X∑
i=1

prob(C(xi) = C(yj) ∈ W+, f(xi) ≥ M̂) ≤ Y
1

M̂
X ·O(1) = o(KH2T )

if we let K,T, M̂ (and thus H) grow while keeping K/T constant.
The bound on prob(C(xi) = C(yj) ∈ W+, f(yj) ≥ M̂) is proved analogously to the

previous bound.

7 Conclusions
An open problem is to extend the lower bound to the full cost model, even though this
model is not very natural in connection with projective algorithms. This would require
request sequences over arbitrarily many items, and it is not clear whether an approach
similar to the one given here can work.

Another ambitious goal is to further improve the lower bound in case of non-projective
algorithms. Here, the techniques of the paper do not apply at all, and to get improvements
that are substantially larger than the ones obtainable with the methods of [7] requires new
insights.

Finally, the search for good non-projective algorithms has become an issue with our
result. Irani’s SPLIT algorithm [13] is the only one known of this kind with a competitive
ratio below 2. A major obstacle for finding such algorithms is the difficulty of their anal-
ysis, because pairwise methods are not applicable, and other methods (e.g. the potential
function method) have not been studied in depth. We hope that our result can stimulate
further research in this direction.

A first result is a non-projective algorithm for lists of up to four items based on partial
orders which is 1.5-competitive [3]; for another study of algorithms for short lists see
[12]. Extending the partial order approach to longer lists is not straightforward (and has
in fact led to the lower bounds of 1.501 for lists of length five in [7] and [5, p. 38]).
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