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Abstract

This paper presents “oriented pivoting systems” as an adistramework for

complementary pivoting. It gives a unified simple proof ttia endpoints of

complementary pivoting paths have opposite sign. A specis¢ are the Nash
equilibria of a bimatrix game at the ends of Lemke—Howsom®athich have

opposite index. For Euler complexes or “oiks”, an oriemtatis defined which

extends the known concept of oriented abstract simplicehifolds. Ordered

“room partitions” for a family of oriented oiks come in paiv$ opposite sign.

For an oriented oik of even dimension, this sign propertyddalso for un-

ordered room partitions. In the case of a two-dimensiorigltbiese are perfect
matchings of an Euler graph, with the sign as defined for Rfaffirientations

of graphs. A near-linear time algorithm is given to find in aghn with an Eu-

lerian orientation a second perfect matching of opposge,sh contrast to the
complementary pivoting algorithm which may be exponential
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1 Introduction

A fundamental problem in game theory is that of finding a Naghildrium of a
bimatrix game, that is, a two-player game in strategic foiithis is achieved by the
classical pivoting algorithm by Lemke and Howson (1964).ai88y (1974) intro-
duced the concept of dndexof a Nash equilibrium, and showed that the endpoints
of every path computed by the Lemke—Howson algorithm hawosite index. As
a consequence, any nondegenerate game has an equal nuraqailibfia of posi-
tive and negative index, if one includes an “artificial eduilim” (of, by convention,
negative index) that is not a Nash equilibrium. The Lemkeasstan algorithm is one
motivating example for the complexity class PPAD defined agdeimitriou (1994).

Euler complexegntroduced by Edmonds (2009), provide a more recent atistra
framework for the Lemke—Howson algorithm. dxdimensional Euler complex (or
“d-oik”) over a finite set ohodeds a multiset ofd-element sets calle®omsso that
any set ofd — 1 nodes is contained in an even number of rooms; if these aegy/al
zero or two rooms, this is the familiar concept of an (abstsaoplicial) manifold.
For a family of oiks over the same node $&tEdmonds (2009) showed that there
is an even number abom partitionsof V. A special case is a family of two oiks
of possibly different dimension corresponding to the twaygls in a bimatrix game.
Then room partitions are equilibria, and the Lemke—Howsdgoréhm is a special
case of the “exchange algorithm” used to show that there esan number of room
partitions. In another special case, all oiks in the family the same 2-oik, which is
an Euler graph with edges as rooms aedfect matchingas room partitions.

This paper presents three main contributions in this canteixst, we define a
unifying formalism callecpivoting systemghat describes “complementary pivoting
with direction” in a canonical manner. Second, using threnfalism, we extend the
concept of orientation to oiks and show that room partitiahshe two ends of a
pivoting path have opposite sign, provided the underlyiilgi® oriented. Third,
a room partition in the special case of an oriented 2-oikesponds to a perfect
matching of a graph with an Eulerian orientation. Here wesgiypolynomial-time
algorithm to find another perfect matching that has oppassitie (the complementary
pivoting algorithm that achieves this may take exponetitiagd).

Our concept of a pivoting system (see Definition 2) has thieviehg features.
A pivoting operationswitches back and forth between twtatesby changing one
component of amm-tuple representingeach state. The systemasientedif these
two states have always opposite orientation. An examplestai® is a vertex of a
simple polytope, represented by thefacets it lies on, and oriented by the sign of
the determinant of the normal vectors of these fadedbelsdefine “complementary
pivoting” to connecttompletely labeledtates by paths of intermediamost com-
pletely labeledstates. In an oriented system, the endpoints of a path hguesite
sign and the direction on the path can be locally identifiedwy signs associated
with an almost completely labeled state (see Theorem 3). hivi this approach
captures “directed complementary pivoting” in the mostraitway.



Our framework is similar to that of Lemke and Grotzinger (&R &xcept that we
distinguish between a state and its representation to iaptare general cases such
as room partitions. Todd (1974; 1976) considered abst@optementary pivoting
with “primoids” and “duoids”, where the latter are the samaétee “oiks” by Edmonds
(2009). However, the room partitions implicit in Todd’s apach are limited to two
rooms. Eaves and Scarf (1976) generalize the algorithmsemgke and Howson
(1964), Lemke (1965), Scarf (1967), and others, as follgwpaths defined by a
piecewise linear map. They extend the index theory of Sydfi@74) to these paths;
our use of determinants (Proposition 4) to obtain the oaitgort is much simpler.

Orientation in oiks, which we study in Section 3, seems to heva concept (see
Definition 6), which extends the known definition for mandsl(e.g., Hilton and
Wylie, 1967). The “sum” of oriented oiks is then again oraght This implies that
orderedroom partitions come in pairs of opposite sign (Theorem X®Beping the
order of rooms is necessary for oiks of odd dimension, fong{a when the rooms
are (abstract) triangles, as discussed for the example ottmedron in Figure 1.
For even dimension, the order of the rooms in a room partdénbe disregarded (as
indeed for the complementary pivoting path), while keepimg property of oppo-
sitely signed room patrtitions at the end of the path (Thedténproved via pivoting
systems). Instead of labels, one can use room partitionsaviSperner oik” (Ed-
monds, Gaubert, and Gurvich, 2010); the connection is vieisec as we discuss in
Appendix A.

Section 4 is concerned with signed perfect matchings, witich graph with an
Eulerian orientation are exactly the signed unordered rpartitions in an oriented
2-oik. The sign of a matching is the parity of the permutatibtine nodes of the graph
when writing down the matched edges as they are orienteds $ignatchings have
been extensively studied in the context of Pfaffian orieomat which are orientations
of a graph so that all matchings have the same sign. Euleriantations are not
Pfaffian because they have equal numbers of matchings @freign. This follows
also from the fact that the skew symmetric incidence matrithe graph is singular
in that case, so that its determinant and hence the Pfaffiimeanatrix is zero, as
mentioned in our exposition of these results at the beggafrSection 4.

The question whether a general orientation of a graph idi&faf polynomial-
time equivalent to deciding if the graph has a Pfaffian oagah (see Vazirani and
Yannakakis, 1989, and Thomas, 2006). For bipartite grapisproblem is equiva-
lent to finding an even-length cycle in a digraph, which wagglopen and shown to
be polynomial by Robertson, Seymour, and Thomas (1999)géwoeral graphs, its
complexity is a notoriously difficult open question.

For a graph with an Eulerian orientation and a given matchimgre is another
matching of opposite sign. Its existence is guaranteeddygdmplementary pivoting
algorithm, which, however, may take exponential time. Iredtem 12 we give an
algorithm to find such an oppositely signed matching in poiyral time. It makes
essential use of the Euler property, because other apmeadem to lead to the
difficulties associated with Pfaffian orientations in gethgraphs. Merschen (2012,



Theorem 5.3) has shown how to find in polynomial time an oppbssigned match-
ing in a planar Euler graph, and his method can be adaptedphgithat, like planar
graphs, are known to have a Pfaffian orientation. Our algarifor general Euler
graphs is surprisingly simple and can be implemented in-lnegar time in the num-
ber of edges of the graph; this implementation is presemteeétail in Appendix B.

For bipartite Euler graphs, it is even simpler to find a matghof opposite sign,
using the complementary pivoting algorithm. We extend lihesar-time algorithm to
bipartite graphs that are oriented so that no node is a sousiak (Proposition 13).

In general, complementary pivoting for perfect matchinggraphs with an Eu-
lerian orientation may take exponential time. As discusaeitie end of Section 4,
Casetti, Merschen, and von Stengel (2010) and Mersche)2@¥e shown that one
can use the exponentially long “Lemke paths” of Morris (1pf4 this purpose. Ed-
monds and Sanita (2010) describe 3-manifolds where firalsgcond room partition
may take exponential time.

Section 5 concludes with a discussion of the computatioorlpdexity of pivot-
ing systems.

2 Labeled oriented pivoting systems

This section presents “pivoting systems” as a unifying faliem for path-following
with “complementary pivoting”. This abstracts from the ‘fhke paths” on labeled
polytopes as applied to bimatrix games and linear complé&miénproblems, which
we describe first. In aorientedpivoting system, the endpoints of complementary
pivoting paths have opposite sign, for which Theorem 3 mlesia canonical proof.
Polytopes are oriented via signs of determinants (Prapast.

We use the following notation. Lék| = {1,...,k} for any positive integek. The
transpose of a matriB is B'. All vectors are column vectors. The zero vectoBjs
the vector of all ones i4, their dimension depending on the context. Inequalities
like x > 0 between two vectors hold for all componentsudit vector ¢ has itskth
component equal to one and all other components equal to Zepermutationrt
of [m| hasparity (—1)Xif k is the number of itsnversions that is, pairs, j so that
i < jbutm(i) > n(j), and the permutation is also called even or odd wkéneven
or odd, respectively.

A polyhedronP is the intersection ofi halfspaces irR™,

P={xeR™M|a/x<bj, j<[n]} (1)

with vectorsa; in R™ and reald;. A labeling function I: [n] — [m] assigns a label
to each inequality in (1), anklin P is said to have labdl j) when thejth inequality
is binding, that isaij: bj, for anyj in [n].

We normally look at the “nondegenerate” case where bindiegualities define
facets of a polytope, and no more thaminequalities are ever binding. That is,
we assuméP is a polytope (that is, bounded) which is simple (every velies on
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exactlym facets) and that none of the inequalities can be omittedonttbhanging
the polytope, so for everyin [n] the jth binding inequality defines a fackf given
by
Fi={xePla/x=hj} 2)

(for notions on polytopes see Ziegler, 1995). Then f&gdtas label () for j in [n],
and we callP alabeled polytopeA vertex of P is completely labeledr CL if the m
facets it lies on have together all labels{in.

A linear complementarity problei.CP) with anm x m matrix M andm-vector
g is the problem of finding a CL poirt of the polyhedrom

P={zeR™|-z<0, —Mz<q} (3)

whose 2n inequalities have labels,1.,m,1,...,m. A CL point z is also called
“complementary” because for eaclin [m] eitherz, = 0 or (Q— Mz); = 0. Lemke
(1965) described a path-following method of “complementavoting” to solve cer-
tain LCPs. IfP in (3) is a simple polytope, then CL vertices are the uniqudpemts
of these “Lemke paths” (see also Morris, 1994) and hence ikean even number of
them; we prove this in more general form in Theorem 3 below.

Lemke paths also correspond to the paths computed by thatalgdoy Lemke
and Howson (1964) that finds one Nash equilibrium of a bimageame (see von
Stengel, 2002, for a survey). Suppose the polyt®peas the form

P={xeR™| —-x<0,Cx<1} (4)

for some(n—m) x m matrix C, and that each of the firsh inequalitiesx, > 0 has
labeli in [m]. ThenO is a completely labeled vertex. R in (1) has a completely
labeled vertex, it is easy to see that it can be brought ireddhm (4) by a suitable
affine transformation that maps that vertexotdf C is a square matrix, then the CL
verticesx of P other thanO correspond to symmetric Nash equilib(ig, X') of the
symmetric game with payoff matricé€,C"), wherex’ = x/17x; in turn, symmetric
equilibria of symmetric games encode Nash equilibria ofteaty bimatrix games
(see, e.g., Savani and von Stengel, 2006, also for a desargdtthe Lemke—Howson
method in this context).

For a polytope with a general matr& in (4), the following proposition shows
that its CL vertices correspond to Nash equilibria of theitwector game”(A,C").
The unit vectors that form the columns Afencode the labels d¢?.

Proposition 1 Suppose that i4) each inequality x> 0 has label i, and the last
n—m inequalities Cx< 1 have labels (m+ j) for j € [n—m]|, Then x is a CL vertex
of P— {0} if and only if for some y the paiix/(1"x),y) is a Nash equilibrium of the
mx (n—m) game(A,C") where A= [ (m1) - 8n)]-

Proposition 1 is not hard to prove (see also Balthasar, 200®ma 4.10, for a
dual version). The special case wharis the identity matrix describes an “imita-
tion game” whose equilibria correspond to the symmetridldaia of the symmetric
game(C,C") (McLennan and Tourky, 2010).
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In the remainder of this section we describe a general fraorlewhich can be
applied to the “Lemke paths” on labeled polytopes and hasr@tpplications that we
give later. We first give a narrative description and then aenfarmal development.

Lemke paths traverse a sequence of adjacent vertices ofytopelby pivoting
steps just like the simplex method for linear programming vath a different “com-
plementary” pivoting rule. We use the general testates which form a ses, instead
of polytope vertices. Each stasas representedby anm-tuple

r(s) = (st---,Sm) (5)

of nodes sfrom a given seV. For a polytope as in (1), the set of nodéss the set
[n] that numbers its facets, and a state is a vertelR tFpresented by then facets it
lies on.

The pivoting operatiorf takes a stats and replaces itsth component; of its
representation in (5) by another elemamf V to get a newn-tuple which we denote
by (r(s) [i —u),

((st,---,8m) |i—u)=(s1,...,S-1,U,S11,...,5m)- (6)

We denote the resulting new state with this representagidnbf (s,i). The pivoting
step is simply reversed by~ f(t,i). (We will later refine this by allowing(t) to be
a permutation of (s).) In the polytopes andt are adjacent vertices that agree in all
binding inequalities except for théh one.

Each nodeu in V has alabel I(u) given by a labeling functioh:V — [m]. The
path-following argument has as endpoints of the patimspletely labele@CL) states
s where, given (5){l(s) | i € [m} = [m]. In addition, it considers statesthat are
ACL or almost completely labeledifined by the conditiodl (s) | i € [m]} = [m] —
{w}, wherew is called themissing labelnd the uniqué so thatk = I (s) = I(sj)
fori # | is called theduplicate label

“Complementary pivoting” means the following: Start fromCd states and
allow a specific labelv to be missing, wheré&(s) = w. Pivot to the staté = f(si).
Then if the new node in (6) has label (u) = w, thent is CL and the path ends.
Otherwise,| (u) is duplicate, withl(sj) = I(u) for j # i, so that the next state is
obtained by pivoting tof (t, j), and the process is repeated. This defines a unique
path that starts with a CL state, follows a sequence of ACtestall of which have
missing labelw, and ends with another CL state. The path cannot meet itsedfuse
the pivoting function is invertible, so the process terrnsa

We also want to give directionto the pivoting path. For this purpose, a CL state
will get asign, either+1 or —1, so that the two CL states at the ends of the path have
opposite sign. This sign is the product of two such numbegaieeither+-1 or —1),
namely theorientation o(s) of the states when represented ags) = (si,...,Sm),
and the parity of the permutatiam of [m|] when writing down the nodesi, .. ., Sn
in ascending order of their labels. In the polytope settihg,orientation of a vertex
is the sign of the determinant of the normal vectayof the facetsF; that contain



that vertex, see (12) below. The important abstract prggsrthat pivoting from
(s1,...,Sm) to ((s1,...,Sm) | § — U) changes the orientation, stated for polytopes in
Proposition 4 below.

In order to motivate the following definition, we first give ary simple example
of a pivoting path with only one ACL state apart from its two Glates at its ends.
ConsiderV = {a3,ap,as3,b1,bp} with labelsl(a;) = 1(by) =1, I(a2) = I(b2) = 2,
l(ag) = 3, and three states,s!,s* with r(s?) = (ag,ap,ag), r(st) = (by,ap,az),
r(s?) = (bp, by, a3). Assume thatf (2, 1) = st and f(s!,2) = . Then starting from
the CL states® and missing label 1 pivots tg! (by replacinga; with by), which is
an ACL state with duplicate label 2 in the two positions 1 andThe next com-
plementary pivoting step pivots frost to s? (by replacinga, with by), wheres? is
CL and the path ends. The three states have the followingtatiens: o (s®) = 1,
o(st) = —1, o(s?) = 1, which alternate as one state is obtained from the next by
pivoting. Here, the two CL states ands® have the same orientation. They obtain
their sign by writing their nodes in ascending order of theirels: This is already the
case forr (9), but inr(s?) the permutation 21, 3 of the labels is odd, so the sign of
s? becomes-1, which is indeed opposite to the signs3f

In this example, we have chosen the representations ofdtesst, s!, s in such
a way that the required pivoting steps can indeed be perfbby@xchanging a node
at a fixed position; however, this may not be clear in advaanether representation
of the three states might by, ay,a3), (ap,as,by), (as,b1,by). In this case, we
still allow pivoting from <° to st by going from(ay, ap, ag) to (by, as,a3) but with a
subsequent, known permutatiento obtain the representatiqay, ag, by) of st; for
the orientation of the states, we have to take the parity imfto account.

Definition 2 A pivoting systens given by(S 'V, m;r, f) with a finite setS of statesa
finite setV of nodesa positive integem, arepresentatioriunctionr : S—V™, and a
pivoting function f: Sx [m] — S. For a permutationt of [m] andr (t) = (ty,...,tm),
let

r(t) = (taays -ty )- (7)

Then for each = f(s,i), there is a permutatiorr of [m| so thatr(t) = (r(s) | i — u)
for someu in V, and f(t, 1(i)) = s. The pivoting system isrientedif each states
has arorientationo(s), whereo : S— {—1,1}, so that

o(t) = —o(s) - parity(m) (8)
whenevet = f(s,i) with 1T as above.

The following simple example illustrates the use of the pgation 7 in Def-
inition 2, which depends orf(s,i) and is part of the pivoting system. Suppose
r(s) = (s1,%,%3) = (1,2,3) andr(t) = (t1,t2,t3) = (2,3,4), wheref(s,1) =t by re-
placings; with 4. Thenr™(t) = (t1),ty2),tyz) = ((S1,%2,%3) [ 1 = 4) = (4,2,3),
som(l) =3, m(2) = 1, n(3) = 2, that is, 7T says thas; becomed ;) except for the
“pivot element”s. Pivoting “back” givess= f(t, (1)) = f(t,3).
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It is important to note that the pivot operatidnoperates on states giving a
new statet = f(s,i), wherei refers to theith components of the representation
r(s) = (s1,...,Sn). However, there may be different staeand s’ with the same
representation(s) =r(s'), as we will see in later examples; otherwise, we could just
take S as a subset 0™ and dispense with. This is one distinction to the formal
approaches of Lemke and Grotzinger (1976) and Todd (197%&),also assume that
the nodessy, ..., sy are distinct, which we do not require either. Furthermore, w
do not give signs to the two equivalence classes of even addhednutations of
(s1,...,%), as Hilton and Wylie (1967) or Todd (1976), but instead cdesunique
representations(s), and build a single permutatiominto each pivoting step.

The pivoting systeniS V, m,r, f) is labeledif there is a labeling functioh: V —
[m|. For (sq,...,Sm) Wheres €V foriin [m], letl(sy,...,Sm) = (I(S1),...,1(Sm)),
and consider thisn-tuple as a permutation @] if 1(s) # I(sj) wheneveri # j. If
the pivoting system is oriented, then tsignof a CL states is defined as

sign(s) = a(s) - parity(I (r(s)))- (9)

For an ACL states, we definetwo opposite signs as follows: consider the positions
i, j of the duplicate label im(s) = (sy,...,Sm), thatis,|(s) = I(sj) with i # j, and
missing labelw. Replacind (s) with win I(r(s)) then defines a permutation pfy,
denoted by(I(r(s)) | i — w), which has opposite parity td(r(s)) | j — w) because
that permutation is obtained by switching the labelandl (s;) in positionsi and j.
Let
sign(s,i) = a(s) - parity(l(r(s)) | i — w), (10)

SO

sign(s, j) = a(s) - parity(I(r(s)) | j — w) = —sign(s,i). (11)
This is the basic observation, together with the sign-dviitg of a pivoting step stated
in (8), to show that complementary pivoting paths in an dadrmpivoting system have
a direction. This direction (say from negatively to postivsigned CL end-state) is
also locally recognized for any ACL state on the path, asdtat the following
theorem. Hence, for a fixed missing lalvel the endpoints of the paths define pairs
of CL states of opposite sign. The pairing may dependvohut the sign of each CL
state does not.

Theorem 3 Let (SV,m,r, f) be a pivoting system with a labeling function\¥ —

[m], and fix we [m].

(@) The CL states and ACL states with missing label w are adedeby comple-
mentary pivoting steps and form a set of paths and cycleb,thét CL states as
endpoints of the paths. The number of CL states is even.

(b) Suppose the system is oriented. Then the two CL staties aht of a path have
opposite sign. When pivoting from an ACL state s on that path=t f(s,i)
where [s) is the duplicate label in (s) = (s1,...,Sm), then the CL state found
at the end of the path by continuing to pivot in that directi@s opposite sign to
sign(s,i). There are as many CL states of sihas of sign—1.
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Proof. Assume that the pivoting system is oriented; otherwise déementary piv-
oting (already described informally above) is part of théolwing description by
disregarding all references to signs. Consider a CL staedr(s) = (S1,-..,Sm),
with w declared as the missing label for the path that starts anhd letl(s) = w.
We can define sidis,i) as in (10), which is just sigs) in (9), becausé(r(s)) =
(I(r(s)) | i — w). The following considerations apply in the same wagig an ACL
state with duplicate labé(s). The path starts (or continuessifs ACL) by pivoting
tot = f(s,i). Assume’(t) = (r(s) | i — u) as in Definition 2. Therl (r(s)) |i — w)
is a permutation ofm|, which is equal tql (r’(t)) | i — w), and(I(r(t)) | (i) — w)
is a permutation ofm| with parity(m) - parity(l(r(s)) | i — w) as its parity. Hence,
by (8)

sign(s,i) = a(s) - parity(I(r(s)) | i — w)
—o(t) - parity(m) - parity(I(r(s)) | i — w)
—o(t) - parity(I(r(t)) | r(i) — w
—sign(t, m(i)).
If 1(u) is the missing label, thent is the CL state at the other end of the path
and sigrft) = sign(t, r1(i)), which is indeed the opposite sign of the starting state
Otherwise, label(u) is duplicate, with (u) = I(sj) for somej #1, thatis,| (t;)) =
|(trj)) for r(t) = (t1,...,tm), so that the path continues with the next pivoting step
fromtto f(t,m(j)), where by (11)

sign(t, 7(j)) = —sign(t, mi(i)) = sign(s,i),

that is, this step continues from a state with the same sigheastarting CL state,
and the argument repeats. This proves the theorem. O]

For a labeled polytop® as in (1), an oriented pivoting system is obtained as
follows: The states isare the verticex of P, and by the assumptions &following
(1) each vertex lies on exactlym facetsFs, for p € [m], where we take (x) =
(s1,...,5m) as the representation &fwith si,..., sy in any fixed order. Moreover,
the normal vectorss, of these facets in (2) are linearly independent. For amy
[m], the sefpem—¢iy Fs, IS an edge oP with two verticesx andy as its endpoints,
which defines the pivoting function 3s= f(x,i). The orientation of the vertexis
given by

o(x) = sgndefas, - -ag,)) (12)
with the usual sign function sg@p) for realsz and the determinant dét for any
square matriXA. The following proposition is well known (Lemke and Grotgar,
1976, for example, argue with linear programming tableaties) Eaves and Scarf,
1976, Section 5, consider the index of mappings); we giveod gfeometric proof.

Proposition 4 A labeled polytope P with orientatiom(x) as in(12) for each vertex
x of P defines an oriented pivoting system.

Proof. Consider pivoting fronx to vertexy = f(x,i). We want to prove (8), that
is, a(y) = —o(x) - parity(r1) where 1T is the permutation so that™(y) = (r(x) |
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i — u). Letx be on them facetskFs,Fs,,...,Fs, as in (2). The representation
r(X) = (s1,...,Sm) determines the order of the columns of the mafaixas, - - - as,,|
whose determinant determines the orientatidr) in (12). Any permutation of the
columns of this matrix changes the sign of the determinacaraing to the parity of
the permutation, so for proving (8) the actual order®f...,sy) in r(x) does not
matter as long as it is fixed. Hence, we can assumerttiatthe identity permuta-
tion, and that pivoting affects the first column=f 1), so thaty is on them facets
Feo» Fsyy - - -, Py

We show that deds,as, - - - as,,] and defags as, - - - as,,] have opposite sign, that is,
o(y) = —o(x) as claimed. Then+ 1 vectorsag,, as,, as,, - - - , as,, are linearly depen-
dent, so there are reatg, ¢y, ..., Cn, Not all zero, with

m
> Cpag, =0 (13)
p=0

Note thatcy # 0, because otherwise the normal vectagsas,, ..., as, of the facets
that definex would be linearly dependent, and similady # 0. Multiply the sum
in (13) with bothy and x, Whereaspr = asTpx = bs, for p=2,...,m. This shows

Coagy+ C1aqy = Coal X+ c1ag x or equivalently

Co(ady — agX) = c1(agx—aly),

so cp andc; have the same sign becausés not on facetrs, andy is not on facet
Fs,, SOALY —ag X = by, —al x> 0 andag x—ajy =bs, —ajy > 0. By (13),

0 =def(as,Co+as,C1) as,* - s, = Codefagas, - as,] + c1defag as, - - - as,,)

which shows that dédg,as, - - - as,| and defas, as, - - - as,,| have indeed opposite sign.
U

The orientation of a vertex of a simple polytoPedepends only on the determi-
nant of the normal vectora; of the facets in (12), but not on the right hand sitdes
whenP is given as in (1). Translating the polytope by adding a camtstector only
changes these right hand sidesO0ik in the interior ofP, then one can assume that
bj =1 for all j in [n]. The convex hull of the vectois; is then a simplicial polytope
P2 called the “polar” ofP (see Ziegler, 1995). The vertices®? correspond to the
facets ofP and vice versa. A pivoting system for the simplicial polygdpas its ver-
tices as nodes and its facets as states, which one may seeas aatural definition.
However, the facets of a simplicial polytope are oriented(¥R) only if it has0 in its
interior, which is not required for the simple polytoPe For common descriptions
such as (4), we therefore prefer to look at simple polytopes.

Theorem 3 and Proposition 4 replicate, in streamlined fdsmapley’s (1974)
proof that the equilibria at the ends of a Lemke—Howson patrelopposite index.
Applied to the polytopé in (4), the completely labeled verté@does not represent a
Nash equilibrium, and it is customarily assumed to havexndg, which is achieved
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by multiplying all signs with—1 if mis even. Lemke and Grotzinger (1976) have
generalized Shapley (1974) by considering abstract mlasifashich are special piv-
oting systems, proceeding very similarly to this sectior déénsider these manifolds
as special cases of Euler complexes in the next section.

3 Oriented Euler complexes

Edmonds (2009) introduced the concept of an Euler compléwi&i to abstract
from path-following arguments such as the Lemke—Howsooralgn. Using the
new concept of an oriented oik, this section shows how to tiegpath airection,
specifically for “room partitions” in an oik family. The roomartitions normally
have to beordered When all oiks in the family are a single oik, the unordereaimno
partitions are known to be connected by paths. Then the gathslso be given a
direction if the oik is oriented and has even dimension (Teeoll). We discuss the
connection of labels with “Sperner oiks” in Appendix A.

Definition 5 LetV be a finite set ohodesandd be an integerd > 2. A d-dimen-
sionalEuler complexr d-oikonV is a multisetZ of d-element subsets &f, called
rooms so that any seiV of d — 1 nodes is contained in an even number of rooms.
If W is always contained in zero or two rooms, then the oik is dadlenanifold A
wall is a (d — 1)-element subset of a rooR A neighboringroom toR for W is any
room that containgV.

In the preceding definition we follow Edmonds, Gaubert, andvigh (2010) of
choosingd rather thard — 1 (as in Edmonds, 2009) for the dimension of the oik. A
2-oik onV is an Euler graph with node s¥t and edge multise%Z. We allow for
parallel edges (which is why? in Definition 5 is a multiset, not a set) but no loops.

Rooms are often called “abstract simplices”, and a longen fer manifold is
“abstract simplicial pseudo-manifold” (e.g., Lemke andtimnger, 1976). The fol-
lowing definition generalizes the common definition of camtly oriented rooms in
manifolds (Hilton and Wylie, 1967, p. 54) to oiks.

Definition 6 Consider ad-oik % onV and fix a linear order oN. Represent each
roomR={sy,...,5} in Z asr(R) = (s1,...,5) Wheres,...,s4 are in increasing
order. Choose aorientation o(R) in {—1,1}. Theinduced orientatioron any
wall W = R— {s} is defined ag—1)'o(R). The orientation of the rooms is called
coherent and the oikoriented if half of the rooms containing any waW induce
orientation 1 or'W and the other half orientationl onW.

As an example, consider a 2-oik, where rooms are the edge<afea graph.
Suppose an edgy, v} is oriented so thatr(u,v) = 1. Then the induced orientation
on the wall{u} is —1 and on{v} itis 1, so{u,v} becomes the edge,v) of a
digraph oriented fromu to v. A coherent orientation means that each wall (that is,
node) has as many incoming as outgoing edges, so this is andtubrientation of
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the graph (which always exists; fdr> 2 there are already manifolds that cannot be
oriented, for example a triangulated Klein bottle). In gahethe simplest oriented
oik consists of just two rooms with equal node set but oppasitentation. In an
oriented Euler graph, this is a pair of oppositely orientathfiel edges.

Proposition 7 A d-oik # on V defines a pivoting systef8 V,m,r, f) as follows:
Let S= %, m=d, and r ando be as in Definition 6. For any wall W, match
the 2k rooms that contain W into k pairdR R'), where R and Rinduce opposite
orientation on W if the oik is oriented. TheR i) =R if r(R) = (s1,...,5) and
W =R-{s}. If o is coherent, then the pivoting system is oriented.

Proof. Let RUR = {s1,...,5441} = RU{sj} = RU{s}, with s;,...,5441 in in-
creasing order, and let< j, otherwise exchangR andR'. Thenr(R)) is obtained
from r(R) by replacings with s; followed by the permutationt that insertss; at
its place in the ordered sequence by “jumping over’i — 1 elements ,q,...,Sj_1
to remove as many inversions, so pafity = (—1)17'"1. Hence,f(Ri) =R is
well defined. If o is coherent, theR and R induce on the common waRN R’
the opposite orientations—1)'o(R) and (—1)/~1g(R) (becauses ¢ R), that is,
o(R)=—-0(R)(—1)I7""1 = —g(R) - parity(1) as required in (8). O

The matching of rooms with a common wall inkopairs described in Proposi-
tion 7 is unique if the oik is a manifold. In a 2-oik, that is, Baler graph, such a
matching of incoming and outgoing edges of a node is for exawiptained from an
Eulerian tour of the graph, which also gives a coherent tateomn.

For an “oik-family” %1, ...,%n where each, is a dp-oik on the same node
setV for p € [h], Edmonds, Gaubert, and Gurvich (2010) define the “oik-susn” a
follows.

Definition 8 Let Zp be adp-oik onV for p € [h], andm= zgzldp. Then theoik-
sumZ = %1+ --- + % is defined as the set ofi-element subsetR of [h] xV so
that

R=RiWR - WRy = ({1} x ROU({2} x R)U---U({h} x Ry)  (14)

whereR,, € Z,, for p € [h]. For a fixed ordex onV, we order[h] x V lexicograph-
ically by (p,u) < (q,v) ifand only if p< g, or p=qgandu<v.

As observed by Edmonds, Gaubert, and Gurvich (2010), thewkZ is an oik.
A neighboring room oR=R;WRy W - - - W R, is obtained by replacing, for sone
the roomR with a neighboring rooniR, in %p. The next proposition states, as a new
result, that the oik-sum is oriented if eadt}, is oriented. According to Definition 6,
this requires an order on the node Hetx V to yield an order on the nodes in room
Rin (14), which is provided in Definition 8: The nodes of eacbmoR,, are listed
in increasing order (oiV), and thesel,-tuples are then listed in the order of the
roomsRy, ..., Ry; this becomes the representatidir) used to define the orientation
OOonZ.
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Proposition 9 The oik-sunmZ in Definition 8 is an m-oik ovefh] x V. If eachZ),
is oriented withay, so is#, with

h
p=1

Proof. Clearly, each roonR of &% as in (14) hasn elements. Any walW of R is
given byW = R—{(p,Vv)} for somepin [h] andvin R,. Then any neighboring room
R in Z for W is given by

R=RiW - WRy 1WR &Ry 1-- &Ry

for the neighboring roomR,, in %, for Ry — {v}, of which, includingRp, there is
an even number. This shows thtis anm-oik.

For the orientation of7 if each %), is oriented withop, represenR asr(R) by
listing the elements oR in lexicographic order as in Definition 8. Then the induced
orientation on any walWw = R— {(p,v)} as in Definition 6 is obtained from the
induced orientation ofR, — {V}, as follows. Suppose},..., gp are the nodes in

Ry in increasing order, where= s". Then the induced orientation d®, — {v} in
Zpis (—1)'gp(Rp). In r(R), nodev appears in positiorzf;lldj +1, so the induced
orientation ofR onW is, with o(R) is defined as in (15),

(—1)Z 29 G (R) = (—1) 0p(Rp) (~1) %% [ o ao)
gelh—p

All the rooms inZ that containW are obtained by replacinBp with any room
R, that containsRp — {v}. Half of these have induce the same orientatiorRgs
on Rp — {v}, half of these the other orientation. Because this affectg the term
(—1)'op(Rp) in (16), half of the roomsR that contairWW induce one orientation on
W and half the other orientation. Spis a coherent orientation o . 0O

Consider now an oik-family#s, ..., %n whereZp, is adp-oik onV for p in [h]
so thatlV| =m= zgzldp. SupposeR, € #,, for pin [h] and ngl Rp =V (so the
roomsR,, are, as subsets b, also pairwise disjoint). The(Ry,...,Ry) is called an
ordered room patrtition In the following theorem, the even number of ordered room
partitions is due to Edmonds, Gaubert, and Gurvich (20b@)pbservation on signs
IS new.

Theorem 10 Let %, be a dy-oik on V for p in[h] and |V|=m= zgzldp. Then the
number of ordered room partitions is even. If ea€h is oriented as in Proposition 9,
then there is an equal number of ordered room partitions d@itpee as of negative
sign, where the sign of a room partitidRy, . . ., R,) is defined by

sign(R) = sign(Ry,...,R,) = o(R1W...WRy) - parity(m) (17)

with the permutationt of V given according to the order of the nodes of V (RY,
that is, with r(u) < m(v) if u € Ry and ve Ry and p< g, or uve Ry and u<v
inV.
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Proof. This is a corollary of Theorem 3 and Propositions 7 and 9. Assthat
V = {vi,...,Vm} with the order orV given byv; < v; fori < j (orjustletV = [m)).
Define the labelind : [h] xV — [m] by I(p,vi) =i for i € [m]. Then the CL rooms
RiW...wR, of Z1+--- + %, are exactly the ordered room patrtitions, with the sign
in (17) defined as in (9). So there is an equal number of thertlodresign.

If the oiks are not all oriented, then the paths that connegtao CL states are
still defined, so the number of ordered room partitions isxeegcept that they have
no well-defined sign. (]

Connecting any two room partitions by paths of ACL statesathe preceding
proof corresponds to the “exchange graph” argument of Edis¢2009), where the
ACL states correspond t&kew room partitiongRy, ..., Ry) defined by the property
ngl Rp =V —{w} for somew in V; herew represents the missing label.

Suppose now that all oiks?,, in the oik family are the samd-oik %’ overV
for pin [h], with V| =m=h-d. Then any ordered room partitigiy, ..., R,) de-
fines an (unorderedpom partition {Ry,...,Ry}. Any such partition gives rise to
h! ordered room partitions, so i > 2 their number is trivially even. However, the
path-following argument can be applied to the unorderettjmars as well (which is
the original exchange algorithm of Edmonds, 2009), whiobmshthat the ordered
room partitions at the two ends of the pivoting path definéed#int unordered parti-
tions. The next theorem shows that unordered partitighs. .., R,} are connected
by pivoting paths, which are essentially the same paths ag@orem 10, and that
the sign property continues to hold wheris even and#’ is oriented.

Theorem 11 Let #' be a d-oik on V andV| =m=h-d. Then the number of
room partitions{Ry,...,Ry} is even. If%’ is oriented witha’and d is even, then
sign(Ry,...,Ry) as defined in(15) with o, = 0’ and (17) is independent of the
order of the rooms R..., R, and there are as many room patrtitions of sigm@as of
sign—1.

Proof. We consider unordered multisef®y,...,Ry} of h rooms of %’ as states

of a pivoting system. We first define a representati(8) = (sy,...,Sn). LetRy =
{sh,...,s} for pin [h] wheres!, ..., s are in increasing order according to the order
onV. Fix some order of the rooms i#’, for example the lexicographic order with
some tie-breaking for rooms that have the same node set.nfsthat the rooms
Ry,...,Ry are in ascending order, which defines a unique represemtaitoas

r(s)=r({Ry,...,R}) = (S},....5, S,...,, ...,S0,...,90). (18)

(Note thatr may not be injective, which is allowed.) Assume that neighigprooms
in Z' are matched into paifRp, R’p containing the walR, — {s } as in Proposition 7.
The pivoting step frons= {Ry,...,Ry} tot = f(s,i) replacesR, by R’p.

In (18), the nodes of each individual rooR}, still appear consecutively as in
the permutatiorvt in Theorem 10, except for the order of the rooms themselves.
Then withvy, ..., vy, as the nodes of in increasing order and the “identity” labeling
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[:V — [m], I(v) =i, them-tupleI(r(s)) defines a permutatior of [m| if sis a
room partition, as in (17). Then the parity ofdoes not depend on the order of the
rooms insif d is even, so the sign in (17) is well defined and the same as.iiA(P)
ACL statesis a skew room partition, which has two opposite signs asiy. (Then
the claim follows from Theorem 3. ]

Figure 1: A 3-oik with triangles as rooms. The circular arsawdicate the positive
orientation of nodes in a room.

The following example shows that we cannot expect to defingrete unordered
room partitions wher#’ has odd dimensiod (see also Merschen, 2012, Figure 3.6).
Let d = 3 and consider the oik defined by the eight vertices of then3dsional
cube, which correspond to the facets of the octahedron,rshsuwhe triangles in Fig-
ure 1 including the outer triangle marked™ A coherent orientation of the eight
rooms is obtained as follows (shown in Figure 1 with a circal@ow that shows the
positively oriented order of the nodegj{A) = 0(123) =1, o(B) = 0(145 = -1,
0(C)=0(124 =-1,0(D)=0(135 =1, 0(a) =0(456) =1, a(b) = 0(236) =
—1,0(c)=0(356) = —1, 0(d) = 0(246) = 1. The four room partitions arfA, a},
{B,b}, {C,c}, {D,d}. Any two of these are connected by pivoting paths, so they can
not always have opposite signs at the end of these paths. udovier ordered room
partitions the signs work. For exampl@, a) is connected tdb,B) via the com-
plementary pivoting step§l23 456) — (236,456) — (236,145), and to(C,c) via
the stepg123 456) — (124, 456) — (124,356). Moreover,(C,c) connects tqB, b)
via (124,356) — (145,356) — (145236). We have sigfA,a) =1, sign(b,B) = -1
(because 236145 has parityl), and sigiC,c) = —1 and sigiiB,b) = 1. The two
ordered room partition&, B) and(B, b) have different signs because they define two
permutations 236 145 and 145236 of opposite parity.

If the oik cannot be oriented, then Lemke and Grotzinger §)9¥ve shown
(for nonorientable manifolds) that opposite signs for Chms cannot be defined in
general; see also Grigni (2001).

We discuss the close connection of labels and “Sperner cissidered by Ed-
monds, Gaubert, and Gurvich (2010) in Appendix A. There vgriaithat the defi-
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nition of “sign” requires a reference to the permutationkad tabels which does not
seem simpler when looking at room partitions with a Speriilemstead.

4 Signed perfect matchings

This section is concerned with algorithmic questions ofmmogartitions in 2-0iks,
which are perfect matchings in Euler graphs. The sign of éepematching, for
any orientation of the edges of a graph, is closely relatebdeaoncept of &faffian
orientationof a graph, where all perfect matchings have the same sige.com-
putational complexity finding such an orientation is an opssblem (see Thomas,
2006, for a survey). An Eulerian orientation is not Pfaffigriliheorem 11, a fact that
is also easy to verify directly. The main result of this sect{Theorem 12) states that
in a graph with an Eulerian orientation, a second perfecthiag) of opposite sign
can be found in polynomial (in fact, near-linear) time. Thads in contrast to the
complementary pivoting algorithm, which can take expoiatitme; Casetti, Mer-
schen and von Stengel (2010) have shown how to apply redulsis (1994) for
this purpose. However, the pivoting algorithm takes lingae in abipartite Euler
graph, and a variant can be used to find an oppositely signezhing in a bipartite
graph that has no source or sink (Proposition 13).

We follow the exposition of Pfaffians in Lovasz and Plumni986, Chapter 8).
The determinant of amx m matrix B with entriesby; is defined as

m
detB = Z parity() I_!biﬂ(i) (19)
T i=

where the sum is taken over all permutation®f [m|. Let B be skew symmetric,
thatis,B= —B". Then deB = def —B") = det —B) = (—1)™detB, so detB = 0 if
mis odd. Assumen s even. Then

detB = (pf B)? (20)

for a function pfB called thePfaffianof B, defined as follows. Let# (m) be the set
of all partitionss of [m] into pairs,s= {{s1,%},...,{Sm-1,5m} }, and let paritys) be
the parity of(s1,S,...,Sm) seen as a permutation gh| under the assumption that
each paifsy_1, Sk} is written in increasing order, that isy 1 < sy for kin [m/2];
the order of the pairs themselves does not matter. Then

m/2

pfB= 5 parity(s) [] by 1,5 - (21)
se.(m) k=1

In fact, becausd is skew symmetric, the order of a pdis,_1,5x) can also be
changed because this also changes the parity oAn example of (21) isn= 4
where pr = b12b34 — b13b24+ b14b23.
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Parameswaran (1954) and Lax (2007, Appendix 2) show thagw-sigmmetric
matrix B fulfills (20) for some function pB. For a direct combinatorial proof, one
can see that the products in (19) are zero for those permnsatiwherert(k) = k for
somek, and cancel out for the permutations with odd cycles; thdy permutations
with even-length cycles remain, which can be obtained weliguia pairs of partitions
taken from.# (m) (see also Jacobi, 1827, pp. 354ff, and Cayley, 1849).

Consider a simple grap® with node setim|. An orientationof G creates a
digraph by giving each edgf, v} an orientation agu, v) or (v,u). Define themx m

matrix B via
0 if {u,v}is notan edge,
buy = 1 if {u,v} is oriented asu, V), (22)
—1 if {u,v} is oriented agv,u).

ThenB is skew symmetric. Angin .# (m) is a perfect matching d& if and only if
ﬂ,r(n:/f bsy 1,5x 7 0, S0 only the perfect matchings Gfcontribute to the sum in (21).

If G is an Euler graph, that is, a 2-oik with edges as rooms, andrtbetation is
Eulerian so that every node has equal in- and outdegreethisedefines the orien-
tation of edge{u, v}, assumingu < v, aso({u,v}) = byy, according to Definition 6.
Then by (15) and (17), a perfect matchisigas the sign

m/2
sign(s) = parity(s,...,Sm) - [ ] Bsx 1.0 »
k=1

so the Pfaffian pB in (21) is the sum over all matchings & weighted with their
signs. For the Eulerian orientation, that sum is zero by Témol1, which follows
also from (20) becaud®l = 0, so detB = 0.

In our Definition 5 of ad-oik, % can be a multiset, which fod = 2 defines
an Euler graplG which may have parallel edges and then is not simple. The soom
themselves have to be sets, so loops are not allowed. Irees (22) can be extended
to definebyy, as the number of edges oriented(asv) minus the number of edges
oriented agv,u). This counts the number of matchings with their signs caolygc
oppositely oriented parallel edgés,v) and(v,u) cancel out both in contributing to
byv and when counting matchings with their signs.

For any graphG and any orientation oG, the sign of a perfect matchingis
most easily defined by writing down the nodes of each efdge 1,5k} in the way
the edge is oriented dsy_1,Sx); this does not affect (21) as remarked there. When
writing down the nodes;, ..., sy this way, sigiis) = parity(sy,...,Sn) and pfB =
> sc.#(G) SIgN(s) where.# (G) is the set of perfect matchings Gf.

A Pfaffian orientationis an orientation ofG so that all perfect matchings have
positive sign. Its great computational advantage is tradtatvs to compute the num-
ber of perfect matchings @& using (20) by evaluating the determinant Betvhich
can be done in polynomial time. In general, counting the nemobperfect matchings
is #P-hard already for bipartite graphs; the question ifaggrhas a Pfaffian orienta-
tion is polynomial-time equivalent to deciding whether aegi orientation is Pfaffian
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(see Vazirani and Yannakakis, 1989, and Thomas, 2006). ipartlte graphs, this
problem is equivalent to finding an even-length cycle in aap@, which was long
open and shown to be polynomial by Robertson, Seymour, anth@hk (1999). For
general graphs, its complexity is still open.

We now consider the following algorithmic problem: Givenragh with an Eule-
rian orientation and a perfect matching, find another matgchf opposite sign, which
exists. Without the sign property, a second matching cammbed by removing one
of the given matched edges from the graph and applying tleessbim” algorithm of
Edmonds (1965) to find a maximum matching, which finds angtkéect matching
for at least one removed edge; however, its sign cannot lwBgbee, and adapting
this method to account for the sign seems to lead to the difssurelated to Pfaffian
orientations in general graphs. Merschen (2012, Theor8jhas shown how to find
in polynomial time an oppositely signed matching in a plaBater graph, and his
method can be adapted to graphs that, like planar graphsnanen to have a Pfaffian
orientation.

The following theorem presents a surprisingly simple athar for any Euler
graph. It runs in near-linear time in the number of edges efgraph and is faster
and simpler than using blossoms. The inverse Ackermanriuma is an extremely
slowly growing function witha (n) < 4 for n < 22948 (Cormen et al., 2001, Section
21.4).

Theorem 12 Let G= (V,E) be a graph without loops with an Eulerian orientation,
and let M be a perfect matching of G. Then a perfect matchihgi\dpposite sign
can be found in time QE|- a(|V|)), wherea is the inverse Ackermann function.

Proof. The matchingM is a subset oE. A sign-switching cycle @s an even-length
cycle (as a set of edges) so that exactly every other edgebelongs toM and
so thatC has an even number of forward-oriented edges (in eithectibre of the
cycle). Then the symmetric differend¢’ = MAC has opposite sign th. To see
this, suppose first that all edgesdmpoint forward, and tha€ "M consists of the first
k/2 edges(s1,S), - .-, (Sx—1,%) of M (which does not affect the sign ™). Then
these edges are replacedhti by (s¢,s1), (S2,%3), .-, (Sk_2,%_1), Which defines
an odd permutation of thedenodes, sV’ has opposite sign th. Changing the
orientation of any two edges i@ leaves the sign of botM and M’ unchanged (if
both edges belong thl or to M’) or changes the signs of boM and M’, so they
stay opposite. This proves the claim.

So it suffices to find a sign-switching cyde for M, which is achieved by the
following algorithm: Successively apply one of the follawjireductions (a) or (b) to
G until (c) applies:

(@) IfvinV hasindegree and outdegree 1 with ed@es) and(v,w), then ifu=w
go to (c), otherwise removefrom V and (u,v) and (v,w) from E and contract
u andw into a single node.

(b) If D is a directed cycle of unmatched edgesisa E — M), remove all edges in
D from E.
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(c) The two edgesu,v) and(v,u), one of which is matched, form a sign-switching
cycleC of the reduced graph. Repeatedly re-insert the edge 4ifs), (V,w)
removed in the contraction (a) int© until C is a cycle of the original graph.
ReturnC.

Steps (a) and (b) preserve the invariant tAdias an Eulerian orientation and a perfect

matching. Namely, in (a) one node and one matched and onetcinedaedge is

removed fromG, and the two contracted nodasandw together have the same in-
and outdegree and an incident matched edge. In (b), all refdée cycleD have
their in- and outdegree reduced by 1. If reduction (a) caba@pplied because every
node has at least two outgoing edges, then one of them is ahetgtand following
these edges will find a cycle as in (b). So the reduction steps eventually terminate.

In each iteration in (c), the two re-inserted eddesVv) and (V,w) point in the

same direction and one of them is matched, so this presdregaoperty thaC is

sign-switching.

The above algorithm is clearly polynomial. The Appendixadses a detailed
implementation with near-linear running time in the numbkedges, and gives an
example. Its essential features are the following. Therdlyuo starts with the end-
point of a matched edge, and follows, in forward directiomnatched edges when-
ever possible. It thereby generates a path of nodes comhkegtenmatched edges.
If a node is found that is already on the path, then some fimalgbahat path forms
a cycleD of unmatched edges that are all discarded as in (b). Theretrelsstarts
over from the beginning of the cycle that has just been delelfe in the course of
this search, a nodeis found where the only outgoing edge w) is matched, then
the contraction in (a) applies witlu, v) as unmatched edge. The matched egge)
is remembered as the original matched edge incident taith (u,v) as its “partner”,
for possible later re-use in (c). The two edges are remowsd the lists of incident
edges tou andw. Edges are stored in doubly-linked lists that can be moved an
deleted from in constant time. The endpoinbf the matched edggu, w) contracted
in step (a) may be a node that has been visited on the pathasthéreduction (b)
immediately follows; ifw is the first node of the path, the search has to re-start.

Contracted nodes of the reduced graph are represented ivalegee classes of
a standardinion-finddata structure, which can be implemented with amortizetl cos
a(|V|) per access (Tarjan, 1975). Contractingndw in (a) is done by applying the
“union” operation to the equivalence classesd@ndw, and any node is represented
via the “find” operation applied to an original node. The m®die edge lists are
always the original nodes, so that each edge is visited omgrstant number of
times, resulting in the running tim@(|E|- a(|V|)).

As described in Appendix B in Figure 10, the cy€en (c) is obtained by recur-
sively re-inserting matched edges,w') and their “partners{u’,v") until the nodes
v andV’ do not just belong to the same equivalence class (as at tieeoficontrac-
tion) but are actually the same original nodé= V', of G; a similar recursion is
applied to the other nodes andw'. O
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In the remainder of this section, we consider the compleargrmiivoting algo-
rithm for perfect matchings in Euler graphs. Given a gré&ptvith an Eulerian ori-
entation and a matchingl, the complementary pivoting algorithm finds a matching
with opposite sign taM. The intermediate steps of the algorithm s&ew match-
ings, which are sets of edges that cover all nodes except for ossimginodev, and
that are pairwise disjoint except for one pair of edges thigrsect in one duplicate
nodeu. This is a special case of the pivoting system used to proeeEm 11, with
matchings as CL states and skew matchings as ACL states wa#ing labelw and
duplicate label. In “oik terminology”, the rooms are here edges, the wallde®)
and (skew) room partitions are (skew) matchings.

The algorithm uses a pairing of tlkencoming edges to thk outgoing edges of
a node as in Proposition 7 to pivot from one edge to the nexth &upairing defines
a set of Eulerian cycles that cover all edges (which may baglesEuler tour of the
graph), and vice versa. In a pivoting step, a matched ddge} is replaced by its
paired edge{v,u’}, where these edges point in the same direction eithéuas,
(v,) or as(v,u), (U,v). When starting from a perfect matching,is the missing
nodew. In a skew matchingy is the duplicate node. The pivoting step reaches either
a new skew matching wherné is the duplicate node, or a perfect matching (which
terminates the path) whan = w.

If G is bipartite, then this algorithm terminates in tird¢|V|), as noted by Mer-
schen (2012, Lemma 4.3). In fact, a simple extension of thetipig method applies
to general bipartite graphs which are oriented so that taplghas no sources or
sinks (which shows that such an orientation is not Pfaffian).

Proposition 13 Consider a bipartite graph G= (V,E) with an orientation so that
each node has at least one incoming and outgoing edge, andecpeatching M.
Then a matching of opposite sign can be found in tinip/Q.

Proof. The algorithm computes a path of nodgsus, ... until that path hits itself
and forms a cycleC, which will be sign-switching with respect thl. The edges

on the path are successive matched-unmatched pairs of ddgesixi1} in M

and {ugy.1,Ux.2} in E—M for k > 0 that point in the same direction either as
(Ui, Unkt1), (Unky 1, Upkg2) OF @S(Unky1,Uzk) s (Uoks2, Uaks1). Starting from any node

Up andk = 0, these are found by following from nodsy its incident matched edge
to Uy 1, where this node has an outgoing unmatched edgete in the same di-
rection becausay 1 has at least one incoming and one outgoing edge. This repeats
with k incremented by one untily, o is a previously encountered node, which is
of the formuy; for some 0< i < k because the graph is bipartite. Then the nodes
Uz, ..., Ux. 2 define a cycle€C which is sign-switching because it has an even number
of forward-pointing edges. HencB|AC is a matching of opposite sign td. Each
node is visited at most once, so the running time&{§/|). 0

If G is not bipartite, then the complementary pivoting algeritmay have ex-
ponential running time, for any starting node that servesa asissing label. The
construction is adapted from the exponentially long Lemé&thg of Morris (1994)

20



for labeleddual cyclic polytopesThe completely labeled vertices of such polytopes
correspond to perfect matchings in Euler graphs, as noté&hisetti, Merschen, and
von Stengel (2010), in the following way.

A dual cyclic polytope is defined in any dimensiorwith any numben of facets,
n>m, as the “polar polytope” of the convex hull ofpoints u(t;) on the moment
curve u(t) = (t,t2,...,t"™T for j in [n] (see Ziegler, 1995). Its vertices have been
described by Gale (1963): Thne facets that a vertex lies can be described by a bit
stringg = 0102+ --0n in {0,1}" so thatg; = 1 if and only if x is on thejth facet, for
j in [n]. Then these bit strings fulfill thevenness conditiothat wheneveg has a
substring of the form 0D, thenk is even. We consider even, so that these strings
are preserved under cyclical shifts. The &in n) of these “Gale strings” encodes
the vertices of the polytope, and pivoting, and an orieamtcan be defined in a
simple combinatorial way on the strings alone.

With a labelingl : [n] — [m], the CL Gale strings therefore come in pairs of
opposite sign. They correspond, including signs, tqireect matchingsf the graph
G with node sefm| and (oriented) edgg$(j),I(j+1)) for 1< j <nand(l(n),l(1))
(Casetti, Merschen, and von Stengel, 2010; Merschen, Z20ihrem 3.4). That is,
the cyclic sequencK1l),...,l1(n),l(1) defines an Eulerian orientation &f, andG is
an Euler graph. The graph has parallel edges and possilgyg,l@adere the latter can
be omitted. The 1's in a Gale string come in pairs, which gpoad to edges @&. A
pivoting step from one ACL Gale string to another means tisaestring of the form
1240 is replaced by 0%, which translates t& pivoting steps of skew matchings @
Morris (1994) gives a specific labeling far= 2m where all complementary pivoting
paths, for any dropped label, are exponentially longninThe corresponding Euler
graph and the pivoting steps are described in Merschen (B¥ion 4.4).

5 Conclusions

We conclude with open questions on the computational coxitplef pivoting sys-
tems.

Consider a labeled oriented pivoting system whose comgsitignparticular the
pivoting operation) are specified as polynomial-time cotaple functions. Assume
one CL state is given. Then problem of finding a second CL diatengs to the
complexity class PPAD (Papadimitriou, 1994). This probis@also PPAD-complete,
because finding a Nash equilibrium of a bimatrix game is PRABwylete (Chen and
Deng, 2006), which is a special case of an oriented pivotystesn by Proposition 1.
However, there should be a much simpler proof of this fackhbse pivoting sys-
tems are already rather general, so that it should be pedsil#ncode an instance
of the PPAD-complete problem “End of the Line” (see Dask&laoldberg, and
Papadimitriou, 2009) directly into a pivoting system.

Finding a Nash equilibrium of a bimatrix game is PPAD-congl@nd Lemke—
Howson paths may be exponentially long. Savani and von $tg2§06) showed
this with games defined by dual cyclic polytopes for the payodtrices of both
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players, and a simpler way to do this is to use the Lemke pathddoris (1994).
One motivation for the study of Casetti, Merschen, and vangel (2010) was the
guestion if finding a second completely labeled Gale strsngRAD-complete. This
is unlikely because this problem can be solved in polynotmag with a matching
algorithm. For the complexity class PPADS, where one looksafsecond CL state
of opposite sign (Daskalakis, Goldberg, and Papadimitr2209), this problem is
also solvable in polynomial time with our algorithm of Theor 12.

However, for room partitions of 3-oiks, already manifolfilsgding a second room
partition is likely to be more complicated. Is this problePAD-complete? We leave
these questions for further research.
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Appendix A: Labeling functions and Sperner Oiks

One of the original motivations to consider room partitibmsoiks %1, . .., %y with
possibly different dimensions is to abstract from the oriLemke—Howson algo-
rithm for possibly non-square bimatrix games, which akes between two poly-
topes, represented iy, and %, (Edmonds, 2009). Similarly, our proof of Theo-
rem 3 shows complementary pivoting as an alternating uskeopivoting function
and the labeling function. Edmonds, Gaubert, and Gurvi€i@2 cast the use of
labels (or “colors”) in terms of room partitions with a spaamnanifold %, called a
Sperneroik. If | : V — [m] is a labeling function, then the rooms of the Sperner oik
% are thecomplementsf completely labeled sets, that is,

Fo={QCV[|Q=|-m I(V-Q)=[m. (23)

This is a manifold becaus®' is a wall of a roomQ of % if and only if V —W has
m+ 1 elements of which exactly two have the same label, so adgthgr element
to W defines the two rooms that contaM. In addition to%y, suppose tha# is an
m-oik onV and defines a pivoting system as in Proposition 7. Then amexnfdeom
partition (R Q) with Re #Z andQ € % is just a completely labeled rooR of Z.
Complementary pivoting with missing lab@lamounts to the “exchange algorithm”
with skew room partitions, which are our ACL states.

Is the use of room partitions where one room comes from a 8p&ik more
natural than the concept of completely labeled rooms? QisWyothe definitions are
nearly identical, but apart from that we want to make two cantsin favor of using
labels.

First, Edmonds, Gaubert, and Gurvich (2010) note that arfepeik % is “poly-
topal”, that is, its rooms correspond to the vertices of goénpolytope. They leave
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the construction of such a polytope as an exercise, whichiveelgere to show the
connection to the unit-vector games in Proposition 1.

Proposition 14 Let |V| = {v1,...,Va} and |:V — [m] so that (v;) =i for i € [m].
Consider the nx (n—m) matrix A= [&y,,,) -8 y,)] With A" =a;---ay and

Po={yeR"™|Ay<1 y>0} (24)

Then B is a simple polytope, and y is a vertex @f iPand only if it lies on n—m
facets and the m non-tight inequalities(i24) fulfill

{iem|a'y<1}u{l(vm:j) |y; >0} = [ml. (25)

Proof. For each in [m] let

L) ={j € [n—m] [ 1(Vmyj) =i}. (26)

Then theith row of Ay < 1 saysay = YieLmYj < 1. Lety e R. For eachi, if
a'y= > ieLYj =1, theny; > O for at least ong in L(i), soi € {l(Vm+j) | yj > O},
which shows (25).

The non-empty setk(i) form a partition of[n—m|, and if L(i) is empty then
a = 0 and the inequalityy'y < 1 is redundant. Therefore the inequalities (24) can
be re-written as

> Vi<l =0 (jeL(): (27)
jeLi)

For each in [m], (27) defines a simplex whose vertices are the unit vecta®an
RILOI (if L(i) is empty, this is the one-point simpléX)}). Hence R, is the product
of these simplices and therefore a simple polytope, so argx of Py is on exactly
n— m facets. 0O

Proposition 14 can be applied to any Sperner#ikof dimensiomn—m obtained
from | :V — [m] which has at least one room, taken to g 1,...,vn} by num-
beringV suitably. Then inequalities in (24) have labels 1., m | (Vyy1), ..., (Vm);
they define facets oPy except for redundant inequalities y < 1 whereg = 0.
Then then — mtight inequalities for each vertexof Py define a room of7y because
the labels for tham non-tight inequalities foy are the sefm| according to (25), in
agreement with (23).

SupposeZ is anm-oik given by the vertices of the polytogin (4), with labels
1,....mI(m+1),....1(n) for its n inequalities (the same labels as figy). Then
an ordered room partitioR,Q with R # and Q € % is a completely labeled
roomR, or vertexx of P, with Q corresponding to a vertexof Py. Except for the
vertex pair(0,0), this is a Nash equilibriunix,y) of the unit-vector gaméA,C") in
Proposition 1. In that game, there is no reference to laldigh are encoded in the
payoff matrix A that defined, just as the labels are encoded in the roomszpf
Like unit vector games, Sperner oiks may offer a useful pEatype, but we do not
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Figure 2: Two oriented Euler graphs which show that the pafithe permutation of
all nodes matters.

think it is deep; moreover, they only have a simple strucagreroducts of simplices
described in (27).

Secondly, Sperner oiks are oriented, and the labels usée iproof of Theorem
10 and 11 are simply the nodes\of Perhaps using a Sperner oik, rather than labels,
may avoid referring to the parity df(r(s)) for a room partitions as in (9) when
defining the sign o&8? The following example shows that already wisis a room
partition for a 2-oik, one has to refer to the paritylof(s)) in some way. Figure 2
shows two cases of 2-0ik%’ overV = {1,2,3,4} with an orientation. The left
oik has the two room partition§12,34} and {14, 23}, whereoy(12) = 0»(34) =1
and 01(14) = —1, 0»(23) = 1. According to (15), this impliegr(12 34) = 1 and
0(14,23) = —1, so the two room partitions have opposite orientationutices to
consider unordered room partitions becadss even, as noted in Theorem 11).

Similarly, the right oik in Figure 2 has the two room partited{12 34} and
{13,24}, where01(12) = 02(34) = 1 and01(13) = 02(24) = 1, so all orientations
are positive anar(12,34) = 1 ando(13,24) = 1, so these two room partitions have
equal orientation. The difference is that the room partiso= {14,23} defines an
even permutatioh(r(s)) = (1,4,2,3) of V, whereag 13 24} defines the odd permu-
tation (1,3,2,4). So the sign of a room partition has to refer to the order ircivithe
labels appear.

We think that labeled pivoting systems are a general andiba@ly of represent-
ing path-following and parity arguments, certainly for q@ementary pivoting and
room partitions in oiks.

Appendix B: Implementation Details of Finding a Sign-
Switching Cycle in an Euler Graph

Theorem 12 states that an oppositely signed matching in@hgsgth an Eulerian
orientation can be found in near-linear time in the numberdgfes. In this appendix,
we describe the details of the implementation of the algoributlined in the proof
of Theorem 12.

Whene is an edge fromu to v, then we callu the tail andv the headof e, and
bothu andv are calledendpointof e.

24



The algorithm applies reductions (a) and (b) to the graphitih&s a trivial sign-
switching cycle which is expanded as in (c) to form a signtsiwng cycle of the
original graph. The algorithm starts with a node that is teachof a matched edge,
and follows, in forward direction, unmatched edges whenewssible. It thereby
generates a path of nodes connected by unmatched edgesodéasnfound that is
already on the path, then some final part of that path formske & of unmatched
edges that are all discarded as in (b). Then the search st@itérom the beginning
of the cycle that has just been deleted.

If, in the course of this search, a nodds found with the only outgoing edge
being matched, the contraction in (a) is performed as faloBuppose the three
nodes in question ane,v,w with unmatched edge from u to v and matched edge
m from v to w, and no other edge incident to We take the edges and m and
nodev out of the graph and contract the nodesind w into a single node (with
the methodsHRINK(e, m) discussed below), which creates a reduced version of the
graph. Throughout the computation, the current reducepghgirepresented by a
partition of the nodes with a standatahion-finddata structure (Tarjan, 1975). We
denote by[x] the partition class that contains noxlevhich has as itseepresentativa
special node callediND(x), whereFIND is one of the standard union-find methods;
we usually denote a representative node with a capitat.|tteat is, any two nodes
andy are equivalent (in the same equivalence class) if and omiyif (x) = FIND(y).

In the reduced graplevery edges only incident to the representativenD(x) of a
partition class, and the information for nodes that are e@ptesentatives is irrelevant.
Initially, all partition classes are singletoqg}, which is achieved by calling the
MAKESET(X) method. The methodNITE(X,y) for nodesx,y mergesx] and[y] into

a single set.

Figure 3 shows an implementation of these methods as in Goeanal. (2001,
Section 21.3). (In this pseudo-code, an assignment such ds— X,y assignsx
to X andy to Y, so for examplec,y < y,x would exchange the current values»of
andy.) Each partition class is a tree wittparent pointing to the tree predecessor
of nodex, which is equal ta if x is the root. For this rootx.rank stores an upper
bound on the height of the tree. ThlITE method returns the pak,Y of former
representatives of the two partition classes, wheres the new representative of
the merged patrtition class antlis the representative no longer in use, which we
need in order to move edge lists in the graph. With the “rankis&c” used in the
UNITE operation and the “path compression” of the recursived method, the trees
representing the partitions are extremely flat, with an aixexdt cost for therIND
method given by the inverse Ackermann function that is amtdor all conceivable
purposes (see Tarjan, 1975, and Cormen et al., 2001, S&ti8h

Every nodex of the graph has its incident edges stored iadjacency listwhich
for convenience is given by separate listsutlistandx.inlist for unmatched outgoing
and incoming edges, respectively, and the unique matchgehetatchedwhich is
either incoming or outgoing. Every edgés stored in a single object that contains the
following links to edges:e.nextout e.prevout e.nextin e.previn, which link to the
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MAKESET(X):

X.parent«— X
x.rank< 0

UNITE(X,Y):

X,Y < FIND(X),FIND(Y)

if X.rank> Y.rank then
Y.parent— X
return X,Y

else
X.parent« Y
if X.rank=Y.rank then

Y.rank < Y.rank+ 1

return Y, X

FIND(X):
if X x.parent then

X.parent«— FIND(X.parent
return x.parent

Figure 3: The union-find methodsAKESET, UNITE, andFIND with rank heuristic
and path compression. HereNITE(X,Y) returnsX,Y so thatX is the new represen-
tative of [x] U[y], andY is the old representative of eithpd or [y] which is no longer
used.

respective next and previous element in the doubly-lindetist andinlist wheree
appears. In additiorg contains the links to two nodestail ande.head which never
change, so that is always an edge froratail to e.headin theoriginal graph. In the
current reduced graph at any stage of the computaticnan edge fronFIND (e.tail)

to FIND(e.head, so these fields oé are not updated whee is moved to another
node in an edgelist; this allows to move all incident edgemfone node to another
in constant time.

Figure 4 gives pseudo-code for the contraction (a) destrdtmve. The three
nodesU,V,W are the representatives of their partition classes, ang fonlthese
nodes the lists of outgoing and incoming edges and theirlmedtedge are relevant.
The unmatched edgeappears ifJ.outlistand has hea¥, so thatU = FIND(e.tail)
andV = FIND(e.head = FIND(m.tail), even though it may be possible trestead#
m.tail like for x,y in Figure 5. The matched edge from V to W is obtained as
V.matchedand equal®V.matched, becaus&/.outlistis empty sov/ has no outgoing
unmatched edge (but has to have an outgoing edge due to theaBurientation).

After the SHRINK operation, the reduced graph no longer contains the e€lges
andm and the nod#&/. (However, these are preserved for later re-insertiorpduel
by the fieldm.partnerassigned t@ in line 6 of SHRINK, discussed below along with
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SHRINK(e,m):
1 U,W « FIND(etail), FIND(m.head
2 removee from U .outlist
+3 V< FIND(e.head
%4 sleepcounter— sleepcountet 1
x5 V.sleeptime— sleepcounter
6 m.partner«+ e
7 X,Y <~ UNITE(U,W)
8 appendy.outlistto X.outlist
9 appendyY.inlist to X.inlist
10 X.matched— U.matched

Figure 4. ThesHRINK operation that removes the unmatched eddgem U to V

and matched edge from V to W from the current graph and merges the edgelists
of U andW. The code in the starred lines 3-5 is only needed to reasaut #h®
method and can be omitted.

Figure 5: The equivalence classes, [V], W] and edge® andm in the SHRINK
operation. A wiggly line denotes a matched edge.

lines 3-5.) The edgeis removed from the list of outgoing edgesWfin line 2. The
equivalence classes faf andW are united in line 7 where eith&r or W becomes
the new representative, storedXn The lists of outgoing and incoming edges of the
representativé’ that is no longer in use are appended to thosk of lines 8 and 9.
A node can only lose but never gain the status of being a reptatsve, so there is
no need to delete the edgelistsYof If the new representativ¥ is W, its current
matched edgen has to be replaced by the matched etlymatchedas in line 10
(which has no effect iK =U). The Euler property of the reduced graph is preserved
because the outdegreeXfis the sum of the outdegreesidfandW minus one, and
so is the indegree (the missing edgesaamdm).

The list operations in lines 2, 8, 9 sHRINK can be performed in constant time.
For that purpose, it is useful to store the lists of outgoind eacoming unmatched
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Figure 6: Example of a graph with the out- and inlists for tbdesx, y, zaccessed by
sentinels (dummy edges), s, s, shown in gray. They use the same fieltsxtout
prevout nextin previn as the unmatched edges, ey, e3 except fortail and head
which are ignored. The matched edges stored directly, linked to by.matched
andz.matchedand not in a list. Then.nextoutfield can be used to link tm.partner.

edges of a noda as doubly-linked circular lists that start with a “sentin@ummy
edge), denoted bg, (see Cormen et al., 2001, Section 10.2). Figure 6 gives an
example of small graph (which is neither Eulerian nor hasréepematching). The
three unmatched edges ag ey,e3 and the matched edge . The outlist ofx
containsey, e, the outlist ofy is empty, and the outlist af containses. The inlist

of each node contains exactly one edge. The first and laseeakeofh the outlist of

a nodeu is pointed to bys,.nextoutand s,.prevout which are boths, itself when
the list is empty, as fou =y in the example. The inlist is similarly accessed via
su-nextinand s,.previn. Each append operation in line 8 or 9 ®fRINK is then
performed by changing four pointers. The remove operatidime 2 can, in fact, be
done directly frome, again by changing four pointers, here of the next and ptevio
edge in the list (which may be a sentinel). Due to the sergtjeadoes not need the
information of which node it is currently attached to, scelid should be written (a
bit more obscurely) as “remowvefrom its outlist” (that is, the outlist it is currently
contained in), without reference tb.

Figure 7 shows the whole algorithm that finds a perfect matclof opposite
sign via a sign-switching cycle. Initialization takes @an lines 1-6, which will be
explained when the respective fields and variables are used.

The main computation starts at st&pThe first nodeV is the head of a matched
edge. This assures that, due to the Euler property, this Imaslat least one outgoing
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FIND_OPPOSITELY.SIGNED_MATCHING :

for all nodesu
MAKESET(u)
u.origmatched— u.matched
u.visited« 0
u.sleeptime— 0
sleepcounter— O

m <« any matched edge of current graph
V < FIND(m.head
ve+1
visitednodévc| <V
V.visited<— vc
if V.outlistis not emptythen
e« first edge inv.outlist
W <+ FIND(e.head
visitededgfvc| < e
vc<+vc+1
CHECKVISITED(W)
VW
gotoB
else
m <+ V.matched
W « FIND(m.head
vc+vc—1
U, e« visitednodérd, visitededggrc|
if W=U then
return EXPANDCYCLE(e,m)
SHRINK(e,m)
CHECKVISITED(W)
if vce> 1 then
V < FIND(W)
gotoB
else
goto A

*

*

W W N N N DN DN NN DN DNDNDNDNDN PR P PR R R R R PR
P O © 00 N O O »h W N P O © 00 N O 0o W N P O

Figure 7: The main methodIND_OPPOSITELY. SIGNED_MATCHING for an Euler
graph with a given perfect matching.

unmatched edge that may be the first edgd an edge paie,m that is contracted
with the SHRINK method. Starting from stelp, a path of unmatched edges is grown
with its nodes stored imisitednodél], . . ., visitednodévc) whereve counts the num-
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ber of visited nodes, and edges storedigitededgfl|, . . ., visitededgf/c— 1], where
visitededg@| is the edge fronvisitednodé] to visitednodé + 1] for 1 <i <vc. A
nodeu is recognized as visited on that path whewisitedis positive, which is the
indexi so thatu = visitednodé|. This field is initialized in line 4 as initially zero
(unvisited).

Line 10 tests ifV has a non-empty list of outgoing unmatched edges, which is
true whenvc= 1. The next node, following the first edgef that list, isW. Line 15
checks with the methodHECKVISITED, shown in Figure 8, itV has been visited
before. If that is the case, then all edges in the correspgneiicle are completely
removed from the graph and the nodes are marked as unvisited 8 and 4 of
CHECKVISITED in Figure 8), andvc is reset to the beginning of that cycle. In any
case\W is the next node of the path, and the loop repeats atBsteq line 17.

CHECKVISITED(W):

if W.visited> 0 then
for i + W.visited...,vc—1
removevisitededg@| from its outlistandinlist
visitednodé].visited<— 0
vc + W.visited

a b W N

Figure 8: ThecHECKVISITED method that checks if nod& has already been vis-
ited, and if yes deletes the encountered cycle of unmatatig@elseand updates.

Lines 18-31 deal with the case thahas no outgoing unmatched edge, which can
only hold if ve> 1. Then the matched edgeincident toV is necessarily outgoing
due to the Euler property and becalsbas an incoming edgefrom U to V, which
is found in line 22. This edge is normally removed in #1RINK operation and then
no longer part of the path, which is wivg is decremented in line 21 (nodewill no
longer be part of the graph and can keepritstedfield). However, a sign-switching
cycle is found ifW = U (see Figure 9), which is tested in line 23 and dealt with in the
EXPANDCYCLE method called in line 24, which terminates the algorithmaritbe
explained below.

If W U, thensHRINK(e,m) is called in line 25. Afterwards, nod# is still
the old representative of the head nodengfas it was used in finding the path of
unmatched edges. Nodé may be part of that path, as tested (and the possible cycle
removed) in line 26. W has been visited, theW.visited< vc becauseN # U,

So at least one edge is removed.vtf> 1 (which holds in particular iV has not
been visited), then the path is now grown fremb (W) in line 28, where thesIND
operation is needed to updatisitednodévc| in stepB because the old representative
U may have been changed ¢ after theuNITE operation in line 7 ofSHRINK in
Figure 4.

The casaV.visited= 1 needs special treatment, which resultgéa= 1 and hap-
pens whemm is same as the initial matched edgpn stepA. In that casem is re-
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Figure 9: The equivalence classis|, [V] when a sign-switching cycle has been

found.

moved viasHRINK, andFIND (W) may now be the tail rather than head of a matched
edge, and then may no longer have an unmatched outgoingwhigph, is necessary

for lines 21-22 to work. For that reason, the loop goes bacdk tather tharB, as

in line 31; note thawV.visitedhas been set to zero in line 4 OHECKVISITED with
i=vc=1. In stepA, a new matched edge that has not yet been removed in a call
to SHRINK can be found in constant time by storing all matched edgesdioudbly-
linked list (for example, using the fieldgextinand previnthat so far are unused for
matched edges, see Figure 6); a matched etdgleould be deleted from that list after

line 6 of SHRINK in Figure 4, for example.

o oA W N P

~

10
11
12

EXPANDCYCLE(e,m):

C+—{(em)}
RECONNECTe.head m.tail,C)
RECONNECT(e.tail, mheadC)
for all (e,m) € C
makee a matched edge and an unmatched edge
return graph with this new matching

RECONNECT(X,Y,C):

if Xy then
m <« x.origmatched
e<— m.partner
C+CuU{(em)}
RECONNECTe.head m tail,C)
RECONNECT(etail,y,C)

Figure 10: TheEXPANDCYCLE and the recursiv&ECONNECT method that create

the sign-switching cycle and with it the oppositely signeatching.

31




We now discuss how to re-insert the contracted edges intaiheh once a
sign-switching cycle has been found, which is done ingkeaNDCYCLE method
in Figure 10. The method itself is straightforward. RechHttedges of the cur-
rent graph are stored with the representatives of equigalelasses, where an un-
matched edge is accessed in line 11 and a matched edge i8 loi¢te main method
FIND_OPPOSITELY.SIGNED_MATCHING in Figure 7. The sign-switching cycle will
be reconstructed using the original endpoints of the edgmseach node, the orig-
inal matched edge incident wis stored inu.origmatched(see line 3 of the main
method), because matchednay be modified (in line 10 of theHRINK method).

In order to explain th&xPANDCYCLE method, we record the time at which the
SHRINK operation has been applied to a n&leThis is done in lines 3-5 in Figure 4
using using the field/.sleeptimeand the global variablsleepcounterwhich are
initialized in lines 5—6 of Figure 7. These lines have a “Starindicate that they do
not affect the algorithm, and can therefore be omitted. Vethhiem to reason about
the correctness of thexPANDCYCLE method.

The contractiorsHRINK (e, m) affects three equivalence clas$gs, [V], W] with
representatived,V,W as shown in Figure 5. All nodes i] become inaccessible
afterwards, but the equivalence class still exists (anah iact still represented in
the union tree by those nodesso thatV = FIND(v), although the union-find data
structure will no longer be used for these nodes). We sayathaddes inV] become
asleepat the time recorded in the positive integésleeptime Any nodeu so that
FIND(u).sleeptime= 0 is calledawake

Lemma 15 During the main methodIND_OPPOSITELY.SIGNED_MATCHING, the
following condition holds after any statement from sfepnwards. LefU| be an
equivalence class of nodes with representative U and let td.matched. Then
there is exactly one node u 0] and another node z not ijJ] so that:

(i) IfU is awake, then z is awake add, z} = {m'.head n .tail }.

(i) If U is asleep, then z is awake or asleep with later sleaptthan U, and u=
m'.tail, z=m'.head.

In either case:

(ii) For every node y in[U] — {u}, let m= y.origmatched. Then ¥ m.head, the
node mtail is asleep (with earlier sleeptime than U if U is asleeghgre is an
edge e so that e m.partner, the nodes rail and ehead are equivalent and
with x= e.tail we have x [U] — {y}.

Proof. We prove this by induction over the number of calls to ##RINK method,
which are the only times when the equivalence classes chdngilly, all equiv-
alence classes are singletons and all nodes are awake. [When{U}, only (i)
applies, wherer' is the matched edge incidentdovhich is either the tail or head of
m' andzis the other endpoint aff, and (iii) holds trivially.
Figure 11 shows the general case of the lemma. Consider ribe ¢glguivalence

classesgU], [V], W] with representativeld,V,W as shown in Figure 5 in the notation
used for thesHRINK method. BeforesHRINK (e, m) is called, the lemma applies by
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Figure 11: lllustration of Lemma 15. The matched eddewith endpointsu andz
may have either orientation if is awake, otherwisa = n1.tail as stated in (ii).

inductive assumption to each of the three clagsés[V], W] in place of[U]. The
unigue matched edge that goes outside the equivalence class to an awake node
is m for [V] and W], and for[U] it is some other matched edge (not shown in
Figure 5) which will be that edge aftéd| and W] have been united. There is no
edge other thae or mfrom a node inV| to an awake node outsidé| because only
in this case (whev has in- and outdegree one in the reduced graphpHrmnk
method is called. Every node [B], [V], or [W] is the endpoint of a matched edge in
the original graph, and other than the endpointsnaind ' they are all equal to the
head of such a matched edge, with its tail node asleep, byivdwassumption (iii).
After the SHRINK operation,[U| and W] become a single equivalence class, and
all nodes in[V] becomes asleep. The only nogén the new classU] U [W] for
which (iii) does not hold by inductive assumptiormshead but thene takes exactly
the described role as.partner. In particular,x = etail #y, because € [U] and
y € W] and[U] # [W]. In addition,[V] changes its status from awake to asleep, and
all nodes in[V] — {m.tail} are heads of matched edges that connect to equivalence
classes that went asleep befdras claimed in (iii) by the inductive hypothesis. This
completes the induction. ]

The previous lemma implies that any two endpoints of a matauge belong
to different equivalence classes. A key observation in @ithat for anyy in an
equivalence clasfJ] that is not the endpoint of the “awake” matched edgeY
there is another node differentfrom y in that class (which may ba) given by
X = y.origmatchedoartnertail.

Lemma 16 Consider nodes,y and a set C with the following properties: x and y
are equivalent, and x is the endpoint of an unmatched edgeyasdhe endpoint
of an oppositely oriented matched edge taken from the péiusimatched-matched
edge pairs in C, as in (i) or (ii) in Figure 12. Then aft’eCONNECT(X,Y,C), the
new edges in C form a path of alternating matched-unmatctigdsfrom x to y with
the same number of matched and unmatched forward-pointiggse
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(i) (ii)

Figure 12: Illustration of Lemma 16 about tReCONNECTmethod.

Proof. If x =Yy, then the claim holds trivially with a path of zero length base no
edge pairs are added @ Otherwise, we apply Lemma 15 to the equivalence class
that containsx andy, as shown in the right picture in Figure 12, wheréakes the
role of y in Lemma 15(iii). Hence, node is the head of some matched edygevith
partnere, andx = e.tail # x. Then in the methodecoNNECT(line 10 in Figure 10),
(e,m) is added taC. We then apply the claim recursively &head m.tail instead of
X,y, and then to(,y instead ofx,y, where the assumptions apply, exactly as in lines
11 and 12 oORECONNECT So there are alternating paths as described &dwadto
m.tail and fromx' to y. The resulting path fromx to y composed of these paths and
the edgesn ande has the same number of forward-pointing matched and unmehtch
edges, becausa ande point in the same direction (in this case, backwards) along
the path. ]

In theEXPANDCYCLE method, lines 2 and 3 in Figure 10 cRECONNECT(X,Y,C)
for the endpoints, y of the unmatched-edge pair shown in Figure 9 that resultewhe
EXPANDCYCLE is called from the main method (line 24 of Figure 7), first foy in
[V] and then forx,y in [U] in Figure 9. In both cases, Lemma 16 applies, and the
paths together with the first edge p&m) form a sign-switching cycle.

Finally, exchanging the matched and unmatched edges aseirb Iof EXPAND-
CYCLE can be done as described, irrespective of the order of thesddghe cycle,
just using the pairge, m) in C (which are oriented in the same direction along the
cycle), which suffices to obtain a matching of opposite sign.

This concludes the detailed description of the algorithtrhals near-linear run-
ning time in the number of edges, because each unmatchedsdigéed at most
once and either discarded or contracted in the course ofgbethm.

We illustrate the computation with an example shown in Fegl8. Suppose that
edge lists contain edges in alphabetical order. The firsened. The first three
iterations follow the unmatched edgas, c, so thatvc and the arrayvisitednode
andvisitededgéhave the following contents:
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Figure 13: Example to illustrate the algorithm. Unmatchddes are marked to h,
matched edges are identified by their endpoints. The firstimedtedge is 61.

vc=4, visitednode=[1 2 3 4, visitededge=[a b d.

Node 4 has an emptyutlist, so that the computation continues at line 18 (all line
numbers refer to the main meth@tND_OPPOSITELY SIGNED_MATCHING in Fig-
ure 7 unless specified otherwise). The matched edge=s15 with endpointV =5,
andsHRINK(c,45) is called in line 25. Afterwards,

45.partner=c, vc=3, Vvisitednode=[1 2 3, visitededge-[a b|

and the reduced graph is shown in Figure 14. The nodes 3 angt®hkan united into
the equivalence clags8,5} which has representative 5 becauseuRere operation
in Figure 3 chooses the second representafivithe original representatives have
equal rank. The outgoing edges from node 5ai@ndh in that order, because the
outlist of 3 has been appended to that of 5.

In line 26, cHECKVISITED(W) has no effect becaud#.visited= 0. In line 28,
V + FIND(W) =W =5, so that after going back to st&p

vc=3, visitednode=[1 2 5, Vvisitededge=[a b.
Line 11 then follows the unmatched eddevith
vc=4, visitednode=[1 2 5 g, visitededge=[a b d|

after which again a contraction is needed, becalsatlist is empty, this time with
U,V,W =56,1 and call tosHRINK(d,61). In the SHRINK method,uNITE(5,1)
returns 51 because Bank= 1> 0 = lrank The resulting graph, after line 25 is
completed, is shown on the left in Figure 15, where

6lpartner=d, W=1 vc=3, visitednode=[1 2 5§, Vvisitededge=[a b.
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Figure 14: The reduced graph after the first contraction \siiRINK(c,45). The
equivalence class with nodes3is written with the representative listed first.

Now consider the call teHECKVISITED(W) in line 26 and note thaw/ is still the old
node 1 used before the contraction; recall that this is decaulse that representative
is possibly stored in theisitednodearray, which it indeed is at indeX.visited= 1.
The deletion of the detected cycle of unmatched edges is 8raad 4 oCHECKVIS-
ITED (see Figure 8) then produces the reduced graph shown omttiérriFigure 15.

O 8

© 53,1

Figure 15: Left: aftelsHRINK(d,61), right: aftercHECKVISITED(1).

Normally, the next nod& would be FIND(W) in line 28. However, the case
vc =1 applies (recall the reason that the incoming matched etfigésibtednodél]
has been removed by the contraction), and so the computaiitinues via line 31
to stepA. Suppose the first node is now 2. Then the computation folegese, f,h
and reaches node 8, with

vc=4, visitednode=[2 7 5 §, Vvisitededge=[e f H.
Contraction withsHRINK (h, 87) gives the graph shown on the left in Figure 16 where

87.partner=h, vc=3, visitednode=[2 7 §, Vvisitededge=[e f]
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and aftercHECKVISITED(7) the edgef is removed, resulting in
vc=2, visitednode=[2 7], visitededge= [€].

This time,vc > 1, so withV «+- FIND(W) = 5 we go back via line 29 to stdp, after
which
vc=2, visitednode=[2 5|, Vvisitededge= [€]

with the graph on the right in Figure 16.

Mf mf

53,17 53,17

Figure 16: Left: reduced graph after the third contractemINKk(h,87), right: after
CHECKVISITED(7).

Now V has only the outgoing unmatched edgeiving in line 14 (where the last
entry visitednod@rc| has not yet been assigned)

vc=3, visitednode=[2 5|, visitededge-[e ¢

and removal of the edgg gives the graph on the left of Figure 17. At the next
iteration, after line 9,

vc=2, visitednode=[2 5|, Vvisitededge- €]

where 5outlistis empty,m = 52, and nowV = 2 = U = visitednodégl] in line 23.
Now the final stage of the algorithm is called in line 24 W#RPANDCYCLE(e,m).
The original endpoints of the two edges are (see Figure 4&il = 2, ehead=7,
m.tail = 3, m.head= 2. Line 2 of Figure 10 makes the c’ECONNECT(7,3,{e,m})
which is nontrivial because witky = 7,3 we havex £y in line 7 of Figure 10. With
x.origmatched= 87 and 87partner= h, we getC = {(e,52), (h,87)} (where 52 is
just our current name for the matched edge, with its origemalpoints it is the edge
32). All other calls toRECONNECT(X,Yy,C) then have no effect because=y. The
resulting sign-switching cycl€ is shown on the right in Figure 17.

In this example, every edge of the graph is visited duringatlyerithm, and the
reduced graph at the end consists justs of the oppositetynted unmatched and
matched edge that define a trivial sign-switching cycle. ®hginal graph in Fig-
ure 14 already has such an edge pair in the foriin, 82, which is not discovered by
the described run of the algorithm. Here, not all matcheeedad their partners that
have been removed by tlsiRINK operation are used (namely not,4%nd 61d).

In other cases, the algorithm may also terminate with pdittssograph left unvisited,
or unmatched edges in tivésitededgearray that are not removed.
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.

2 5,3,1,7 2 5

Figure 17: Left: graph after the removal gf which has a sign-switching cycle.
Right: cycle after the calls tRECONNECTIN EXPANDCYCLE.
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