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Preface

This text is a self-contained introduction to a theory of closure spaces.

"Closure” is a simple concept that appears very frequently in mathematics and

theoretical computer science. Examples are the "topological closure” of a set of

points of a topological space, the "convex closure” of a set of geometrical points, the

"linear closure” of a set of vectors (i.e. the vector space spanned by these vectors), the

"deductive closure” of a set of logical formulae, or the "reflexive and transitive

closure” of a binary relation. If relations are - for that purpose - regarded as sets

of pairs, these examples have in common that the intersection of any number of

"closed sets” (that is, of sets that equal their own closure) is again closed. A "closure

space” is in this text essentially understood as an "intersection-stable” set of sets. At

the outset, a theory about such structures might not appear very rewarding.

However, we will demonstrate that it can provide a number of nice results. The

material is also relevant to computer science because it provides a thorough

introduction to structures defined in terms of a complete partial order (also called a

'complete lattice’). We think a familiarity with these structures should make more

accessible the subject of continuous lattices, which are used for instance in theories

ofcomputation (cf. Scott [Sc76], [ScBO J, (CLJ).

Our investigations started out with a study of logical systems based on

properties of ^he "derivation operator”. Regarding well-formedformulae as points in

a given collection, this operator maps points to sets of points. (This level of

description is for instance to be found in Tarski [Tai, where a number of our results

are presented in the setting of logic.) The result of applying the derivation operator

to a set X of points (i.e., formulae), called the "deductive closure of X”, is commonly

understood to be the set of the formulae that can eventually be derived from those

given in X. They include the elements of X (by a derivation in "zero steps”), which

defines the derivation operator as 'increasing’. The second distinctive property of

derivation operators as 'closure operations’ is that the deductive closure of a set is

"deductively closed”. We call a set X 'closed’ under a set mapping f if f(X)CX, and
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'deductively closed’ if fis the derivation operator. A somewhat more basic, and also

necessary, property is monotonicity, that is, the derivationoperator has to preserve

set inclusion. This property alone suffices to prove that the set of deductively closed

sets is a closure space. As concerns the study of logical systems, it is possible to

demonstrate many notions of model theory in terms of the set of deductively closed

sets alone, as for instance done in ChangiKeisler [CK], Related notions in logic and

topology, e.g. inconsistency and denseness, can also be observed (cf. Martin [Ma]).

However, the results presented here are interesting in a more general framework,

which belongs to the area of universal algebra rather than logic or topology.

First, the notion of a complete partial order, introduced in chapter one, can

replace set inclusion (with "infimum” instead of intersection). Second, a closure

space can be defined by a monotonic function, not necessarily a closure operation. In

the example above, the suitable monotonic function, call it m, is indeed more basic

than the described derivation operator. It maps any set of formulae to the set of

those formulae that can derived in one step using a rule of the logical system. This

function yields the same deductively closed sets as the derivation operator before.

The derivation operator is definable in terms of the closure space of closed sets of m:

the deductive closure of a set X is the intersection of the deductively closed sets that

include X. Along these lines, it can be proved that there is a one-to-one

correspondence between closure spaces and closure operations. Furthermore,

mapping a monotonic function m to the closure operation corresponding to the

closure space of closed sets of m is itself a closure operation (cf. theorem (2.24)).

Another ”meta-closure” is given by the fact that the set of all closure spaces is a

closure space (theorem (2.25)). These are the essential results of chapter two, the

central chapter of the text; they have also been discovered by others (for example, in

[Sc76, pp. 549-553], [ScBO, p.239], [CL, p.2l]).

The most original results of this text are contained in chapter three.

However, the overall presentation of the paper also deserves comment. The subject

matter is treated in this text in very detailed form. Every proof is reduced to steps

justified by selected axioms of predicate calculus. This formal treatment helped us
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substantially in seeing repetitions and similarities, yielding — as we think — a

more structured exposition than in common mathematical texts. The proofs are in

our opinion a rewarding exercise in formality.

The basic axioms are presented in chapter zero, and are interesting insofar

as negation in not used, and disjunction only in the form of existential

quantification. The proof system is part of intuitionistic and classical logic.

However, the text is not directed to the logician. The proofs are only semi-formal in

that words are used besides symbols, and derivations are presented as chains of

implications or equivalences, not as successive applications of a derivation operator.

In short, we do not subject to formal treatment the way predicates are given and

derived. The syntactical process of substitution is also left informal.

As another remark on how this text differs from usual mathematics, we

mention that we use types as a basis for the discussion instead of sets. The main

motivation for types is to reduce the specification of "ranges” in quantified

predicates, which would be necessary if a universal domain were assumed (e.g., the

class of all sets). It would have been possible to identify many more constructs, by

reducing sets, relations, and possibly predicates, to functions and cartesian

products, but we considered the level ofdiscourse abstract enough

In chapter one, complete partial orders are introduced as the underlying

structure in subsequent chapters. The infimum of a set is defined by an equation

([1.13]), instead of by the usual twofold description as "lower bound” and "greatest

lower bound” (cf. (1.15)). This definition permits convenient proofs of equivalences

(e.g. (1.20)). In chapter two, the condition of"sub-idempotency” replaces the common

"idempotency” in the definition of a closure operation (cf. [2.13]). In chapter three,

we can then express the result that reflexive and transitive relations can be

regarded as increasing and sub-idempotent disjunctive set mappings, respectively.

Also, a threefoldcharacterization of the reflexive and transitive closure of a relation

is given. One is the first "meta-closure” mentioned above, because a reflexive and
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transitive relation corresponds to a disjunctive closure operation. Another uses

relational composition as a monotonic operator to define a suitable closure space.

The third is the usual "iterative” definition. The proof (cf. (3.39)) can be regarded as

representative for the known iteration of continuous functions to obtain a closure

operation, which is not proved here. We refer again to the above example of the

derivation operator. The formulae that can eventually be derived from a given set X

of formulae are obtained by applying successively, but only finitely often, rules of

the logical system. This corresponds to iterating the simpler "one-step” function m

above. The reason that finitely many applications of rules are enough is that every

rule has only finitely many "antecedents”. In other words, the derivation operator is

"finitely representable” as will be discussed in chapter four (cf. also Tarski [Ta, p.64,

Axiom 4]). This chapter treats continuous functions, in particular the equivalence of

"distribution over unions of directed sets” and "finite representability”. This

equivalence is cited, for example, in Scott [ScBO, p.229].

For reasons of space, some considerations had to be omitted that would have

fit the level of presentation. One concerns the subtype of a type P that has a

complete partial order, consisting of the fixed points of a monotonic function on P.

The restriction of the partial order on this subtype is complete, but the "infimum”

and "supremum” functions are different from the original functions, although

definable in terms of these. This theorem can be proved using (1.17). The concept of

fixed points occurs frequently in semantics, in connection with recursively defined

programs (for instance in Dijkstra [Di] or Scott [Sc76]). Other applications of the

theory are mentioned in the text, but are not explained in detail.
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Chapter 0

Notation and Proof System

The first part of this chapter explains the notation used in the text. It deviates

from standard notation mostly in the usage of sets; we will use types instead of sets for

the ranges of quantifiers and as domains for functions, and are interested in sets only as

elements of a collection usually called "power set” (here: power type). The rest of the

notation is standard; the casual reader can start at chapter one and will understand

most of our conventions. In the second part of this chapter, we will list the rules (of

predicate calculus) actually used in the text. We do this for the sake of completeness,

because the effort is relatively small. Our results can be expressed with fewer symbols

and proved with less axioms than usually used in mathematics. This justifies to some

extent presenting a complete "calculus”. (Some familiarity with common predicate

calculus is useful, however.) Finally, our logical system might be of interest, because it is

a subsystem of both classical and Intuitionistic logic.

Statements and Proofs.

The statements (axioms or theorems) of the text are usually written down in the

following way. Some predicates are listed ("Let ..; ..; ..”) as assumptions. The conclusion

is then usually of the form a=>b or aob (disregarding a possible universal

quantification). A statement used later is labeled by a number which is surrounded by

brackets [] if it is an axiom or a definition (requiring no proof), by parentheses () if it is a

proposition or theorem (to be proved using previously made statements). A statement is

labeled with a number followed by a prime (’), if it differs so little from the corresponding

"un-primed” statement, that the latter is of nearly equal help as a reference.
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In the proof of a statement, the assumptions are assumed to be given. We have

chosen to write down derivations as sequences of lines of the form

...comment: inference-symbol predicate,

where the inference-symbol is either => or <=>. The predicate is derived from the previous

line, and the comment explains which statement is used as a transformation rule, as

specified further below. The first line contains no comment or inference-symbol, only a

predicate. If the predicate of the first line is a, and that of the last line is b, then the

whole sequence of lines is considered as a proof for a=>b; if in every line the inference-

symbol is 4=>, as a proof for a<=>b. An assertion of the form aAb can be proved by

separately proving a and b. Universally quantified predicates of the form (Vx . c(x)), e.g.

(Vx . a(x)=>b(x)), are proved by proving c(x) for an arbitrarychoice of x.

This proof format was chosen because alternating comment lines and predicates

would reduce the legibility. Furthermore, a skilled reader can frequently skip the

comments. The comments appear on the left hand side, because in most cases the

transformation deserves a comment rather than the predicate obtained. If we want to

refer to this predicate later within the proof, we label it on the right by a lower-case

letter in parentheses.

Some more comments on using statements in derivation steps are appropriate.

The derivation step

a

...(StatementX'): => b

is possible if, after proper (uniform) substitutions, the assumptions of statement X are

met and its conclusion is of the form a => b. If it is a universally quantified predicate, it

is allowed to Instantiate the variable bound by the quantifier, say x, to a particular term,

say t. We preferred not to indicate this in a comment, for example by "x: = t”, because the

particular name of a bound variable is irrelevant, so that the symbol x should not even

appear outside the scope of the universal quantification. An instantiation in the form

"x: =t” seems to be only appropriate for "free” identifiers x. We therefore do not

explicitly mention an instantiation which is mostly obvious, or refer only to axiom [0.30]

(s.b.).
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The preceding comments hold correspondingly for a proof step of the form a b.

The inference-symbol <=> can also be used by replacing any predicate by an equivalent

predicate, or by replacing any term by an equal term; the respective statements used are

equivalences or equations. Several derivation steps can be contracted into one, in

particular if very simple statements are used, or if this sequence of steps has occurred

before.

Predicates.

We use A, => and o as the only logical connectives. To avoid extensive use of

parentheses, we give precedence rules for binary operators. We will assume A has higher

binding power than => (that is, aAb=>c and a=>bAc are to be read as (aAb)=»c and

a=>(bAc), respectively). The use of parentheses can be further restricted if connectives

are associative, which holds in particular for A, i.e. (aAb)Ac and aA(bAc) are equivalent

and will therefore be written as aAbAc. For symbols with equal binding power, and

unless associativity is explicitly stated, the use of parentheses is required. => and <=>

have equal binding power.

We write quantified expressions in the form (Qx . a(x)) ,
where Q stands for the

existential quantifier 3 or for the universal quantifier V. The variable bound by the

quantifier (i.e. the variable following the quantifier) has its meaning only within the

outer parentheses, which thus denote the (syntactical) scope of the quantification. By

a(x) we mean a predicate with a free occurrence of x, that is, a(x) depends on the variable

x if interpreted as a truth-valued expression. It is allowed that x does not appear at all in

a(x), but x must not be bound by a quantifier within the predicate. The result of

substituting y for x in a(x) is written as a(y). In using the notation a(x) for general

predicates, we only require that within the scope of a quantification, all free occurrences

of the bound variable are mentioned. For example, in the "axiom schema” (3x . a Abtx))

<=> aA(3x.b(x)), x must not occur free in a; there can be other free variables in a,

however. We will automatically rename bound variables, if the scopes of the respective

quantifications would overlap otherwise. For instance, we will use

(Vy . (Vx . a(x)) b(y)) instead of (Vx . (Vx . a(x)) => b(x)).
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The interpretation of (Qx . a(x)) is that the bound variable x "ranges” over (i.e.

denotes an object of) some type. This type can in general be inferred from syntactical

parts of the expression a(x) which are different from x. (3x . a(x)) means "there is an x

within the type such that a(x) holds”, (Vx . a(x)) means "for all x of the type a(x) holds”.

Equivalent predicates are Ox . x:T A a(x)) and (Vx . x:T =>a(x)), respectively, where

x:T indicates explicitly that "x is of type T”; x:TAa(x), for instance, is therefore a

predicate where one can infer that x must be of type T. The type system is described in

the next section.

Types.

We distinguish predicates (as purely syntactic entities) form objects and types on

the semantic side. Each object belongs to a type. Objects are denoted by terms, which are

either variables, constants or functional expressions. Types are in general mutually

exclusive collections of objects and will never be regarded as objects themselves. We

assume some types are given (e.g., the type of natural numbers), and will describe how

new types can be obtained from given ones. Capital letters P, S, T, U will denote types.

The notation x:T expresses that object x belongs to type T. Objects of the same

type can be enumerated using commas; for example, x,y:T is short for x:T A y:T .

(Remark: As a rule, when commas are used, the order of the enumerated items (here

variables) is not important; in this case, because A is symmetric and associative).

The expression x:T is a predicate. Alternatively, an (atomic) predicate can be

formed by putting a symbol for a (binary) relation between two terms. Predicates can

also be of the form x€ A where x and A denote objects. In this case, if x is of type T, then

the type of A is the so-called power type of T; in other words, A is a set. Symbols for

relations, colon (:) and € have higher binding power than any logical connective.

We regard functions, relations and sets as (typed) objects. If S and T are types,

S-* T is the type ofall functions from S to T. Thus f:S -> T asserts that fis an object of

this type. The result of applying the function f to the argument x is written as f(x); this

term always denotes an object of the range T of f, and the type of x must be the domain S

of f. A function on S Is a function with domain and range S.
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As concerns relations, we will only deal with binary relations between objects of

the same type. We introduce RT as the type of all binary relations on T. Hence, RrRT

expresses that R is such a relation, and sRt is then a predicate, where s and t must be

terms denoting objects of type T.

The power type of a type T is written as PT. An object A of this type is a set of

objects of type T. The predicate t€A expresses that a particular object of type T (only

this case is allowed) is an element of A. The empty set 0 is a constant of type PT. The

''type-creating” symbols R and P have higher binding power than

It would be possible to introduce more general schemes (e.g. cartesian products;

relations can then be defined as "subsets” of cartesian squares). Our particular choice of

only regarding functions, binary relations and sets is motivated by the kinds of

structures we want to study.

Disjomtness of types: we assume that each object belongs to exactly one type,

with the exception of subtypes. In particular, for different types S, T, any two of the types

S, T, S -* T, T —► S, S —> S, T —> T, RS, RT, PS, PT are assumed to be disjoint. However,

in particular cases we may allow one symbol to be used for several types. It is thereby

understood that this symbol denotes a different object for each type. We will use this

"type-overloading” of a symbol if it denotes objects with similar properties: an example is

0, and another is the equality symbol introduced below. An object can belong to two

types only if one is a subtype of the other. The concept of subtypes will be introduced in

chapter two, where it is needed.

Basic Axioms and Propositions.

In this last section, the "proof system” will be explained, i.e. general statements

that are used in the proofs of the text. These axioms and propositions are listed at the

end of the chapter for easy reference. The axioms are not claimed to be independent, only

those statements are indicated as propositions which follow more or less obviously from

others; the proofs will be given. We comment here mainly on how to interpret the

statements; part of their use can be demonstrated in the proofs.
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The assertions [o.o] to [0.16] describe our "propositional calculus”, which does

not involve the type system. They have to be read as "axiom schemata”, i.e. the

identifiers a, b, c, d are to be replaced by (arbitrary) actual predicates. The only such

predicate not involving types is the logical constant 'true’, which by [o.o] always holds.

[o.l], [o.2], [o.3] state that 'true =4’, 'true and 'true A’ can be prefixed to any predicate

without changing its meaning. In particular, [o.l] allows us to prove predicate a by

proving true => a, as we will frequently do. [o.2’] states that any known predicate a can

be used to replace true in a derivation; inparticular, a can be added as a conjunct to any

predicate because of [o.3]. An example is given in the following proof.

Proof of(0.6): true

...
[o.3], [o.3]: true A true A true

...
[o.2’] with [o.s], [o.B], [o.B], resp.: <=> (aAa =» a) A (a=>a) A (a=>a)

...[0.11]: & CaAa a) A(a => aAa)

...[0.13]: <=> CaAa a). (EndofProof.)

Xote that we adopt the associativity of A (.regardless of whether needed or not) by our

writing conventions instead of explicitly referring to [o.7], [o.4] asserts the symmetry of

A. It allows us to derive the symmetry of <=>:

Proofof‘o.l4'): (a <=> b)

...[0.13]: (a=>b) A (b=>a)

. [o.4]: <=> (b=>a) A (a=4b)

..[0.13]: 4^ (b <=> a). (EndofProof.)

A simple proof like this will be abbreviated as "By [0.13], [o.4], [0.13].”. For brevity’s

sake, we will leave the use of [0.14] implicit, and sometimes also of other simple

statements like [o.2’], [o.3] or [o.4],

Proof of(0.53: By [o.4], [o.s]. (EndofProof.)

Proof of(0.130: By [0.13], [o.s], (End ofProof.)

Proofof(0.16): true

...[o.B]: ((a=^b) => (a=>b))

...[0.10]: & ( (a^blAa^b)

...

[o.4]’ a (a=?b)=>b! EndofProof.
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Many of the axioms of "propositional calculus” justify the inference-rules given

in the first section ofthis chapter. Therefore, statements like [0.15] are not introduced as

theorems. One might regard [0.13] as a definition of the symbol we do not adopt this

view, because we want to use from the beginning without restriction.

The statements [0.17] to [0.33] are axiom schemata for quantified expressions. It

is assumed that variables occurring in predicates, like x in a(x), are consistently typed.

An example is given (further below) by [0.38], where the variable s bound by the

quantifier must range over S, because f and g are functions with domain S; this "type-

inferencing” is used throughout the text and should require no further explanation.

[0.17] to (0.20) describe the possible interchange of quantifiers, which will be a

crucial step in many proofs. [0.17] states thatconsecutive quantifiers of the same kind (Q

is to be uniformly substituted by V or S) can be replaced by a single one followed by a list

of the bound variables (read (Vx,y . c(x,y)) as "for all x and y c(x,y)”). The order of these

variables is unimportant, as stated in [o.lB]. For any axiom schema with quantifiers,

bound variables can also be vectors, where a vector is either a variable or of the form u,v

with vectors u and v, as e.g. x,y,z in [0.36]. The reader might convince himself that

these syntactic conventions allow free rearrangements of the variables following a

quantifier. (0.19) and (0.20) are easy to memorize by thinking of the predicates a(x) and

b(y) as "subranges” of the type of the variables x and y bound by the first and second

quantifier of the left hand side, respectively. By assuming 'true’ for these subranges,

(0.18’) is because of [O.l ], [o.3] a special case of (0.19) or (0.20), respectively.

Proofof(0.18’): By [0.17], [o.lB], [0.17], (EndofProof)

Proof of(0.19): (Vx . a(x) => (Vy . b(y) => c(x,y)))

...[0.21]: <=> (Vx . (Vy . a(x) => (b(y) => c(x,y))))

...[0.10]: <=> (Vx . (Vy . a(x) A b(y) => c(x,y)))

... (0.18’), [o.4]: (Vy . (Vx . b(y) A a(x) => c(x,y)))

...[0.10]: <=> (Vy . (Vx . b(y) =» (a(x) =» c(x,y))))

...[0.21]: <=> (Vy . b(y) (Vx . a(x) => c(x,y))). (EndofProof.)

Proof of(0.20':: ' Sx . a(x) A (Sy . b(y) A c(x,y) ))

...
[0.22]: 1 3x . (3y . a(x) A b(y) A c(x,y) ) )
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...
(0.18’), [o.4]: <=> (3y .

(3x . b(y) A a(x) A c(x,y)))

...[0.22]: <=> (3y . b(y) A (3x . a(x) A c(x,y))). (EndofProof.)

[0.21] to [0.24] describe how logical connectives can be "distributed” over

quantified expressions. [0.24] can be read as a "disjunction” of predicates implies a

predicate b if each of these predicates implies b’. The assertions [0.25] and [0.26] can be

regarded as "one-point rules”. For, if the "subrange” for the bound variable x, as above,

consists only of the single object (or "point”) denoted by the term t, then the

quantification can be omitted by substituting this term for x.

Whereas [0.17] to [0.26] are equivalences, [0.27] to [0.33] are (in general proper)

implications. [0.27] is used to prove universally quantified predicates, as already stated

in the first section. (0.28) and [0.29] assert that (Qx . b(x)) can be inferred from (Qx .

a(x)) if a(x) => b(x) is known for all x. If Q stands for the existential quantifier, a(x) =>

b(x) is in many applications of the form of a "propositional” axiom. [0.29] is therefore

stated with x as a free variable. An example is given in the proofof (0.31) below.

Proof of(0.28): Let (Vx . a(x) =» b(x)) hold.

Then for y:S, (Vx . a(x))

... [0.30]: => a(y)

...
assumption (with [0.30]): => b(y).

This proves (Vy . (Vx . a(x)) => b(y)) by [0.27], which is equivalent to

(Vx . a(x)) => (Vy . b(y)) by [0.21], (EndofProof.)

Assertion [0.30] is the ''instantiation rule”; in most cases, we will not mention

explicitly when it is applied.

Proofof (0.31): a(t)

...[0.26]: <=> (3x.x=t A a(x))

...
(0.5’), [0.29]: => (3x. a(x)). (EndofProof.)

(0.32) and [0.33] are assertions about predicates of the form (Qx . a). In such a

predicate, the type of the variable x bound by the quantifier can not be inferred, since a

has no reference to x. It is understood that this type is the same as in a predicate derived

from (Vx .a) or from which (3x .a) is derived (e.g. from (3x .a A b(x)) by [o.s], [0.29]).
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This type can be left unspecified because it never matters when (0.32) or [0.331 is

applied. Note that it can in particular be empty; otherwise, we could assert (Qx . a) <=> a.

Proof of(0.32): (0.32) is a special case of [0.30], (EndofProof.)

The predicate calculus presented can be further demonstrated in the remaining

paragraphs which treat equality and definitions of sets. For a type T, equality is a

particular relation on T and is denoted by the symbol —. The predicate s= t asserts that

the terms s and t (which must be of type T) denote the same object. If the equation s= t

holds, any occurrence of s in a predicate can be replaced by t yielding an equivalent

predicate (and vice versa, according to [0.351). Using the equality symbol, one can also

define the meaning of a new identifier. Definitions are treated like axioms.

The symbol = denotes a separate relation for each type. [0.34] to [0.36] must

therefore be read as shorthands for predicates that are separately given for each type.

The use of the same symbol is justified because the type of the equality relation in a

predicate can cause no confusion. (Some readers might also prefer to imagine a

subscript, e.g. in the form = t, for each equality relation of type RT.)

[0.37] asserts that the equality of two relations can be reduced to the respective

equivalence of all the predicates that can be formed with the corresponding relation

symbols. Two functions are equal if they give the same results for all arguments, as

stated in [0.38]. By [0.39], two sets are equal if they contain the same elements. [0.38]

and [0.39] state the so-called the extensionality of functions and sets, respectively.

[0.40] and [0.41] state that functions are total (i.e. everywhere defined) and

single-valued. In particular, [0.41] asserts that terms can be replaced by equal terms if

they appear as arguments for functions.

For defining sets, we also allow a comprehension scheme. That is, for a predicate

a(s), sof type T, it is possible to define a set Xof type PT by (Vs .s€ X <=> a(s)). This set is

expressed in the form {s | a(s)}, if the type of the variable s can be inferred, or as

{sjs:TAa(s)} otherwise. Because of [0.39], a(s) can thereby be replaced by any

equivalent predicate, in accordance with the proof rules. The variable left of the bar is to

be treated like a variable bound by a quantifier; that is, it can be freely renamed. [0.42]

is a more general form of comprehension (note that in [0.42] (f(s)l a(s)} is of type PTI.

We wii: sometimes omit references to the very simple proposition 1 0.42’).
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Proofof(0.42’): For any t of the given type,

t€ {s I a(s)}

...[0.42]: <=> (3s . a(s) A t= s)

...[o.4], [0.35]: & Os.s= t A a(s))

...[0.26]: <=> a(t). (EndofProof.)

(0.43) and (0.44) will allow us to rewrite predicates that assert a particular

predicate b(t) for all or some elements t (of type T) of a set that is defined by

comprehension.

Proofof(0.43): (Vt. t€{f(s)| a(s)} => b(t) )

...
[0.42]: (Vt. (3s . a(s) A t = f(s)) => b(t))

...[0.24]: (Vt. (Vs . a(s) A t = f(s) b(t)))

... (0.18’), [0.10]: O (Vs.(Vt.a(s) => (t = f(s) b(t))))

...
[0.21]: <=> (Vs . a(s) => (Vt. t = f(s) => b(t)))

...[0.25]: O (Vs. a(s) => b(f(s))). (EndofProof.)

Proof of(0.44): (3t. t£ {f(s)| a(s)} A b(t))

... [0.42]: o Ot. Os . a(s) A t = f(s)) A b(t))

... [o.4], [0.22], [o.4]: o (3t. (3s . a(s) A t = f(s) A b(t)))

...(0180, [0.22]: o Os . a(s) A (3t.t = f(s) a b(t)))

...[0.26]: 4^ (3s. a(s) A b(f(s)) ). (EndofProof.)

It is common practice to define special sets, like sets with zero, one, or two

elements, by comprehension. We do this only for the case of the singleton, by [0.36], We

can not define the empty set this way, because we do not want to use negation. [0.37]

asserts that the expression t€o is always "false”. If the variable t bound by the

quantifier ranges over T, 0 is of type PT. The use of a constant for the empty set is

justified by the following "uniqueness” theorem:

Let O,O’:PT and for any predicates c(t), d(t) (Vt. t€ o=> c(t)) and

(Vt. t€ o’=> d(t)). Then 0 = o’.

Proof: true

...[o.3]: & true A true

...
assumption: => । Vt. t€0=» t€ 0’) a (Vt. t€ 0’ t€ 0)

...[0.24]: ■ Vt . ItC 0 => t€ 0’) A (t€ 0’ => t€ 0 N
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...[0.13]: <=> (Vt. t€o <4>t€o’)

...[0.34]: <4 0 = o’. (EndofProof.)

In a similar way, [0.47] defines the set of two elements without using an "or”-connective.

(From the viewpoint of conventional set theory, [0.47] indicates that conjunction is a

special case of universal quantification, namely one over a two-element range.) In [0.47],

{x,y} should for the moment be read as an indivisible syntactic entity, denoting an object

of PT. (0.48) states one expected property of this set.

Proof of(0.48): true

...
(0.32): => (Vt. true)

...[o.B]: <4* (Vt. t€{x,y} =» t€{x,y})

...[0.47]: x€[x,y} A y€{x,y], (EndofProof.)

The following proposition asserts that in {x,y} x and y can indeed be replaced by equal

terms, so that the notation for the two-element set can be used in the usual way.

Let x,y,u,v:T. Then x=uAy=v => {x,y} = {u,v}.

Proof. x=uAy = v

x = uAy = v A true A true

... (0.48), (0.48): O x=uAy=vA u€{u,v} A v€{u,v} A. xC{x,y}Ay({x,y}

x({u,v}Ay({u,v} A u€[x,y}Av({x,y}

... [0.47], [0.47]: <=> (Vt. t€{x,y} => t€{u,v}) A (Vt. t€{u,v} => t€{x,y})

...
[0.23], [0.13]: o (Vt. t€{x,y} 44> t€(u,v})

...[0.39]: o {x,y} = {u,v}. (EndofProof.)

We conclude with the list of axioms and propositions.

True.

[o.o] true.

[o.l] (true => a) <=> a.

[o.2] (true a) a.

[o.2’] a => (true & a).

[o.3] true A a => a
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Conjunction, Implication and Equivalence.

[o.4] a Ab « b A a.

[o.s] a A b => a.

(0.5’) a A b => b.

(0.6) a A a a.

[o.7] aA(bAc) <=> (aAb)Ac.

[o.B] a a.

[o.9] (a => b) A (b =* c) => (a=»c).

[o.lo] (a =Hb=Mf)) <=> (aAb=>c).

[o.ll] (a=^bAc) <=> (a =» b) A (a => c).

[0.12] (a=>c)A(b=>d) =» (aAb=>cAd).

[0.13] (a <=> b) <=> (a => b) A (b => a).

(0.13’) (a <=> b) => (a b).

(0.14) (a b) <=> (b «=> a).

[0.15] (a b) A(b <=> c) => (a<^>c).

(0.16) aA (a b) => b.

Quantification.

[0.17] (Qx,y . c(x,y)) O (Qx . (Qy . c(x,y))).

[o.lB] (Qx,y . c(x,y)) <=> (Qy,x . c(x,y)).

(0.18’) (Qx . (Qy . c(x,y))) « (Qy . (Qx . c(x,y))).

(0.19) (Vx.a(x) =HVy . b(y) =* c(x,y))) (Vy . b(y) =HVx . a(x) => c(x,y)))

(0.20) Ox . a(x) AOy . b(y) A c(x,y))) <=> Oy . b(y) AOx . a(x) A c(x,y) ) )

[0.21] (a =HVx . b(x))) (Vx . a b(x)).

[0.22] a A Ox . b(x)) O Ox . a A b(x)).

[0.23] (Vx . a(x) A b(x)) <=> (Vx . a(x)) A (Vx . b(x)).

[0.24] (Ox . a(x)) => b) <=> (Vx . a(x) => b).

[0.25] Foranytermt, (Vx .x= t =^ a(x)) a(t).

[0.26] Foranytermt, Ox .x= t A a(x)) <=> a(t).
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[0.27] Forfreex, a(x) => (Vx. a(x)).

(0.28) (Vx . a(x) b(x)) => ((Vx . a(x)) => (Vx . b(x))).

[0.29] Forfreex, ( a(x) => b(x)) => ((3x . a(x)) => (3x . b(x))).

[0.30] Foranytermt, (Vx . a(x)) => a(t).

(0.31) Foranytermt, a(t) => (3x. a(x).

(0.32) a => (Vx.a).

[0.33] (3x .a) => a.

Equality.

[0.34] (Vx.x=x).

[0.35] (Vx,y . x = y <4> y =x).

[0.36] (Vx,y,z . x= yAy = z=J>x = z).

[0.37] Let R,Q: RT. Then R= Q <=> (Vs,t. sRt sQt).

[0.38] Let f,g:S-*T. Then f=g (Vs . f(s) = g(s)).

[0.39] LetX,Y: PT. Then X= Y o (Vs . s£X os€Y ).

[0.40] Letf: S-* T. Then (Vs . Ot. t= f(s)).

[0.41] Letf:S-*T. Then (Vs,t. s=t => f(s) = f(t)).

Defining Sets.

[0.42] LetfS-*T. Then (Vt. t€{f(s)| a(s)} <=J> (3s . a(s) At = f(s))).

(0.42’) (Vt. t€{sia(s)} <4 a(t)).

[0.43] Letf:S-*T. Then (Vt. t€{f(s)| a(s)} => b(t)) (Vs . a(s) => b(f(s)))

[0.44] Letf:S-*T. Then (3t. t€{f(s)| a(s)} A b(t)) o (3s . a(s) A b(f(s))).

[0.45] Let t:T. Then {t} = {s|s = t}.

[0.46] (Vt. t€o =4 a(t)).

[0.47] Let x,y:T. Then (Vt. t€{x,y} =* a(t)) <=> a(x)Aa(y).

(0.48) Let x,y:T. Then x^{x,y} A y€{x,y}.
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Chapter 1

Complete Partial Orders

A One-to-One Correspondence between RS and S—> PS.

It is well known that a relation R on a type S can be viewed as a function

mapping each object t of type S to a set whose elements are exactly the objects of S that

are "related to t by R”. Conversely, to any function R of type S —> PS corresponds a

unique relation on S that appears as R if regarded in the described way. We therefore

chose to use one and and the same letter for corresponding objects of type RS and

S—> PS, respectively. Symbols for relations and functions are used in different notation,

so that it is clear which object is meant. The described correspondence is stated in the

following proposition.

(1.0) Let R:RS and R:S—>PS. Thenthefollowingareequivalent:

(i) (Vt. R(t) ={s I sßt}),

(ii) (Vs,t. sRt &s€ R(t)).

Proof. (Vt. R(t) = {u | ußt})

...[0.39]- (Vt. (Vs . s€R(t) <=> s€{ u I ußt}) )

... (0.18’), [0.45], (0.42’): & (Vt,s . s£ R(t) <^> sRt)

...(0.181,(0.14): <=> (Vs,t. sRt & s^R(t)). (EndofProof.)

Given a relation R on S, (1.0)(i) is a definition of the function R from S to PS (cf.[o.3B]).

Conversely, for R:S —► PS, (1.0)(ii) specifies completely the relation R (cf.[o.37]). If either

object (relation or "set-valued” function) is given, we will use the other, if necessary,

referring to the appropriate definition in (1.0).

Partial Orders.

[l.l] <is called a partial order on Sif <:RSand

[ref] <is reflexive. (Vx.x<x),
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[tra] <is transitive: (Vx,y,z . x<y Ay <z => x<z),

[asy] is antisymmetric: (Vx,y.x£yAy<x => x =y).

Reflexivity, transitivity and antisymmetry of a given partial order < will be so

frequently used in proofs that we will omit the reference to [l.l] and simply refer to these

properties by [ref <], [tra <], [asy <], respectively (the symbol for the partial order is

mentioned because it may vary).

At this point, it is worth mentioning that the property [asy] can essentially be

dropped in the study of partial orders, thereby regarding only reflexive and transitive

relations (frequently called 'preorders’). This is briefly explained as follows; Given a

reflexive and transitive relation <, the relation E defined by (Vx,y . xEy x<y A

y<x) is reflexive, transitive and symmetric. Two objects x,x’ with xEx’ "behave

essentially alike” with respect to the original relation <, because of

(Vx,x’,y,y’. xEx’A yEy’=> (x<y <=> x’<y’)). That is, for the purpose of studying

properties of < , E can be regarded as a substitute for equality (if < is antisymmetric, E

equals =); the formal construction involves "taking the quotient with respect to the

congruence relation E”. Details and proofs are left to the interested reader. Whether

condition [ref] can also be dropped without substantially weakening the theory, is a

question of possible interest, but beyond the scope of the current text.

When using the symbol < for a partial order on S, we will assume that the

relation >onS is given by (Vx,y . x>y & y^x). We will call the relation the dual of

(1.2) Let <be a partial order on S, >:RS and (Vx,y .x>y y<x).

Then > is a partial order on S.

Proof: By the assumptions and [o.4], (EndofProof.)

Set Inclusion.

In this section, we define C, known as inclusion, as a relation on PS for any type

S. For A,B: PS, AC Bisto be read as "A is a subset of B”.We will prove that Cis a partial

order on PS; after that, some familiar propositions will be given.
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[l.3] Define Cby C:PS and (VX,Y .
XCY «=> (Vs . s6X se Y)).

(1.4) Cis a partial order on PS.

Proof: Prove [ref C]: true

...(0.32): (VX,s . true)

...[0.17],[0.8]: & (vx.(Vs.sex =^seX))

...[l.3]: & (VX.XCX);

to prove [tra C]:, let X,Y,Z:PS. Then

true

...

(0.32): => (Vs . true)

... [o.9]: & (Vs. (sex => seY) a (S eY => sez) =» (sex =» sez))

...(0.28): (Vs.(sex=> seY)A(seY=»sez)) => (Vs.sex=>sez)

...[0.23]: & (Vs.sex=>seY)A(Vs.seY=> sez) => (Vs.sex=> s ez)

...[l.3]: XCYaYCZ => XCZ;

to prove [asy C]:, let X,Y:PS. Then

true

...
(0.32): =» (Vs . true)

...[0.i3],(0.i3’): (Vs.(sex=> s eY)A(seY=>sex) => (sex^seY))

...(0.28): => (Vs. (sex => seY) a (seY => sexi) => (Vs. sex seY)

..
[l.3j: XcYaYCX^X = Z. (EndofProof.)

(1.5) Let s:S: X.Y.PS. Then teX A XcY => teY.

Proof: tCX A XCY

...[l.3]: & teX A (Vs. s6X =>sCY)

... [0.30], [0.12].- tex a (tex^teY)

...(0.16): => teY. (EndofProof)

(1.6) For O:PT, (VX . OCX).

Proof: true

...(0.32): => (VX. true)

...[0.46]: & (VX.(Vt.teo =S t€X))

...[l.3]: (VX.OCX). (EndofProof.)
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(1.7) Let t:S;X:PS. Then {t}CX « t€X.

Proof: (t}CX

• ••[l.3]: <=> (Vs . s€{t} => s^X)

...[0.451,(0.42’); (Vs . s= t => sCX)

...[0.25]: & t€X. (EndofProof)

(1.8) Let x.y:S; A:PS. Then {x,y}CA <=> x€AAy€A.

Proof: By [l.3], [0.47], (EndofProof.)

The next three propositions apply the concept introduced in the first section of

this chapter. They will be useful in applications.

(1.9) Let R.RS Then Risreflexive O (Vx,y . R(x)CR(y) => xRy).

Proof: Let Rbe reflexive and x,y:S. Then

R(x)CR(y)

... [1 3]: <=> (Vz . z£R(x) => z€R(y))

...
(1.0)(ii): <=> (Vz . zRx => zRy)

... [0.30]: => (xRx => xRy)

... assumption, [o.l]: O xRy.

Let (Vx.y . R(x)CR(y) => xRy). Then for x:S,

true

..[refC]: <=> R(x)CR(x)

... assumption: => xRx;

this proves R is reflexive. (End ofProof.)

(1.10) Let R:RS. Then Ristransitive <=> (Vx,y . xRy => R(x)CR(y)).

Proof: R is transitive

...[l.l]: <=> (Vz,x,y . zRx A xRy => zRy)

... [o.lB], [o.4]: <=> (Vx,y,z . xRy A zRx => zRy)

...
[0.17], [0.10]: <=> (Vx,y . (Vz . xRy => (zRx => zRy)))

... [0.21], (1.0)(ii): <=> (Vx,y . xRy => (Vz.z^R(x) => z€R(y)))

...[l.3]: (Vx,y . xRy => R(x)CR(y)). (EndofProof.)

(1.11) Let R:RS. Then Risreflexiveandtransitive <=> (Vx.y . xRy R(x)CR(y))
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Proof: By (1.9), (1.10); [0.23]; [0.13], (EndofProof.)

(1.11) is interesting because it shows that any partial order R on S can be

"represented” by the inclusion relation on an appropriate power type, namely PS. The

function from S to PS, with the property that the relation C between two function values

"represents” the given relation between the respective arguments, as in (1.11), is simply

given by R of type S -* PS as defined in (1.0)(i). In this sense, we could confine ourselves

to inclusion when studying partial orders; for applications of this kind, in particular

with respect to results of the next chapters, see B urris!Sankappanavar [BS, Thm. 5.3],

Completeness.

When dealing with general partial orders, we will use the symbol <. We will

thereby understand that its dual is denoted by > (cf. (1.2)), and also employ the

following notational conventions:

[1.12] Let <be a partial order on S. Then define lb,ub as follows: lb,ub:PS —> PS,

(VA . Ib(A) ={y j(Vx . x€A => y^x)}), (VA . üb(A) ={ y |(Vx .x€A => y >x)} );

for A:PS, Ib(A) is called the set of lower bounds of A and üb(A) the set of upper

bounds of A.

The definition of ub is identical to the definition of lb, except that for any

occurrence of <. is used instead: in other words, for a given set A, the set of its upper

bounds is the set of its lower bounds in terms of the dual of the original partial order,

which is a partial order by (1.2). In this sense, Ib and ub are dual notions (an obviously

symmetric condition, because the dual of > is again <).

In the following definition, inf A and sup A are to be read as "infimum of A”

and "supremum of A”, respectively. The parentheses around the argument, here A, will

be omitted for the functions inf and sup; ifA is a term, the function symbols used in A are

given higher binding power than inf and sup.

[1.13] <,inf,sup is called a complete partial order on Pif < is a partial order on P,

infsup PP-> P and (VA . Ib(A) = <(infA)), (VA . üb(A) = >(supA)).

(1.13’) see below
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(The letter P will be reserved for types with a complete partial order.) inf and sup are

dual notions. The advantages of the concept of dual notions are the following: It is

immediately seen that if < ,inf,sup is a complete partial order, then so is its dual notion

> ,sup,inf (with the meanings of Ib and ub exchanged, too). Any proof remains valid if <

is replaced by > within the proof and in the definitions of derived terms like inf.

Therefore, properties of one "notion”, e.g. the object inf, hold without further proof for

the dual notion, "by duality", as we will say. An example is given in the proof of the next

proposition, which asserts that in a complete partial order < ,inf,sup, the functions inf

and sup are unique.

(1.14) Let < .inf,sup be a complete partial order on P and inf,sup’:PP-> P such that

(VA . Ib(A) = <(inf A)), (VA . üb(A) = >(sup’A)). Then inf = inf, sup’ = sup

Proof. true

...[1.13]: 44 (VA. Ib(A) = <(inf A)) A (VA . Ib(A) = <(inf A) )

... [0.23],[0.35],[0.361: =4 (VA.<(inf A) = <(infA))

... [ref C], (0.28): =4 (VA . <(inf A) C <(infA) A <(infA) C <(inf A))

...(1.11): (VA . inf A < inf A A inf A < inf A)

... [asy <], (0.28): =4 (VA . inf A = inf A)

...[0.38]: 44 inf = inf.

sup'= sup holds by duality. (End ofProof.)

By (1.14), there is at most one infimum and one supremum function for a given

partial order: if these functions exist, the partial order is complete. We identify a

complete partial order by the triple <,inf,sup in order to be able to substitute other

symbols for the components. Ib and ub will only be used if the partial order is denoted by

<. Because [1.13] will be so widely used in what follows, we rephrase it again entirely in

terms of the given partial order <:

(1.13’) < ,inf,sup is a complete partial order on P 4» inf,sup:PP —► P and

(VA ,y . (Vx . x€ A =4 y <x) y<infA),

(VA ,y . (Vx . x^ A =4 x<y) supA<y).

Proof: Itissuflicienttoshow (VA . Ib(A) = <(infA))

...[0.391: 44 (VA.(Vy.y€ Ib(A) 44 y€<(infA))

...

[0.17], [1.12], (0.42’): <VA.y (Vx . x£ A=4 y<x) 44 y<infA);
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the corresponding equivalence for the supremum holds by duality and by the

definitionof the dual of <. (End ofProof.)

The following proposition finally states the familiar property that the infimum

of a set A is the “greatest” lower bound of A, and that the supremum of A is the “least”

upper bound. The labels in square brackets, e.g. [gib], will be used in comments without

naming (1.15). The interested reader may wish to prove that (1.15) can be used as a

definition for inf and sup instead of [1.13],

(1.15) Let <,inf,sup be a complete partial order on P and A:PP. Then

[lb] inf A € Ib(A), [gib] Ib(A) C <(infA),

[ub] supA€ub(A), [lub] üb(A) C >(supA).

Proof: true

...
[ref ^], [1.13]: & inf A < infA A Ib(A)= <(infA)

...
(1.0)(ii): inf AS <(infA) A Ib(A)= <(infA)

...
[ref C], [0.12]: =» inf A € Ib(A) A Ib(A) C <(infA);

this proves [lb] and [gib]; [ub], [lub] hold by duality. (End ofProof.)

In the following it will be shown that a partial order is already complete if the

infimum function alone exists (or, by duality, the supremum function). We prove an

auxiliary lemma first.

(1.16) Let <be a partial order on S and A:PS. Then AClb(ub(A)).

Proof: AC lb(ub(A))

...[l.3]: & (Vs.s€A s€lb(ub(A)))

... [1.12], (0.42’): <=> (Vs. s^A => (Vy . y^ub(A) =» s<y))

... [1.12], (0.42’): <=> (Vs . s€A => (Vy . (Vx . x€A => x<y) => s<y))

...[0.21]: <=> (Vs.(Vy.s€A => ((Vx .xC A => x<y) => s<y)))

... [0.17], [0.10]: <=> (Vs,y.s€A A (Vx .x€ A x<y) => s<y) (a).

It suffices to prove (a): Let s,y:S. Then

s^A A (Vx . x€A => x<y)

... [0.30], [0.12]: => s(A A(s(A=>s<y)

...(0.16): s<y. (End of Proof.)
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(1.17) Let <be a partial order on S; inf: PS—> S; (VA . Ib(A) = <(infA)).

Then < ,inf,sup is a complete partial order on S, where sup: PS -* S and

(VA . sup A = inf üb(A)).

Proof: By (1.13’) and (1.14) it is sufficient to prove (VA ,y . y€ub(A) infub(A)<y).

Let A:PS; y:S. Then true

...[lb, A: = üb(A)]: & inf üb(A) € lb(ub(A))

... [1.12], (0.42’): O (Vx .x€ üb(A) =4 inf üb(A) <x)

...[0.30]: => (y€ub(A) => infub(A)<y);

furthermore, infub(A)<y

...
(1.16), [gib, A: = üb(A)], & AClb(ub(A)) AIb(Ub(A))C <(infüb(A)) A

(1.11): <(inf üb(A)) C <(y)

... [tra C], [tra C]: => AC<(y)

... [l.3], (1.0)(ii), [1.12], (0.42’): o y^ub(A).

By [0.13], this proves y€ub(A) O infub(A)<y. (EndofProof.)

We conclude this section with the observation that for a complete partial order

< .inf,sup on P, inf 0 is the "greatest” and sup 0 the "least” object of P with respect to

(1.18) Let<,inf.sup be a complete partial order on P.

Then (Vy .y < inf 0), (Vy .y > sup 0).

Proof: true

...[gib]: & lb(0)C<(inf0)

...[l.3]: <=> (Vy.y€lb(o) => y€<(info))

... [1.12], (0.42’), (1.0)(ii): £4 (Vy . (Vx .x€ 0 => y <x) => y
< inf 0)

...
[0.46]: <=> (Vy . true =4 y < inf 0)

...[o.l]: <4 (Vy . y < inf 0);

(Vy . y >
sup 0) holds by duality. (End ofProof.)
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Intersection and Union.

We will show that the intersection over a set A of sets, denoted by AA, is the

"infimum” of A with respect to the partial order C on PS (A:P(PS)), and that the union

over A, denoted by UA, is the "supremum” of A with respect to C. In other words,

C, A, U will prove to be a complete partial order on PS.

[1.19] For any given type S, define A j Uasfollows: A,U:P(PS)—» PS,

(VA. AA = {sj(VX.X€A => s€X)}), (VA. UA = {s|(3X.XCA A s€X)}).

(1.20) C, A,U is a complete partial order on PS, i.e. (cf. (1.13’))

(VA,Y . (VX . X^ A =» YCX) YcAA),

(VA,Y . (VX . X€ A => XCY) UACY).

Proof: Let A:P(PS); Y:PS. Then (VX . X€A => YcX)

...[l.3]: « (VX.XSA (Vs.s€Y => s€X))

...

(0.19): & (Vs .s£ Y => (VX .XS A => s£X))

...
[1.19], (0.42’): & (Vs .s€ Y =» s€ AA)

...[l.3]: YcAA;

(VX.X€A =» XCY)

...[l.3]: & (VX.XCA => (Vs.s€X => s€Y))

...

[0.21]: O (VX . (Vs . X€A => (s€X =* s€ Y)) )

... (0.18’),[0.10]: o (Vs.(VX.X€AAs(X=»s(Y))

...[0.24]: (Vs.(3X.X€A A sCX) =* s€Y)

...[1.19],(0.42’): O (Vs. s(UA s€Y)

...[l.3]: UAcY. (EndofProof.)

We next define the symbols A and U. The binding power of A and U shall be

equal, lower than that of functions with domain PS, and higher than that of € and

relations on PS.

[1.21] Let X,Y:PS. Thenlet XAY = A{X,Y} and XUY = U{X,Y}.

(1.22) Let X,Y:PS. Then XAY ={s | s^X AsC Y}.

Proof: true

...[0.34]: O A<X.Y> = AfX.Y)
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...[1.21], [1.19]: & XAY = {Vs|(Z.Ze{X,Y}=> s€Z)}

...[0.47]: & XAY = {sl s^X A s^Y}. (EndofProof)

(1.23) Let A,B:PS. Then AABCA.

Proof: true

...
(0.32), [0.12]: =» (Vs.s(A A s(B=^s(A)

... (1.22), (0.42’): (Vs . s£ AAB => s€ A)

...[l.3]: <=> AABCA. (EndofProof.)

(1.24) Let A,B,C,D:PS. Then AcCaßcD => AAB C CAD.

Proof: true

..[0.121: « (Vs . (s€A =5 s£C) A (s£B => s^D) => (s(AAs€B=>s(CAs(D))

...(0.28): (Vs . (s€ A => s£C) A (s€B => s€ D)) => (Vs . s£ A A s€B => s€C A s€ D)

...
[0.23], (1.22):

(Vs . s€ A => s€C) A (Vs . s£B => s€D) => (Vs . s€ADB => s(CDD)

...[l.3]: <=> AcCaßcD => AOBcCnD. (End ofProof.)

In the next proposition, it should be noted that the symbol 0 denotes different

objects, namely for the three occurrences of 0, the type of 0 is P(PS), P(PS), PS.

respectively.

(1.25) Let O.U-PfPSW PS. Then (Vs.s€Oo), U 0 = 0

Proof: Let s:S. Then true

... (1.20), (1.18): (VX.XCOO)

...
[0.30]: => {s}C 00

...

(1.7): O s£ 00.

F urthermore, true

...
(1.20), (1.18), (1.6): & (VX . UOCX) A OCUO

...
[0.30], [0.12]: => UOCO A OCUO

...[asyC]: => U 0 =O. (EndofProof.)
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Partial Orders on Function Types.

Let R be a relation on T and consider S—* T (the objects of S—* T shall be

simply called "functions”). Then a relation R’ on S->T can be defined by

(Vf,g . f R’g <=> (Vs . f(s)Rg(s))). In other words, R’ is obtained by "comparing” any two

functions "argumentwise” by R. We will show that R’ is similar to R in that it is a partial

order ifR is. (As an aside, we remark here that if R,inf,sup is a complete partial order on

T, then INF and SUP can be defined in terms of inf and sup such that R’,INF,SUP is a

Ocmplete partial order on PT.) One could use the same symbol R instead of R’, as is in

fact the case for the equality symbol = (cf. [0.38]); it would be "natural” to interpret fRg

as (Vs . f(s)Rg(s)). We will not do this, however, but will use instead the typographically

differentsymbol for R’ ifRis a partial order <on T.

[1.26] Let <be a partial order on T. Then define by ^:R(S-*T)and

(Vf,g . f U g o (Vs . f(s)< g(s))).

(1.27) Uas defined in [1.25] is a partial order on S—> T.

Proof: Prove [ref ]: true

...(0.32): => (Vf,s. true)

...
[0.17], [ref <]: & (Vf. (Vs . f(s) <f(s)))

..
[1.25]: (Vf.f^f);

to prove [tra ], let f,g,h: S—> T. Then

f gAg S h

...[1.25], [0.231: & (Vs . f(s)<g(s) A g(s)<h(s))

... [tra <], (0.28): =* (Vs . f(s)<h(s))

...[1.25]: & f^h;

to prove [asy ], let f,g: S-* T. Then

f^gAg^f

...[1.25], [0.23]: & (Vs . f(s) <g(s) A g(s)<f(s))

...[asy <], (0.28): => (Vs . f(s) = g(s))

...[0.38]: <=> f=g. (EndofProof.)

This concludes our introduction of complete partial orders. In the next chapters,

we will investigate functions on P, where a complete partial order on P is given.
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Chapter 2

Closure Spaces

In the informal discussions of this chapter, it is understood that < is a partial

order on S and < ,inf,sup is a complete partial order on P. Objects of type Sor P are

called points.

Closed Points of Monotonic Functions.

[2.o] Let <be a partial order on S. fis called a monotonic function on Sif f:S -* S

and (Vx,y.x<y => f(x)<f(y)).

Monotonic functions on S are in a sense the "homomorphisms” with respect to the given

partial order <, that is, functions "preserving” the mathematical structure given by <.

[2.l] For a monotonic function fon P, the set {x|f(x)<x} is called the set of closed

points off.

[2.2] Let < ,inf,sup be a complete partial order on P. Cis called a closure space in Pif

C:PP and (VA . AcC => infA^C).

Closure spaces in P can be viewed as "infimum-stable” sets of points: the infimum of any

subset of C belongs to C.

(2.3) Let <,inf,sup be a complete partial order on P, fbe a monotonic function on P

and C be the set of closed points of f. Then C is a closure space in P.

Proof: Let A:PP. Then AC C

...[o.3], [lb], [2.l]: inf AOb(A) A AC{x|f(x)<x}

... [1.12], [l.3]: <=> (Vx . x€A => infA<x) A (Vx . x^A f(x)<x)

... [2.o], [o.9], (0.20): => (Vx . x€A => f(inf A)<f(x)) A (Vx . x£A => f(x)<x )

... [0.23], [0.11]: (Vx . x€A f(inf A)<f(x) A f(x)<x )

... [tra ^]. [o.9], (0.20): => (Vx .x€A => ffinf A)<x )
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...(1.13’): f(infA)<infA

...(0.42’): O infA^C.

Hence C is a closure space by [0.27], [2.2], (End ofProof.)

The auxiliary statements given next will be used to prove that every closure

space in P is equal to the set ofclosed points of some monotonic function on P

[2.4] For A:PP and x:P, define A/x =AD >(x).

The symbol / shall have higher binding power that inf. For A:PP and x:P, A/x can be

read as the set of elements of A "extending” x. A/x is a subset ofA by (1.23).

(2.5) Let A,B:PP;x,y:P. Then

(i) xA.CB => A/x C B/x,

(ii) x<y => AyCA/x,

(iii) ACB => Ib(B)Clb(A),

(iv) ACB inf B < inf A,

(v) x<y => inf A/x < inf A/y.

Proof: Prove (i): ACB

... [ref C], (1.24): => AQ >(x) C Bn >(x)

.[2 4]: O A/xCB/x;

prove (ii): x<y

& y>x

' 1.2). 11.11): O
— (y) C ^(x)

... iref C]. (1.24): =$ A/y C A/x.

Toprove(iii),let ACBands:P. Then

s€ Ib(B)

...[1.12]: (Vt. t€B =>s<t)

... assumption ACB, [0.23]: 4=> (Vt. (t€A =4 t€B) A (t€B => s<t))

...
[o.9], (0.28): => (Vt. t€A =»s<t)

...[1.12]: s€lb(A);

this proves Ib(B) C Ib(A) by [0.27], [l.3]. Hence (iii) holds.

Prove (iv): AGB

...(iii): => Ib(B)Clb(A)

...[1.13]: <(inf B) 2 < inf A)
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...(1.11): o inf B infA;

prove (v) by (ii), (iv). (End ofProof.)

(2.6) Let <,inf,sup be a complete partial order on P; C:PP; c:P—>P;

(Vx . c(x) = inf C/x). Then cis a monotonic function on P.

Proof: By (2.5, A: = C)(v), [0.27], [2.o]. (EndofProof)

(2.7) Let < .inf,sup be a complete partial order on P and C:PP.

Then (Vy . y < inf C/y).

Proof: Let y:P. Then true

... (0.32), [o.s]: => (Vx. x(C Ax( >(y) => x€>(y))

...
(1.22), (I O)(H): O (Vx . x(Cn>(y) => x>y)

...[2.4]: (Vx.x€C/y => y^x)

...(1.13’): <=> y<infC/y. (EndofProof.)

(2.8) Let <,inf,sup be a complete partial order on P; Cbe a closure space in P

Then (Vx.x€C => infC/x < x).

Proof: Let x:P. Then x^C

...
[ref >], [lb]: <=> x€C A x£ ^(x) A infC/x € Ib(CZx)

...(1.22). [1.12]: <=> x€CA>(x) A (Vz.z€C/x infC/x<z)

..
[2.4], [0.30], [0.12]: => x^C/x A (x^C/x =» infC/x<x)

..

(0 16): => infC/x<x. 'End ofProof.)

For C.PP. the function con P defined by (Vx . c(x) = inf C/x) is monotonic by

(2.6) The following theorem gives two characterizations of closure spaces C in terms of c,

namely (2.9)(ii) and (2.9)(iii). (2.9)(ii) asserts that the result of applying c to an

argument is always an element of C. (2.9)(iii) states that C equals the set of closed points

ofc.

(2.9) Let < ,inf,sup be a complete partial order on P and C:PP.

Then the following are equivalent:

(i) C is a closure space in P,

(ii) (Vx . inf C/x € C),

(iii) C = Ix inf C/x <x }
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Proof: Let Cbe a closure space in P. Then for x:P,

true

...[2.2]: (VA.AcC => inf A € C)

...[0.30]: => (C/xGC => inf C/x ^C)

...[2.4],(1.23): infC/x€C;

this proves (Vx . inf C/x C C). Hence (i) (ii).

Let (Vx . inf C/x € C); y:P. Then y€C

...
(2.8): => inf C/y y

...(0.42’): <=> y€{x| infC/x<x};

furthermore, y€{ x | inf C/x<x }

...
(2.7), (0.42’): O y < inf C/y A inf C/y y

... [asy <]: =» y = infC/y

...Instantiateassumption: => y€C;

thus y€C y€{ x j infC/x<x }. By [0.27], this proves C={ x | infC/x<x }.

Hence (ii) => (iii).

(iii)^(i) holds by (2.6), (2.3).

(i), (ii) and (ii) are equivalent by [0.13] and [o.9], (End ofProof.)

We will investigate the connection between a given monotonic function f on P

and the the function c on P defined by (Vx. c(x) = infC/x), where C={ x I f(x)<x }.

Mapping f to c will be the purpose of a function clo. The domain of do shall be the type of

all monotonic functions on P; this is a subtype of P—* P, as introduced in the next section.

Intermezzo on Subtyping.

It will be convenient to have the collection of all monotonic functions on P given as a

type. We shall denote this type by MO(P,^). The boldface indicates the construction of

a type (as with P and R), and using two (or more) letters for the identifier MO shall

indicate that it is a subtype of a given type, here of P -> P.

[2.10] For a given partial order < on S,

f:MO(P,£) f:S—*S '

(Vx.y . x<y => f(x)<f(y)).
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In the previous definiton, <, f, S are free identifiers for which any other symbols can be

substituted. In particular, the given equivalence has to hold for any function fon S. The

next definition gives a general schema of subtyping, which will be explained below.

[2.11] Let Lsub(T) t:T A a(t). ThenbylO.s],

(i) Lsub(T) => t:T.

sub(T) is called a subtype ofT. Further conventions are

[ii] f: T-* S => Lsub(T)->S,

[iii] LS-* sub(T) => f: S-> T,

[iv] f: S-> T A (Vs . a(f(s))) => f:S-*sub(T),

[v] R: RT => R: Rfsub(T)),

[vi] A: Pfsub(T)) A: PT,

[vii] A: PT A (Vs .s€ A a(s)) => A: P(sub(T)).

In [2.11], a(t) is a predicate in t, t ranging over T. The type sub(T) consists of

exactly those objects of T for which this predicate holds. Consequently, any object of type

sub(T) belongs also to T, as stated in (i). The assertions [ii] to [vii] express ways in which

objects of type sub(T) can also be used with functions, relations and sets involving

objects of type T. [ii] describes the restriction of a function to a subtype of its domain, [iii]

accounts for the fact that if an object of type sub(T) is denoted by the term f(s), then this

object is also of type T, for all arguments s of f. By [iv], the range of a function f with

range T can also be assumed as sub(T), provided any value f(s) of the function fulfills the

predicate defining the subtype subiT), i.e. provided a(f(s)) holds, [v] allows one to restrict

any relation R on T to a relation on sub(T); in other words, given R:RT, sRt is an

admissible predicate if s,Lsub(T). According to [vi], any set A of objects of type sub(T) is

also a set of objects of type T. Conversely, by [vii], a set A of objects of type T all

belonging to sub(T) can also be regarded as of type Ptsub(T)). (Note the analogy

between [vi]-[vii] and [iii]-[iv].)

The assertions given in [2.11] are to guarantee that the usage of functions,

relations and sets is consistent with the involved objects of "lower type” like arguments

of functions or elements of sets, as described in chapter zero. In a particular predicate,

there should be only one way to consistently choose the types for the objects (if necessary,
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with the aid of explicit type assertions like t:sub(T)). We will explain the types of bound

variables, which have to be inferred, in non-obvious cases.

Some of the assertions can be interpreted as ways to "derive” subtypes of

"higher” types if a subtype is given. For example, under the assumptions of [2.11], the

subtypefsub(S,T)of S-* T given by Ffsub(S
l
T) <=> f: S—* T A (Vs . a(f(s))) consists

Ofthesameobjectsas S-*sub(T) by [iii], [iv]. This is not the case for [ii]; sub(T)-*S

can not be regarded as a subtype of T —* S.

The numerous conceivable complications of a type system allowing subtyping

and multiple kinds of "inheritances” will not be discussed here. We hope the use of

subtypes will be clear in the comparatively simple cases presented in this text.

Closure Operations.

For a monotonic function fon P, the function c on P defined by (Vy . c(y)=

inf {x J f(x) < x }/y) is monotonic by (2.6). Consequently, a function clo mapping fto c can

be assumed as a function with domain and range MO(P,^), As the function symbol inf,

clo will be simply prefixed to its argument to denote functional application.

[2.12] Let <,inf.sup be a complete partial order on P. Then define do by

do: MOlP
1

)—> MOIP, < ) and (Vf. (Vy . {do f)(y) = inf {x | fix) <x }/y )).

We demonstrate briefly how the function clo is obtained by a stepwise

application of the conventions in [2.11], In [2.11] let T,sub(T) :=P -* P, MO(P. <);

a(f): = (Vx,y . x<y => f(x)<f(y) ) (cf. [2.10]). Define clo temporarily by asserting

clo: MO(P, <) —> (P —> P) and the equation given in [2.12], The variables f and y bound

by the first and second quantifier in this equation are of type MO(P,£) and P, because

they are arguments ofclo and (clo f), respectively, fis of type P—* Pby [2.11 ](i); hence <

is properly used in {x | f(x) <x }. This set, and thus {x | f(x) < x }/y, is of type PP, where

the latter serves as argument for inf. Having thus correctly established that clo f is of

type P-* P, dclo f) holds by (2.6), for any f. By [0.27] and [2.ll][iv], this allows us to

assert clo: MO(P,<)—* MO(P,<).
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We postpone here the study of the function do for a more basic consideration.

This concerns properties of cZof; because of (2.7) and (2.9)(ii), clof is not only

monotonic, but a so-called closure operation on P.

[2.13] Let <be a partial order on S. cis called a closure operation on Sifc:S —> S and

[mon] c is monotonic: (Vx,y.x<y => c(x)<c(y)),

[inc] c is increasing: (Vx . x < c(x)),

[subip] c is sub-idempotent: (Vx . c(c(x)) < c(x) ).

(As before in [l.l] and [l.], the labels in square brackets will be referred to without

mentioning [2.13].) Closure operations are usually defined as monotonic, increasing and

idempotent functions c, i.e. [subip] is replaced by (Vx
.
c(c(x)) = c(x)). The reader may

verify that for increasing functions idempotency is equivalent to sub-idempotency: we

chose the latter as a condition that is weaker, hence more easily established, and

independent of [inc], Obviously, a function c on P is sub-idempotent if every result of

applying c to an argument is a closed point of c:

(2.14) Let <be a partial order on S and c:S —> S. Then

cis sub-idempotent <=> (Vy . c(y) €{x | c(x) < x}).

Proof: By (0.42’). (EndofProof)

(2.15) Let <,inf,sup be a complete partial order on P; Cbe a closure space in P:

c:P—»P: (Vx . c(x) = inf C/x). ThencisaclosureoperationonP.

Proof: By (2.6) and (2.7), cis monotonic and increasing. By (2.9)(ii), (2.9)(iii) and (2.14),

c is sub-idempotent. l EndofProof.)

We remark here without proof that the condition 'C is a closure space in P’ is not

necessary for c being a closure operation on P, given C:PP and (Vx . c(x) — inf C/x). We

can not state this remark within our formal system, but is is not difficult to find a

suitable counterexample.

A closure space C in P is equal to the set ofclosed points of the closure operation c

on P given by (Vx . c(x) =inf C/x). We will prove conversely that any closure operation c

on P can be defined in terms of a closure space C by (Vx . c(x) = inf C/x). It will then be

easy to show that closure spaces in P and closure operations on P are in a one-to-one

correspondence, as for instance C and c before.
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At this point, it is appropriate to consider the partial order on "function

types” as introduced in the last section of chapter 1. If is defined as in [1.26,

S,T: = P,P], we can assume :R(MO(P,<)) by [2.ll][iv]. However, it has to be shown

that as a relation on MO(P,<) is a partial order.

(2.16) Let <be a partial order on S, and sub(S) be a subtype of S.

Then < is a partial order on sub(S).

Proof: <:R(sub(Sj) holds by [2.1 l][iv], If <:R(sub(S)) is given, the variables bound

by the quantifiers in [ref <], [tra <], [asy ] range over sub(S).

Toprove,forexampie, (Vx.x<x), let x:sub(S). Then x:S by [2.11 ](i), hence

x<x by instantiating [ref <, <:RS]. Thisprovestref <] for <:R(sub(S)).

[tra < ] and [asy < ] are proved analogously. (End ofProof.)

(2.17) Let <be a partial order on P, :R(MO(P,<)) and

(Vf,g.f^g (Vx . f(x) <g(x))). Then is a partial order on MO(P, <).

Proof: By (1.27) and (2.16). (EndofProof.)

Whenever the symbol is used in the remaining statements of this chapter,

is assumed to be given as in the assumptions of (2.17). After the following two

propositions, we will state the theorem asserting the correspondence mentioned above.

(2.18) Let < ,inf,sup be a complete partial order on P. Then (Vf.f^cZof).

Proof: Let f:MOiP, <): y:P. Then true

... [2.12], (2.7), (2.3),(2.9) (ii) y<(do f)(y) A inf { x | f(x) <x }/y € { x ; f(x) <x }

...[2.12]: y <(cZo f)(y) A (cZo f)(y) €{ x | f(x)<x }

...[2.10], [0.12], (0.42’): => f(y) <f((cZo f)(y)) A f((cZo f)(y)) < (cZo fi(y)

...[tra<]: => f(y)< (do f)(y).

Thisproves (Vy . f(y) <(cZo f)(y)), i.e. f^cZof. (EndofProof.)

(2.19) Let < ,inf,sup be a complete partial order on P.

Then (Vf. fis a closure operation on P => cZof^f).

Proof: Let fbeaclosureoperationonPjy:?. Then

true

... [subip],(2.l4): [inc], (1.0)(ii): f(y) £{x | f(x)<x} A f(y) € >(y)

... (1.22), [2.4]: f(y) € {x|f(x)<x}/y
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... [lb], [1.12], [0.30]: => inf {x | f(x)<x }/y < f(y)

...[2.12]: <=> (clo f)(y) < f(y). (EndofProof.)

(2.20) Let <,inf,sup be a complete partial order on P; C:PP; c:P—>P.

Then the following are equivalent:

(i) CisaclosurespaceinP A (Vy . c(y) = inf C/y),

(ii) CisaclosureoperationonP A C = {x | c(x) <x }.

Proof: (i) =» (ii) by (2.15), (2.9)(iii) and [o.ll].

Conversely, let (ii) hold. Then C is a closure space in P by [mon], (2.3).

Furthermore, true

... (2.18), (2.19): <=> c clo c A cZoc^c

...

(2 17), [asy ^]: => c = clo c

... [0.38],[2.12]: (Vy . c(y) = inf { x | c(x)<x }/y)

...

(ii): (Vy . c(y) = inf C/y).

Thus (ii)^(i) holds by [o.ll], By [0.13], (i) <=> (ii). (EndofProof.)

Theorem (2.20) can be rephrased in the following way: Let the closure space C in

P correspond to the closure operation c on P given by (Vy . c(y) = infC/y), and vice versa

by C={ x | c(x) <x}. The equivalence of (2.20)(i) and (2.20)(ii) asserts that this corres-

pondence, regarded as a mapping in either direction between closure spaces in P and

closure operations on P, has an inverse, viz. the mapping in the other direction. Thus it is

a one-to-one correspondence.

The Set of Closure Operations on P and the Set of Closure Spaces in P.

We next investigate the correspondence stated in (2.20) with respect to the

partial order on MO(P, <) and the partial order Con PP.

(2.21) Let < ,inf,sup be a complete partial order on P; f,g:MO(P, ^).

Then f g=> {x | g(x) <x} C {x | f(x) < x}.

Proof: Let f g, i.e. (Vx . f(x)<g(x)); y:P. Then

y € {x| g(x)<x}

...(0.42’): <=> g(y)<y

...
instantiate assumption. Oyi^gfy) \g(y)<y
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...[tra<]: => f(y)<y

...(0.42’): <=> y 6 {x | f(x)<x }.

Thisproves {x | g(x)<x }C {x | f(x)<x} by [0.27], [l.3]. (EndofProof.)

(2.22) Let <,inf,sup be a complete partial order on P; F,G:PP; f,g:P->P;

(Vx . f(x) = infF/x); (Vx . g(x) = inf G/x). Then GcF => f g.

Proof: Let x:P. Then GcF

...
(2.5)(i): => G/x C F/x

... (2.5)(iv): => infF/x < inf G/x

<=> f(x) < g(x).

This proves (Vx . GcF => f(x) < g(x)), i.e. GCF => (Vx . f(x) g(x)) by

[0.21], (EndofProof)

Note that in (2.22), the assertion f,g:P—>P can be replaced by

because of (2.6). We will shortly discuss the connection between MO(P,^) and PP given

by (2.21) and (2.22). Before that however we regard the case that f,g in (2.21) are closure

operations, F={x | f(x)<x}, G={x | g(x)<x}, and F,G in (2.22) are closure spaces.

Under these conditions, f,g and F,G are in respective correspondence by (2.20). This

correspondence can then be viewed as "order-reversing”, as expressed by the following

statement.

(2.23) Let <,inf,sup be a complete partial order on P and the closure operations c.d on

P correspond to the closure spaces C,D in Pas in (2.20). Then cU d O DcC.

Proof: By (2.21), (2.22) with f.g,F,G: = c,d,C,D, respectively, and [0.13]. (EndofProof.)

Webriefiycommentonthetwofunctionsthatmap f to {x|f(x)<x} and G to g

given by (Vx . g(x) = infG/x), respectively, where f,g:MO(P,^) and G:PP. With the

"order-reversing” properties stated in (2.21), (2.22), this pair of functions is a so-called

"Galois connection’ between MO(P,<) and PP with respect to the partial orders and

C on these types. The reader is referred to Cohn [Co, p.44] for a general definition. Many

closure operations used in mathematics arise in the context of Galois connections. For

instance, it is possible to derive the following theorem in this framework, cf. [Co, p.44].



35

(2.24) Let < ,inf,sup be a complete partial order on P.

Then do is a closure operation on MO(P, <).

Proof: Let f,g:MO(P,<). Then f= g

...(2.21): => {x| g(x)<x}C {x|f(x)<x}

...(2.22): => cZof^cZog;

this proves do is a monotonic function on MO(P,<). do is increasing by (2.18).

By (2.3) and (2.15), cZo fis a closure operation on P. Thus by (2.19),

do (do f) do f, i.e. do is sub-idempotent. (End ofProof.)

Last, we will show that the set of closure spaces in P is a closure space in PP.

C, A, U is thereby the complete partial order on PP. Closure spaces in a power type PS

appear throughout mathematics. We restate [2.21 with <,inf,sup,P: = C,A,U,PS: For

C:P(PS), CisaclosurespaceinPS <=> (VA . AeC => AACC). Animportantexample

of a closure space in PS is a so-called topology on S, that is a closure space C in PS such

that (VX,Y . XCC A YCC XuYCO A OCC; the elements of C are commonly called

'closed sets’. The reader may be familiar with another example, informally described as

the set of subgroups of a given group S, which is also an "intersection-stable” set of sets.

In these examples, the result of applying the corresponding closure operation on PS to a

set X is usually called "topological closure of X” and "the subgroup of S generated by X”,

respectively.

(2.25) Let < ,inf,sup be a complete partial order on P.

Then the set CS of closure spaces in P is a closure space in PP.

Proof: Let B:P(PP); BcCS. Then for A:PP

Ae AB

... [1.3],[1.19]: (Vx.xCA (VC.CCB xCC))

...(0.19): (VC. CCB => (Vx.xCA => xCC))

...[l.3]: (VC. CCB => AcC )

...
BCCS, (1.5) (i.e.CCCS), [2.2]: o (VC . CCB => AcC A (ACC => inf ACC)

... (1.16), [o.9], (0.28): => (VC-CCB=^infACC)

...
[1.19], (0.42’): inf A C AB.

Thus by [0.27], Bis a closure space in P according to [2.2], End ofProof.
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The interested reader may verify that the set of topologies on S is a closure space

in P(PS); the proof is similar to that for (2.25). The result of applying the corresponding

closure operation on P(PS) to an argument A is the so-called topology "generated from

A”.
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Chapter 3

Disjunctive Functions

In the informal discussions of this chapter, it is understood that < ,inf,sup is a

complete partial order on P. Objects of type P are called points. For some fixed type S,

objects of type RS, PS and PS-* PS are for simplicity called relations, sets and set

mappings, respectively.

Disjunctive Functions and Closure Operations.

In this chapter, we investigate functions on P that "distribute over suprema”.

The study of these functions is an interesting counterpart to closure spaces in P, which

are "infimum-stable” sets of points. "Conjunctive” functions on P, functions that

"distribute over infima”, do not have the properties in connection with closure spaces

that will be demonstrated in this section.

[3.o] Let <,inf,sup be a complete partial order on P. fis called a disjunctive function

on Pif f:P -* P and (VA . f(sup A) = sup {f(x)| x€ A}).

The equation in [3.o] can be rewritten in the form f(sup {x| x£ A}) = sup lf(x)| x€ A},

because the set Aof points is equal to {x jx€ A}.

We also define the type ofall disjunctive functions on P.

[3.l] Let <,inf,sup be a complete partial order on P. Then define DIS(P j Sup) as

follows: f:DIS(P,sup) <=> f:P—>PA (VA . f(sup A) = sup {f(x)| x€ A}).

We will show that the so-called "functional composition” of disjunctive functions

on P is disjunctive. This will be proved using the following proposition about "iterated

comprehension”.

(3.2) Let g:S—* T, f:T -* U, and a(s) be a predicate in s, s ranging over S. Then

{f(t)l t€{g(s)| a(s)}} = ; f(g(s))| a(s)
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Proof: Let u:U. Then uf {f(t)| t€{g(s)| a(s)}}

...[0.42]: 44 Ot. t€{g(s)| a(s)} A u = f(t))

...(0.44): 44 Os . a(s) A u = f(g(s)))

• ••[0.42]: 44 u€{f(g(s))| a(s)}.

This proves the assertion by [0.27] ,[l.3]. (EndofProof.)

(3.3) Let <,inf,sup be a complete partial order on P; f,g,h:P->P; (Vx . h(x) = Hgfx)));

let f,g be disjunctive functions on P. Then h is a disjunctive function on P.

Proof: Let A:PP. Then true

• •■[3.o]: 44 Hsup {g(x)| xC A}) = sup {f(y)| yC{g(x)| xCA}}

... [3.0, f: = g], (3.2): 44 f(g(sup A)) = sup {f(g(x))| xC A}

44 h(sup A) = sup{h(x)| x€A}. (EndofProof.)

The previous proposition is very intuitive in viewing disjunctivity as a kind of

"distributive” property. Similarly, monotonic functions on P can be regarded as

"distributing over the partial order <”; it is easily seen that the "functional

composition” of monotonic functions is monotonic. We next investigate the connection

between monotonic and disjunctive functions on P.

(3.4) Let <,inf,sup be a complete partial order on P and fbe a monotonic function on

P. Then (VA . sup {f(x)| xCA} < f(sup A)).

Proof: Let A: PP. Then true

... [ub]: 4=> SupACub(A)

...[1.12]: «> (Vx.xCA => x<supA)

... [2.0], [0.9], (0.28): => (Vx.xCA => f(x)<f(sup A))

...(0.43): & (Vy . yC{f(x)| xC A} => y<f(sup A))

■ ••(1.13’): O sup {f(x)| xCA} < Hsup A). (EndofProof.)

Because of (3.4) and [asy <], a monotonic function f on P is disjunctive if

(VA . f(sup A) < sup {f(x)| x€ A}). We remark here without proof that this predicate does

not hold for all monotonic functions. Therefore, not every monotonic function on P is

disjunctive. The converse is true, however; this will be proved using the following

propositions.
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(3.5) Let ,inf,sup be a complete partial order on P.

Then (Vx,y.x<y <=> sup{x,y}= y).

Proof: Let x,y:P. Then true

...tub]: & sup {x,y]O üb({x,y})

• ••[ll2]: (Vt.t€{x,y) => t<sup{x,y})

• ••[0.47]: <=> x<sup {x,y} A y<sup {x,y}

•••(0.5’): y<sup{x,y}. (a)

Therefore, x<y

...[ref <]: <=> x<y A y<y

...[0.47]: o (Vt.t€{x,y) => t<y)

...(1.13’): <=> sup{x,y}<y

•••
(a): <^> sup{x,y}<y A y<sup{x,y}

...
[asy < ], [ref <]: sup{x,y} =y. (EndofProof.)

(3.6) Let f:S-*T and x,y:S. Then { f(x), f(y)} = {f(s)| s€(x,y}}.

Proof: true

••■(0.48): x({x,y} A y({x,y}

... [0.26]: <=> (3s .s= x A s€{x,y}) A Os .s= y A s^{x,y})

... [0.41], [0.12], [0.29]: => Os . f(s) = f(x) A s€{x,y}) AOs . f(s) = f(y) A s€{x,y})

... [o.4], [0.35]: Os . s£(x,y} A f(x) =f(s)) A Os . s€{x,y} A f(y) = f(s))

...[0.42]: <=> f(x) € [f(s)| s€{x,y}} A f(y) C {f(s)| s€{x,y}}

■ ••[0.47]: <=> (Vt. t € {f(x), f(y)} => t € {f(s)| s€{x,y}})

... [l.3]: <=> {f(x), f(y)} C {f(s)| s€{x,y}}.

Conversely, true

•••(0.48): f(x) €{f(x),f(y)} A f(y) € {f(x), f(y) }

...[0.47]: (Vs . s € {x,y} => f(s) € {f(x), f(y) })

...(0.43): (Vt. t € {f(s)| s€{x,y}} => t C {f(x), f(y)})

•••[l-3]: {f(s)| s€{x,y}} C {f(x),f(y)}.

The result follows by [asy C]. (EndofProof.)

(3.7) Let <,inf,sup be a complete partial order on P and fbe a disjunctive function on

P. ThenfisamonotonicfunctiononP.
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Proof: Let x,y:P. Then x<y

...(3.5): <=> sup{x,y} =y

■ ••[0.41]: => f(sup {x,y}) = f(y)

...
fisdisjunctive: sup {f(s)| s€{x,y} } = f(y)

...(3.6): <=> sup { f(x), f(y) } = f(y)

...(3.5): <=> f(x) < f(y). (EndofProof.)

We next regard the set of closed points of a disjunctive function f on P. This set is

by (3.7), (2.3) a closure space in P. We will show that it is not only "infimum-stable”, but

"supremum-stable”: it contains the supremum of any of its subsets. We give an auxiliary

proposition first.

(3.8) Let <,inf,sup be a complete partial order on P; A:PP; f,g:P—»P:

(Vx.xCA => f(x)<g(x)). Then sup {f(x)| x€ A} < sup {g(x)j x€ A}.

Proof: Let G = sup {g(x)| x€ A}. Then true

...[ub]: & G€ub({g(x)| x€A})

...[1.12]: (Vy . y€{g(x)| x€ A} => y<G)

...(0.43): <=> (Vx.xCA => g(x)<G)

... assumption, [0.231, [0.11]: <=> (Vx.x£A => f(x)<g(x) A g(x)<G)

...
[tra <], [o.9], (0.28): => (Vx . x€A => f(x)<G)

...(0.43): O (Vy.y€{f(x)|x€A} =* y<G)

...(1.13’): sup {f(x)| x€ A} < G. (EndofProof.)

(3.9) Let < ,inf,sup be a complete partial order on P; foe a disjunctive function on P;

C={ x | f(x)<x }. Then (VA . AcC => supA^C).

Proof: Let A:PP; ACC.

Then for x:P, x€A

...(1.5): => x^C

O f(x)<x.

Hence (Vx.x€A => f(x)<x). (a)

Note that in the following application of (3.8), g in (3.8) is given by (Vx . g(x) =x).

true

...
(a), (3.8): sup {f(x)| x€ A} ^sup {x | x€A}

...

fis disjunctive: « f(sup Ai = sup (f(x) x€A; •' sup <f(x) x£ A} < sup A



41

...
[tra <]: => f(sup A) < sup A

<=> sup A€ C. (EndofProof.)

As mentioned before, the set C of closed points of a disjunctive function f on P has

the property (VA.AcC => inf A^C A sup A€C), because of (3.7), (2.3), [0.23] and

[o.ll], This condition does not change if we regard the dual of the given partial order.

Consequently, the set {x|f(x)>x} for a "conjunctive” function fon P has the same

property; "conjunctivity” of fis thereby understood as (VA . f(inf A) = inf{f(x)| x€A}).

We will not pursue this observation further, however.

The next theorem shows that any closure space C in P with the property

(VA.AcC => supACC) is equal to the set of closed points of a suitable disjunctive

function c on P. This follows from (2.20), because c will be the familiar closure operation

corresponding to C.

(3.10) Let <,inf,sup be a complete partial order on P; Cbe a closure space in P;

c:P—> P; (Vx . c(x) = infC/x); (VA.AcC => sup A^C).

Then c is a disjunctive function on P.

Proof: Let B:PP. Then true

...(2.6): O cis monotonic

...(3.4): =» sup {c(x)| x€B } < c(sup B). (a)

Furthermore, true

... (2.15), [inc], (3.8): => sup {x j x€B } < sup (cix)| x€B }

...[mon]: => c(sup B) < c(sup {c(x)| x€B }). (b)

Forx:P, x^B

...
(2.8)(ii): c(x)6C.

Hence true

... [0.27]: o (Vx. xCB =* c(x)€C)

...(0.43): (Vy . y€{c(x)| x€B } =» y€C)

...[l.3]: {c(x)|x(B}CC

...assumption: =* sup {c(x)| x€B } C C

...
(2.9)(ii): c(sup {c(x)| x€B}) <

sup {c(x)| x€B}. (c)
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Thus true

... (b), (c), [tra <]: => c(sup B) < sup {c(x)| xCB }

... (a), [asy <]: => c(sup B) = sup {c(x)| x€B }.

By [0.271 and [3.o], this proves c is disjunctive. (End ofProof.)

We can state a main result of this section as a corollary of(3.9) and (3.10):

(3.11) Let < ,inf,sup be a complete partial order on P. Then

fisa disjunctive function on P => do f is a disjunctive function on P.

Proof: By (3.9), (3.10), [2.12], (EndofProof)

Relations as Disjunctive Set Mappings.

For the rest of this chapter, we will be concerned with disjunctive set mappings,

that is disjunctive functions on PS. The complete partial order on PS is thereby

understood as C,O,U. Since fis a disjunctive function on PS if for all A, A.P(PS),

f(UA)= U{f(X)| X€A}, a disjunctive set mapping can be regarded as "distributing over

unions”. The following proposition states a useful and very intuitive assertion about

membership in a set like U{f(X)| X€A}.

(3.12) Let f:T —» PS and a(t) a predicate in t, t ranging over T.

Then (Vs .s€ U{f(t)| a(t)} <=> (3t. a(t) A s€f(t))).

Proof: Let s:S. Then s€ U{f(t)| a(t)}

...[1.191: (3X . X^{f(t)| a(t)} A s€X)

...(0.44): <=> (3t.a(t) A s€f(t)). (End ofProof.)

We will show that a one-to-one correspondence between DIS(PS 1 U) and RS

exists. Informally speaking, this holds because a disjunctive set mapping is uniquely

specified by its images of singletons, and thus equivalent to a function of type S -* PS, or

a relation on S by (1.0). The following lemma will be used to prove this result; it states

that everyset can be written as the "union ofits singletons”.

(3.13) Let X:PS. Then X= U{ {t} | t€X }.

Proof: In the following application of (3.12). note that "{t} is a function of t”, that is, tis

mapped to {t} by a suitable function of type S—* PS.
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For s:S, s€U{{t}|t€X}

...[3.12]: <^> (3t.t€X A s€{t})

... [0.45],[0.35],[0.4]: & (3t. t= s A t€X)

...[0.26]: s^X.

Thus X=U{{t}|t^X} by [0.27], [0.39], (EndofProof.)

(3.14) Let r:PS-»PS; R:RS; R:S —> PS according to (1.0)(i).

Then the following are equivalent:

(i) ris disjunctive A (Vs,t. sRt s€r({t})),

(ii) (VX.r(X) = U{R(t) I t€X}.

Proof: Let (i) hold. Then true

... (0.5’), [0.18]: <=> (Vt.s . sRt £=> s€r({t}))

... [0.17], (1.0)(ii): & (Vt. (Vs
.
s^R(t) s€r({t})))

...[0.39]: o (Vt.R(t) = r({t})). (a)

Letfurthermore X:PS. Then

true

...
ris disjunctive, (3.2): <=> r(U{{t} | t€X }) = U{ r({t}) | t€X }

...(3.13), (a): o r(X) = U{R(t) | tCX}.

This proves (i) => (ii).

Let (ii) hold. Then for s,t:S, s€ r({t})

...assumption: s€ U{R(u) j u€{t}}

...(3.12): o (3u.u€{t} A s(R(u))

... [0.45], (1.0)(ii): <4- (3u.u = tAsRu)

...
[0.26]: sRt;

thus (Vs,t. sRt s€r({t})).

Furthermore, for A:P(PS) and s:S,

s€r(UA)

... assumption (ii): <=> s£ U{R(t) |l€ UA}

...(3.12): (3t. t€ UA A s€R(t))

... [1.19]: (3t. (3X . X^A A t€X) A s€R(t))

...[o.4], (0.20), [o.4]: (3X.XCA A (St. UX A s£R(t)))

...(3.12): (3X.X^A A s€U{R(t)|t€X})

...
(ii): GX-XCAAsCr(X))
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...(3.12): o s€U{r(X)|X€A}.

By [0.27], [0.39] and again [0.27], this proves (VA.r(UA) = U{r(X)| X€ A}),

i.e. r is disjunctive. Hence (ii) => (i).

(i) O (ii) by [0.13]. (EndofProof)

We will also show that the established correspondence between disjunctive set

mappings and relations "preserves” the partial orders S= on DIS(PS 1 U) and < on RS,

which will be defined in what follows.

[3.15] For f,g: DIS(PS
j
U), let f g « (VX. f(X) C g(X)).

If T is a type with a partial order, we use uniformly Si for "comparing” functions

on T "argument-wise”. Note that by (1.27) and (2.16), S is a partial order on

DIS(PS 1 U).

The partial order on RS will be defined in analogy to the inclusion on PS. It will

be denoted by the symbol <. In more conventional terms, if the relations R.Q on S are

regarded as sets of pairs of objects of S, then R<Q if R is a subset of Q. We choose the

symbol < here instead of C to avoid confusion with the inclusion on PS; the symbol < is

currently not used otherwise. Furthermore, it will be easier to follow applications of

previous results, because fewer "translations”, i.e. substitutions of symbols, are

necessary.

[3.16] Define <as follows: <:R(RS)and (VR,Q . R<Q O (Vs,t. sRt o sQt)).

(3.17) <is a partial order on RS

Proof: The proof is entirely analogous to that of (1.4), where the definition [3.16] is used

instead of [l.3], < instead of C, and the equality of sets, as defined in [0.39], is

replaced by the equality of relations, [0.37], To demonstrate this, we prove

[asy < ]: true

...(0.32): => (Vs,t. true)

... [0.13], (0.13’): <4 (Vs,t. (sRt => sQt) A (sQt => sRt) => (sRt <=> sQt))

...(0.28): => (Vs,t. (sRt => sQt) A (sQt => sRt)) => (Vs
j
UsßtOsQt)

...
[3.16], [0.37]: » R<Q A Q<R R= Q. (EndofProof.)
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(3.18) Let R,Q:RS and r,s be the disjunctive functions on PS corresponding to R,Q

according to (3.14)(ii). Then R<Q <=> r^q.

Proof: Let r^q;t:S. Then true

...[3.15]: & (VX . r(X) C q(X))

...[0.30]: => r({t}) C q({t})

■ ••[l.3]: <=> (Vs.sCr({t}) => sCq({t}))

...
(1.0)(ii): (Vs . sRt sQt).

Thisproves (Vt. (Vs . sRt => sQt)). Thus R<Q holds by [0.17], [o.lB], [3.16].

Let R^Q; X:PS; s:S. Then sCr(X)

... (3.14)(ii): sC U{R(t)| tCX}

... (3.12),(1.0)(ii): o (St.tCXAsRt)

... [3.16], [0.12], [0.29]: => (St.tCXAsQt)

... (1.0)(ii), (3.12): o sC U{Q(t)| tCX}

...
(3.14)(ii): o sCq(X).

Thisproves r(X) C q(X) by [0.27], [l.3], and thus rSq by [0.27], [3.16],

By [0.13], R<Q <=> r q. (EndofProof.)

In the remainder of this section, we will investigate the properties of relations

that correspond to disjunctive closure operations on PS. The next statement defines the

so-called "relational composition” RoQ of two relations R.Q. The symbol 3 shall have

higher binding power than relation symbols.

[3.19] Let R,Q:RS. Thendefine R c Q by R°Q:RS and

(Vs,t. SR 3Qt <=> (3u . sRu A uRt)).

The "relational composition” of two relations R,Q corresponds to the "functional

composition” of the corresponding disjunctive set mappings r,s, as the following

proposition shows.

(3.20) Let R,Q:RS and r,s be the disjunctive functions on PS corresponding to R,Q.

Then (VX . r(q(X)) = U{R°Q(t) |tC X }).

Proof: Let X:PS; s:S. Then s Crtq(X))

...

(3.14)(ii): sCU{R(u)| uCq(X)}

...

(3.12)- Ou.uCa(X) ' sCR(u))
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... (3.14)(ii), (1.0)(ii): (3u .u€ U{Q(t)| t€X} A sRu)

• ••(3.12): (3u.(3t.t(X A u(Q(t)) A sRu)

... [o.4], (0.20), (1.0)(ii): <=> (3t. t€X A (3u . sRu A uQt))

...[3.19]: (3t.t€X A sR°Qt)

...
(3.14)(ii): s€U{R°Q(t)|t€X}).

This proves the assertion by [0.27], [0.39], [0.27], (End ofProof.)

(3.21) Let R:RS. Then Ristransitive R°R<R.

Proof: R is transitive

...
[l.l]: <=> (Vs,u,t. sRu A uRt => sRt)

...
[o.lB], (0.18’): <=> (Vs,t. (Vu . sRu A uRt sRt))

...[0.24]: <=> (Vs,t. (3u . sRu A uRt) sRt)

...[3.19]: (Vs,t. sR°Rt sRt)

...[3.16]: <=> R°R<R. (EndofProof.)

The preceding propositions allow us to show that sub-idempotent disjunctive set

mappings correspond exactly to transitive relations.

(3.22) Let R:RS and rbe the disjunctive function on PS corresponding to R according to

(3.14)(ii). Then ris sub-idempotent Ristransitive.

Proof: r is sub-idempotent

...[2.13]: (VX . r(r(X)) C r(X))

... [3.15], (3.18): RR<R

...(3.21): O Ristransitive. ('EndofProof.)

We will furthermore show that increasing disjunctive set mappings correspond

to reflexive relations. We give another characterization ofreflexive relations first, as we

did in (3.21) for transitive relations.

[3.23] Let IDbedefinedby IDiRS A (Vs,t. sIDt <=> s = t).

The relation ID defined in [3.23] is the equality relation on S. We chose the new symbol

ID in order to use it according to (1.0) as a function of type S-> PS, too; this would be

confusing for =.

(3.24) Let R:RS. Then Risrefiexive ID<R.
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Proof: R is reflexive

...[l.l]: & (Vt. tRt)

• ••[0.25]: o (Vt. (Vs .s = t => sRt))

...[0.17], [o.lB], [3.23]: (Vs,t. sIDt => sRt)

... [3.16]: <=> ID<R. (EndofProof.)

(3.25) Let id be the disjunctive function on PS corresponding to ID according to [3.23]

and (3.14)(ii). Then (VXAd(X) = X).

Proof: Let X:PS. Then true

...[3.23]: & U{ {s|slDt} I t6X }= U{ {s|s =t} 11C X }

... (1.0)(i), [0.45]: U{ ID(t) | t€X} = U{ {s} | t€X }

... (3.14)(ii). o Id(X) =X. (EndofProof.)

(3.26) Let R:RS and rbe the disjunctive function on PS corresponding to R.

Then ris increasing O- Risreflexive.

Proof: r is increasing

...[2.13]: (VX. XCr(X))

...(3.25): & (VX . id(X) C r(X))

... [3.15]: « id C r

...(3.18): <=> ID<R

• ••(3.24): <=> Risreflexive. (EndofProof.)

The following statement summarizes the previous results in characterizing the

disjunctive closure operations on PS.

(3.27) Let R:RS and rbe the disjunctive function on PS corresponding to R.

Then ris a closure operation on PS <=> Ris reflexive and transitive.

If ris a closure operation on PS, then (Vs,t. sRt r({s}) C r({t})).

Proof: Any disjunctive function on PS is monotonic. Hence the first equivalence follows

from (3.26) and (3.22). To prove the second assertion, let rbe a closure operation

on PS and s,t:S. Then sRt

... (3.26), (3.22), (1.11): <=> R(s) C R(t)

...
(3.14)(i), (1.0)(ii), [0.39]: 4=> r({s}) C r({t}). (EndofProof.)
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The second assertion in (3.27) describes which reflexive and transitive relation

corresponds to a given disjunctive closure operation r on PS: It is "represented” by the

inclusion of the "closures” of the corresponding singletons; the "closure” of a set X is

thereby understood as r(X).

The Reflexive and Transitive Closure of a Relation.

In this last section of this chapter, we will investigate the so-called reflexive and

transitive closure R* of a relation R on S. This is the "least” reflexive and transitive

relation "extending” R, with respect to the partial order < on RS as defined in [3.161.

With inf and sup defined in analogy to the intersection and union of sets, this partial

order is in fact complete, as the following statements assert.

[3.281 Define inf,sup as follows: Let inf,sup: P(RS) -> RS and for A:P(RS)

(Vs,t. s(inf A)t (VR . R€A => sRt)),

(Vs,t. s(sup A)t (3R.R€A A sRt)).

(3.29) <,inf,sup IsacompletepartialorderonßS.

Proof: As for (3.17), the proof is analogous to that of (1.20), with inf,sup instead of A, U.

lEnd ofProof.)

We will show that the set RT of reflexive and transitive relations on S is a

closure space in RS. The result of applying the closure operation on RS corresponding to

RT to a relation R will be denoted by R*. The following is a formal definition of RT and

according to (3.24), (3.21) and (2.20).

[3.30] Define RT:P(RS), RT = {R| ID<R A R=R<R} and (VR .R* = inf RTIR ).

(3.31) Let R,R’,Q,Q’:RS. Then R<Q A R’<Q’ => Roß’<Q°Q’.

Proof: Let R<Q A R’<Q’.

Then for s,t:S, sß°R’t

...[3.19]: (3u . sRu A uß’t)

... [3.16], [0.29]: => Ou . sQu A uQ’t)

...[3.19]: sQ=Q’t,

i.e. R : R’<Q-Q’ by [0.271 .[3 16], EndofProof
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(3.32) RT is a closure space in RS.

Proof: For R,Q:RS, R<Q => ID<ID by[ref<], and

R<Q

...
(0.6): <=> R<Q A R<Q

...(3.31): => R°R<Q°Q.

In other words, the functions mapping Rto ID and Rto R oR, respectively, are

monotonic functions on RS. By (2.3), the sets C,D defined by C,D:P(RS) and

C = {R|ID<R}, D ={R|R°R<R} are closure spaces in RS. ThusCflDisthe

intersection over a set of closure spaces in RS by [1.21], and therefore a closure

space in RS by (2.25). But CAD ={ R j ID<R A R°R<R} by (1.22).

(End ofProof.)

In the previous section it was shown that relations on S correspond to

disjunctive functions on PS. The following theorem asserts that the reflexive and

transitive closure R* of a relation R corresponds to the "closure” do r of the

corresponding disjunctive set mapping r.

(3.33) Let R;RS and rbe the corresponding disjunctive function on PS according to

(3.14)(ii). ThenR+ Correspondsto cZo r.

Proof: do r is a disjunctive function on PS by (3.11). Let Qbe the relation on S that

corresponds to do r according to (3.14)(i). Let r* be the disjunctive function on

PS corresponding to R*. do r is a closure operation on PS by [2.121, (2.3), (2.15).

Hence Q is reflexive and transitive by (3.27), i.e. QtRT. Therefore

true

...
(2.18): o r dor

...(3.18): R<Q

...(3.27), [3.30J, [2.41: => QSATVR

... [lb], [1.121, [0.30]: =» inf ATVR < Q

... [3.301: R* < Q

...(3.18): <=> r* do r. (a)

Conversely,by (3.27), r* is a closure operation on PS, (b)

and thus true

...(2.7): R < inf ATVR
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...[3.30]: 4* R < R*

... (3.18): O r J r*

... (2.24), [mon]: =» dor dor*

... (b), (2.19): O dor dor* A dor* r*

... (2.17), [tra J]: =» do r J r*

...
(a), [asy ^]: =S dor-r*. (EndofProof.)

On the remaining pages of this chapter, we show that R* can also be defined by

"iterating” the relation R, or, more precisely, that (Vs,t. sß*t (3n. sRnt)). Nis

thereby the type of natural numbers, and for a natural number n, Rn is the relation

obtained by "composing” R with itself n times. This is the common definition of R*. It

requires some effort to prove that with this definition, R* is the "least” reflexive and

transitive relation "extending” R. On the other hand, this is directly expressed by [3.30],

where the fact that R* exists is based on theorem (2.3); propositions (3.31), (3.21) and

(3.24), which were also used in proving (3.32), will be used in the following
"conventional” derivation of R* as well. This suggests regarding R* in the general

framework ofclosure spaces as presented in this text.

With little extra effort, we can formally introduce the properties of the type N of

natural numbers we need. We assume only the existence of a constant 0 and a

"successor” function son N, and the induction scheme. ThatisJet 0:N and s:N-> N; s

will be simply prefixed to its arguments (sn can be read as "n + 1”). A predicate a(n) can

be proved "by induction” to hold for all natural numbers n, using the following axiom.

[3.34] Let a(n) be a predicate in n, n ranging over N. Then

a(0) A (Vn.a(n) =» a(sn)) => (Vn . a(n)).

In particular, for functions f,g, f,g:N-> T, f(O) = g(O) A (Vn . f(n) = g(n) =»

f(sn)= g(sn) ) implies f=g by [3.34] and [0.38]. Therefore an "inductive definition” of a

function f with domain N is unique, that is, a definition of f(0) in combination with a

definition of f(sn) in terms of f(n) for all n. An example is the following definition. In the

"exponential” notation given there, superscribing natural numbers shall have higher

binding power than the symbol °.

[3.35] Let R:RS. Then define R n for n:N as follows: R^ =ID and (Vn . R sn
= R-R n

).
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The following proposition asserts that the operation ° is associative, and that ID

is a "unit” with respect to this operation.

(3.36) Let R,Q,M:RS. Then R=(Q=M) = (R=Q)=M, ID=R = R and R=ID =R.

Proof: Let s,t:S. Then sR°(Q=M)t

... [3.19]: <=> Ou . sRu A uQ=Mt)

...

[3.19]: <=> Ou . sRu a (Bv . uQv A vMt) )

...

[0.22]: Ou . Ov . sRu A uQv A vMt))

... (0.18’), [o.4], [0.22], [o.4]: <^> Ov .Ou . sRu A uQv) A vMt)

...[3.19]: & Ov. sR=Qv A vMt)

...[3.19]: S(R=Q)=Mt;

furthermore, sRt

...[0.26]: Ou.u = s A uRt)

...[3.23]: O Ou . sIDu A uRt)

...[3.19]: SlD=Rt,

and sRt

...[0.26]: (3u.u = tAsRu)

... [o.4], [0.30], [3.23]: Ou . sRu A uIDt)

...[3.19]: <=> SR=IDt.

The assertions follow from [0.27] and [0.37], respectively. (End of Proof'd

The addition of natural numbers, denoted by + , is also defined inductively.

[3.37] Let m:N. Then define o+m =m and (Vn . (sn) +m = s(n + m)).

(3.38) Let R:RS. Then (Vn,m .Rn +m =R n =Rm ).

Proof: Let n:N.

Then true

...

(3.36): & Rn
= ID =R n

... [3.35]: « RO + n
= RO„ Rn

(a)

ForrmN, R n + m
= R n ^R m

R .Rn + m
= R; (Rn -Rin )

[3.35], (3.36): R-n-mi^ R R n . R m
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...[3.37], [3.35]: R (sn) +m
= R sn oR m

By [0.27], this proves (Vm .Rn+m = R n
OR m

=> R^ sn^ +m
= Rsn oRm ) (b)

By (a), (b) and [3.34], (Vm.Rn +m
= R n °Rm ).

Hence the assertion holds by [0.27], [0.17]. (End ofProof.)

The following theorem asserts the equation for R* given above. The reader may

wish to verify that it is equivalent to R* = sup {Rn | n:N }, according to [3.28].

(3.39) Let R:RS. Then (Vs,t. sß*t <=> (3n . sßnt)).

Proof; Let Q:RS and (Vs,t. sQt (3n . sRnt)).

We first prove R* < Q.

Let s,t:S. Then sRt

...
(3.36): <=> sR-IDt

...[3.35]: <=> sß=R°t

...[3.35]: & sR
sO

t

...(0.31): => On . sRnt)

o sQt.

Thus R<Q by [0.27],.

Similarly, let s,t:S. Then sIDt

...[3.35]: & sß°t

...(0.31): => (3n.sRnt)

sQt.

Hence ID<Q (i.e. Q is reflexive).

Finally, for s,t:S, sQ°Qt

...[3.19]: <=> Ou . sQu A uQt )

OOu. On . sRn u) A (3m . uR mt) )

...
[o.4], [0.22], [o.4]: Ou .On . sRn

u A (3m . uRmt)))

... [0.22], [0.17]: oOu . (3n,m . sRn
u A uRmt))

...(0.18’): <=> (3n,m .Ou . sRn
u A uR mt))

... [3.19]: (3n,m. sRn °R m t)

...
(3.38): (3n,m. sRn + m t)

...[0.26]: (3n,m . Ok . k = n + m A sR
k
t))

...
(0.5’). [0.29], [0.29]: On,m . Ok . sßkt))

...[0.29]: Ok . sR
k
t)
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sQt.

This proves QoQ <Q (i.e. Qis transitive).

Therefore, true

... [3.30], [2.4]: Q C RTfR

... [lb], [1.12], [0.20]: => infRT/R<Q

...
[3.30]: <=> R* < Q.

By [asy < ], it suffices to prove Q<R*.

Q < R*

...[3.16]: <=> (Vs,t. (3n . sRnt) => sß*t)

...[0.24]: <=> (Vs,t. (Vn . sßn
t => sß*t))

...(0.18’): (Vn . (Vs,t. sRnt => sß*t))

... [3.16]: & (Vn. R n < R*).

(a)

We prove (a) by induction over n. true

...

(2.9)(ii) (i.e. R*€flS), [3.30]: ID < R*

...
[3.35]: R 0 < R*.

Let n:N. Then R n <R*

...

(0.6): R< R* A R n
< R*

...
(3.31): => R-R n

< R*-R*

...
[3.35], R*£RS- & R sn < R*-R* A R*^R*<R*

... (3.17), [tra <]: R sn
< R*.

This proves (Vn .Rn <R* => Rsn <R* ).

Hence (a) holds by [3.34], (EndofProof).
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Chapter 4

Continuous Functions

In this chapter, P will be a type with a given partial order or complete partial

order. The objects of P will be called points. S will denote some fixed type. The objects of

PS and PS -» PS will be called sets and set mappings, respectively.

Continuous Functions and Closure Operations.

In this chapter, we will investigate functions on P that "distribute over suprema

of directed sets”.

[4.o] Let <be a partial order on P; D:PP. Dis called directed if

(3u.u^ D) A (Vu,v . u(Da v(D => (3z.z€D A u<z A v<z)).

The predicate Ou . u€D) should be read as "D is not empty”. [4.o] asserts that a directed

set D of points is not empty and that any two-element subset {u,v} of D has an upper

bound z in D. This condition can be expressed if only a partial order on P is given, not

necessarily a complete one. The following definition involves directed sets of points,

assuming a complete partial order on P. We will latercomment on how one could weaken

the assumption of a given complete partial order.

[4.l] Let <,inf,sup be a complete partial order on P. Then fis called a continuous

function on PifLP -♦ P and (VD .D is directed => f(sup D) = sup {f(x)| x€ D}).

Obviously, any disjunctive function on P (cf. [3.o]) is continuous. The converse is

not true. We can informally describe a simple counterexample: any constant function f

on P that results into a value different from sup 0 is continuous, but not disjunctive.

For, {f(x)| x€o}=o and thus f(sup 0) = sup 0 for a disjunctive function f; but this

equation does not have to hold for a continuous function f, since 0 is not directed.

The following investigations on continuous functions are similar to those on

disjunctive functions in the first section of chapter three.



55

(4.2) Let <be a partial order on P and x,y:P. Then x<y =» {x,y} is directed.

Proof: true

...(0.47), [o.4]: => x€{x,y}

...(0.31): (3u . u€{x,y}).

Furthermore, x<y

...[ref <]: <=> x<y A y<y

...
(0.6): <=> x<y A y<y A x<y A y^y

...[0.46]: (Vu . u€{x,y} =£ u<y) A (Vv . v€{x,y} => v<y)

...
(0.32), [0.17], [0.18]: => (Vu,v . u€{x,y} =>u<y) A (Vu,v. v€{x,y}=>v<y)

...[0.23]: (Vu,v . (u£{x,y} => u<y) A (v€{x,y} => v<y))

...
[0.12], (0.28): => (Vu,v. u((x,y}Av€(x,y] =>u<yAv<y)

... (0.47), (0.5’): & (Vu,v . u€{x,y} A v€{x,y} => y€{x,y} A u<y A v<y)

... (0.31), [o.9], (0.28): => (Vu,v.u€{x,y}Av€{x,y} =>

Oz . z€{x,y} A u<zAv<z)).

Thus by [0.12] and [4.o], true A x<y => {x,y} is directed. (EndofProof.)

(4.3) Let < ,inf,sup be a complete partial order on P and fbe a continuous function on

P. Thenfismonotonic.

Proof: Let x,y:P. Then x<y

...(0.6): <=> x<y Ax^y

...(3.5): <=> sup {x,y} = y A x<y

... [0.41], [o.B], [0.12]: => f(sup {x,y}) = f(y) A x<y

... (4.2), [4.l], [o.s]: => sup {f(s)| s€{x,y}} = f(y)

• ■■(3.6): O sup{f(x),f(y)} = f(y)

...(3.5): Of(x)<f(y). (EndofProof)

Proposition (4.3) can replace (3.7), because every disjunctive function is continuous.

(4.4) Let <be a partial order on P; let fbe a monotonic function on P, D:PP and Dbe

directed. Then {f(x)|x^D} is directed.

Proof: true

...
[4.o], [o.s]: => Ox . x€D)

...[0.40]: » Ox x€D ' Ou.u = f(x)))
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...[0.2],(0.18’): O (3u.(3x.x€D A u = f(x)))

...[0.42]: (3u . u£{f(x)| x€D}).

Let u,v:P. Then u€{f(x)|x€D} A v€{f(x)|x€D}

...[0.42]: <=> (3x . x€ DA u = f(x)) A (3y . y€ DA v = f(y))

... [o.4], [0.22], [o.4]: o (3x . x€D A u = f(x) A (3y . y€D Av = f(y)))

... [0.22], [o.4], [0.18]: <=> (3x,y . x€D A y€D A u = f(x) Av= f(y))

...
[4.o], [0.29]: => (3x,y . (3z . z€D A x<z A y <z) Au = f(x) Av = f(y))

...
f monotonic, [0.29]: => (3x,y . (3z . z^D A f(x)<f(z) A f(y)<f(z))

Au =f(x) Av= f(y))

... [0.29], [0.33]: => (3z . z€D A u<f(z) A v<f(z))

...[0.44]: <=> (3w . w€{f(x)| x€D} A u<w a v<w).

Thisproves {f(x)jx£D} is directed. (EndofProof.)

In view of the previous proposition, continuity can be defined even if the

underlying partial order is not complete. It is sufficient to assume that every directed set

of points "has a supremum”. That is to say, for every directed D, D:PP, there is an object

sup D of P such that üb(D)=>(sup D). This condition is indeed weaker than the

existence of a complete partial order <,inf,sup on P, by an argument similar to that

following [4.11: sup 0 does not have to exist (cf. also (1.18) and preceding remarks).

Assuming that suprema for directed sets of points exist, a function f on P can be defined

as monotonic and fulfilling (VD . D is directed => f(sup D) = sup (f(x)| x€ D}). Alterna-

tively, one could only require the last predicate, with the understanding that

sup {f(x)j x€ D} exists for directed D; then fis monotonic by (4.2), (4.3).

To continue the previous consideration, we also remark that partial orders with

suprema for directed sets of points are exactly those partial orders such that every chain

has a supremum. C is a chain if C:PP and (3u . u€C) A (Vu,v . u€C A v€C =» (3z .

z€{u,v} Au<zAv<z)). In other words, a chain C is a non-empty set of points such that

for any two elements u,v of C, either u< v or v<u holds. Every chain is directed, but not

vice versa. For a proof of the claim above cf. Cohn [Co, p.33]. It has some intuitive

appeal to call a function that "distributes over suprema of chains” 'continuous’. The

supremum of a chain can be regarded as its "limit”, being "approximated” by the

elements of the chain
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We will regard continuous functions only if a complete partial order is given, however.

With the aid of propositions (4.3) and (4.4), the set C of closed points of a continuous

function f on P will prove to contain the supremum of any of its directed subsets. Also,

the closure operation on P corresponding to such a closure space will be shown to be

continuous. The proofs are indeed identical to those of (3.9) and (3.10), apart from the

propositions used. We abstained from an ad-hoc generalization of the respective

statements in chapters three and four, which would have avoided this duplication.

(4.5) Let <,inf,sup be a complete partial order on P; fbe a continuous function on P;

C= {x I f(x)<x}. Then (VD .D is directed A DcC =» sup DCC).

Proof: Let D:PP, Dbe directed and DcC.

Thenforx: P, xCD

...
(1.5): => xCC

<=> f(x)<x.

Hence by [0.27], (Vx.xCD => f(x)<x). (a)

Therefore true

...
(a), (3.8): O sup {f(x)| xCD} <sup {x | xCD}

...

fis continuous: <=> f(sup D) = sup {f(x)| xC D} A sup {f(x)| xC D}< sup D

...[tra<]: => f(supD)<supD

sup DCC. 'EndofProof.)

(4.6) Let <.inf,sup be a complete partial order on P; Cbe a closure space in P.

c:P—*P: (Vx . c(x) = inf C/x); (VD .D is directed A DcC => sup DCC).

Then c is a continuous function on P.

Proof: Let B:PP and Bbe directed.

Then true

...(2.6): <=> cis monotonic

...(3.4): => sup {c(x)| xCB} < c(sup B). (a)

Furthermore, true

...
(2.15), [inc], (3.8): => sup {x | xCB } < sup {c(x)| x€B }

...[mon]: => c(sup B) < c(sup {c(x)| x€B }). (b)
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Forx:P, x^B

...
(2.B)(ii), [0.30]: c(x)€C.

Hence true

...10.271: <=> (Vx.x€B c(xKC)

...(0.43): O (Vy . y€{c(x)| x^B } => y€C)

...[1.31: {c(x)|x€B}CC

...
(4.4). assumption: sup {c(x)| x€B } € C

...
(2.8)(ii): <=> c(sup {c(x)| x€B}) < sup {c(x)| x€B}. (c)

Thus true

... (b), (c), [tra <]: => c(sup B) < sup {c(x)| x£ B }

... (a), [asy <]: => c(sup B) = sup {c(x)| x€B }.

By [0.27] and [4.l], this proves c is continuous. (End. ofProof.)

(4.7) Let <,inf,sup be a complete partial order on P. Then

fis a continuous function on P => clo f is a continuous function on P.

Proof: By (4.6), (4.7), [2.12], (EndofProof)

"Finitely Representable” Set Mappings.

In the second section of chapter three, we saw that disjunctive set mappings are

uniquely determined by their images of singletons In this section, we will investigate

set mappings that are uniquely determined by their images of finite sets, therefore

called "finitely representable” set mappings. They will prove to be exactly the

continuous set mappings.

We introduce the type FinS of finite sets ofobjects of S as a subtype of PS

[4.B] Let E:FinS <=> E:PS A Eisfinite.

This of course leaves open what "finite” means; so far 'is finite’ is only a predicate that

can hold for objects of PS. A finite set is either empty or it is obtained recursively as the

union of a finite set with a singleton. The following axiom asserts that some finite sets

can be obtained this way.

'4.9] 0 is finite (VE.t . E is finite =* E^t' is finite)
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We will also assert that in some sense, [4.9] characterizes all finite sets. We do this by

postulating the existence of a "cardinality” function card that maps finite sets to natural

numbers.

[4.10] Let CardiFinS —> N, (VE . card(E) =O&E = 0) and

(Vn . (VF . card(F)=sn => (3E,t. F = EU{t} A card(E) = n)).

Intuitively, Card(E) is the number of elements contained in E. We however do not

require that there is only one function with the properties of card expressed in [4.10]. We

use card only to show that a predicate a(E) can be proved "inductively” to hold for all

finite sets E, by proving a(0) and a(E) => a(EU{t}) for all E,t, where E:FinS and t:S. We

will prove this assertion using the induction scheme [3.34] for natural numbers.

(4.11) Let a(E) be a predicate where Eis oftype FinS. Let a(0) hold and

(VE,t. a(E) ^a(EU{t})). Then (VE . a(E)).

Proof: (VE . a(E))

...
[O.l j, [0.40]: o (VE . (Sn .n = card(E)) => a(E))

...[0.24], (0.18’), [0.35]: & (Vn . (VE . card(E) = n => a(E))). (a)

It suffices to prove (a) by induction on n.

true

...assumption: <=> a(0)

... [0.26]: (VE . E= 0 => a(E))

...[4.10]: (VE . Card(E) = O => a(E)).

LetmN and (VE . card(E) = n => a(E) ).

Then for F:FinS, card(F) = sn

...[4.10]: => (3E,t. F = EU{t} A card(E) =n)

...
[0.12], (0.29): => (3E,t. F = EU{t} A a(E))

... assumption, [0.12], (0.29): => (3E,t. F = EU{t} A a(F))

...(0.29), [0.33]: => a(F).

Thus (VF . card(F) =sn => a(F)) by [0.27].

Thisproves (Vn . (VE . card(E) =n => a(E)) => (VF . card(F) =sn => a(F))).

Hence (a) holds by [3.34], (End ofProof.)
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We next give some auxialiary propositions about the union XUY of two sets

X,Y, in particular for the case that X and Y are finite.

(4.12) Let X,Y,Z:PS. Then XUY C Z & XcZ A YCZ.

Proof: XUYCZ

...
[l.3], [1.21]: (Vs . s€U{X,Y} => s€Z)

...[1.19]: o (Vs. OV. V€{X,Y} A s€V) => s£Z)

... [0.24], [0.10]: (Vs . (W . Vs{X,Y} => (s€V => s€Z)))

... (0.18’), (0.21): o (W . V€{X,Y} => (Vs .s€ V s€Z))

...[l.3]: & (VV.V€{X,Y} => VCZ)

...[0.47]: <=> XcZ A YcZ. (EndofProof.)

(4.13) Let X:PS. Then XUO =X.

Proof: true

... [ref C], (1.6), [ref C]: O XCX A OCX A XUO C XUO

...
(4.12), (4.12): o XUO C X A X C XUO A 0 C XUO

... [o.s], [asy C]: =» XUO =X. (EndofProof.)

The previous lemma asserts that 0 is "neutral” with respect to U. The next proposition

shows U is associative.

(4.14) Let X,Y,Z:PS. Then XU(YUZ) = (XUY)UZ.

Proof: true

...[ref C]: & XuYcXuY .a (XuY)UZC(XUY)UZ

...(4.12): XCXUY A YCXUY A (XUY) C (XUY)UZ A Z C (XUY)UZ

... (0.6), [o.4]: XCXUY A (XUY)C (XUY)UZ A YCXUY

A (XUY) C (XUY)UZ AZC (XUY)UZ

...
[traC],[o.l2]:=> XC(XUY)UZ A YC(XUY)UZ A ZC(XUY)UZ

...(4.12): <=> X C (XUY)UZ A YUZC (XUY)UZ

...(4.12): o XU(YuZ)C(XUY)UZ.

In a similar way, one can prove

true

-XC Xu(YUZ) ' YC XU(YUZ) A Z C Xu(YuZ)
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& (XUY)UZ C XU(YUZ),

which yields the assertion by [asy C]. (End ofProof.)

(4.15) Let E,F:FinS. Then EuFisfinite.

Proof: true

...
(4.13): EUO = E

...Eisfinite: => EUO is finite.

Let G:FinS; t:S. Then EuGisfinite

...[4.9]: =» (EuG) U ft) is finite

• ••(4.14): o EU(GUft)) is finite.

Thusby [0.27], (4.11), (VG.G:FinS => EuGisfmite).

Hence EuF is finite by [0.30], (End ofProof.)

We are now in the position to prove properties of "finitely representable” set

mappings. As such, we regard functions fon PS with the property (VX . f(X) = U{f(E)|

ECX a E is finite} ). This is analogous to the assertion (VX . r(X) = U{ r({t}) j {t}CX})

for disjunctive set mappings r, which holds by (3.14)(ii), and (a) in the proof of (3.14). On

the right hand side of both equations only specific objects of PS appear as arguments of

the set mapping, namely finite sets and singletons, respectively. The equations assert

that these arguments suffice to specify the set mapping. The result of applying the set

mapping to any set X is given by the union of the values of the "specified” arguments

contained in X. The union is used (and not the intersection, for instance), because the set

mapping should be monotonic.

(4.16) Let fPS^PS and (VX. f(X) = Uff(E)JECX a Eisfmite)).

Then f is a monotonic function on PS.

Proof: Let X,Y:PS; XCY. Then sCf(X)

s€ Uff(E)J ECX A Eisfmite)

...(3.12): & (3E . ECX A Eisfmite A s€f(E))

... assumption XC Y: & (3E . ECX A XCY A Eis finite A s€f(E))

...
[tra C], [0.29]: (3E . EC Y A E is finite A s€f(E))

...(3.12): SCUff(E)lECYAEisfmite)
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s€f(Y).

Thus f(X) Gf(Y) by [0.27], [l.3].' (EndofProof)

The following two propositions will allow us to prove that the "finitely

representable” set mappings are the continuous functions on PS.

(4.17) Let X:PS. Then (EjECX A Eisfinite) is directed.

Proof: true

OCX A ois finite

O€{E|ECX A Eisfinite)

...(0.31): (3F . F€{ E | EGX A E is finite)).

Let F,G: PS. Then F€{E I EGX A E is finite) A G€{E | EGX A E is finite)

...(0.42’): <=> FGX A Fisfinite A GgX A Gisfmite

...
[o.4], [ref G]: O FGX A GGX A Fis finite AG is finite A FuGgFuG

... (4.12), (4.15): => FuGGxAFuGisflniteAFuGcFuG

... (0.42’), (4.12): & FuG€{E | EGX AE is finite) A FCFuG A GgFuG

...(0.31): =» (3Z.Z€{E I EGX AE is finite) A FGZ A GGZ).

Thus {E|ECX A Eisfinite) is directed by [4.o], (End of Proof.)

(4.18) Let D:P(PS) and Dbe directed. Then

(VE . E:FinS => (EGUD (3X . XW A EGX) )).

Proof: OGUD

...
(1.6): true

...
[4.o]: => (3X . X$D)

...(1.6): (3X.XW a OCX).

Let E:FinS;t:S. Let EGUD => (3X.XW A ECX).

Then EU{t)CUD

...
(4.12): & E G UD A {t} C UD

...(1.7): & EG UD A t€UD

...assumption, [0.26]: => (3X.XW A ECX) A (3Y. YW A t€Y)

...
[o.4], [0.22], etc. : (3X,Y . XW A EGX A YW A tW)

...
[o.4], (1.7): (3X,Y. XW A YW A EGX A [t)CY)

[4.0!. [Q 29F (3X.Y.'3Z.ZW ^XGZaYgZ) a EGX ' t>GY
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... [o.4], (0.20), [o.4]: OZ . ZC D A (3X,Y .EcXa XCZ a {t}CY A YCZ))

... [tra C], (0.29): => (3Z .ZC D A (3X,Y . EcZ A {t}CZ))

...[0.33],(0.29): => (3Z
.

ZCD A ECZ A {t}CZ)

...(4.12): o (3Z . ZCD A EU{t}CZ).

Thus the assertion holds by [0.27], (4.11). (End ofProof.)

(4.19) LetfPS-* PS. Thenthefollowingareequivalent:

(i) f is a continuous function on PS,

(ii) (VX . f(X) = U{f(E)| ECX A E is finite}).

Proof: Let (i) hold.

Let X:PS. ThenfortrS, tCX

... (1.6), ( 1.7), [ref C]: «> OCX A {t}CX A oU{t}CoU{t}

...(4.12): <=> OU{t}CX A oCoU{t} A {t}CoU{t}

... (0.5’), [4.9]: => OU{t}CX A oU{t} is finite A {t}CoU{t}

...d.7): o oU{t} {EI ECXaE is finite} A t(oU{t}

...(0.31): => OF . FC{E | ECX AE is finite} A tCF)

...[1.19]: tC U{E I ECX A E is finite}.

Thus X C U{E I EcX A E is finite} by [0.27], [1.99].

Furthermore, true

...(0.32), [o.s]: => (VE . ECX A Eis finite =» ECX)

...(0.43): <=> (VF . fC{E | EcX AE isfinite} =» FCX)

...(1.20): U{E I ECX A E is finite} CX.

Hence true

...[asyC]: O X = U{E | ECX AE is finite}

...[0.41]: => f(X) = f(U{E I ECXAE is finite})

...(4.17),(i): f(X) = U {f(F) | FC{E | ECX A E isfinite}}

...

(3.2): f(X) = U {f(E)| ECX A E is finite}.

Thus (ii) holds by [0.27],

Since (i) => (ii), it suffices by [0.13] to prove (ii) (i).

Let (ii) hold. Let D:P(PS) and D be directed.

Thenby (4.16) and (3.4). U {f(X)| XCD} C f(UD). (a)
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Let s:S. Then s^f(UD)

...
(ii): 4^ s€ U{E |ECUDAE is finite}

... [1.19], [o.4]: <=> OE .E is finite A EC UD A s€f(E))

...
(4.18), (0.29): => (3E . OX . XSD A ECX) A s€f(E))

... [o.4], (0.20): OX . X€D A (3E . s€f(E) A EcX))

... (4.16), [0.12], (0.29): OX .X(D A OE
. s€f(E) A f(E)Cf(X)))

...
[tra C], [0.33], (0.29): (3X.X€D A s€f(X))

...(3.12): s€ U {f(X)| X€D}.

Thus by [0.27], [l.3], (a) and [asy C], f(UD) = U{f(X)|X^D}.

This proves f iscontinuous according to [4.l], (End ofProof.)

This concludes our presentation of continuous functions. We briefly point to

some literature for further reading. Theorems (2.20), (4.5) and (4.6) assert that closure

spaces in PS that are "stable under unions of directed sets” correspond exactly to

continuous closure operations on PS. These in turnare "finitely representable” by (4.19),

and sometimes also called "algebraic” closure operations (cf. Cohn [Co, p.45]). The

properties of the corresponding closure space can be expressed in terms of general partial

orders, namely as those of a so-called "algebraic lattice” (cf. BurrislSankappanavar [BS,

p. 17,19]). The set ofsubalgebras of a given algebra is a very general example of a closure

space corresponding to an "algebraic” closure operation. This example includes

subgroups of a group, subspaces of a vector space, or convex sets of geometric points.

Subalgebras are in the intuitive sense "closed” under the operations of the algebra.

These operations are for instance the group operations; in the case of convex sets, there

is one binary operation for each real number c< between 0 and 1 for the ’’convex

combination” of two geometrical points x and y, usually denoted by <x+(1-Oy. Refer to

[BS, §§ 11. 1-3] for details on algebras. The so-called "multi-relations”, introduced in Scott

[ScBo] as part of a set-theoretic model of lambda-calculus, are also examples of

continuous set mappings.
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