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Abstract
We study strong Nash equilibria in mixed strategies in finite games. A Nash equilib‑
rium is strong if no coalition of players can jointly deviate so that all players in the 
coalition get strictly better payoffs. Our main result concerns games with two players 
and states that if a game admits a strong Nash equilibrium, then the payoff pairs in 
the support of the equilibrium lie on a straight line in the players’ utility space. As a 
consequence, the set of games that have a strong Nash equilibrium in which at least 
one player plays a mixed strategy has measure zero. We show that the same property 
holds for games with more than two players, already when no coalition of two play‑
ers can profitably deviate. Furthermore, we show that, in contrast to games with two 
players, in a strong Nash equilibrium an outcome that is strictly Pareto dominated 
may occur with positive probability.
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1 Introduction

It is well known that in a non‑cooperative game, selfish behavior can cause players 
to be worse off than they could be by collaborating. The most famous example is the 
Prisoners’ Dilemma (Luce and Raiffa 1957), where strictly dominating strategies for 
the players lead to a bad outcome for both. The strong Nash equilibrium by Aumann 
(1959) gets around this paradox, as a solution concept that is resilient against coa‑
litional deviations. A strategy profile is a strong Nash equilibrium if no coalition 
of players can jointly deviate so that all players in the coalition get strictly better 
payoffs (because this applies to single‑player coalitions, it is a Nash equilibrium). 
Strong Nash equilibrium outcomes are also called weakly Pareto efficient for each 
coalition (Miettinen 1999,  Definition  2.5.1). A further refinement is super strong 
Nash equilibrium (Rozenfeld 2007), which requires Pareto efficiency for every coali‑
tion (that is, no coalition can improve a player’s payoff without hurting at least one 
other member of the coalition). There are classes of games that have a strong Nash 
equilibrium but no super strong Nash equilibrium (Gourvès and Monnot 2009), so 
the distinction between the two solution concepts is meaningful.

The strong Nash equilibrium concept is commonly criticized as too demanding 
because it allows for unlimited private communication among the players. Moreover, 
in many games, a strong Nash equilibrium does not exist. For these reasons, among 
others, relaxations have been proposed. In this paper, in addition to the strong Nash 
equilibrium, we study a relaxation called k-strong Nash equilibrium. In an n‑player 
game, a k‑strong Nash equilibrium is a Nash equilibrium where no coalition of k or 
fewer players can deviate so that all its members strictly benefit (Andelman et  al. 
2009). The rationale is that in many practical situations only small coalitions can 
be formed, for example in a network that connects the players. Another relaxation 
is coalition-proof Nash equilibrium, which is a Nash equilibrium that is resilient 
against those coalitional deviations that are self‑enforcing; coalition‑proof Nash 
equilibria can be Pareto inefficient (Bernheim et al. 1987, Table 4). Another gener‑
alization of strong Nash equilibrium is strong correlated equilibrium, in which the 
presence of a correlating device allows players to use correlated strategies (Einy and 
Peleg 1995). Similarly, in Milgrom and Roberts (1996), coalitions that can jointly 
deviate are also allowed to correlate their mixed strategies in the first place. How‑
ever, none of these relaxations guarantee existence in general finite games.

Since strong Nash equilibrium is an appealing solution concept and it may not 
exist, a crucial question is whether or not a given game admits such an equilibrium 
(Aumann 1959; Conitzer and Sandholm 2008; Nessah and Tian 2014) give existence 
conditions for continuous convex games. In this paper, we show that, in the space of 
games with a given finite number of players and strategies for each player, the set of 
games with a strong Nash equilibrium where at least one player randomizes over at 
least two pure strategies has measure zero. Dubey (1986) considers generic games 
with smooth payoff functions, and shows that interior Nash equilibria are generi‑
cally not Pareto efficient and therefore not “super strong” in our terminology, called 
“strong” by Dubey. He notes that, as a consequence, super strong Nash equilibria 
of finite games exist generically only in pure strategies. Our results are similar, but 
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apply to strong Nash equilibria, and are proved with direct geometric arguments 
about mixed strategies.

Most of our study concerns two‑player games. We give a precise description of 
games that admit strong and super strong Nash equilibria. For two players, the pay‑
off vectors are points in two‑dimensional space. We show that in a strong Nash equi‑
librium in mixed strategies, the payoff vectors in the support of the equilibrium lie 
on a straight line which has negative slope or is vertical or horizontal. If that line has 
negative slope, then the game restricted to the support of the equilibrium is strictly 
competitive (and therefore, via a positive‑affine change of payoffs, equivalent to a 
zero‑sum game, see Adler et al. 2009). If the line is vertical or horizontal, then in the 
equilibrium support one player is indifferent among all actions.

For games with three or more players, we strengthen the result by Dubey (1986) 
by showing that the set of games that have a 2‑strong Nash equilibrium such that 
at least one player randomizes over at least two pure strategies has measure zero. 
Moreover, we show that these games can have strong and super strong Nash equi‑
libria in which the game restricted to the support of the equilibrium may contain 
outcomes that are strictly Pareto dominated; this is significantly different to the two‑
player case.

2  Games with two players

We always consider finite games with a fixed number of players and strategies 
per player. In this section, we consider two‑player games, where player  1 has m 
pure strategies, always denoted by i = 1,… ,m , and player 2 has n pure strategies 
j = 1,… , n . This defines an m × n bimatrix game (A, B) with payoff pairs (aij, bij) for 
each row i and column j. Mixed strategies of player 1 and 2 are denoted by letters x 
and y with mixed strategy probabilities xi and yj , respectively.

All vectors are column vectors. The all‑zero vector is denoted by �m in ℝm and by 
�n in ℝn . Similarly, the all‑one vector is denoted by �m or �n . The ith unit vector (of 
any dimension) that has component 1 in row i and zeros otherwise is denoted by ei . 
Inequalities between vectors like x ≥ �m or x > �m hold between all components. 
The transpose of a column vector x is the row vector x⊤ . Scalars are treated like 1 × 1 
matrices in matrix multiplication, and are therefore multiplied to the right to column 
vectors and to the left to row vectors. We sometimes write pairs in ℝ2 as row vectors 
(a, b).

For definiteness, we recall the notions of strong, super strong, and k‑strong Nash 
equilibrium.

Definition 1 A Nash equilibrium is called strong if no coalition of players can devi‑
ate from their mixed strategies so that all members of the coalition strictly benefit. 
It is called super strong if no coalition of players can deviate so that all members 
weakly benefit, and at least one member strictly benefits. If either property holds 
for all coalitions with up to k members, then the equilibrium is called k‑strong or 
k‑super‑strong, respectively.
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Thus, 1‑strong equilibria are just Nash equilibria. Strong equilibria were intro‑
duced by  Aumann (1959). The terminology “super strong” is due to Rozenfeld 
(2007), called “strong” by Dubey (1986). The property of super strong equilib‑
rium means that for any coalition of players, the payoffs to the coalition members 
are Pareto optimal.

We first consider fully mixed equilibria. These are equilibria with full support, 
that is, every pure strategy is played with positive probability.

Lemma 1 Consider a fully mixed Nash equilibrium (x, y) of (A, B) where the payoffs 
in A and B are shifted (by adding a constant to all payoffs in A, and another con-
stant to all payoffs in B) so that both equilibrium payoffs are zero. Then

Suppose (x, y) is super strong (that is, the equilibrium payoffs are Pareto-optimal). 
Then

If (x, y) is strong then at least one of the conditions (2) holds.

Proof We repeatedly use the simple observation that x > �m and x⊤v = 0 for some 
non‑zero vector v in ℝm imply that v has at least one positive (and at least one nega‑
tive) component.

Condition  (1) holds by the best response condition for Nash equilibria because 
the equilibrium has full support. In particular, Ay = �m implies that any strategy of 
player 1 is a best response to y.

We now consider the players’ own expected payoffs. Suppose By ≠ �m  . Then 
(By)i > 0 for some i because x⊤(By) = 0 . Therefore, player 1 can help player 2 by 
playing the pure strategy i, given by the ith unit vector ei in ℝm . Then e⊤

i
Ay = 0 and 

e⊤
i
By = (By)i > 0 , so player 1 benefits weakly and player 2 benefits strictly by the 

change from (x, y) to (ei, y) . Hence (x, y) is not super strong. The same applies if 
x⊤A ≠ �⊤

m
 and therefore (x⊤A)j > 0 for some j where player 2 helps player 1 by play‑

ing j. This shows that (2) holds if (x, y) is super strong.
Suppose (x, y) is strong and neither condition in (2) holds. We show that the play‑

ers can change to a mixed strategy pair (x̂, ŷ) so that both players strictly benefit, a 
contradiction. As before, consider pure strategies (unit vectors) ei in ℝm and ej in ℝn 
so that (By)i > 0 and (x⊤A)j > 0 . For � and � in ℝ let

which for sufficiently small |�| and |�| are mixed strategies because, for example if 
𝛿 < 0 , we have xi > 0 and xk < 1 for k ≠ i . Then

(1)Ay = �m, x⊤B = �
⊤
n
.

(2)By = �m, x⊤A = �
⊤
n
.

(3)x̂ = x(1 − 𝛿) + ei 𝛿 , ŷ = y(1 − 𝜀) + ej 𝜀



703

1 3

Strong Nash equilibria and mixed strategies  

which for sufficiently small |�| is positive for any 𝜀 > 0 . Similarly,

which for sufficiently small |�| is positive for any 𝛿 > 0 . So both players strictly ben‑
efit for sufficiently small positive � and � , as claimed.

As will be used later, note that if (By)i < 0 , then in the same manner player 1 can 
improve player 2’s payoff by reducing the mixed strategy probability xi by choosing 
𝛿 < 0 in (3) and (5).   ◻

Lemma 1 raises the question if (x, y) can be a strong equilibrium if only one of 
the conditions  (2) hold. According to the following lemma, this is only possible 
when one player has a constant payoff matrix. Then any Nash equilibrium is trivi‑
ally strong because the coalition of both players cannot deviate so that both players 
strictly benefit.

Lemma 2 Consider a fully mixed Nash equilibrium (x, y) of (A, B) with equilibrium 
payoffs (0, 0) so that (1) holds, let

and let (x, y) be a strong equilibrium. Then A is the all-zero matrix.

Proof Let i be any pure strategy of player 1 and (By)i ≠ 0 . We claim the ith row e⊤
i
A 

of A is the zero row �n . Suppose otherwise that aij ≠ 0 for some j. Consider x̂ and ŷ 
as in (3). Then (4) and x⊤A = �⊤

n
 imply

We choose |�| and |�| small enough with � of the same sign as (By)i so that x̂⊤Bŷ > 0 
in (5), and � of the same sign as � aij so that x̂⊤Aŷ > 0 in  (7). Then both players 
strictly benefit by playing (x̂, ŷ) , that is, (x, y) is not strong, which proves the claim.

Hence, if (By)i ≠ 0 for all i, then A is the all‑zero matrix. It remains to consider 
the case where By ≠ �m and By has some zero component. Let, say, (By)1 > 0 and 
(By)i = 0 for some i, say i = 2 . Suppose that e⊤

2
A ≠ �n  , with a2j > 0 for some col‑

umn  j, which exists because (e⊤
2
A)y = e⊤

2
(Ay) = 0 . We again show that then (x, y) 

is not strong, by letting player  1 help player  2 by playing the first two rows, and 
player 2 increasing yj . Let

(4)

x̂⊤Aŷ =x̂⊤Ay(1 − 𝜀) + x̂⊤A ej 𝜀

=0 + ((1 − 𝛿)x⊤A ej + 𝛿 e⊤
i
A ej)𝜀

=((1 − 𝛿)(x⊤A)j + 𝛿 aij)𝜀

=((x⊤A)j + 𝛿(aij − (x⊤A)j))𝜀

(5)

x̂⊤Bŷ =(1 − 𝛿)x⊤Bŷ + 𝛿 ei Bŷ

=𝛿 eiB(y(1 − 𝜀) + ej𝜀)

=𝛿((By)i + (bij − (By)i)𝜀)

(6)x⊤A = �
⊤
n
, By ≠ �m ,

(7)x̂⊤Aŷ = 𝛿 aij 𝜀 .
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Then, using Ay = �m and e⊤
1
A = �n (because (By)1 > 0),

and, using e⊤
1
By = (By)1 > 0 and e⊤

2
By = (By)2 = 0 ,

which for small enough positive � is positive, as well as x̂⊤Aŷ in  (9), so that both 
players benefit strictly. This shows the desired contradiction when A has any non‑
zero row. So A is the all‑zero matrix as claimed.   ◻

Hence, for a fully mixed strong equilibrium (x, y) of a bimatrix game (A, B) with 
non‑constant payoff matrices, (2) holds.

In preparation for Theorem 1 below we need the following lemma, which is about 
points in the plane that have the origin in the interior of their convex hull.

Lemma 3 Consider points u1,… , us in ℝ2 , not all on a line through the origin (0, 0), 
and positive �1,… , �s ∈ ℝ with �1 +⋯ + �s = 1 so that �1 u1 +⋯ + �s u

s = (0, 0) . 
Then there is some 𝜀 > 0 so that (�, �) is the convex combination of only one or two 
of these points.

Proof Let C be the convex hull of the points u1,… , us . Because 𝛼j > 0 for all j, the 
origin (0, 0) belongs to the relative interior of C, which is the interior of C because 
by assumption C is not a line segment. Let � = max{ t ∣ (t, t) ∈ C} , where 𝜀 > 0 . 
Clearly (�, �) belongs to the boundary of C, which is a polygon, and is therefore 
either a vertex or on an edge of C, which proves the claim.   ◻

Theorem 1 Let (x, y) be a fully mixed strong Nash equilibrium of (A, B) with equi-
librium payoffs (0, 0), where neither A nor B is a constant matrix. Then for all i, j, 
the pairs (aij, bij) in ℝ2 lie on a line with negative slope −� through the origin, for 
some 𝜆 > 0 . That is, bij = −�aij for all i, j, and the game (�A,B) is zero-sum.

Proof By Lemmas  1 and  2, conditions  (1) and (2) hold. Consider the pairs 
uij = (aij, bij) in ℝ2 , arranged in an m × n matrix in the same way as A and B. We first 
show that any two points uij and uil in the same row i are on a line through the origin, 

(8)x̂ = e1
1

2
+ e2

1

2
, ŷ = y(1 − 𝜀) + ej 𝜀 .

(9)

x̂⊤Aŷ =x̂⊤Ay(1 − 𝜀) + x̂⊤A ej 𝜀

=

(
1

2
e⊤
1
A ej +

1

2
e⊤
2
A ej

)
𝜀

=
1

2
a2j 𝜀

(10)

x̂⊤Bŷ =
(
1

2
e⊤
1
B +

1

2
e⊤
2
B)(y(1 − 𝜀) + ej 𝜀

)

=
1

2

(
e⊤
1
By(1 − 𝜀) + e⊤

1
Bej 𝜀 + e⊤

2
Bej 𝜀

)

=
1

2

(
(By)1 + [b1j + b2j − (By)1] 𝜀

)
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that is, are linearly dependent. If not, then e⊤
i
Ay = 0 and e⊤

i
By = 0 by (1) and  (2) 

with y > �n , so that Lemma 3 applied to the points ui1,… , uin shows that (�, �) for 
some 𝜀 > 0 is a convex combination of uij and uil , say, which defines a mixed strat‑
egy ŷ that mixes columns j and  l. Together with the pure strategy i of player 1, it 
gives the positive payoffs (e⊤

i
Aŷ, e⊤

i
Bŷ) = (𝜀, 𝜀) for both players which shows that 

(x, y) is not a strong Nash equilibrium. Similarly, any two points uij and ukj in the 
same column j are linearly dependent.

Next, suppose that not all the points uij are on a single line through the origin. 
Because (x⊤Ay, x⊤By) = (0, 0) and x > �m and y > �n  , the origin is a convex com‑
bination of these points uij with the positive coefficients xiyj  , and we again apply 
Lemma 3. Then

with 𝜀 > 0 for some i,  j, k,  l and � ∈ [0, 1] . If uij > (0, 0) or ukl > (0, 0) , then both 
players obtain positive payoffs by playing (i, j) or (k, l), so this is not the case, and 
0 < 𝛽 < 1 . Hence, the two points uij and ukl are in different quadrants of ℝ2 and not 
in the strictly positive quadrant, and the line through them does not contain (0, 0) 
because it contains (�, �) . (Observe that aijbij ≤ 0 and aklbkl ≤ 0 , and that this sign 
pattern would be preserved if (aij, bij) and (akl, bkl) were scalar multiples of each 
other and would therefore apply to (1 − �)(aij, bij) + �(akl, bkl) which contradicts 
(11).) That is, uij and ukl are linearly independent, where necessarily i ≠ k and 
j ≠ l . This implies that uil = ukj = (0, 0) because otherwise both uij and ukl would 
be scalar multiples of uil or ukj . Then the mixed strategies x̂ = ei(1 − 𝛽) + ek𝛽 and 
ŷ = ej

1

2
+ el

1

2
 give expected payoffs (x̂⊤Aŷ, x̂⊤Bŷ) = (

𝜀

2
,
𝜀

2
) , which again shows that 

(x, y) is not a strong Nash equilibrium.
So all pairs uij = (aij, bij) in ℝ2 lie on a line through the origin. This line is neither 

vertical nor horizontal since neither A nor B is a constant matrix, and it cannot have 
positive slope because otherwise there would be at least one point uij > (0, 0) and 
therefore (x, y) would not be a strong Nash equilibrium. So the slope of the line is 
negative, as claimed.   ◻

We explicitly observe that as a consequence of Theorem  1, in a two‑player 
game where no player is indifferent over all outcomes, a strong Nash equilibrium 
in fully mixed strategies is automatically a super strong Nash equilibrium.

By restricting Theorem 1 to the support of a mixed equilibrium, we obtain the 
following theorem as a corollary. It deals with the case of strong Nash equilibria 
where at least one player plays a mixed, not pure, strategy.

Theorem 2 Let (A, B) be a bimatrix game. Consider a strong Nash equilibrium such 
that at least one player plays a mixed, non-pure, strategy. Then either the equilib-
rium is super strong and all payoff pairs of (A, B) restricted to the equilibrium sup-
port lie on a line with negative slope, or one player is indifferent among all out-
comes in the equilibrium support.

(11)(�, �) = (1 − �) uij + �ukl
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3  Games with more than two players

In this section we consider games with more than two players. Consider an equi‑
librium where at least one of the players, say player 1, plays a mixed strategy that 
is not pure. If there is a further player who also mixes, let this be player 2; if apart 
from player 1 all players play a pure strategy, let any of them be player 2. Fix the 
strategies of the remaining players (at  z, say) as in the considered equilibrium. 
Then this defines a two‑player game between players 1 and  2. If the equilibrium 
is 2‑strong, then the two players cannot both strictly benefit with a joint deviation. 
By Theorem 1 (or Lemma 2), the payoffs to the two players induced by z have to be 
zero‑sum after suitable scaling (or all‑zero for one player). The following theorem 
asserts that this is not a generic property in the following sense: for a sufficiently 
small full‑dimensional neighborhood (ball) around the game, considered as a point 
in the payoff space, and a continuous probability distribution on that ball for choos‑
ing a nearby game, the probability that the nearby Nash equilibrium of the perturbed 
game is 2‑strong is zero.

Theorem 3 In the payoff space of games with a fixed finite number of players with 
given finite numbers of pure strategies, the property that a Nash equilibrium where 
at least one player plays a mixed strategy is 2‑strong is not generic.

Proof Consider a 2‑strong Nash equilibrium of the game where at least one player 
plays a mixed, non‑pure strategy. If only one such player exists, then his payoffs in 
his support (for the pure strategies of the other players) have to be equal, which is 
not a generic property. (This covers also games with only one player.)

Hence, consider two players, say player 1 and 2, who use non‑pure mixed strate‑
gies. Discard all pure strategies of player 1 and 2 not in the support of these mixed 
strategies, which we call x and y, now with full support, and let z be the profile of (in 
general mixed) strategies of the remaining players in this equilibrium (x, y, z). This 
defines payoff matrices A(z) and B(z) to player 1 and player 2, which are multilinear 
expressions in the mixed strategy probabilities in z and the payoffs to player 1 and 2 
for the pure strategy profiles in the support of (x, y, z).

Consider independent small Gaussian perturbations around each payoff of the 
game, truncated and re‑scaled to an �‑ball around the given game (as a point in the 
payoff space); Gaussian noise is useful because the sum of independent Gaussian 
distributions is again Gaussian, which we will use shortly. If the game is generic, 
then it has only finitely Nash equilibria, and the Nash equilibrium is an isolated 
point in the mixed strategy space which does not disappear when the payoffs are 
slightly perturbed (see Govindan and Wilson (2001) and references therein). Hence, 
for sufficiently small positive � there is a unique equilibrium (x̂, ŷ, ẑ) nearby (with the 
same support as x, y, z) for every game in the �‑ball. Moreover, the payoffs and their 
perturbations for pure strategy profiles outside the support of (x, y, z) do not matter.

By Theorem 1 (or Lemma 2), the payoffs in (A(z), B(z)), after suitable scaling, 
have to be zero‑sum (or all‑zero for one player). This seems clearly like a nonge‑
neric property (and is obviously so if 1 and 2 are the only players), but the Nash 
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equilibrium (x̂, ŷ, ẑ) varies with the perturbation (via the equations  (1) in the best‑
response condition), which may somehow preserve also the property of being 
2‑strong.

The following argument shows that it does not. Let the supports of x and y be 
I = {1,… ,m} and J = {1,… , n} , respectively. Let K be the set of profiles of pure 
strategies of the remaining players in the support of z, with corresponding payoffs 
aijk and bijk to player 1 and 2 in the original game, for any (i, j, k) ∈ I × J × K . We 
now add additional small independent Gaussian noise �j to aijk and �i to bijk . The 
resulting noise is still Gaussian (assuming we do the truncation to the �‑ball later). 
This changes the entries (aij(z), bij(z)) of (A(z), B(z)) to (aij(z) + �j, bij(z) + �i) , defin‑
ing a perturbed bimatrix game (A�,B�) . Adding any constants �j to the columns of the 
row player and �i to the rows of the column player leaves the Nash equilibrium (x̂, ŷ) 
of (A�,B�) unchanged. However, it is no longer 2‑strong, because the payoff pairs no 
longer lie on a line (with probability one). This is most easily seen because the nec‑
essary conditions  (2) change to B�ŷ = (𝜀1, 𝜀2,… , 𝜀m)

⊤ and x̂⊤A� = (𝛿1, 𝛿2,… , 𝛿n) , 
which (with probability one) for m ≥ 2 and n ≥ 2 are no longer constant vectors.

Hence, being a 2‑strong Nash equilibrium is a not a generic property, as claimed.  
 ◻

Correspondingly, the stronger conditions for a Nash equilibrium to be k‑strong 
for k ≥ 3 , or k‑super‑strong for k ≥ 2 , are nongeneric as well.

We end this section with two examples of simple three‑player games with two 
pure strategies per player. In the first game, a strong Nash equilibrium exists in 
fully mixed strategies. As a consequence, every outcome of the game is played, at 
the equilibrium, with positive probability. Among these outcomes, one is Pareto 
dominated (by the strong equilibrium). This shows a very different situation com‑
pared to the two‑player case, where for a strong Nash equilibrium in fully mixed 
strategies, all outcomes are Pareto efficient.

Lemma 4 Consider the following game with three players, where players 1 and 2 
choose a row and column, respectively, of M1 and M2 , and player 3 chooses between 
M1 and M2:

Then the fully mixed strategy profile where each player plays ( 1
2
,
1

2
) is a super strong 

Nash equilibrium with payoffs ( 1
2
,
1

2
,
1

2
) . These payoffs Pareto dominate the outcome 

(0, 0, 0) which is in the support of the equilibrium.

Proof Consider an arbitrary mixed strategy profile with probabilities p, q, r for the 
second strategy of players 1, 2, 3, respectively. We claim that the (fully) mixed NE 
where p = q = r =

1

2
 is super strong. To prove this, observe that for the grand coa‑

lition, this means there is no p,  q,  r so that each player benefits at least weakly: 
player 1,

M1 =

(
(2, 0, 0) (0, 2, 0)

(0, 0, 2) (0, 0, 0)

)
, M2 =

(
(0, 0, 0) (0, 0, 2)

(0, 2, 0) (2, 0, 0)

)
.
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player 2,

and player 3,

and at least one of them benefits strictly, that is, one of these inequalities is strict. 
The sum of (12) and (13) states

that is, 2 − 2p − 2r + 4pr ≥ 1 or equivalently

Similarly, the sum of (12) and (14) states 2(1 − q)(1 − r) + 2qr ≥ 1 or equivalently

The sum of (13) and (14) states 2(1 − p)q + 2p(1 − q) ≥ 1 , that is, 2q + 2p − 4pq ≥ 1 
which is equivalent to both

and

Consider first a possible deviation of players 1 and 2 with player 3 staying fixed at 
r =

1

2
 . For this to be profitable for player 1 or player 2, one of (12) or (13) and there‑

fore (15) would have to be strict, which is false for r = 1

2
 . Similarly, the coalition of 

players 1 and 3 when q =
1

2
 cannot strictly benefit player 1 or 3 because then one 

of (12) or (14) and therefore (16) would have to be strict, which is false for q =
1

2
 . 

Finally, the coalition of players 2 and 3 when p =
1

2
 cannot strictly benefit player 

2 or 3 because then one of (13) or (14) and therefore (17) would have to be strict, 
which is false for p =

1

2
.

So no two‑player coalition can profitably deviate, even when strictly benefiting 
only one player.

For the grand coalition, there is no profitable deviation that strictly benefits at 
least one player because, in essence, (15) and (16) imply that 1

2
− r , 1

2
− p , and 1

2
− q 

have the same sign, whereas (17) and (18) imply that 1
2
− p and 1

2
− q have opposite 

sign. In detail, consider (p, q, r) so that the inequalities (12),  (13),  (14) hold, and 
at least one of them strictly as a benefit to the respective player. If this is player 1, 
then (12) and therefore (15) and (16) hold strictly, which requires r ≠ 1

2
 . Divide both 

(12)2(1 − p)(1 − q)(1 − r) + 2pqr ≥
1

2
,

(13)2(1 − p)q(1 − r) + 2p(1 − q)r ≥
1

2
,

(14)2p(1 − q)(1 − r) + 2(1 − p)qr ≥
1

2
,

2(1 − p)(1 − r) + 2pr ≥ 1 ,

(15)1 − 2r ≥ 2p(1 − 2r).

(16)1 − 2r ≥ 2q(1 − 2r) .

(17)2q(1 − 2p) ≥ 1 − 2p

(18)2p(1 − 2q) ≥ 1 − 2q .
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strict inequalities by 2(1 − 2r) , which gives 1
2
> p and 1

2
> q if 1

2
> r and 1

2
< p and 

1

2
< q if 1

2
< r . In the first case, (17) divided by the positive term 2(1 − 2p) implies 

q ≥
1

2
 , in the second case, q ≤

1

2
 , in both cases a contradiction.

Similarly, if player 2 strictly benefits and  (13) holds strictly, then so does  (15) 
(hence, r ≠ 1

2
 ) and (17). Suppose 1

2
> r . As before,  (15) holding strictly implies 

1

2
> p and (17) holding strictly implies q >

1

2
 , but (16) implies 1

2
≥ q , a contradiction. 

The reverse contradictory inequalities hold if 1
2
< r.

In the same manner, if player 3 strictly benefits and (14) holds strictly, then so 
does (16) (so r ≠ 1

2
 ) and (18). Suppose 1

2
> r . As before, (16) holding strictly implies 

1

2
> q and (18) holding strictly implies p >

1

2
 , but  (15) implies 1

2
≥ p , a contradic‑

tion. The reverse contradictory inequalities hold if 1
2
< r .   ◻

In the second example instead we show that, even in simple cases, the notion of 
k‑strong equilibrium can be weaker that the notion of (k + 1)‑strong equilibrium.

Lemma 5 Assume players 1 and 2 choose a row and column, respectively, of M1 and 
M2 , and player 3 chooses between M1 and M2:

Then the strategy profile 
(
(
1

2
,
1

2
), (

1

2
,
1

2
), (1, 0)

)
 is a 2-super-strong Nash equilibrium 

that is not a strong Nash equilibrium.

Proof Suppose player 3 plays (1, 0). Then the payoffs to player 1 and 2 in M1 define 
a zero‑sum “matching pennies” game with unique equilibrium strategies ( 1

2
,
1

2
) for 

players 1 and 2, and payoff 0 to all players. Hence, these three strategies define a 
Nash equilibrium because no player can profitably deviate. This strategy profile is 
also a 2‑super‑strong Nash equilibrium. If player 3’s strategy is fixed, then players 1 
and 2 cannot jointly improve their payoffs because the game between them is zero‑
sum (and their payoffs pairs lie on a line with negative slope). If player 1’s strategy 
is fixed at ( 1

2
,
1

2
) , then irrespective of player 2’s strategy player 3 would receive nega‑

tive expected payoff by playing M2 with positive probability, and therefore player 3 
continues to play (1, 0), in which case both players always receive payoff zero and 
nobody can improve. This holds symmetrically when player 2’s strategy is fixed at 
(
1

2
,
1

2
) . This shows that the strategy profile is 2‑super‑strong.

However, the coalition of all three players can profitably change to all players 
playing their second strategy, with payoffs (1, 1, 1).   ◻

For games with three or more players, a remaining open question is a suitable 
characterization of games that admit a strong Nash equilibrium.

M1 =

(
(1,−1, 0) (−1, 1, 0)

(−1, 1, 0) (1,−1, 0)

)
, M2 =

(
(−2,−2,−2) (−2,−2,−2)

(−2,−2,−2) (1, 1, 1)

)
.
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