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This paper studies the stability of communication protocols that deal with transmission errors. We consider a coordination
game between an informed sender and an uninformed receiver, who communicate over a noisy channel. The sender’s strategy,
called a code, maps states of nature to signals. The receiver’s best response is to decode the received channel output as the
state with highest expected receiver payoff. Given this decoding, an equilibrium or “Nash code” results if the sender encodes
every state as prescribed. We show two theorems that give sufficient conditions for Nash codes. First, a receiver-optimal code
defines a Nash code. A second, more surprising observation holds for communication over a binary channel, which is used
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1. Introduction
Information transmission is central to the interaction of
economic agents and to the operation of organizations.
This paper presents a game-theoretic analysis of commu-
nication with errors over a “noisy channel.” The noisy
channel is a basic model of information theory, pioneered by
Shannon (1948), and fundamental for the design of reliable
data transmission. In this model, an informed sender sends a
message, which is distorted by the channel, to an uninformed
receiver. Sender and receiver have the common interest that
the receiver understands the sender as reliably as possible.

A communication protocol defines a code, that is, a set of
channel inputs that represent the possible messages for the
sender, and a way for the receiver to decode the channel
output. One can view the designer of the protocol as a
“social planner” who tries to solve an optimization problem,
for example, to achieve high reliability and a good rate
of information transmission. This assumes that sender and
receiver adhere to the protocol. In this paper, we study this
model as a game between sender and receiver as two players.
A strategy of the sender is a code, and a strategy of the
receiver is a way to decode the channel output. Rather than
requiring that sender and receiver adhere to their respective
strategies, we assume that they can choose their strategies
freely. A Nash equilibrium is a pair of strategies for sender
and receiver that are mutual best responses. This is the
central stability concept of game theory.

The best response of the receiver is known in the com-
munications literature as maximum a posteriori (MAP)
decoding. In contrast, allowing the sender to deviate from the

code (while the receiver strategy is fixed) is specific to the
game-theoretic approach. If the sender is not in equilibrium,
she has an incentive to change her strategy to encode some
message with a different codeword. If this happens, the
protocol will lose its function as a de facto standard of
communication. The appeal of a Nash equilibrium is that it
is self-enforcing.

Sender-receiver games have attracted significant interest
in economics (Spence 1973, Crawford and Sobel 1982). The
game-theoretic view is also applied in models of language
evolution (Nowak and Krakauer 1999, Argiento et al. 2009).
These assume, like in our case, that the interests of sender
and receiver are fully aligned, and use Nash equilibrium
as the natural stability criterion. We survey this related
literature in more detail below. In the analysis and design
of communication networks, a growing body of research
deals with game-theoretic approaches that assume selfish
agents (Srivastava et al. 2005, MacKenzie and DaSilva 2006,
Anshelevich et al. 2008), again with Nash equilibrium as the
central solution concept.

The Model

We consider the classic model of the discrete noisy channel.
The channel has a finite set of input and output symbols and
known transition probabilities that represent the possible
communication successes and errors. The channel may also
be used repeatedly with independent errors. In the important
case of the binary channel that has only two symbols, the
codewords are then fixed-length sequences of bits.
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In our sender-receiver game, nature chooses one of finitely
many states at random according to a prior probability. The
sender is informed of the state and transmits a signal via the
discrete noisy channel to the uninformed receiver who makes
a decision. The sender’s strategy or code assigns to each state
of nature a specific signal or “codeword” that is the input to
the channel. The receiver’s strategy decodes the distorted
signal that is the channel output as one of the possible states.
Both players receive a (possibly different) positive payoff
only if the state is decoded correctly, otherwise their payoff
is zero.

In equilibrium, the receiver decodes the channel output
as the state with highest expected payoff. When all states
get equal receiver payoff, the receiver condition is the well-
known MAP decoding rule (MacKay 2003, p. 305). The
equilibrium condition for the sender means that she chooses
for each state the prescribed codeword as her best response,
that is, no other channel input has a higher probability of
being decoded correctly with the given receiver strategy.

A Nash code is a code together with a best response
decoding function that defines a Nash equilibrium. That is,
we assume the straightforward equilibrium condition for the
receiver and require that the code fulfills the more involved
sender condition. (Of course, both conditions are necessary
for equilibrium.)

Our Results

We present two main results about Nash codes, along with
other observations that we describe in the outline of our
paper at the end of this introduction. Our first main result
concerns discrete channels with arbitrary finite sets of input
and output symbols. We show that already for three symbols,
not every code defines a Nash equilibrium. However, a Nash
code results if the expected payoff to the receiver cannot
be increased by replacing a single codeword with another
one (Theorem 4.4). Therefore, these receiver-optimal codes
are Nash codes. This is closely related to potential games
(Proposition 4.5), which may provide the starting point for
studying dynamics of codes until they become Nash codes,
as a topic for further research.

In short, without any constraints on the channel, and for
any best response decoding, receiver-optimal codes are Nash
codes. For equal receiver utilities for each state, these are the
codes with maximum expected reliability, which therefore
implies Nash equilibrium. The method to show this result
is not deep; its purpose is to analyze our model. The key
assumption is that an improvement in decoding probability
benefits both sender and receiver. However, a sender-optimal
code is not necessarily a Nash code if sender and receiver
give different utilities to a correct decoding of the state of
nature. This happens if the sender can use an unused message
to transmit the information about the state more reliably.
If all channel symbols are used, then under reasonable
assumptions, the code is Nash (see Proposition 3.1).1

Our second main result is more surprising and techni-
cally challenging. It applies to the binary channel where

codewords are strings of bits with independent positive
error probabilities for each bit. Then every code is a Nash
code (Theorem 6.5), irrespective of its quality. The only
requirement for the decoding is that the receiver breaks
ties between states monotonically, that is, in a consistent
manner; this holds for natural tie-breaking rules, and ties
do not even occur if states of nature have different generic
prior probabilities or utilities. That is, for the binary channel,
as long as the receiver decodes optimally and breaks ties
consistently, the equilibrium condition holds automatically
on the sender’s side.

Binary codes are fundamental to the practice and theory of
information theory. Our result that they are Nash codes shows
that they are incentive compatible. Hence, this condition is
orthogonal to engineering issues such as high reliability and
rate of information transmission.

Related Literature

Information transmission is often modeled in the economic
literature as a sender-receiver game between an informed
expert and an uninformed decision maker. Standard signaling
models (pioneered by Spence 1973) often assume that signals
have costs associated with the information of the sender.
In their seminal work on strategic information transmission,
Crawford and Sobel (1982) consider costless signals and
communication without transmission errors, but where the
incentives of sender and receiver differ. They assume that a
fixed interval represents the set of possible states, messages,
and receiver’s actions. Payoffs depend continuously on the
difference between state and action, and differ for sender
and receiver. In equilibrium, the interval is partitioned into
finitely many intervals, and the sender sends as her message
only the partition class that contains the state. Thus the
sender only reveals partial information about the state. Along
with many other models (see the surveys by Kreps and
Sobel 1994, Sobel 2013), this shows that information is not
transmitted faithfully for strategic reasons because of some
conflict of interest.

Even in rather simple sender-receiver games, players
can get higher equilibrium payoffs when communicating
over a channel with noise than with perfect communication
(Myerson 1994, §4). Blume et al. (2007) extend the model
by Crawford and Sobel (1982) by assuming communication
errors. The noise allows for equilibria that improve welfare
compared to the Crawford and Sobel (1982) model. The
construction partly depends on the specific form of the
errors so that erroneous transmissions can be identified; this
does not apply in our discrete model. In addition, in our
model, players only get positive payoff when the receiver
decodes the state correctly, unlike in the continuous models
by Crawford and Sobel (1982) and Blume et al. (2007). On
the other hand, compared to perfect communication, noise
may prevent players from achieving common knowledge
about the state of nature (Koessler 2001).

Game-theoretic models of communication have been used
in the study of language (see De Jaegher and van Rooij
2014 for a recent survey). Lewis (1969) describes language
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as a “convention” with mappings between states and signals,
and argues that these should be bijections. Nowak and
Krakauer (1999) use evolutionary game theory to show how
languages may evolve from “noisy” mappings; Wärneryd
(1993) shows that only bijections are evolutionary stable.
However, even ambiguous sender mappings (where one
signal is used for more than one state) together with a mixed
receiver population may be “neutrally stable” (Pawlowitsch
2008); the randomized receiver strategy can be seen as noise.
Argiento et al. (2009) consider the learning process of a
language in a sender-receiver game. This is extended to the
noisy channel by Touri and Lambort (2013).

Blume and Board (2014) use the noisy channel to model
vagueness in communication. Lipman (2009) discusses how
vagueness can arise even for coinciding interests of sender
and receiver. Ambiguous signals arise when the set of
messages is smaller than the set of states, which may reflect
communication costs for the sender (see Jäger et al. 2011
and the discussion in Sobel 2012). For the sender-receiver
game with a noisy binary channel, Hernández et al. (2012)
describe the equilibria for a specific code that can serve as a
“universal grammar”; the explicit receiver strategy allows to
characterize the equilibrium payoff.

Noise in communication is relevant to models of persua-
sion, where the sender wants to induce the receiver to take
an action. Glazer and Rubinstein (2004, 2006) study binary
receiver actions; the sender may reveal limited information
about the state of nature as “evidence.” The optimal way to
do so is a receiver-optimal mechanism. In a more general
setting, Kamenica and Gentzkow (2011) allow the sender
to commit to a strategy that selects a message for each
state, assuming the receiver’s best response using Bayesian
updating; the sender may generate noise by selecting the
message at random. Subject to a certain Bayesian consistency
requirement, the sender can commit to her best possible
strategy.

Equilibrium models of information transmission give
several insights. First, communication may fail: every sender-
receiver game has a “babbling equilibrium,” where the
sender’s action is independent of the state and the receiver’s
action is independent of the channel output, with no infor-
mation transmitted. Second, equilibria are typically not
unique (for example, mapping states to signals is often arbi-
trary). Third, conflict of interest, or cost and complexity of
communication (Sobel 2012), prevent perfect communication.

Our approach takes a basic view that communication can
be impeded by noise when interests of sender and receiver
are aligned, and analyzes this issue game theoretically. Our
results show that the Nash equilibrium condition is weaker
than or, for the binary channel, orthogonal to the quality of
information transmission.

Outline of the Paper

Section 2 describes our model and characterizes the Nash
equilibrium condition. For channels with any number of
symbols, §3 gives examples that some codes may not be

Nash codes. Section 4 shows that receiver-optimal codes are
Nash, and discusses the relation to potential functions. In §5,
we consider binary codes, where we first demonstrate that
tie-breaking needs to be “monotonic” when ties occur for
Nash equilibrium to hold for every code. In §6, we show the
main Theorem 6.5 that every monotonically decoded binary
code is Nash. This holds, in fact, not just for binary codes
but for any “input symmetric” channels with any number
of symbols where the probability of receiving a symbol
incorrectly does not depend on the channel input. The proof
also shows that the property of a channel that every code is
Nash, which we call “Nash stability,” extends to any product
of channels (see §7) with independent errors. The product
channel assumes independent error probabilities, but the
codewords are still arbitrary combinations of inputs for such
products. (If the error probabilities are not independent, then
the channel has to be considered with n-tuples as input
and output symbols where, in general, only Theorem 4.4
about receiver-optimal codes applies.) A natural monotonic
decoding rule is to break ties according to a fixed order
among the states, as when they have generic priors. In §8, it
is shown that this is, in fact, the only general deterministic
monotonic tie-breaking rule.

2. Nash Codes
We consider a game of two players, a sender (she) and
a receiver (he). First, nature chooses a state i from a set
ì = 80111 0 0 0 1M − 19 with positive prior probability qi.
Then the sender is fully informed about i, and sends a
message to the receiver via a noisy channel. After receiving
the message as output by the channel, the receiver takes an
action that affects the payoff of both players.

The channel has finite sets (or “alphabets”) X and Y of
input and output symbols, with noise given by transition
probabilities p4y �x5 for each x in X and y in Y . The channel
is used n times independently without feedback. When an
input x = 4x11 0 0 0 1 xn5 is transmitted through the channel,
it is altered to an output y = 4y11 0 0 0 1 yn5 according to the
probability p4y �x5 given by

p4y �x5=

n
∏

j=1

p4yj �xj50 (1)

This is the standard model of a memoryless noisy channel
as considered in information theory (see Cover and Thomas
1991, Gallager 1968, MacKay 2003).

The sender’s strategy is to encode state i by means of
a coding function or code c2 ì→Xn, which we write as
c4i5= xi. We call xi the codeword or message for state i in
ì, which the sender transmits as input to the channel. The
code c is completely specified by the list of M codewords
x01 x11 0 0 0 1 xM−1, which is called the codebook.

The receiver’s strategy is to decode the channel output y,
given by a probabilistic decoding function

d2 Y n
×ì→�1 (2)

where d4y1 i5 is the probability that y is decoded as i.
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If the receiver decodes the channel output as the state i
chosen by nature, then sender and receiver get positive
payoff Ui and Vi, respectively, otherwise both get zero payoff.
The incentives of sender and receiver are fully aligned in the
sense that they always prefer that the state is communicated
successfully. However, the importance of that success may be
different for sender and receiver depending on the state. The
channel transition probabilities, the transmission length n,
and the prior probabilities qi and utilities Ui and Vi for i in
ì are commonly known to the players.

Definition 2.1. Consider an encoding function c2 ì→Xn

and a probabilistic decoding function d in (2). If the pair
(c1d) defines a Nash equilibrium, then c is called a Nash
code. The expected payoffs to sender and receiver are
denoted by U4c1d5 and V 4c1d5, respectively.

To obtain a Nash equilibrium 4c1d5, receiver and sender
have to play mutually best responses. The equilibrium
property, and whether c is called a Nash code as part of such
an equilibrium, may depend on the particular best response
d of the receiver.

A code c defines the sender’s strategy. A best response of
the receiver is the following. Given that he receives channel
output y in Y n, the probability that codeword xi has been
sent is, by Bayes’s law, qip4y �xi5/prob4y5, where prob4y5
is the overall probability that y has been received. The factor
1/prob4y5 can be disregarded in the maximization of the
receiver’s expected payoff. Hence, a best response of the
receiver is to choose with positive probability d4y1 i5 only
states i, so that qiVip4y �xi5 is maximal, that is, so that y
belongs to the set Yi defined by

Yi =
{

y ∈ Y n
�qiVip4y �xi5¾ qkVkp4y �xk5 ∀k ∈ì

}

0 (3)

Hence the best response condition for the receiver states that
for any y ∈ Y n and i ∈ì,

d4y1 i5 > 0 ⇒ y ∈ Yi0 (4)

If Vi = 1 for all i ∈ì, then this decoding rule is known as
MAP or maximum a posteriori decoding (MacKay 2003,
p. 305). If the receiver has different positive utilities Vi for
different states i, then the receiver’s best response maximizes
qiVip4y �xi5. We call the product qiVi the weight for state i.
One could assume Vi = 1 for all i and only vary qi in place
of the weight, but then it seems artificial to allow separate
utilities Ui for the sender, because we want to study the Nash
property with respect to the optimality of codes for receiver
and sender. For that reason, we keep three parameters qi, Ui,
and Vi for each state i.

We say that for a given channel output y, there is a
tie between two states i and k (or the states are tied) if
y ∈ Yi ∩ Yk. If there are never any ties, then the sets Yi for
i ∈ì are pairwise disjoint, and the best response decoding
function is deterministic and unique according to (4). If there
are ties, then a natural way to break them is to choose any

of the tied states with equal probability. For that reason, we
consider probabilistic decoding functions. On the sender’s
side, we only consider deterministic encoding strategies.

We sometimes refer to the sets Yi for i ∈ì as a “partition”
of Y n, which constrains the receiver’s best response decoding
as in (4), even though some of these sets may be empty, and
they may not always be disjoint if there are ties. In any case,
Y n =

⋃

i∈ì Yi.
Suppose that the receiver decodes the channel output

with d according to (3) and (4) for the given code c with
c4i5= xi. Then (c1d) is a Nash equilibrium if and only if,
for any state i, it is optimal for the sender to transmit xi and
not any other x̂ in Xn as a message. When sending x̂, the
expected payoff to the sender in state i is

Ui

∑

y∈Y n

p4y � x̂5d4y1 i50 (5)

When maximizing (5) a function of x̂, the utility Ui to
the sender does not matter as long as it is positive; given
that the state is i, the sender only cares about the expected
probability that the channel output y is decoded as i. We
summarize these observations as follows.

Proposition 2.2. The code c with decoding function d is
a Nash code if and only if the receiver decodes channel
outputs according to (3) and (4), and if and only if in every
state i the sender transmits codeword c4i5= xi, which fulfills
for any other possible channel input x̂ in Xn

∑

y∈Y n

p4y �xi5d4y1 i5¾
∑

y∈Y n

p4y � x̂5d4y1 i50 (6)

3. Examples of Codes That Are Not Nash
This section presents introductory examples of channels
that are used once (n= 1) and that illustrate that the Nash
equilibrium condition does not hold automatically. At the end
of this section, we show in Proposition 3.1 that, under certain
assumptions, the Nash property holds when all channel
symbols are used for transmission.

For our first example, consider a channel with three
symbols, X = Y = 8011129, which is used only once (n= 1),
with the following transition probabilities:

y
p4y �x5

0 1 2

0 0.70 0.15 0.15
x 1 0.25 0.50 0.25

2 0.20 0.20 0.60

(7)

Suppose that there are two states (m= 2) and that nature
chooses the two states from ì= 80119 with uniform priors
q0 = q1 = 1/2. The sender’s utilities are U0 = 2 when the
state is 0 and U1 = 8 when the state is 1, and the receiver’s
utilities are V0 = 6, V1 = 4.
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Consider the codebook c with c405= x0 = 0 and c415=

x1 = 1, so the sender codifies the two states of nature the
two symbols 0 and 1, respectively. Given the parameters of
this game and the sender’s strategy c, the receiver’s strategy
assigns to each output symbol in 8011129 one state. The
following table (8) gives the expected payoff qiVi p4y �xi5
for the receiver when the state is i and the output symbol
is y.

y
qiVip4y �xi5

0 1 2

0 2.1 0.45 0.45
i

1 0.5 1 0.50

(8)

This shows how to find the receiver’s best response and the
sets Yi in (3). For each channel output y, the receiver chooses
the state i with highest expected payoff. Hence he decodes
the channel output 0 as state 0 because q0V0p40 �x05= 201 >
005 = q1V1p40 �x15. In the same way, he decodes channel
outputs 1 and 2 as state 1. Here there are no ties, so the two
sets Y0 and Y1 are disjoint, and the receiver’s best response is
unique and deterministic. That is, the receiver’s best response
d is given by d4y1 i5 = 1 if y ∈ Yi, where Y0 = 809 and
Y1 = 81129, and by d4y1 i5= 0 otherwise.

A shorter form of obtaining (8) from the channel transition
probabilities in (7) is shown in (9), which is (7) with
each row prefixed by the weight qiVi when the channel
input for that row is used as codeword xi. Multiplying the
channel probabilities with these weights gives (8), and a box
surrounds p4y �xi5 if output y is decoded as state i. These
boxes therefore also show the sets Yi if there are no ties, as
in the present case; in the case of ties, and deterministic
decoding, they show the state that is actually decoded by the
receiver.

y
qiVi p4y �x5

0 1 2

3 0 0.7 0.15 0.15
2 x 1 0.25 0.5 0.25

2 0.2 0.2 0.6

(9)

With the help of Proposition 2.2, it is easy to see from (9)
that this code c is not a Nash code. For i = 0 and x0 = 0, we
have

∑

y∈Y p4y �05d4y105= 007, which is the maximum of
the column entries p4y �x5 for y = 0 in (9), so here the sender
cannot improve her payoff by transmitting any x̂ instead
of xi. However, for i = 1, we have

∑

y∈Y p4y �15d4y115=

005 + 0025 = 0075 < 008 = 002 + 006 =
∑

y∈Y p4y �25d4y125,
so (6) does not hold when xi = 1 and x̂ = 2 and the sender
can improve her payoff by sending x̂ instead of xi.

Is there a Nash code for the channel in (7) when ì= 80119
and for the described priors and utilities? First, a simple
and trivial Nash code is to map both states to the same,
arbitrary channel input, x0 = x1. Then every channel output
results from the same row (for that input) in (7) and, because

Table 1. Possible codebooks x01 x1 with x0 6= x1 for the
channel (7) and expected payoffs u and v to
sender and receiver.

x01 x1 Y0 Y1 p4y ∈ Y0 �x05 p4y ∈ Y1 �x15 U V

0, 1 {0} {1,2} 0070 0075 3.70 3060
0, 2 {0, 1} {2} 0085 0060 3025 3075
1, 0 {1, 2} {0} 0075 0070 3055 3065
1, 2 {0, 1} {2} 0075 0060 3015 3045
2, 0 {1, 2} {0} 0080 0070 3060 3.80
2, 1 {0, 2} {1} 0080 0050 2080 3040

q0V0 > q1V1, will be decoded as state 0. The sender cannot
improve her payoff because the receiver in effect ignores the
uninformative channel output. This is also called a “babbling”
or “pooling” equilibrium, which is a Nash equilibrium for
any channel.

When the codewords are distinct (x0 6= x1), there are
six possible ways to choose them from the three channel
inputs. Table 1 lists these codebooks x01 x1, shown in the
first column. For each code, the receiver’s best response
is unique. The best response partition Y01 Y1 is shown in
the second column. Using this partition, the third column
gives the probabilities p4y ∈ Yi �x

i5 =
∑

y∈Yi
p4y �xi5 that

the codeword xi is decoded correctly. The overall expected
payoffs to sender and receiver are shown as U and V , with
a box indicating the respective maximum.

Similar to using (9) for the codebook 011, it can be
verified that the codebook 211 is not a Nash code. In addition,
Table 1 shows directly that the codebook 110 is not a Nash
code: It has the same best response of the receiver (given by
Y0 = 81129 and Y1 = 809) as the codebook 210, but a lower
payoff to the sender (3.55 instead of 3.6), who can therefore
improve her payoff by changing x0 = 1 to x̂ = 2 (note that
the receiver’s reaction stays fixed). Similarly, codebook 112
has the same best response as 012, but a lower payoff to the
sender (3.15 instead of 3.25).

Only the codebooks 210 and 012 in Table 1 are Nash
codes. Apart from a direct verification, this follows from
Theorems 4.2 and 4.4, respectively, which we will discuss in
the next section.

The fact that a code is not Nash seems to be because not
all symbols of the channels are used for transmission. With
some qualifications, this is indeed the case, as we discuss in
the remainder of this section.

Consider the channel in (7) and suppose that there are
three states, ì= 8011129. However, even when each state
is assigned to a different input symbol, one can replicate
the counterexample in (9) when the additional state 2 has
a weight q2V2 that is too low. For example, if priors are
uniform before (qi = 1/3) and V0 = 6, V1 = 4, and V2 = 1,
then the channel outputs would be decoded as before when
state 2 is absent, with the same lack of the Nash property.
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Hence one should require that all output symbols are
decoded differently. However, the following example shows
that this may still fail to give a Nash code:

y
qiVi p4y �x5

0 1 2

0.35 0 0.4 0.3 0.3
0.35 x 1 0.3 0.4 0.3
0.3 2 0.05 0.45 0.5

(10)

Suppose states 0, 1, 2 are encoded as 0, 1, 2 and have the
indicated weights 0.35, 0.35, 0.3, respectively. Here, the
row for channel input 1 has slightly higher weight than for
input 2, so because 0035 × 004 > 003 × 0045, the decoding
function is just the identity. However, for state 1, the sender
can improve the probability of correct decoding by deviating
from x1 = 1 to x̂ = 2 because 004 < 0045.

In (10), for any input x, the corresponding output y = x
has the highest probability of arriving, but this is not relevant
for decoding. With uniform priors and utilities, a reasonable
condition for the channel is “identity decoding,” that is, for
any received output y, the maximum likelihood input is
x = y. That is, suppose that

X=Y 1
p4y �y5>p4y �x5 for all y∈Y 1 x∈X1 x 6=y1

(11)

which says that each output symbol y is more likely to
have been received correctly than in error. This property is
violated in (10), but if it holds, then the following proposition
applies.

Proposition 3.1. Consider a channel with input and output
alphabets X and Y so that 4115 holds. Let c be a code
so that each channel output is decoded as coming from a
different channel input xi with a deterministic best response
decoding function d. Then 4c1d5 is a Nash equilibrium and
c is a Nash code. Every output y is decoded as a state i so
that xi = y and qiVi is maximal.

Proof. By assumption, X = Y and the map �2 Y → X
defined by �4y5= xi if d4y1 i5= 1 is injective and hence a
bijection. Suppose � is not the identity map, so it has a
cycle of length l > 1, which by permuting ì, we assume
as coming from the first l states x01 x11 0 0 0 1 xl−1, that is,
�4xj5= xj+1 mod l for 0 ¶ j < l. That is, channel output x0 is
decoded as state 1 because �4x05= x1, output x1 is decoded
as state 2, and so on. Because d is a best response decoding
function, q0V0p4x

0 �x05¶ q1V1p4x
0 �x15 and therefore

q0V0 ¶ q1V1

p4x0 �x15

p4x0 �x05
< q1V1

by (11). In the same manner, q1V1 < q2V2 < · · ·< ql−1Vl−1 <
q0V0, a contradiction.

Therefore, � is the identity map. Consider any state i.
If d4y1 i5 = 0 for all outputs y, then (6) holds trivially.

Otherwise, channel output xi is decoded as state i and (6)
holds because

∑

y∈Y

p4y �xi5d4y1 i5= p4xi
�xi5¾ p4xi

� x̂5

=
∑

y∈Y

p4y � x̂5d4y1 i5

by (11). Therefore, c is a Nash code. The encoding function c
is surjective because every input xi occurs as a possible
decoding as a state i. However, if �ì � > �X � , then c is not
injective. If xi = xk, then d4y1 i5= 1 requires that xi = y and
that qiVi ¾ qkVk by the best response condition (in fact for
any state k), as claimed. �

In many contexts, in particular, when a channel is used
repeatedly, a code does not use all possible channel inputs
to allow for redundancy and error correction. Sufficient con-
ditions for Nash codes beyond Proposition 3.1 are therefore
of interest.

4. Receiver-Optimal Codes
In this section, we show that every code that maximizes
the receiver’s payoff is a Nash code. The proof implies that
this holds also if the receiver’s payoff is locally maximal,
that is, when changing only a single codeword, and the
corresponding best response of the receiver, at a time. Finally,
we discuss the connection with potential functions.

In the example (9), changing the codebook c to c′ where
c′415= x̂ = 2 improves the sender payoff from U4c1d5 to
U4c′1d5, where d is the receiver’s best response decoding
for code c. In addition, it is easily seen that the receiver
payoff also improves from V 4c1d5 to V 4c′1 d5, and his payoff
V 4c′1d′5 for the best response d′ to c′ is possibly even
higher. This observation leads us to a sufficient condition for
Nash codes.

Definition 4.1. A receiver-optimal code is a code c with
highest expected payoff to the receiver, that is, so that

V 4c1d5¾ V 4ĉ1 d̂5

for any other code ĉ, where d is a best response to c and d̂
is a best response to ĉ.

Note that in this definition, the expected payoff V 4c1d5
(and similarly V 4ĉ1 d̂5) does not depend on the particular
best reponse decoding function d in case d is not unique
when there are ties, because the receiver’s payoff is the same
for all best responses d.

The following is the central theorem of this section.
It is proved in three simple steps2, which give rise to
a generalization that we discuss afterwards, along with
examples and further observations.

Theorem 4.2. Every receiver-optimal code is a Nash code.
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Proof. Let c be a receiver-optimal code with code-
book x01 x11 0 0 0 1 xM−1, and let d be an arbitrary decoding
function. Suppose there exists a code ĉ with codebook
x̂01 x̂11 0 0 0 1 x̂M−1 so that U4ĉ1d5 > U4c1d5, that is,

∑

i∈ì

qiUi

∑

y∈Y n

p4y � x̂i5d4y1 i5

>
∑

i∈ì

qiUi

∑

y∈Y n

p4y �xi5d4y1 i50 (12)

If d is a best response to c according to 435 and 445, then
(12) holds for some ĉ if and only if c is not a Nash code, so
suppose that c is not a Nash code; however, the following
Steps 1 and 2 apply for any d.

Step 1. Clearly, (12) implies that there exists at least one
i ∈ì so that

∑

y∈Y n

p4y � x̂i5d4y1 i5 >
∑

y∈Y n

p4y �xi5d4y1 i50 (13)

(This claim follows also directly from Proposition 2.2, but
we want to refer later to (12) as well.) Consider the new
code c′, which coincides with c except for the codeword for
state i, where we set c′4i5= x̂i. Therefore the codebook for
c′ is x01 0 0 0 1 xi−11 x̂i1 xi+11 0 0 0 1 xM−1. By (13), we also have

U4c′1 d5=
∑

j∈ì1j 6=i

qjUj

∑

y∈Y n

p4y �xj5d4y1 j5

+ qiUi

∑

y∈Y n

p4y � x̂i5d4y1 i5

>
∑

j∈ì

qjUj

∑

y∈Y n

p4y �xj5d4y1 j5=U4c1d50 (14)

Step 2. In the same manner, (13) implies an improvement
of the receiver function, that is,

V 4c′1 d5 > V 4c1d50 (15)

Step 3. Let d be the best response to c and let d′ be the
best response to c′. With (15), this implies

V 4c′1 d′5¾ V 4c′1 d5 > V 4c1d50

Hence, code c′ has higher expected receiver payoff than c.
This contradicts the assumption that c is a receiver-
optimal code. �

In Table 1, the codebook 210 is receiver-optimal, and a
Nash code in agreement with Theorem 4.2.

We have shown that the codebook 011 in Table 1 is
not a Nash code. Note, however, that this is the code with
highest sender payoff. Hence, a “sender-optimal” code is
not necessarily a Nash code. The reason is that, because
sender and receiver have different payoffs for the two states,
the sender prefers the code with large partition class Y1 for
state 1, but then can deviate to a better, unused message
within Y1. (Note that the sender’s payoff only improves

when the receiver’s response stays fixed; with best response
decoding, the code 012 has a worse payoff U to the sender
than 011.)

In Table 1, the code c with codebook 012 is also seen
to be a Nash code with the help of Table 1 according to
the proof of Theorem 4.2. Namely, it suffices to look for
profitable sender deviations c′, where only one codeword
is altered, which would also imply an improvement to
the receiver’s payoff from V 4c1d5 to V 4c′1d5, and hence
certainly an improvement to his payoff V 4c′1 d′5, where d′

is the best response to c′. For the two possible codes c′

given by 112 and 011, the receiver payoff V does not
improve according to Table 1, so c is a Nash code. By this
reasoning, any “locally” receiver-optimal code, according to
the following definition, is also a Nash code, stated afterward
in Theorem 4.4.

Definition 4.3. A locally receiver-optimal code is a code c,
so that no code c′ that differs from c in only a single
codeword gives higher expected payoff to the receiver.
That is, for all c′ with c′4i5 6= c4i5 for some state i, and
c′4k5= c4k5 for all k 6= i,

V 4c1d5¾ V 4c′1 d′51

where d is a best response to c and d′ is a best response
to c′.

Theorem 4.4. Every locally receiver-optimal code is a
Nash code.

Proof. Apply the proof of Theorem 4.2 from Step 2 onward.

Clearly, every receiver-optimal code is also locally receiver-
optimal, so Theorem 4.2 can be considered a corollary to
the stronger Theorem 4.4.

Local receiver optimality is more easily verified than
global receiver-optimality, because much fewer codes c′

have to be considered possible improvements for the receiver
payoff according to Definition 4.3. A locally receiver-optimal
code can be reached by iterating profitable changes of
single codewords at a time. This simplifies the search for a
(nontrivial) Nash code.

To conclude this section, we consider the connection to
potential games, which also allow for iterative improvements
to find a Nash equilibrium. Like in Monderer and Shapley
(1996, p. 127), consider a game in strategic form with finite
player set N , pure strategy set Si, and utility function ui

for each player i. Then the game has a (ordinal) potential
function P2

∏

j∈N Sj →� if for all i ∈N , s−i ∈
∏

j 6=i Sj , and
si1 ŝ i ∈ Si,

ui4s−i1 ŝi5 > ui4s−i1 si5 ⇔ P4s−i1 ŝi5 > P4s−i1 si50 (16)

The question is if in our game, the receiver’s payoff is
a potential function.3 The following proposition gives an
answer.
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Proposition 4.5. Consider the game with M + 1 players
where for each state i in ì, a separate agent i transmits a
codeword c4i5 over the channel, which defines a function
c2 ì→Xn, and where the receiver decodes each channel
output with a decoding function d as before. Each agent
receives the same payoff U4c1d5 as the original sender. Then

(a) Any Nash equilibrium (c1d) of the (M + 1)-player
game is a Nash equilibrium of the original two-player game,
and vice versa.

(b) The receiver’s expected payoff is a potential function
for the (M + 1)-player game.

(c) The receiver’s expected payoff is not necessarily a
potential function for the original two-player game.

Proof. Every profile c of M strategies for the agents in the
(M + 1)-player game can be seen as a sender strategy in
the original game and vice versa. To see (a), let (c1d) be
a Nash equilibrium of the (M + 1)-player game. If there
was a profitable deviation ĉ from c for the sender in the
two-player game as in (12), then there would also be a
profitable deviation c′ that changes only one codeword c4i5
as in (14), which is a profitable deviation for agent i, a
contradiction. The “vice versa” part of (a) holds because any
profitable deviation of a single agent is also a deviation for
the sender in the original game.

Assertion (b) holds because for any i in ì, (14) is via
(13) equivalent to (15).

To see (c), consider the example (7) with c and ĉ given
by the codebooks 110 and 211, respectively, and d decoding
channel outputs y = 01112 as states 01011, respectively.
Then the payoffs to sender and receiver are

U4c1d5= q0U04p40 �15+p41 �155+ q1U1p42 �05

= 1 × 40025 + 0055+ 4 × 0015 = 10351

V 4c1d5= q0V0 4p40 �15+p41 �155+ q1V1p42 �05

= 3 × 40025 + 0055+ 2 × 0015 = 20551

U4ĉ1 d5= q0U04p40 �25+p41 �255+ q1U1p42 �15

= 1 × 4002 + 0025+ 4 × 0025 = 1041

V 4ĉ1 d5= q0V0 4p40 �25+p41 �255+ q1V1p42 �15

= 3 × 4002 + 0025+ 2 × 0025 = 1071

which shows that (16) does not hold with ui as sender
payoff and P receiver payoff, because these payoffs move
in opposite directions when changing the sender’s strategy
from c to ĉ for this d. �

A global maximum of the potential function gives a Nash
equilibrium of the potential game (Monderer and Shapley
1996, Lemma 2.1). Hence, (a) and (b) of Proposition 4.5
imply that a maximum of the receiver payoff defines a Nash
equilibrium, as stated in Theorem 4.2. It is also known
that a “local” maximum of the potential function defines a
Nash equilibrium (Monderer and Shapley 1996, Footnote 4).
However, this does not imply Theorem 4.4. The reason
is that in a local maximum of the potential function, the

function cannot be improved by unilaterally changing a
single player’s strategy. In contrast, in a locally receiver-
optimal code, the receiver’s payoff cannot be improved by
changing a single codeword together with the receiver’s best
response. As a trivial example, any “babbling” Nash code
for (7), where x0 = x1 is not locally receiver optimal, but is
a “local maximum” of the receiver payoff.

In a potential game, improvements of the potential function
can be used for dynamics that lead to Nash equilibria. For
our games, the study of such dynamics may be an interesting
topic for future research.

5. Binary Channels and Monotonic
Decoding

Our next main result (stated in the next section) concerns
the important binary channel with X = Y = 80119. The two
possible symbols 0 and 1 for a single use of the channel are
called bits. The binary channel is the basic model for the
transmission of digital data and of central theoretical and
practical importance in information theory (see, for example,
Cover and Thomas 1991 or MacKay 2003).

We assume that the channel errors �0 = p41 �05 and
�1 = p40 �15 fulfill

�0 > 01 �1 > 01 �0 + �1 < 11 (17)

where �0 + �1 < 1 is equivalent to either of the inequalities,
equivalent to (11),

1 − �0 >�11 1 − �1 >�00 (18)

These assert that a received bit 0 is more likely to have
been sent as 0 (with probability 1 − �0) than sent as bit 1
and received with error (with probability �1), and similarly,
that a received bit 1 is more likely to have been sent as 1
than received erroneously. It may still happen that bit 0, for
example, is transmitted with higher probability incorrectly
than correctly, for example, if �0 = 3/4 and �1 = 1/8.

Condition (17) can be assumed with very little loss of
generality. If �0 = �1 = 0, then the channel is error free and
every message can be decoded perfectly. If �0 + �1 = 1,
then the channel output is independent of the input and no
information can be transmitted. For �0 +�1 > 1, the signal is
more likely to be inverted than not, so that one obtains (17)
by exchanging 0 and 1 in Y .

Condition (17) does exclude the case of a “Z-channel”
that has only one-sided errors, that is, �0 = 0 or �1 = 0. We
assume instead that this is modeled by vanishingly small
error probabilities to avoid channel outputs y in Y n that
cannot occur for some inputs x when �0 = 0 or �1 = 0. With
(17), every channel output y has positive, although possibly
very small, probability.

The binary channel is symmetric when �0 = �1 = �> 0,
where �< 1/2 by (17).

The binary channel is used n times independently. A code
c2 ì→Xn for X = 80119 is also called a binary code. Our
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main result about binary codes (Theorem 6.5 below) implies
that any binary code is a Nash code,4 provided the decoding
is monotone. This monotonicity condition concerns how the
receiver resolves ties when a received channel output y can
be decoded in more than one way.

We first consider an example of a binary code that shows
that the equilibrium property may depend on how the receiver
deals with ties. Assume that the channel is symmetric with
error probability �. Let M = 4, n = 3, and consider the
codebook x01 x11 x21 x3 given by 000110010101001. All four
states i have equal prior probabilities qi = 1/4 and equal
sender and receiver utilities Ui = Vi = 1. The sets Yi in (3)
are given by

Y0 =800091 Y2 =801010111110111191

Y1 =810011011110111191 Y3 =800110111101111190
(19)

This shows that for any channel output y other than an
original codeword xi, there are ties between at least two
states. For example, 110 ∈ Y1 ∩ Y2 because 110 is received
with probability �41 − �52 for x1 and x2 as channel input.
For y = 111, all three states 11213 are tied.

Consider first the case that the receiver decodes the
channel outputs 11010111101 as states 11213, respectively,
that is, according to

d4110115= 11 d4011125= 11 d4101135= 10 (20)

We claim that this cannot be a Nash code, irrespective of
the decoding probabilities d41111 i5, which can be positive
for any i = 11213 by (19). The situation is symmetric for
i = 11213, so assume that d41111 i5 is positive when i = 1;
the case of a deterministic decoding, where d4111115= 1 is
shown in Figure 1. Then the receiver decodes y as state 1 with
positive probability when y equals 100, 110, or 111. When
x1 = 100 is sent, these channel outputs are received with
probabilities 41 − �53, �41 − �52, and �241 − �5, respectively,
so the sender payoff is

41 − �53
+ �41 − �52

+ �241 − �5d4111115

in (5). Given this decoding, the sender can improve her
payoff in state 1 by sending x̂ = 110 rather than x1 = 100,
because then the probabilities of the channel outputs 100 and
110 are just exchanged, whereas the probability that output
111 is decoded as state 1 increases to �41 − �52 d4111115;
that is, given this decoding, sending x̂ = 110 is more likely
to be decoded correctly as state 1 than sending x1 = 100.
This violates (6).

The problem with the decoding in (20) is that when the
receiver is tied between states 1, 2, and 3 when the channel
output is ŷ = 111, he decodes ŷ as state 1 with positive
probability d4111115, but when he is tied between even
fewer states 1 and 3 when receiving y = 101, that decoding
probability d4101115 decreases to zero. This violates the
following monotonicity condition.

Figure 1. Binary code with four codewords 000, 100,
010, 001 with nonmonotonic decoding.

011 111

110010

100000

001 101

Note. The light grey sets indicate how a channel output is decoded.

Definition 5.1. Consider a codebook with codewords xi

for i ∈ì. For a channel output y, let T 4y5 be the set of tied
states according to

T 4y5= 8l ∈ì �y ∈ Yl90 (21)

Then a decoding function d in (2) is called monotonic if it
is a best response decoding function with (3) and (4) and if
for all y1 ŷ ∈ Y n and states i,

i ∈ T 4y5⊆ T 4ŷ5 ⇒ d4y1 i5¾ d4ŷ1 i50 (22)

Furthermore, d is called consistent if

i ∈ T 4y5= T 4ŷ5 ⇒ d4y1 i5= d4ŷ1 i50 (23)

Condition (22) states that the probability of decoding the
channel output as state i can only decrease when the set of
tied states increases. Condition (23) states that the decoding
probability d4y1 i5 of state i may only depend on the set T
of states that are tied with i, but not on the received channel
output y. Clearly, monotonicity implies consistency. We
will show that for certain channels, in particular, the binary
channel, monotonic decoding gives a Nash code. However,
for consistent decoding, this is not the case. For example,
the decoding shown in Figure 1 is consistent because no
two channel outputs have the same set of tied states, but the
Nash property is violated.

Monotonic decoding functions exist, for example, by
breaking ties uniformly at random according to d4y1 i5=

1/�T 4y5� for i ∈ T 4y5. We study the monotonicity condition
in Definition 5.1 in more detail in later sections.

6. Nash Codes for Input Symmetric
Channels

In this section, we state and prove our main result, Theo-
rem 6.5 below, about binary codes. It turns out that it also
applies to the following generalization of discrete channels
where the error probability �y of receiving an incorrect
output symbol y only depends on y but not on the input.
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Definition 6.1. A discrete channel is input symmetric if
X = Y and there are errors �y > 0 for y ∈ Y , so that
∑

y∈Y �y < 1 and for all x ∈X, y ∈ Y :

p4y �x5= �y > 0 if x 6= y1
p4y �x5= �y >�y if x = y1

(24)

where �y = 1 −
∑

z6=y �z and thus for all y

�y − �y = 1 −
∑

z∈Y

�z > 00 (25)

Clearly, every binary channel is input symmetric. The
matrix in (26) shows an example of an input symmetric
channel with three symbols.

y
p4y �x5

0 1 2

0 0.3 0.2 0.5
x 1 0.1 0.4 0.5

2 0.1 0.2 0.7

(26)

By (25), the transition matrix of an input symmetric channel
is the sum of a matrix, where each row is identical (given
by the errors) plus 41 −

∑

z∈Y �z5 times the identity matrix.
Definition 6.1 is chosen for our needs and, to our knowledge,
not common in information theory; the definition of a
symmetric channel by Cover and Thomas (1991, p. 190) is
different, but covers the case where �y = � for all y.

A channel that is “output symmetric” is shown in (7),
where for any given input x, the outputs y other than x have
the same error probabilities p4y �x5. As we have shown with
that example, such a channel may have codes that are not
Nash codes.

The argument for Theorem 6.5 below rests on two lemmas.
It is useful to partially order channel outputs and inputs by
“closeness” to a given codeword as follows.

Definition 6.2. Let x1 y1 z ∈ Sn for some set S. Then y is
closer to x than z if and only if5

yj 6= zj ⇒ yj = xj ∀ j = 11 0 0 0 1 n0

The following key lemma states in (29) that the decoding
probability of a channel output y for a state i does not
decrease when y gets closer to the codeword xi.

Lemma 6.3. Consider a code for an input symmetric channel,
a state i, channel outputs y and ŷ, and assume y is closer to
codeword xi than ŷ. Then

i ∈ T 4ŷ5 ⇒ i ∈ T 4y51 (27)

i ∈ T 4ŷ5 ⇒ T 4y5⊆ T 4ŷ51 (28)

and if the code is monotonically decoded, then

d4y1 i5¾ d4ŷ1 i50 (29)

Proof. To prove (27), we can assume that y and ŷ differ in
only one symbol, because then (27) holds in general via a
sequence of changes of only one symbol at a time. Assume
that y and ŷ differ in the jth symbol, that is, yj 6= ŷj and
y−j = ŷ−j with the notation

y−j = 4ys5s 6=j1 y = 4yj1 y−j50 (30)

With (1), we use the notation

p4y �x5 = p4yj �xj5 p4y−j �x−j5

2= p4yj �xj5
∏

s 6=j

p4ys �xs51 (31)

and, for any k in ì,

Qk 2= qkVk p4y−j �x
k
−j50 (32)

Then by (3), y ∈ Yi means qiVi p4y �xi5¾ qkVk p4y �xk5 for
all k in ì, or equivalently

qiVip4yj �x
i
j5p4y−j �x

i
−j5¾qkVkp4yj �x

k
j 5p4y−j �x

k
−j51 (33)

that is, by (32), y ∈ Yi if and only if

p4yj �x
i
j5

p4yj �x
k
j 5

¾ Qk

Qi

∀k ∈ì0 (34)

Because y is closer to xi than ŷ, we have yj = xi
j 6= ŷj .

Suppose, to show (27), that ŷ ∈ Yi, that is, because y−j = ŷ−j ,

p4ŷj �x
i
j5

p4ŷj �x
k
j 5

¾ Qk

Qi

∀k ∈ì1 (35)

and we want to show (34). For those k where xi
j = xk

j , the
left-hand side of (35) does not depend on ŷj (and thus holds
with yj instead of ŷj ), so consider any state k where xij 6= xkj .
Then by (24),

p4yj �x
i
j5

p4yj �x
k
j 5

=
�yj
�yj

> 1 =
�ŷj

�ŷj

¾
p4ŷj �x

i
j5

p4ŷj �x
k
j 5

¾ Qk

Qi

1 (36)

which shows (34). Therefore, ŷ ∈ Yi implies y ∈ Yi, which
proves (27).

To show (28), assume again that y and ŷ differ only in
their jth symbol, and let i ∈ T 4ŷ5 and l ∈ T 4y5 for a state l.
That is, ŷ ∈ Yi and y ∈ Yl, where y ∈ Yi by (27). Then states
i and l are tied for y, and clearly,

p4yj �x
i
j5

p4yj �x
l
j5

=
Ql

Qi

0 (37)

If xi
j = xl

j , then (37) implies Ql =Qi and (35) holds with
l instead of i, so ŷ ∈ Yl, that is, l ∈ T 4ŷ5. If xi

j 6= xl
j , then

the strict inequality (36) for k= l contradicts (37), so this
cannot be the case. This shows (28).

To show (29), assume monotonic decoding as in (22). If
ŷ 6∈ Yi, then trivially d4y1 i5¾ d4ŷ1 i5= 0. Otherwise, i ∈ T 4ŷ5
and thus i ∈ T 4y5⊆ T 4ŷ5 by (27) and (28), which shows (29)
by (22). �

The next lemma6 compares two channel inputs x and
x̂ that differ in a single position j , and the corresponding
channel output when that jth symbol arrives as yj , for
arbitrary other output symbols y−j , using the notation (30).
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Lemma 6.4. Consider a monotonically decoded code for an
input symmetric channel, and channel inputs x and x̂, which
differ only in the jth symbol, where x is closer to codeword
xi than x̂. Then for all y−j ,

∑

yj∈Y

p44yj1 y−j5 �x5d44yj1 y−j51 i5

¾
∑

yj∈Y

p44yj1 y−j5 � x̂5 d44yj1 y−j51 i50 (38)

Proof. Because x−j = x̂−j and by (31), all terms in (38)
have p4y−j �x−j5 as a common factor. By taking that factor
out and subtracting the right-hand side, (38) is equivalent to

∑

yj∈Y

(

p4yj �xj5−p4yj � x̂j5
)

d44yj1 y−j51 i5¾ 00 (39)

If yj 6= xj and yj 6= x̂j , then p4yj �xj5− p4yj � x̂j5 = �yj
−

�yj
= 0, so (39) is equivalent to

(

p4xj �xj5−p4xj � x̂j5
)

d44xj1 y−j51 i5

+
(

p4x̂j �xj5−p4x̂j � x̂j5
)

d44x̂j1 y−j51 i5¾ 00 (40)

By (25),

p4xj �xj5−p4xj � x̂j5= �xj − �xj
= 1 −

∑

z∈Y

�z = �x̂j − �x̂j
1

so that (40) is equivalent to

(

1 −
∑

z∈Y

�z

)

(

d44xj1 y−j51 i5−d44x̂j1 y−j51 i5
)

¾ 01 (41)

which is true because d44xj1 y−j51 i5 = d44xi
j1 y−j51 i5 ¾

d44x̂j1 y−j51 i5 by (29). This shows (38). �

The following main theorem is essentially a corollary to
Lemma 6.4.

Theorem 6.5. Every monotonically decoded code for an
input symmetric channel is a Nash code.

Proof. For any position j , a channel output y is of the form
(yj1 y−j ) as considered in (38). If x and x̂ differ only in the
jth position and x is closer to xi than x̂, with xj = xi

j 6= x̂j ,
then summing (38) over all y−j shows

∑

y∈Y n

p4y �x5d4y1 i5¾
∑

y∈Y n

p4y � x̂5 d4y1 i50

For an arbitrary channel input x̂, considering one symbol at
a time where x̂ differs from xi, this eventually gives (6),
which proves the claim. �

In (34), it is used that all transition probabilities of the
channel are positive. In fact, Theorem 6.5 does not hold
without this assumption.

Remark 6.6. If some error probabilities are zero, it is no
longer true that every monotonically decoded binary code is
a Nash code.

Proof. Consider a binary “Z-channel” where p41 �05 =

�0 = 0 and p40 �15= �1 = �> 0, which is used twice (n= 2),
with transmission probabilities shown in (42).

y
qiVi p4y �x5

00 01 10 11

1 00 1 0 0 0
1 01 � 1 − � 0 0

x
10 � 0 1 − � 0
11 �2 �41 − �5 41 − �5� 41 − �52

(42)

Assume uniform weights qiVi = 1 and let the two codewords
be x0 = 00 and x1 = 01, so that Y0 = 8001101119 and
Y1 = 8011101119. Note that outputs 10 and 11 are both
tied because they have probability zero with these inputs.
Assume that these two “unobtainable” outputs are decoded
as state 1, which defines a monotonic decoding rule (for
a smaller set of tied states, the probability of decoding a
state in the smaller set does not go down). This decoding is
indicated by boxes in (42). However, this is not a Nash code
because the sender can improve the probability of decoding
state 1 from 1 − � to 1 − �2 by choosing x̂ = 11 instead of
x0 = 01 as channel input.

7. Nash-Stable Channels
In this section, we carry the analysis of §6 one step further.
This is motivated by Lemma 6.4, which asserts, in effect, that
the Nash property applies when varying only the jth symbol
in the transmitted n-tuple. That is, if a single use of the
channel always gives a Nash equilibrium under monotonic
decoding, then this also holds when the channel is used n
times independently with codewords of length n. In fact,
each of the n times one can use a different channel. We
first give a formal statement and proof of this observation.
Afterwards, we discuss its relationship to the results of the
previous section.

Definition 7.1. A discrete noisy channel is called Nash-
stable if, for a single use of the channel (n = 1), every
monotonically decoded code is a Nash code, for any number
of states i with nonnegative weights qiVi.

The following theorem considers a product of n noisy
channels with input and output alphabets X4j5 and Y 4j5
and transition probabilities pj4yj �xj5 for 1 ¶ j ¶ n. These
channels are used independently with channel inputs x =

4x11 0 0 0 1 xn5 and channel outputs y = 4y11 0 0 0 1 yn5, where y
is obtained, analogous to 415, according to

p4y �x5=

n
∏

j=1

pj4yj �xj50 (43)
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Note that the possible inputs x to the product channel have
their n symbols distorted with independent errors, but the
considered codes need not have any product structure. That
is, the codewords can be chosen in any way just as in the
previously considered case of using the same channel n times.

Theorem 7.2. The product of Nash-stable channels is Nash
stable.

Proof. Let X =
∏n

j=1 X4j5 and Y =
∏n

j=1 Y 4j5. Consider a
finite set ì of states and a code c2 ì→X, where we denote
the codewords by xi = c4i5 as usual for i in ì. Assume that
the decoding function d2 Y ×ì→� is monotonic. If c is
not a Nash code, then there is some state i and x = xi and x̂
in X, so that
∑

y∈Y

p4y �x5d4y1 i5 <
∑

y∈Y

p4y � x̂5 d4y1 i50 (44)

As in Theorem 6.5, this implies that (44) holds for some x
and x̂ in X that differ only in their jth symbol with x closer
to xi than x̂, that is, xj = xi

j 6= x̂j , and otherwise xs = x̂s for
s 6= j , so we consider this case. Analogously to (31), we
write p4y �x5= pj4yj �xj5p4y−j �x−j5, and in addition, let
Y−j =

∏

s 6=j Y 4s5. Because x−j = x̂−j , (44) is equivalent to

∑

y−j∈Y−j

p4y−j �x−j5

·
∑

yj∈Y 4j5

(

pj4yj �x
i
j5−pj4yj � x̂j5

)

d44yj1 y−j51 i5 < 00

Hence, for at least one y−j , we have p4y−j �x−j5 > 0 and

∑

yj∈Y 4j5

pj4yj �x
i
j5d44yj1 y−j51 i5

<
∑

yj∈Y 4j5

pj4yj � x̂j5d44yj1 y−j51 i50 (45)

(Apart from the notation Y 4j5 for the output set of the jth
channel, this just states that (39) does not hold.) We claim
that (45) violates the assumption that the jth channel is
Nash stable. Namely, consider the same set of states ì and
the code C2 ì→X4j5 that encodes state i as C4i5= xi

j .
The original full codeword xi = 4xi

j1 x
i
−j5 is sent across the

product channel X, and the jth output symbol yj is decoded
according to D2 Y 4j5×ì→� defined by

D4yj1 i5= d44yj1 y−j51 i5 (46)

for the fixed other outputs y−j . We want that this reflects
the original best response decoding, which requires that the
weights qiVi are replaced by qiVi p4y−j �x

i
−j5 (which are

exactly the weights Qi in (32)). Then we obtain the following
division of Y 4j5 into best response sets Yi4j5 analogous
to (3):

Yi4j5=
{

yj ∈ Y 4j5 �qiVip4y−j �x
i
−j5p4yj �x

i
j5

¾ qkVkp4y−j �x
k
−j5 p4yj �x

k
j 5 ∀k ∈ì

}

0 (47)

Hence yj ∈ Yi4j5 if and only if 4yj1 y−j5 ∈ Yi, which shows
that D in (46) is indeed a best response decoding of the
single-channel outputs yj . Because d is monotonic, so is D,
because the tied states l for yj (where yj ∈ Yl4j55 are those
that are tied for y = 4yj1 y−j5 (where y ∈ Yl). Because of
(45), 4C1D5 is not a Nash equilibrium and the jth channel
is not Nash stable as claimed. Therefore, c is a Nash code
for the product channel. �

Theorem 6.5 states that for an input symmetric channel
that is used n times independently, every code is a Nash
code. In particular, it is a Nash code for n= 1, so an input
symmetric channel is Nash stable. In addition, Theorem 7.2
is more general by allowing a different channel for each
of the transmitted n symbols, but it is straightforward to
extend the proof of Theorem 6.5 to this case if each channel
is input symmetric.

The condition of Nash stability raises a number of ques-
tions. First, according to the proof of Theorem 7.2, a large
number of states i might be encoded with input symbols xi

j

for the jth channel, with different weights Qi, to use the
assumption that the jth channel is Nash stable. Does it matter
if some of these weights Qi are zero? They are given by
Qi = qiVi p4y−j �x

i
−j5, so this happens when some channel

error probabilities are zero. This case is not excluded in the
definition of Nash stability or in Theorem 7.2. However,
such channels, for example, the binary Z-channel, are not
Nash stable (which explains Remark 6.6) according to the
following proposition. We do not consider the trivial case
that p4y �x5= 0 for all input symbols x, when the output
symbol y can be omitted altogether.

Proposition 7.3. Consider a discrete noisy channel where
for some input symbols x and x̂ and output symbol y, we
have p4y �x5= 0 and p4y � x̂5 > 0. Then this channel is not
Nash stable.

Proof. Consider ì= 80119, q0 = q1 = 1/2, V0 = 2, V1 = 1,
and the code x0 = x1 = x, so both states are mapped to the
same channel input x, which cannot be received as channel
output y. (This example can, in fact, be obtained from the
proofs of Theorem 7.2 and Remark 6.6.) All outputs y′

with p4y′ �x5 > 0 are decoded as the state 0 with higher
weight. For the channel output y, both states are tied because
this event has probability zero, so y ∈ Y0. The receiver can
therefore choose d4y115= 1, that is, decode output y as
state 1, and decode all other outputs ŷ, so that p4ŷ �x5= 0
as state 1 as well. This decoding is monotonic (the only sets
of tied states are 80119 and 809). Then in state 1, the sender
can change from x1 = x to x̂ and increase the decoding
probability from zero to at least p4y � x̂5. This improves her
payoff, so the code is not a Nash code. �

The preceding remark shows that Nash stability requires
looking at “ambiguous” codes that map more than one state
to the same codeword. However, it also shows that if all
channel transmission probabilites are positive, then among
any states mapped to the same channel input, only those with
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maximum weight can be decoded with positive probability.
Clearly (as argued before in the proof of Proposition 3.1),
“undecoded” states i so that d4y1 i5 = 0 for all y can be
ignored when checking Nash stability. However, according
to Definition 7.1, this still requires checking many conditions
for the possible codes, weights, and monotonic decoding
functions.

It can be shown, but is beyond the scope of this paper, that
it is possible to restrict this check to deterministic monotonic
decoding functions. Then no more than �Y � states i have
the property that d4y1 i5 > 0 for some y in Y . For all other
states, the Nash property holds trivially. For the weights
for these states, there are only finitely many combinations
of producing ties for any output y. The following remark
illustrates this for a channel that is not input symmetric.

Remark 7.4. There are Nash-stable channels that are not
products of input symmetric channels.

Proof. Consider the following channel with three symbols.

y
p4y �x5 0 1 2

0 4/7 1/7 2/7
x 1 2/7 4/7 1/7

2 1/7 2/7 4/7

(48)

Consider deterministic monotonic decoding functions, where
at most three states have positive probability of being
decoded. If there is only one state decoded with positive
probability, then the Nash condition holds trivially, and
for three states, it holds by Proposition 3.1. The symbols
01112 can be cyclically permuted without changing the
channel, so suppose the code for two states 0 and 1 uses
codewords x0 = 0 and x1 = 1. The decoding depends on
the relative weights qiVi, so suppose priors are uniform and
V0 = 1. Then for 1/4 < V1 < 2, we have Y0 = 80129 and
Y1 = 819, which gives a Nash code. If V1 < 1/4, then Y1 is
empty and Y0 = 8011129, which gives trivially a Nash code,
and similarly if V1 > 2. If V1 = 1/4, then Y0 = 8011129 and
Y1 = 819, and the two states are tied for y = 1. If output
y = 1 is decoded as state 0, then the Nash property holds
trivially, if as state 1, then sending x1 gives the maximum
decoding probability 4/7, so this is also a Nash code.

If V1 = 2, then Y0 = 80129 and Y1 = 8011129, so that the
two states are tied both for y = 0 and y = 2. By consistency,
both outputs y = 0 and y = 2 are decoded either as state 0 or
as state 1, which correspond to the cases already considered
and give Nash codes.

Finally, it is not hard to see that any mixed decoding
strategy that is monotonic is a convex combination of the
considered deterministic monotonic decoding functions,
which implies the Nash property as well. This applies also
to many states where more than one state is mapped to the
same input symbol. �

The computational difficulty of deciding if a given channel
is Nash stable is open. The problem belongs to the complexity

Figure 2. The binary code of Figure 1 with monotonic
decoding.

011 111

110010

100000

001 101

class co-NP because it is easy to verify that the channel is
not Nash stable, by providing suitable weights, a code, a
monotonic decoding function, and a profitable deviation.
We envisage two possible answers: either one can show
that Nash-stable channels require that multiple ties occur
simultaneously, like for input symmetric channels or in
the example (48), and check only codes with few states.
In that case, there may be a polynomial-time algorithm.
Alternatively, the problem whether a channel is Nash stable
may be co-NP-complete. We leave this as a topic for future
research.

8. General Deterministic Monotonic
Decoding Functions

When is a deterministic decoding function monotonic?
Suppose there is some fixed order on the set of states so
that always the first tied state is chosen according to that
order. In this final section, we show that this is essentially
the only way to break ties with a deterministic monotonic
decoding function if it is defined for all sets of tied states T
with up to three states.

Because any monotonic decoding function is consistent
according to (23), it is useful to consider it as a function
d2 T×ì→�, where

T ∈T⇔ T =T 4y5=8l∈ì�y∈Yl9 for some y∈Y 0 (49)

and

d4T 1 i5 2= d4y1 i5 if T = T 4y51 (50)

which is well defined by (23). Whether we write d4T 1 i5 or
d4y1 i5, it will be clear from the context.

Consider again the example (20) with d4111115 = 1,
as shown in Figure 1. The following decoding function,
changed from (20) so that 101 is decoded as state 1, is
monotonic:

d4110115= 11 d4011125= 11

d4101115= 11 d4111115= 11 (51)
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as shown in Figure 2. This is a Nash code because all y in
the set Y1, see (19), are decoded as state 1; whichever x̂
in Y1 the sender decides to transmit instead of x1, there is
one y in Y1 for which p4y � x̂5= �241 −�5, so that the payoff
to the sender in (5) does not increase by changing from x1

to x̂.
Figure 2 shows the decoding function in (51) can be

defined by the following condition: consider a fixed linear
order ≺ on ì (in this case, 0 ≺ 1 ≺ 2 ≺ 3), so that

d4T 1 i5= 1 ⇔ i ∈ T and ∀k ∈ T 1 k 6= i2 i ≺ k0 (52)

That is, the decoding rule chooses the ≺-smallest state i
from the set T . A fixed-order decoding function d fulfills
(52) for some ≺. Such a decoding function is deterministic
and clearly monotonic.

We want to show that any deterministic monotonic decod-
ing function is a fixed-order decoding function. We have to
make the additional assumption that the decoding function
d4T 1 i5 is general in the sense that it is defined for any
nonempty set T (where it suffices to require this at least for
all �T � ¶ 3), not only the sets T in T that occur as sets of
tied states for some channel output y as in (49).

Without this assumption, we could add to the above
example another state with codeword x4 = 111, so that the
“circular” decoding function in (20) is monotonic and gives a
Nash code, but is clearly not a fixed-order decoding function.
It is reasonable to require that a decoding function is defined
generally and does not just coincidentally lead to a Nash
code because certain ties do not occur (as argued above,
with the decoding (20), we do not have a Nash code when
ties have to be resolved for y = 111).

For general decoding functions, the monotonicity condition
(22) translates to the requirement that for any T 1 T̂ ⊆ì,

i ∈ T ⊆ T̂ ⇒ d4T 1 i5¾ d4T̂ 1 i50 (53)

Proposition 8.1. Suppose that d4T 1 i5 is deterministic and
defined for all nonempty sets T with �T � ¶ 3 ( for example,
if T in 4495 contains all these sets) and fulfills 4535. Then
d is a fixed-order decoding function.

Proof. Define the following binary relation ≺ on ì:

i ≺ k ⇔ d48i1 k91 i5= 10

Clearly, either i ≺ k or k ≺ i for any two states i1 k. We
claim that ≺ is transitive, that is, if i ≺ k and k≺ l, then
i ≺ l. Otherwise, there would be a “cycle” of distinct i1 k1 l
with i ≺ k, k ≺ l, and l ≺ i. This is symmetric in i1 k1 l, so
assume d48i1 k1 l91 i5= 1 and therefore d48i1 k1 l91 k5= 0 and
d48i1 k1 l91 l5= 0. However, with T = 8i1 l9 and T̂ = 8i1 k1 l9,
we have d4T 1 i5= 0 < 1 = d4T̂ 1 i5, which contradicts (53).

Hence, ≺ defines a linear order on ì. We show that (52)
holds, that is, for any T̂ in T, the decoded state i (so that
d4T̂ 1 i5 = 1) is the ≺-smallest element of T̂ . This holds
trivially and by definition if T̂ has at most two elements,

otherwise, if l ≺ i for some l ∈ T̂ , then we obtain with
T = 8i1 l9 the same contradiction d4T 1 i5= 0 < 1 = d4T̂ 1 i5
as before. Therefore, the decoded state is chosen according
to the fixed-order ≺ on ì as claimed. �

When the weights qiVi for the states i are generic, then Yi
in (3) is always a singleton, so no ties occur and decoding
is deterministic. One can make any weights generic by
perturbing them minimally so that ties are broken uniquely
but decoding is otherwise unaffected. That is, if i and k are
tied for some y because qiVip4y �xi5= qkVkp4y �xk5, this tie
is broken in favor of i by slightly increasing qiVi, which
will then always happen whenever i and k are tied originally.
This induces a fixed-order decoding, where any linear order
among the states can be chosen. Thus, Proposition 8.1 asserts
that general deterministic monotonic decoding functions are
those obtained by generic perturbation of the weights.

Finally, we observe that the above codebook 000, 100,
010, 001 with decoding as in (51) defines a Nash code (and
if priors are minimally perturbed so that q1 > q2 > q3, there
are no ties and decoding is unique), but this code is not
locally optimal in Theorem 4.4. Namely, by changing the
codeword 100 to 110, all possible channel outputs y differ
in at most one bit from one of the four codewords, which
clearly improves the payoff to the receiver. Therefore not all
binary Nash codes are locally receiver optimal.

Acknowledgments

The authors thank Drew Fudenberg for the suggestion of an ex
ante proof of Theorem 4.2, Rann Smorodinsky for raising the
question of potential functions (see Proposition 4.5), Graham
Brightwell for a comment that led to the improved example in
Figure 1, and Christina Pawlowitsch and Joel Sobel for stimulating
discussions. Three anonymous referees gave detailed suggestions
that improved this article significantly. General thanks go to Amparo
Urbano and José E. Vila for continued support. This work has
been supported by the Spanish Ministry of Science and Technology
[Project ECO2013-46550-R and FEDER, PROMETEOII/2014/054].

Endnotes

1. We thank an anonymous referee for suggesting this result.
2. We are indebted to Drew Fudenberg who suggested Steps 2
and 3.
3. We thank Rann Smorodinsky for raising this question.
4. Hernández et al. (2010) show that for a binary noisy channel,
the decoding rule of “joint typicality” used in a standard proof of
Shannon’s (1948) channel coding theorem (Cover and Thomas
1991, §8.7) may not define a Nash equilibrium.
5. We thank a referee for correcting this definition.
6. We are grateful to a referee who suggested this step for the
binary channel.

References
Anshelevich E et al. (2008) The price of stability for network design with

fair cost allocation. SIAM J. Comput. 38:1602–1623.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
8.

14
3.

19
2.

13
5]

 o
n 

06
 J

an
ua

ry
 2

01
5,

 a
t 0

2:
35

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Hernández and von Stengel: Nash Codes for Noisy Channels
Operations Research 62(6), pp. 1221–1235, © 2014 INFORMS 1235

Argiento R, Pemantle R, Skyrms B, Volkov S (2009) Learning to signal:
Analysis of a micro-level reinforcement model. Stochastic Processes
Their Appl. 119:373–390.

Blume A, Board OJ (2014) Intentional vagueness. Erkenntnis 79:855–899.
Blume A, Board OJ, Kawamura K (2007) Noisy talk. Theoret. Econom.

2:395–440.
Cover TM, Thomas JA (1991) Elements of Information Theory (John

Wiley & Sons, New York).
Crawford V, Sobel J (1982) Strategic information transmission. Econometrica

50:1431–1451.
De Jaegher K, van Rooij R (2014) Game-theoretic pragmatics under

conflicting and common interests. Erkenntnis 79:769–820.
Gallager RG (1968) Information Theory and Reliable Communication (John

Wiley & Sons, New York).
Glazer J, Rubinstein A (2004) On optimal rules of persuasion. Econometrica

72:1715–1736.
Glazer J, Rubinstein A (2006) A study in the pragmatics of persuasion:

A game theoretical approach. Theoret. Econom. 1:395–410.
Hernández P, Urbano A, Vila JE (2010) Nash equilibrium and information

transmission coding and decoding rules. Discussion Papers in Economic
Behaviour ERI-CES 09/2010 (University of Valencia, Valencia, Spain).

Hernández P, Urbano A, Vila JE (2012) Pragmatic languages with universal
grammars. Games Econom. Behav. 76:738–752.

Jäger G, Koch-Metzger L, Riedel F (2011) Voronoi languages: Equilibria in
cheap talk games with high-dimensional types and few signals. Games
Econom. Behav. 73:517–537.

Kamenica E, Gentzkow M (2011) Bayesian persuasion. Amer. Econom. Rev.
101:2590–2615.

Koessler F (2001) Common knowledge and consensus with noisy communi-
cation. Math. Soc. Sci. 42:139–159.

Kreps DM, Sobel J (1994) Signalling. Aumann RJ, Hart S, eds. Hand-
book of Game Theory with Economic Applications, Vol. 2 (Elsevier,
Amsterdam), 849–867.

Lewis D (1969) Convention: A Philosophical Study (Harvard University
Press, Cambridge, MA).

Lipman B (2009) Why is Language Vague? Mimeo, Boston University,
Boston.

MacKay DJC (2003) Information Theory, Inference, and Learning Algo-
rithms (Cambridge University Press, Cambridge, UK).

MacKenzie AB, DaSilva LA (2006) Game Theory for Wireless Engineers
(Morgan and Claypool, San Rafael, CA).

Monderer D, Shapley LS (1996) Potential games. Games Econom. Behav.
14:124–143.

Myerson RB (1994) Communication, correlated equilibria and incentive
compatibility. Aumann RJ, Hart S, eds. Handbook of Game Theory
with Economic Applications, Vol. 2 (Elsevier, Amsterdam), 827–847.

Nowak M, Krakauer D (1999) The evolution of language. Proc. Nat. Acad.
Sci. 96:8028–8033.

Pawlowitsch C (2008) Why evolution does not always lead to an optimal
signaling system. Games Econom. Behav. 63:203–226.

Shannon CE (1948) A mathematical theory of communication. Bell System
Tech. J. 27:379–423, 623–656.

Sobel J (2012) Complexity versus conflict in communication. Proc. 46th
Annual Conference on Information Sciences and Systems (CISS) (IEEE,
Piscataway, NJ), 1–6.

Sobel J (2013) Giving and receiving advice. Acemoglu D, Arellano M,
Dekel E, eds. Advances in Economics and Econometrics, Tenth World
Congress of the Econometric Society (Cambridge University Press,
Cambridge, UK), 305–341.

Spence M (1973) Job market signaling. Quart. J. Econom. 87:355–374.
Srivastava V et al. (2005) Using game theory to analyze wireless ad hoc

networks. IEEE Comm. Surveys and Tutorials 7(4):46–56.
Touri B, Lambort C (2013) Language evolution in a noisy environment.

Proc. American Control Conference 4ACC5 (IEEE, Piscataway, NJ),
1938–1943.

Wärneryd K (1993) Cheap talk, coordination and evolutionary stability.
Games Econom. Behav. 5:532–546.

Penélope Hernández is an associate professor in the ERI-CES
and Economics Department, University of Valencia. Her main
research interests are information transmission, bounded rationality
models, and behavioral economics.

Bernhard von Stengel is a professor of mathematics at the
London School of Economics. He is interested in the geometry and
computation of Nash equilibria and other mathematical questions
of game theory and operations research.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
8.

14
3.

19
2.

13
5]

 o
n 

06
 J

an
ua

ry
 2

01
5,

 a
t 0

2:
35

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 


