
COMPUTING NORMAL FORM PERFECT EQUILIBRIA
FOR EXTENSIVE TWO-PERSON GAMES

By Bernhard von Stengel, Antoon van den Elzen,
and Dolf Talman1

May 10, 2001

This paper presents an algorithm for computing an equilibrium of an

extensive two-person game with perfect recall. The method is computationally

efficient by virtue of using the sequence form, whose size is proportional to the

size of the game tree. The equilibrium is traced on a piecewise linear path in the

sequence form strategy space from an arbitrary starting vector. If the starting

vector represents a pair of completely mixed strategies, then the equilibrium is

normal form perfect. Computational experiments compare the sequence form

and the reduced normal form, and show that only the sequence form is tractable

for larger games.

Keywords: Extensive game, linear complementarity, Nash equilibrium,

normal form perfect equilibrium, sequence form.

1The authors thank Eric van Damme, Drew Fudenberg, Marciano Siniscalchi, and the ref-

erees for helpful comments, and David Avis, Richard McKelvey, and Ted Turocy with help

on programming. The first author was supported by a Heisenberg grant from the Deutsche

Forschungsgemeinschaft.

1

1. Introduction

In this paper we present an algorithm for computing a Nash equilibrium of a two-

person game in extensive form with perfect recall. The computed equilibrium is

normal form perfect. If the game has several equilibria, they can potentially be

found by varying the starting point of the algorithm. The method is fast since it

uses the compact “sequence form” of the extensive game (see the references below)

instead of its reduced normal form. It is simple because it is a version of Lemke’s

algorithm for linear complementarity problems. We have implemented it in exact

arithmetic, which guarantees numerical stability. Computational experiments show

that the number of pivoting steps of our algorithm to find an equilibrium is of the

same order as that of the simplex algorithm for linear programming applied to a

comparable zero-sum game. “Typical” games with several hundred nodes are solved

in less than a minute where it would be hopeless to use the reduced normal form.

Our method therefore puts much more complex games in computational reach, even

more so as computers get faster.

The algorithm is a synthesis of previous, partly independent work by the au-

thors and Daphne Koller and Nimrod Megiddo. For two-person games in normal

form, van den Elzen and Talman (1991, 1999) (see also van den Elzen, 1993) de-

scribed a complementary pivoting algorithm that traces a piecewise linear path from

a given starting vector to an equilibrium. If the starting vector is a completely mixed

strategy pair, then the computed path leads to a perfect equilibrium. The free choice

of the starting vector makes it possible to compute several equilibria if they exist.

This pivoting algorithm can be applied to an extensive game by converting it

to its normal form. Then, the variables are probabilities for pure strategies, each of

which is a combination of choices, one choice for each information set. The number

of strategies therefore increases exponentially with the number of information sets.

The number of information sets is typically proportional to the size of the game tree

(the number of tree nodes), so then the size of the normal form is exponential. Even

the reduced normal form (where strategies that differ only in choices at unreachable

information sets are identified) shows an exponential-type growth in that case. For

example, the games with N tree nodes studied in our computational experiments

2

have on the order of 2
√

N reduced strategies rather than on the order of 2N unreduced

strategies, which nevertheless leads to an “explosion” in size. Each pivoting step

updates the entire linear system derived from the payoff matrices, which is very slow

for matrices of exponential size.

The sequence form of the extensive game (Romanovskii, 1962; von Stengel,

1996) is a strategic description where pure strategies are replaced by sequences of

choices that lead to a node of the game tree, so there are at most as many sequences

as there are nodes. The dimensions of the resulting matrix are proportional to the

game tree size. Each pivoting step applied to this system is therefore computationally

efficient. An algorithm is called computationally efficient if its asymptotic running

time is bounded by a polynomial in the input size. For the overall number of

pivoting steps, this is only an empirical observation. Our practical experiments

show that the number of pivoting steps to find an equilibrium is about the same as

the matrix dimension. The pivoting method, like the simplex algorithm for linear

programming, is not polynomial in theory (certain specifically constructed worst

cases take exponential time), but works well in practice.

Koller, Megiddo, and von Stengel (1996) applied the complementary pivoting

algorithm by Lemke (1965) to the sequence form. As before, each pivoting step

takes polynomial time, and the number of pivoting steps is empirically a polynomial

in the tree size. However, this algorithm finds only one equilibrium and it is not

certain whether this equilibrium is normal form perfect.

Here we show how to combine the (empirical) computational efficiency of the

algorithm of Koller, Megiddo, and von Stengel (1996) and the flexibility of the

algorithm of van den Elzen and Talman (1991). Our method is a variation of Lemke’s

algorithm and operates on the sequence form. It can be started anywhere to search

for more than one equilibrium. If the starting strategy vector is completely mixed,

the equilibrium found is normal form perfect. Equivalently, it is a Nash equilibrium

in undominated strategies since the game has two players (van Damme, 1987). In

terms of the extensive game, the equilibrium is weakly sequentially rational in the

sense of Reny (1992).

3

The key to our result is the new observation that the algorithm of van den

Elzen and Talman is equivalent to Lemke’s algorithm for a specific auxiliary vector.

This is readily applied to the sequence form, as described in Section 3 below. We

then study the nature of the computed path. The path and the equilibrium found

have all properties of the normal form in a compact representation.

The implementation of our algorithm also resolves a number of technical diffi-

culties of degeneracy and numerical accuracy. Degeneracy is intrinsic for extensive

games, even with generic payoffs and when using the sequence form, since the prob-

abilities for the players’ behavior off the equilibrium path are underdetermined.

In order to avoid a well-known numerical instability of Lemke’s algorithm (Tomlin,

1978), we employ arbitrary precision arithmetic, and yet achieve good running times

due to the use of “integer pivoting”.

We also give a concise exposition of the sequence form in Section 2, and show,

more explicitly than in earlier publications, how it relates to the normal form via

equation (2.2). The sequence form defines an equilibrium problem where each

player’s strategy space is a polytope. Charnes (1953) described the solution of

zero-sum games that are constrained in this way. For a game in extensive form,

Romanovskii (1962) derived such a constrained matrix game which is equivalent to

the sequence form. Until recently, this publication was overlooked in the English-

speaking community. Eaves (1973) applied Lemke’s algorithm to games which in-

clude polyhedrally constrained bimatrix games, but with different parameters than

we do. Dai and Talman (1993) described an algorithm that corresponds to ours but

requires simple polyhedra as strategy spaces, which is not the case for the sequence

form. Selten (1988, pp. 226, 237ff) defined sequence form strategy spaces to exploit

their linearity, but not for computational purposes. Recent surveys on algorithms

for computing Nash equilibria are McKelvey and McLennan (1996) and von Stengel

(2001).

The setup of the paper is as follows. Section 2 recalls the notion of the sequence

form, its derivation from the extensive game, and how its equilibria are the solutions

to a corresponding linear complementary problem. The algorithm is presented in

Section 3 and illustrated in Section 4 with an example. In Section 5 we prove that the

4

equilibrium found is normal form perfect if the starting strategy vector is completely

mixed, and note that the algorithm mimics the linear tracing procedure. Section 6

discusses the handling of degeneracy. In Section 7 we show that our method is

an instance of a homotopy, and mention how to find equilibria of negative index.

Section 8 compares the method with other algorithms. In Section 9, we present

results of computational experiments.

2. The sequence form linear complementarity problem

We consider extensive two-person games, with conventions similar to von Stengel

(1996) and Koller, Megiddo, and von Stengel (1996). An extensive game is given by a

tree with a finite number of nodes, chance moves with positive probabilities, payoffs

to both players at the leaves (the terminal nodes), and information sets partitioning

the set of remaining decision nodes. The choices of a player at an information set

are denoted by labels of tree edges. For simplicity, labels corresponding to different

choices anywhere in the tree are distinct. On the unique path from the root to

a node of the tree, the labels denoting the choices of a particular player define a

sequence of choices for that player. We assume that both players have perfect recall.

By definition, this means that all nodes in an information set h of a player define the

same sequence σh of choices for that player. Under that assumption, each choice c

at h is the last choice of a unique sequence σhc. This defines all possible sequences

of a player except for the empty sequence ∅. The set of choices at an information

set h is denoted Ch . The set of information sets of player i is Hi , and the set of his

sequences is Si , so

Si = { ∅ } ∪ {σhc | h ∈ Hi, c ∈ Ch }.

The size of the extensive game is the amount of data needed to specify it. It is

proportional to the total number of nodes of the game tree. The number |Si| of

sequences of player i is 1 +
∑

h∈Hi
|Ch|, which is at most linear in the size of the

extensive game.

A behavior strategy β of player i is given by probabilities β(c) for his choices

c which fulfill β(c) ≥ 0 and
∑

c∈Ch
β(c) = 1 for all h in Hi . This definition of β can

5

be extended to the sequences σ in Si by writing

β[σ] =
∏

c in σ

β(c). (2.1)

A pure strategy π of a player is a behavior strategy with π(c) ∈ {0, 1} for all

choices c. The set of pure strategies of player i is denoted Pi . Thus, π[σ] ∈ {0, 1}
for all sequences σ in Si . The pure strategies π with π[σ] = 1 are those “agreeing”

with σ by prescribing all the choices in σ, and arbitrary choices at the information

sets not touched by σ.

In the normal form of the extensive game, one considers pure strategies and

their probability mixtures. A mixed strategy µ of player i assigns a probability

µ(π) to every π in Pi . In the sequence form of the extensive game, one considers

the sequences of a player instead of his pure strategies. A randomized strategy of

player i is described by the realization probabilities of playing the sequences σ in Si .

For a behavior strategy β , these are obviously β[σ] as in (2.1). For a mixed strategy

µ of player i, they are given by

µ[σ] =
∑

π∈Pi

π[σ]µ(π). (2.2)

For player 1, this defines a map x from S1 to IR by x(σ) = µ[σ] for σ in S1 which

we call the realization plan of µ or a realization plan for player 1. A realization

plan for player 2, similarly defined on S2 , is denoted y. The important properties of

realization plans are stated in the following two lemmas (Koller and Megiddo, 1992;

von Stengel, 1996).

Lemma 2.1: For player 1, x is the realization plan of a mixed strategy if and

only if x(σ) ≥ 0 for all σ ∈ S1 and

x(∅) = 1,
∑

c∈Ch

x(σhc) = x(σh), h ∈ H1.
(2.3)

A realization plan y of player 2 is characterized analogously.

Proof: Equations (2.3) hold for the realization probabilities x(σ) = β[σ] for

a behavior strategy β and thus for every pure strategy π, and therefore for their

convex combinations in (2.2) with the probabilities µ(π).

6

To simplify notation, we write realization plans as vectors x = (xσ)σ∈S1 and

y = (yσ)σ∈S2 with sequences as subscripts. According to Lemma 2.1, these vectors

are characterized by

x ≥ 0, Ex = e, y ≥ 0, Fy = f (2.4)

for suitable matrices E and F , and vectors e and f that are equal to (1, 0 . . . , 0)> ,

where E and e have 1 + |H1| rows and F and f have 1 + |H2| rows; an example for

E , e, F , and f is given in (2.6) below. Inequalities like (2.4) hold componentwise

and 0 denotes a vector of zeroes. The number of information sets and therefore the

number of rows of E and F is at most linear in the size of the game tree.

Mixed strategies of a player are called realization equivalent (Kuhn, 1953) if

they define the same realization probabilities for all nodes of the tree given any

strategy of the other player. The following lemma and equation (5.1) below imply

Kuhn’s theorem that for a player with perfect recall (which is implicit in the de-

scription of sequences), any mixed strategy is realization equivalent to a behavior

strategy.

Lemma 2.2: Two mixed strategies µ and µ′ of player i are realization equiv-

alent if and only if they have the same realization plan, that is, µ[σ] = µ′[σ] for all

σ ∈ Si.

Proof: Consider (2.2) as defining a linear map from IR|Pi| to IR|Si| that maps

the vector (µ(π))π∈Pi to (µ[σ])σ∈Si with the fixed coefficients π[σ], π ∈ Pi . Then

mixed strategies with the same image under this map are clearly realization equiv-

alent.

The linear map in the preceding proof maps the simplex of mixed strategies

of a player to the polytope of realization plans. These polytopes are characterized

by (2.4) as asserted by Lemma 2.1. They define the player’s strategy spaces in the

sequence form and are denoted by

X = {x | x ≥ 0, Ex = e }, Y = { y | y ≥ 0, Fy = f }. (2.5)

7

The vertices of X and Y are the players’ pure strategies up to realization equivalence,

which is the identification of pure strategies used in the reduced normal form of the

game (for generic payoffs).

•

•

L

J
J
J
J
J
J

•

R

•

S

J
J
J
J
J
J
J
J
J
J
JJ

•

T

•

1/2

J
J
J
J
J
J

•

1/2

�
�
�
�
�

(

11
3

)

a

B
B
B
B
B

(

3
0

)

b

�
�
�
�
�

(

0
0

)

a

B
B
B
B
B

(

0
10

)

b

�
�
�
�
�

(

0
4

)

c

B
B
B
B
B

(

24
0

)

d

�
�
�
�
�

(

6
0

)

c

B
B
B
B
B

(

0
1

)

d

��
�
�1

�
�

�
�1

chance

�
�

�
�2

�
�

�
�2

Figure 2.1.—A two-person extensive game.

Figure 2.1 shows an extensive game where the choices of player 1 and player 2

are denoted by the upper and lower case letters L,R, S, T and a, b, c, d, respectively.

The sets of sequences are S1 = {∅, L, R, RS,RT} and S2 = {∅, a, b, c, d}. In the

constraints (2.4) we have

E =

1
−1 1 1

−1 1 1

 , F =

1
−1 1 1
−1 1 1

 , e = f =

1
0
0

 . (2.6)

Sequence form payoffs are defined for pairs of sequences whenever these lead

to a leaf, multiplied by the probabilities of chance moves on the path to the leaf.

This defines two sparse matrices A and B of dimension |S1| × |S2| for player 1 and

player 2, respectively. For the game in Figure 2.1, A and B are shown in Figure 2.2.

When the players use the realization plans x and y, the expected payoffs are x>Ay

8

for player 1 and x>By for player 2. These terms represent the sum over all leaves

of the payoffs at leaves multiplied by their realization probabilities.

A =

∅
L

R

RS

RT

∅ a b c d

11

0

3

0 0

6

12

0

B =

∅
L

R

RS

RT

∅ a b c d

3

0

0

5 2

0

0

1

Figure 2.2.—Sequence form payoff matrices A and B for the game in Figure 2.1.
Rows and columns correspond to the sequences of the players which
are marked at the side. Any sequence pair not leading to a leaf has
matrix entry zero, which is left blank.

Using linear programming duality, von Stengel (1996) showed that any Nash

equilibrium of the game is a pair (x, y) of realization plans so that there exist vectors

u, v, r, s that fulfill the linear constraints

x , y ≥ 0

Ex = e

Fy = f

r = E>u − Ay ≥ 0

s = F>v −B>x ≥ 0

(2.7)

and the complementarity condition

x>r = 0, y>s = 0 . (2.8)

The vectors u and v have dimension 1 + |H1| and 1 + |H2|, respectively, and are

unconstrained in sign. The nonnegative slack vectors r and s have dimension |S1|
and |S2|, respectively.

Conditions (2.7) and (2.8) define a linear complementarity problem or LCP. A

standard LCP is specified by an n× n matrix M and an n-vector b. The problem

9

is to find n-vectors z and w so that

z ≥ 0, w = b + Mz ≥ 0, z>w = 0 . (2.9)

The condition z>w = 0 states that the nonnegative vectors z = (z1, . . . , zn)> and

w = (w1, . . . , wn)> are complementary, that is, at least one variable of each pair

(zi, wi) for 1 ≤ i ≤ n is zero.

The LCP defined by (2.7) and (2.8) is a more general mixed LCP (see Cottle,

Pang, and Stone, 1992, p. 29). Here z = (u, v, x, y)> and w = (0,0, r, s)> and

certain variables zi (the components of u and v) are unrestricted in sign and the

corresponding variable wi is always zero, so that z and w are also complementary.

3. The algorithm

Lemke (1965) described an algorithm for solving the LCP (2.9). It uses an additional

n-vector d, called covering vector , with a corresponding scalar variable z0 , and

computes with basic solutions to the augmented system

z ≥ 0, z0 ≥ 0, w = b + Mz + dz0 ≥ 0, z>w = 0 . (3.1)

At initialization, z0 has a positive value. The algorithm then performs a sequence of

complementary pivoting steps. At each step, one variable of a complementary pair

(zi, wi) leaves and then its complement enters the basis. In a mixed LCP, a variable

zi without sign restrictions never leaves the basis. The goal is that eventually z0

leaves the basis and then has value zero, so that the LCP is solved. Koller, Megiddo,

and von Stengel (1996) give a detailed exposition of Lemke’s algorithm and show

that it terminates for the LCP derived from the sequence form if d = (1, 1, . . . , 1)> .

We choose a covering vector d that is related to the starting point for our

computation. Let (p, q) be an arbitrary starting vector, that is, a pair of realization

plans for the two players, so that

p ≥ 0, Ep = e, q ≥ 0, F q = f, (3.2)

and let

d =

e
f
−Aq
−B>p

. (3.3)

10

We augment the mixed LCP with constraints (2.7) with d as in (3.3) and obtain

analogous to (3.1)

x , y , z0 ≥ 0

Ex + e z0 = e

Fy + f z0 = f

r = E>u − Ay − (Aq)z0 ≥ 0

s = F>v −B>x − (B>p)z0 ≥ 0

(3.4)

and the complementarity condition (2.8). An initial solution is given by z0 = 1,

x = 0, y = 0, and suitable vectors u and v so that E>u ≥ Aq and F>v ≥ B>p,

that is, r ≥ 0 and s ≥ 0.

Conditions (3.4) and (2.8) hold for all points on the piecewise linear path

computed by the algorithm. In the remainder of this section, we show that this

path induces a path in the product X × Y of the two strategy spaces defined in

(2.5), which begins at the starting vector (p, q) and ends at an equilibrium. The

points (x, y) on this path are derived from (x, y) in (3.4) as follows.

Lemma 3.1: For a solution (u, v, x, y, z0) to (3.4), let

x = x + pz0, y = y + qz0 . (3.5)

Then x ∈ X , y ∈ Y , and x∅ = y∅ = 1− z0 ≥ 0.

Proof: Constraints (3.4) and (3.2) imply x ≥ 0, y ≥ 0, Ex = E(x + pz0) =

Ex + (Ep)z0 = Ex + ez0 = e, and similarly Fy = f . By (2.3) and (2.4), the first of

each of these equations reads x∅ + z0 = 1 and y∅ + z0 = 1, respectively.

By Lemma 3.1, any solution to (3.4) fulfills 0 ≤ z0 ≤ 1. The algorithm

terminates as soon as z0 = 0, so that x = x ∈ X and y = y ∈ Y and (x, y) is an

equilibrium. At intermittent steps of the computation with 0 < z0 < 1, the pair

(x, y) in (3.5) can be seen as a convex combination of a pair (x∗, y∗) of realization

plans and the starting pair (p, q) with weights 1− z0 and z0 , respectively. Namely,

let

x∗ = x · 1/(1− z0), y∗ = y · 1/(1− z0), (3.6)

11

so that x = x + pz0 = x∗ (1 − z0) + p z0 and y = y + qz0 = y∗ (1 − z0) + q z0 . By

(3.4), Ex = e(1− z0) and Fy = f(1− z0), which implies x∗ ∈ X and y∗ ∈ Y . The

positive components xσ and yσ of x and y are the same as the positive components

of x∗ and y∗ , up to scalar multiplication with 1− z0 . By the following lemma, these

represent best response sequences σ to the current pair (x, y) of realization plans.

Lemma 3.2: Let (u, v, x, y, z0) be a solution to (3.4) and (2.8) with z0 < 1,

and let x and y be as in (3.5), and x∗ and y∗ as in (3.6). Then (x∗, y∗) is a pair

of realization plans where x∗ is a best response to y and y∗ is a best response to x.

Proof: In the following, consider x and y as given in (3.5) and x∗ and y∗ as

in (3.6), but then allow to re-use the variables x and u. A realization plan x is a

best response to y if and only if it maximizes the expected payoff x>(Ay) subject

to Ex = e, x ≥ 0. The dual of this linear program (LP) is to find u minimizing

e>u subject to E>u ≥ Ay. Feasible solutions x and u to this primal-dual pair of

LPs are optimal if and only if they fulfill the complementary slackness condition

x>(E>u− Ay) = 0 . (3.7)

For x and u as part of the given solution to (3.4) and (2.8), all of these conditions

are fulfilled except for Ex = e. However, replacing x by x∗ does fulfill (3.7) and

Ex∗ = e, x∗ ≥ 0 since x∗ is a positive scalar multiple of x by (3.6). That is, x∗ is

indeed a best response to y. Similarly, y∗ in (3.6) is a best response to x.

In order to leave the starting vector (p, q), it is necessary to find solutions to

(3.4) and (2.8) where z0 < 1 is possible. This is the technical problem of a suitable

initialization of our algorithm. Whenever z0 decreases from one, usually several

components of x (and similarly of y) have to become simultaneously nonzero in the

equations Ex = e(1 − z0), which are the same homogeneous equations as in (2.3)

except for the first, nonhomogeneous equation x∅ = 1 − z0 which is different. The

initial solution x = 0, y = 0 does not show which components of x and y should be

increased. One of these components is the first entering variable, the others must

belong to the initial basis. In our implementation, we initialize Lemke’s algorithm

by starting it such that it automatically performs a sequence of degenerate pivoting

12

steps that bring all components of u and v and suitable components of x and y into

the basis, as shown in detail in our discussion paper (von Stengel, van den Elzen,

and Talman, 1996).

For expository purposes, we explain an equivalent way of finding the initial

basis by linear programming, similarly to Kamiya and Talman (1990) and Dai and

Talman (1993). This initialization step is motivated by Lemma 3.2. Compute a

best response x∗ to q and a best response y∗ to p. That is, x∗ is a solution to the

LP: maximize x>(Aq) subject to Ex = e, x ≥ 0, and y∗ to the LP: maximize

(p>B)y subject to Fy = f , y ≥ 0. This yields also corresponding optimal dual

vectors u and v so that x∗>(E>u − Aq) = 0 and y∗>(F>v − B>p) = 0. We may

assume that x∗ and y∗ are basic solutions to these two LPs, for example as they are

computed by the simplex algorithm for linear programming. That is, an invertible

submatrix of each matrix E and F determines the respective basic components x∗σ
and y∗σ which may become positive, and determines uniquely u and v, respectively.

Then, the basis to start Lemke’s algorithm contains z0 , all components of u and v,

all but one of the variables xσ and yσ corresponding to the basic LP variables x∗σ
and y∗σ above (the missing one is the first entering variable), and the slack variables

rσ and sσ in r = E>u − Aq and s = F>v − B>p for the other sequences σ. We

obtain the following procedure.

Algorithm 3.3: Consider an extensive game for two players with perfect

recall, and its sequence form with payoff matrices A and B and constraint matrices

E and F for player 1 and player 2, respectively. Choose a starting vector (p, q)

fulfilling (3.2). Construct the augmented mixed LCP with constraints (3.4) and

(2.8). Solve this LCP as follows.

(a) Find an initial basic solution with z0 = 1 where the basic variables are z0, all

components of u and v, all but one of the components of x and y representing

best response sequences against q and p, respectively, and slack variables rσ

and sσ for the nonoptimal sequences σ.

(b) Iterate by complementary pivoting steps applied to pairs (xσ, rσ) or (yσ, sσ) of

complementary variables.

13

(c) As soon as z0 becomes zero, let z0 leave the basis and pivot. Terminate. The

computed equilibrium is (x, y).

Lemma 3.1 shows that in the course of the computation, the values of x, y,

and z0 determine always a pair (x, y) of realization plans and thus a path in the

product X×Y of the two strategy spaces. We are only interested in this path, since

the basic variables in u and v are uniquely determined.

It remains to show that the algorithm terminates. With the above interpreta-

tion, we can exclude ray termination, which may cause Lemke’s algorithm to fail,

because the path cannot leave the strategy space. Thus, the algorithm terminates

if the path is unique in the sense that no basis is revisited. This is achieved by a

systematic degeneracy resolution which we discuss in Section 6.

4. Illustration of the algorithm

We illustrate the computation for the game of Figure 2.1. The constraints for the

strategy spaces X and Y in (2.5) are given by (2.6). We denote the elements of X

and Y by x and y as in (3.5). Figure 4.1 shows X for the possible values of xL ,

xRS , xRT . Figure 4.2 shows Y with the pairs ya, yb and yc, yd corresponding to the

vertical and horizontal coordinates of a square, respectively, since ya + yb = 1 and

yc +yd = 1. The redundant variables x∅ , xR , and y∅ are not shown since their value

is known, and they also have no payoff entry in Figure 2.2.

Each strategy space is subdivided into best response regions for the sequences

of the other player. In Figure 4.2, these are the sequences L, RS , RT of player 1,

which correspond to player 1’s pure strategies in the reduced normal form. In

Figure 4.1, X is partitioned twice, namely into regions where sequence a or b is

a best response of player 2, and independently into regions where c or d is a best

response. This multiple partition of X into best response regions results because a, b

and c, d are the choices at parallel information sets h and h′ where σh = σh′ . This

is also reflected in the structure of F and the complementary slackness condition for

the constraints F>v ≥ B>x, as explained in detail in von Stengel et al. (1996). In

effect, the four pure strategies of player 2 consisting of the choice pairs 〈a, c〉, 〈b, c〉,

14

〈a, d〉, and 〈b, d〉 appear both as vertices of the strategy space Y in Figure 4.2 and

as intersections of best response regions partitioning X in Figure 4.1.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
TT

Z
Z
Z
Z

Z
Z
Z
Z
Z
Z
Z

Z
Z

Z
Z

Z
Z
Z

Z
Z

Z
Z

ZZ

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
DD

p
•����������

�
�
�
�
�
�
�
��� ~

6
•

�
�
�
�
�
�
�
�
�
�
�
��

T
T

T
T

T
T

T
T

T
T

T
TT

�
�

�
�

�
��

T
T
T
T
T
TT

b

a

b

a

c d

c d

xL = 1

xRS = 1 xRT = 1

1.

2.

3. 4.

5.

Figure 4.1.—Strategy space X of player 1 for the sequence form of the game in
Figure 2.1, with best response sequences of player 2. Computation
steps are indicated by arrows or as underlined steps with no change
for player 1. The starting point p for player 1 is (pL, pRS, pRT) =
(3/10, 7/20, 7/20).

We choose the starting vector (p, q) defined by

(pL, pRS, pRT) = (3/10, 7/20, 7/20), (qa, qb, qc, qd) = (1/3, 2/3, 1/3, 2/3). (4.1)

In Figure 4.1 and 4.2, p and q are marked by a dot in the interior of each strategy

space. The unique best response sequence of player 1 to q is RS , and the unique

best response sequences of player 2 to p are b and c. Among the components of

x and y, the initial basic variables and the first entering variable in the system

15

Z
Z

Z
Z

Z
Z

Z
ZZ

q
•���������

�

6
@

@
@
@

@
@
@

@
@

@
@

@
@@I
•

L

RT

RS

yc = 1

yc = 1 yd = 1

yd = 1
yb = 1 yb = 1

ya = 1 ya = 1

1.2.

3.

4.

5.

Figure 4.2.—Strategy space Y of player 2 for the sequence form of the game in
Figure 2.1, with best responses of player 1 and computation steps.
The starting point q for player 2 is (qa, qb, qc, qd) = (1/3, 2/3, 1/3, 2/3).

(3.4) are therefore xRS , yb , and yc . The algorithm performs the following steps as

indicated in the figures.

1. The first step is the line segment starting at (p, q) so that (x, y) in (3.5)

changes by decreasing z0 from one and increasing at the same time the vari-

ables xRS, yb, yc from zero. When z0 = 9/16 , the path hits the best response

region for the sequence L of player 1 in Figure 4.2 because the slack rL of the

payoff for that sequence becomes zero.

For any z0 , the current pair (x, y) of realization plans defined by (3.5) belongs to

X(z0)× Y (z0), the product of the restricted strategy sets defined by

X(z0) = { x̂ ∈ X | x̂σ ≥ pσz0 ∀σ ∈ S1 },

Y (z0) = { ŷ ∈ Y | ŷσ ≥ qσz0 ∀σ ∈ S2 }.
(4.2)

16

For z0 = 9/16 , the set Y (z0) is shown in Figure 4.2 as a square, a smaller sized

replica of the strategy space Y containing the starting point q in the same relative

position. The end of the arrow “1.” is the lower left corner y = y + qz0 of that

square, where only the sequences b and c of player 2 have positive components yb

and yc and ya = yd = 0. Similarly, the end of the arrow “1.” in Figure 4.1 is the

corner x = x + pz0 of X(z0) with xRS > 0 and xL = xRT = 0.

2. Since the slack rL has become zero, it is replaced by its complementary variable

xL that is now increased from zero, according to step (b) of Algorithm 3.3.

That is, rL has left and xL enters the basis. When xL is increased, then z0 can

neither decrease since this would make RS nonoptimal, nor increase since this

would make L nonoptimal (see Figure 4.2). So z0 remains unchanged. Since

b and c are still the unique best responses for player 2, his current position in

Y (z0) is unchanged, marked with “2.” (underlined) in Figure 4.2. For player 1,

the arrow “2.” in Figure 4.1 denotes an increase of xL along the boundary

of X(z0) until the best response set of the sequence a of player 2 is reached.

Then, the basic slack variable sa becomes zero and is exchanged with ya .

3. Since rL and rRS are nonbasic and zero, the next piece of the path in Figure 4.2

must belong to the best response regions for both L and RS . The relative size

of ya can only increase if z0 is increased, which shrinks the set Y (z0). By the

same shrinking factor, X(z0) becomes a smaller triangle in Figure 4.1, until

xRS becomes zero, which happens when z0 is increased to 60/77 . Then the end

of the arrow “3.” points to the corner x = x+pz0 of X(z0) where xL is the only

positive component of x. The variable xRS leaves the basis and is replaced by

its complement rRS , so that in the next step, the path leaves the best response

region for RS in Figure 4.2.

4. Since the basic variables are xL and ya, yb, yc , nothing changes for player 1

in Figure 4.1 and z0 remains constant. By increasing rRS from zero, ya is

increased and yb decreased until it is zero at the end of the arrow “4.” in

Figure 4.2. Then yb is replaced by its complement sb .

5. The current basis contains only xL, ya, yc , so the best response sequences are

L for player 1 and a and c for player 2. By increasing sb from zero, z0 is

17

decreased again until it is zero, reaching at the end of the arrow “5.” in both

figures the equilibrium (x, y) = (x, y) with xL = 1 and ya = yc = 1, which

terminates the algorithm.

Observe that the starting vector (p, q) is used throughout the whole computation

for reference since it determines the system (3.4) and the sets X(z0) and Y (z0).

5. Perfect equilibria

Technically, our method is related to the algorithm by Koller, Megiddo, and von

Stengel (1996). Conceptually, it is based on the algorithm by van den Elzen and

Talman (1991) for the normal form. The mixed LCP with constraints (2.7) and

(2.8) can also be used to characterize the equilibria (x, y) of a game in normal form

with payoff matrices A and B . Then E and F each consist of a single row of ones

and e = f = 1, so that the strategy spaces X and Y in (2.5) are the mixed strategy

simplices. In that case, Lemke’s algorithm with the covering vector d in (3.3) is

equivalent to the algorithm by van den Elzen and Talman. This follows easily from

Lemma 3.1, but has not been observed before.

The main game-theoretic property of the van den Elzen–Talman algorithm for

the normal form is that the computed equilibrium is perfect whenever the starting

vector is completely mixed. This result carries over to the sequence form, as follows.

Call a realization plan x for player 1 (similarly y for player 2) completely mixed

if x > 0. By (2.3), x is the realization plan of the behavior strategy β defined by

β(c) =
x(σhc)
x(σh)

, c ∈ Ch, h ∈ H1 . (5.1)

The behavior strategy β assigns positive probability to any choice c. Regarded

as a mixed strategy, β is therefore also completely mixed in the sense that every

pure strategy is played with positive probability. Conversely, any completely mixed

strategy defines a completely mixed realization plan by (2.2).

As shown in Lemma 2.2, the linear map defined by (2.2) maps the mixed strat-

egy simplices to the sequence form strategy spaces X and Y . The path computed

by Algorithm 3.3 is part of X×Y . A suitable pre-image of this path under the linear

18

map (2.2) yields a piecewise linear path in mixed strategies. We show this only for

player 1; the consideration for player 2 is analogous. Consider two endpoints x1 and

x2 in X of a line segment [x1, x2] of the computed path. These endpoints are defined

by two successively computed bases. Let µ1 and µ2 be mixed strategies of player 1

that have realization plans x1 and x2 , respectively. In the mixed strategy simplex

of player 1, the line segment connecting µ1 and µ2 is mapped under (2.2) to [x1, x2]

since that map is linear. Thus, [x1, x2] is indeed the image of a line segment in

mixed strategies.

The particular pre-image of [x1, x2] in the mixed strategy simplex does not

matter, because mixed strategies with the same realization plans are realization

equivalent and therefore payoff equivalent. A canonical choice for µ1 and µ2 are the

corresponding behavior strategies of player 1 as in (5.1). Only the endpoints of the

line segment [x1, x2] should be translated to behavior strategies in this way, but not

every point on the segment since this does not yield a line in the mixed strategy

simplex if the convex combinations of µ1 and µ2 are not all behavior strategies.

Theorem 5.1: Let the starting vector (p, q) be completely mixed. Then Algo-

rithm 3.3 computes an equilibrium that is normal form perfect.

Proof: Let (x∗, y∗) be the computed equilibrium. Except for its endpoint

(x∗, y∗), the last line segment of the computed path consists of pairs (x+pz0, y + qz0)

of realization plans where z0 > 0, due to condition 3.3(c). Therefore, these real-

ization plans are, like p and q, completely mixed. The equilibrium (x∗, y∗) is the

limit of these realization plans when z0 goes to zero, and is a pair of best responses

to these realization plans because of the complementarity condition (2.8), since x∗

and y∗ have the same basic components as x and y (a similar argument is made

in the proof of Lemma 3.2). These properties hold also when the computed path

is translated to mixed strategies as described above. According to Selten (1975,

Thm. 7), they imply that the equilibrium (x∗, y∗) is perfect in the normal form.

Any point (x, y) on the computed path is an equilibrium of the game with the

restricted strategy sets X(z0) for player 1 and Y (z0) for player 2 in (4.2), where any

nonoptimal sequence σ has the minimum probability pσz0 for player 1 and qσz0 for

19

player 2. In the final computation step when z0 goes to zero, these can be considered

as mistake probabilities so that the equilibrium is “trembling hand” perfect. The

equilibrium is perfect for the normal form but not necessarily for the extensive form

(see van Damme, 1987, Fig. 6.4.2).

The relative mistake probabilities for sequences are as in the starting vector

(p, q), so they can be varied. The algorithm by Wilson (1992) for a game in normal

form computes also a perfect equilibrium, but with mistake probabilities for pure

strategies that have different orders of magnitude, according to an initially chosen

order of the pure strategies.

Another game-theoretic property of our algorithm is that it mimics the linear

tracing procedure by Harsanyi and Selten (1988), applied to the normal form of the

game. Thereby, the starting vector (p, q) is the players’ prior which the players take

into account with probability z0 , whereas 1 − z0 is the probability for the current

strategy pair (x∗, y∗) defined in (3.6). For further details see van den Elzen and

Talman (1999).

6. Degeneracy resolution

The support of a mixed strategy is the set of pure strategies it uses with positive

probability. A game is called degenerate if the number of pure best responses to

some mixed strategy exceeds the size of its support (this is the simplest of many

equivalent definitions, see von Stengel, 2000). Degeneracy can also be defined for

augmented linear systems like (3.4) and for the sequence form, where it means that

certain basic solutions have basic variables with value zero. Then the leaving variable

in a pivoting step may be not unique and must be determined by an additional (for

example lexicographic) rule that guarantees termination of the algorithm.

The normal form of an extensive game is often degenerate even if its payoffs

are generic (in the sense of Kohlberg and Mertens, 1996, Appendix C). The reason

is that there may be many best response strategies specifying choices in unreached

parts of the game tree. This holds also for the sequence form, even though it is

less redundant than the normal form. For example, the game in Figure 2.1 has the

20

equilibrium (x, y) in realization plans with xL = 1, ya = yc = 1. Here the sequence d

of player 2 is also a best response but has probability zero, so both the slack variable

sd and its complement yd have value zero, one of which is a basic variable. This

degeneracy is due to the structure of the game tree and not due to the payoffs, since

after the choice L of player 1, the second information set of player 2 with its choices

c and d is unreached. In larger games, such degeneracies can also be observed at

intermediate steps of the computation.

In our algorithm, degeneracy is handled by the well-known lexicographic method

as follows (for a detailed exposition see Koller, Megiddo, and von Stengel, 1996). In

a pivoting step, the leaving variable is determined by a minimum ratio test applied

to the right hand side of the current tableau divided by the positive entries of the

entering column. In a nondegenerate game, the minimum is unique. Otherwise, the

set of candidates for the leaving variable is tested again by comparing the ratios for

the next column of the tableau, until a unique minimum is found. Our computational

experiments show that many, sometimes even all relevant tableau columns must be

iteratively tested in this way. This makes it mandatory to use exact arithmetic (see

Section 9 below) in order to verify the pivoting “ties” reliably. The lexicographic

rule determines the leaving variable and the computed path uniquely. Hence, no

basis is repeated and the algorithm terminates.

In the computation described in Section 4, the final pivoting step where z0

leaves the basis is degenerate since the variable sd could leave as well. According

to step (c) of Algorithm 3.3, z0 is chosen to leave the basis. According to the

lexicographic rule, sd would leave the basis, with yd entering and then rRS leaving

and xRS entering, and finally z0 leaving the basis. This determines the equilibrium

(x, y) with xL = 1, ya = 1, yc = 1/12 (see von Stengel et al., 1996). Koller, Megiddo,

and von Stengel (1996) showed that the lexicographic rule guarantees termination

of the algorithm, even without testing beforehand whether z0 can leave the basis.

The above example shows that the extra test for z0 can shorten the computation,

which was an open question. Recall that in Algorithm 3.3(c), the variable z0 leaves

the basis as soon as possible in order to obtain a normal form perfect equilibrium

by Theorem 5.1.

21

The lexicographic rule maintains the invariant that all computed bases are

lexico-positive, so this must also hold for the initial basis. The simplest initialization

for Algorithm 3.3 is to start Lemke’s algorithm in a first phase with artificial slack

variables that are complementary to u and v. The components of u and v are

then brought into the basis using the lexicographic rule, and never leave again. For

details see von Stengel et al. (1996).

7. Homotopy and equilibria with negative index

The presented algorithm can be viewed as a homotopy method. The homotopy

principle unifies a number of algorithms (see Garcia and Zangwill, 1981, in particular

p. 368 for Lemke’s algorithm). In our case, the original system (2.7), (2.8) that

defines an equilibrium is relaxed to (3.4), (2.8) by admitting the extra variable z0 .

The solutions to the augmented system form a one-dimensional set. With suitable

lexicographic perturbation to avoid degeneracies, this set is a one-dimensional mani-

fold, a collection of paths that do not fork. The endpoints of these paths are the

equilibria of the game, with the exception of a trivial solution (for z0 = 1) given by

the starting vector. This is exploited algorithmically by considering first the trivial

solution and then – in the usual view of a homotopy – “deforming” the system until

it represents the original system (for z0 = 0) with the desired solution.

The homotopy parameter z0 is not always changed monotonically since the

decrease of z0 often stalls and may even be temporarily reversed while the path is

traversed, as in step 3 in our example. On the other hand, the non-monotonicity of

the homotopy makes it globally convergent and therefore superior to optimization

techniques that tend to work only locally.

The endpoints of the homotopy paths have opposite index, an invariant of the

equilibrium (see, for example, Govindan and Wilson, 1997). The equilibrium at the

end of the path that begins at the starting vector has always positive index (Garcia

and Zangwill, 1981, p. 54). If the game has several equilibria, any equilibrium of

positive index can be found from a starting vector that is close enough (although

this might not be a practical way to find all equilibria). The equilibria of negative

index can then be found by the following modification of Algorithm 3.3. Suppose

22

two positively indexed equilibria (x, y) and (x′, y′) have been traced from the start-

ing vectors (p, q) and (p′, q′), respectively. Then the homotopy system (3.4), (2.8)

induced by (p, q) has a path with (x′, y′) at one end and a negatively indexed equi-

librium at the other end, since (x′, y′) is not the equilibrium connected to (p, q).

That negatively indexed equilibrium is found by considering the system defined by

(p, q) with its initial solution (x′, y′) and z0 = 0, and then letting z0 increase and

continuing step (b) of Algorithm 3.3 until z0 leaves again the basis with value zero.

In our example, a second positively indexed equilibrium (x′, y′) is given by

x′ = (xL, xRS, xRT) = (0, 1/3, 2/3) and y′ = (ya, yb, yc, yd) = (0, 1, 2/3, 1/3) which is

found when starting from p′ = (3/10, 7/20, 7/20) and q′ = (1/8, 7/8, 1/3, 2/3), for example.

Then the algorithm proceeds from the initial solution (x′, y′) and z0 = 0 as follows.

1. The basic variables are rL , xRS , xRT , sa , yb , yc , yd . The entering variable z0 is

increased to 3/8 , where the slack variable rL becomes zero and leaves the basis.

2. The entering variable xL is increased to 137/560 , where sa becomes zero and

leaves. No change occurs for z0 and y.

3. The entering variable ya is increased until ya = 1/8 where z0 = 0. Then z0 leaves

the basis. The algorithm terminates with the negatively indexed equilibrium

x = (5/14, 3/14, 3/7) and y = (1/8, 7/8, 2/3, 1/3).

8. Comparison with other algorithms

A number of existing algorithms compute an equilibrium of a two-person game

using the normal form. The classical algorithm by Lemke and Howson (1964) starts

from a pure strategy pair where only one of the pure strategies is a best response

to the other, and follows a path by complementary pivoting until the nonoptimal

strategy either becomes optimal or has probability zero. Wilson (1992) extended this

algorithm with a lexicographic method so that the computed equilibrium is perfect.

By shifting the lexicographic order among the pure strategies and continuing the

path suitably, the computed equilibrium also fulfills a variant of stability.

Wilson (1972) applied the Lemke–Howson algorithm to the normal form of an

extensive game, which is stored only for the – ideally small – support of the current

23

mixed strategies. Only the pure strategies in this support are stored explicitly as

tuples of choices. These pure strategies are computed by a subroutine that works

directly on the game tree. This subroutine is called, possibly many times, for each

pivoting step in order to determine the leaving variable, which is in general not part

of the current support (Wilson, 1972, p. 452).

The algorithm by van den Elzen and Talman (1991) computes a perfect equi-

librium when started in the interior of the strategy space. In contrast to the Lemke–

Howson algorithm, its starting point can be chosen freely.

The pivoting algorithms by Lemke and Howson (1964), Wilson (1992), and

van den Elzen and Talman (1991) all use the normal form of the game. Because

each pivoting step updates the entire matrix which is exponentially large compared

to the game tree, this becomes exceedingly slow for larger games. The algorithms

of Wilson (1972, 1992) could be combined to compute a perfect equilibrium for a

game in extensive form, in order to exploit the possible sparsity of mixed strategies

in extensive games (see Koller and Megiddo, 1996). However, that algorithm is still

slow because of a large number of subroutine calls in each pivoting step, and has

other difficulties (see von Stengel, van den Elzen, and Talman, 1997). Hence, our

algorithm is substantially faster than these normal form algorithms.

The algorithm by Koller, Megiddo, and von Stengel (1996) is Lemke’s algorithm

based on the sequence form. In comparison to that method, our algorithm has

the following advantages. Our convergence proof is straightforward because the

path remains in the strategy space which precludes ray termination. The proof in

Koller, Megiddo, and von Stengel (1996) is very technical. Most importantly, we

can freely choose the starting vector, and that choice has a clear interpretation. In

consequence, our algorithm can find several equilibria if they exist. Moreover, the

computed equilibrium is normal form perfect if the starting vector is completely

mixed.

24

9. Computational experiments

We have implemented our algorithm and compared it with the algorithm by van

den Elzen and Talman (1991) for the normal form, applied to the same extensive

game and to the same behavior strategy that defines the starting vector. This gives

the most direct comparison between sequence form and reduced normal form. We

chose a class of games where many choices in a strategy can be left unspecified since

they are irrelevant (as one would typically expect), making the reduced normal

form seemingly quite tractable. The computational efficiency of the sequence form

therefore does not manifest itself until the game trees have several hundred nodes.

Shortly thereafter, however, the reduced normal form “explodes” in size and cannot

even be tested for comparison. We have investigated such large games using the

sequence form only, which is still solved within several minutes. The relatively short

computation times are due to the use of integer pivoting (see Shapley, 1987, and

Chvátal, 1983, p. 444). The program was written in C and run on a 400 MHz

Pentium.

The games we consider are binary trees with L choices along any path from the

root to a leaf, where player 1 moves I times and player 2 moves J times, L = I +J .

The players alternate, player 1 moving first, so that I = J = L/2 if L is even, and

I = (L+1)/2 and J = (L−1)/2 if L is odd. The game has no chance moves. At each

decision node, the player has two choices and is informed about all previous choices

except the immediately preceding choice by the other player. Every information set

of the game (except the one containing the tree root) therefore has two nodes, and

the game has no subgames. The game tree has 2L leaves and 2L+1 − 1 nodes in

total. Player 1 has (4I + 2)/6 and player 2 has (4J − 1)/3 information sets, each

with two choices. The players’ payoffs are random integers between 1 and 100. Each

tree depth L is studied with up to 100 different random payoffs.

The reduced normal form of such a game is substantially smaller than the

unreduced normal form. Whenever a player chooses “left”, say, at an information

set, then all information sets following the unused choice “right” are irrelevant,

which are half of the information sets at later stages. On the other hand, for any

information set h of player 1, say, there is a parallel information set h′ (that is,

25

σh = σh′) as soon as player 2 has moved at least twice, since then player 1 is

informed about the second-to-last choice of player 2. (The same holds with players

interchanged.) In any reduced strategy where h and h′ are relevant, all combinations

of choices at h and h′ must be considered, as well as combinations of subsequently

possible choices. The latter property leads to a multiplicative growth of reduced

strategies. It is not hard to prove that in a game with tree depth L = I + J as

described above, player 1 has 22(I−1) and player 2 has 2(2J−1) reduced strategies.

These numbers are shown in Table 9.1.

In terms of the size of the game tree, the number of reduced strategies is given

as follows. When L is odd, then player 1 has twice as many reduced strategies as

player 2, namely 22J where I = J + 1, L = 2J + 1 (when L is even, the number

of strategies of player 2 is increasingly disproportionate to that of player 1, e.g. 231

compared to 216 when L = 10). Then the game tree has N = 2L+1 = 22J+2 (minus

one) many nodes, so that
√

N = 2J+1 , which shows that player 1 has 2
√

N/2 many

strategies. In practical terms, the exponential “explosion” happens when J = 4

since 215 many strategies for player 2 make the reduced normal form too large to be

processed with a pivoting method.

The reduced normal form (RNF) is solved by the van den Elzen–Talman algo-

rithm. As mentioned at the beginning of Section 5, this is the same as our method

except that the constraints Ex = e and Fy = f each consist of a single equation to

define a mixed strategy. The resulting LCP dimension is shown in Table 9.1, and

is about 3
2 · 2

√
N/2 for a game tree with N nodes when L is odd, otherwise about

2
√

N/2−1
. For the sequence form (SF), the number of sequences and constraints (the

number of equations in Ex = e and Fy = f , which is the number of the respective

player’s information sets plus one) give an LCP dimension of about 3
4N .

Each game is solved with 100 different starting vectors. One of these is the

“centroid”, that is, the behavior strategy where all choices have equal probability.

The other starting vectors are behavior strategies with a random behavior at each

information set, which is a probability vector chosen from the uniform distribution

on the respective unit simplex. Here, each information set has only two choices, so

the probability for one choice is just uniformly chosen from the unit interval, and

26

tree depth L 3 4 5 6 7 8 9

tree leaves 8 16 32 64 128 256 512

tree nodes N 15 31 63 127 255 511 1023

move depth I player 1 2 2 3 3 4 4 5

move depth J player 2 1 2 2 3 3 4 4

strategies player 1 4 4 16 16 256 256 65536

strategies player 2 2 8 8 128 128 32768 32768

LCP dimension RNF 8 14 26 146 386 33026 98306

sequences player 1 7 7 23 23 87 87 343

constraints player 1 4 4 12 12 44 44 172

sequences player 2 3 11 11 43 43 171 171

constraints player 2 2 6 6 22 22 86 86

LCP dimension SF 16 28 52 100 196 388 772

games tested 100 100 100 100 100∗ 20 10

starting vectors tested 100 100 100 100 100 100 100

RNF computing time [sec] 0.001 0.003 0.017 0.71 25.4 – –

RNF pivoting steps 6.6 8.0 10.0 14.8 20.5 – –

SF computing time [sec] 0.003 0.017 0.142 0.89 6.0 49.8 464.3

SF pivoting steps 14.6 25.2 45.8 94.1 191.8 397.6 983.8

equilibria per game 1.2 2.0 4.4 16.6 44.2 84.3 98.9

equilibrium distributions 1.2 1.5 2.5 4.2 7.0 13.7 22.4

Table 9.1.—Data for binary game tree with depth L and two-element information
sets as studied in computational experiments. The observed data are
averages. ∗RNF only tested for 20 games.

27

the other choice gets the complementary probability. (It is less straightforward but

possible to implement a uniform distribution on the respective higher-dimensional

simplex when an information set has more than two choices.) For game trees of

depth L ≤ 6, each of the 100 games resulting from different payoffs is tested with

100 different starting vectors, so that running times are averaged over 10,000 com-

putations. For L = 7, 8, and 9, the sequence form is applied to 100, 20, and 10

different games, respectively, each with 100 starting vectors. The number of games

does not seem to be critical – already 10 games for each level lead to very similar

computation times. For L = 7, the normal form computation takes too long and is

applied only to 20 games, that is, 2,000 times in total. For L ≥ 8, the normal form

is too large even to store the LCP matrix.

The computed equilibria for the reduced normal form and for the sequence form

almost always agree, as predicted in Section 5. A rare exception are games where the

lexicographic rule, which depends on the arbitrary order of LCP variables, resolves

a “bifurcation” of the computed path differently, for example when two choices lead

to equal payoffs.

The reduced normal form requires much fewer pivoting steps (see Table 9.1)

since one step changes a strategy and thus several choices at a time. In contrast,

the sequence form requires a larger number of pivoting steps (roughly the same as

the LCP dimension) since these change only one choice at a time. Curiously, the

number of pivoting steps is always odd . We have not yet explained this observation,

which is not true for the Lemke–Howson algorithm, for example.

Computation times for the sequence form break about even with the reduced

normal form when L = 6. Then, the larger number of pivoting steps for the sequence

form is outbalanced by the smaller time needed to perform a pivoting step in a

smaller and sparser tableau. Computation times for the reduced normal form are

also more variable. The longest computation for L = 6 took 15.0 seconds (average

0.71, standard deviation 0.68) compared to maximally 5.4 seconds for the sequence

form (average 0.89, standard deviation 0.41).

Table 9.1 shows that doubling the size N of the game tree incurs an approxi-

mately eightfold increase of the computation time for the sequence form (the small

28

number of levels investigated allows only for a rough estimate in this regard). Em-

pirically, the running time is therefore cubic in the input size (proportional to N3

for a game tree with N nodes). Since the number of pivoting steps seems to be

proportional to N , each step takes time proportional to N2 . The tableau itself is

sparse, but the numbers involved have a larger number of digits with increasing N

which slows the computation down. This is due to the use of arbitrary precision

integer arithmetic, which is necessary since Lemke’s algorithm with standard float-

ing point arithmetic is numerically unstable (Tomlin, 1978). For comparison, the

simplex algorithm for linear programming applied to a zero-sum game requires in

practice also proportional to N many pivoting steps for an LP with N constraints

(Chvátal 1983, p. 45). The only difference to our method is that good implemen-

tations of the simplex method are numerically stable even with limited-precision

floating point arithmetic, and therefore faster for larger zero-sum games.

As the games increase in size, a larger number of equilibria is found when vary-

ing the starting vector (for L = 8 and L = 9, almost every different starting vector

leads to a different equilibrium, so that one should try more than 100 starting vec-

tors here). As soon as a player can move several times during play, many of these

equilibria differ only in choices away from the equilibrium path, as demonstrated

by the last row in Table 9.1 that shows the number of distinct distributions on tree

leaves induced by equilibria. The support of an equilibrium distribution tends to

be small. Most equilibria are in pure strategies or involve only very few informa-

tion sets where a player mixes his moves. This observation – without analyzing it

further – holds presumably because the game has random payoffs. At the tree sizes

where the sequence form becomes relevant, it is hopeless to enumerate all equilibria

since enumeration is exponential in the LCP dimension (see also Gilboa and Zemel,

1989). However, we have not tried to find as many equilibria as possible, or to find

negatively indexed equilibria according to Section 7.

Authors’ addresses:

B. von Stengel: Department of Mathematics, London School of Economics, Houghton St,

London WC2A 2AE, United Kingdom.

29

Email: stengel@maths.lse.ac.uk

Webpage: http://www.maths.lse.ac.uk/Personal/stengel/

A. H. van den Elzen: Department of Econometrics and Operations Research, Tilburg

University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.

Email: a.vd.elzen@planet.nl

A. J. J. Talman: Department of Econometrics and Operations Research, Tilburg

University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.

Email: talman@kub.nl

Webpage: http://cwis.kub.nl/∼few5/center/staff/talman/

References

A. Charnes (1953), Constrained games and linear programming. Proc. National Academy

of Sciences of the U.S.A. 39, 639–641.

V. Chvátal (1983), Linear Programming. Freeman, New York.

R. W. Cottle, J.-S. Pang, and R. E. Stone (1992), The Linear Complementarity Problem.

Academic Press, San Diego.

Y. Dai and A. J. J. Talman (1993), Linear stationary point problems on unbounded

polyhedra. Mathematics of Operations Research 18, 635–644.

E. van Damme (1987), Stability and Perfection of Nash Equilibria. Springer, Berlin.

B. C. Eaves (1973), Polymatrix games with joint constraints. SIAM J. Appl. Math. 24,

418–423.

A. H. van den Elzen (1993), Adjustment Processes for Exchange Economies and Non-

cooperative Games. Lecture Notes in Economics and Mathematical Systems 402,

Springer, Berlin.

A. H. van den Elzen and A. J. J. Talman (1991), A procedure for finding Nash equilibria

in bi-matrix games. ZOR – Methods and Models of Operations Research 35, 27–43.

A. H. van den Elzen and A. J. J. Talman (1999), An algorithmic approach toward the

tracing procedure for bi-matrix games. Games and Economic Behavior 28, 130–145.

C. B. Garcia and W. I. Zangwill (1981), Pathways to Solutions, Fixed Points, and Equi-

libria. Prentice-Hall, Englewood Cliffs.

30

I. Gilboa and E. Zemel (1989), Nash and correlated equilibria: some complexity consider-

ations. Games and Economic Behavior 1, 80–93.

S. Govindan and R. Wilson (1997), Equivalence and invariance of the index and degree of

Nash equilibria. Games and Economic Behavior 21, 56–61.

J. C. Harsanyi and R. Selten (1988), A General Theory of Equilibrium Selection in Games.

MIT Press, Cambridge.

K. Kamiya and A. J. J. Talman (1990), Linear stationary point problems. CentER Dis-

cussion paper No. 9022, Tilburg University.

E. Kohlberg and J.-F. Mertens (1986), On the strategic stability of equilibria. Economet-

rica 54, 1003–1037.

D. Koller and N. Megiddo (1992), The complexity of two-person zero-sum games in ex-

tensive form. Games and Economic Behavior 4, 528–552.

D. Koller and N. Megiddo (1996), Finding mixed strategies with small supports in exten-

sive form games. International Journal of Game Theory 25, 73–92.

D. Koller, N. Megiddo, and B. von Stengel (1996), Efficient computation of equilibria for

extensive two-person games. Games and Economic Behavior 14, 247–259.

H. W. Kuhn (1953), Extensive games and the problem of information. In: Contributions to

the Theory of Games II, eds. H. W. Kuhn and A. W. Tucker, Annals of Mathematics

Studies 28, Princeton Univ. Press, Princeton, pp. 193–216.

C. E. Lemke (1965), Bimatrix equilibrium points and mathematical programming. Man-

agement Science 11, 681–689.

C. E. Lemke and J. T. Howson, Jr. (1964), Equilibrium points of bimatrix games. Journal

of the Society for Industrial and Applied Mathematics 12, 413–423.

R. D. McKelvey and A. McLennan (1996), Computation of equilibria in finite games. In:

Handbook of Computational Economics, Vol. I, eds. H. M. Amman, D. A. Kendrick,

and J. Rust, Elsevier, Amsterdam, pp. 87–142.

P. J. Reny (1992), Backward induction, normal form perfection and explicable equilibria.

Econometrica 60, 627–649.

I. V. Romanovskii (1962), Reduction of a game with complete memory to a matrix game.

Soviet Mathematics 3, 678–681 (Russian original: Doklady Akademii Nauk SSSR

144, 62–64).

R. Selten (1975), Reexamination of the perfectness concept for equilibrium points in ex-

tensive games. International Journal of Game Theory 4, 25–55.

31

R. Selten (1988), Evolutionary stability in extensive two-person games – correction and

further development. Mathematical Social Sciences 16, 223–266.

L. S. Shapley (1987), The Lemke–Howson algorithm for bimatrix games, A4: How to pivot

with a matrix of integers. Handout #5, lecture notes for Math 147/1, UCLA.

B. von Stengel (1996), Efficient computation of behavior strategies. Games and Economic

Behavior 14, 220–246.

B. von Stengel (2001), Computing equilibria for two-person games. Chapter 45, Handbook

of Game Theory, Vol. 3, eds. R. J. Aumann and S. Hart, North-Holland, Amsterdam,

to appear.

B. von Stengel, A. H. van den Elzen, and A. J. J. Talman (1996), Tracing equilibria in

extensive games by complementary pivoting. CentER Discussion paper No. 9686,

Tilburg University.

B. von Stengel, A. H. van den Elzen, and A. J. J. Talman (1997), Computing normal

form perfect equilibria for extensive two-person games. Discussion paper FEW 752,

Tilburg University.

J. A. Tomlin (1978), Robust implementation of Lemke’s method for the linear complemen-

tarity problem. Mathematical Programming Study 7: Complementarity and Fixed

Point Problems, 55–60.

R. Wilson (1972), Computing equilibria of two-person games from the extensive form.

Management Science 18, 448–460.

R. Wilson (1992), Computing simply stable equilibria. Econometrica 60, 1039–1070.

32

