Finding Composition Treesfor Multiple-Valued Functions

E. V. Dubrova J. C. Muzio
VLSI Design and Test Group

University of Victoria, PO.Box 3055

Victoria, B.C., Canada, V8W 3P6
el ena@shannon.uvic.ca
jmuzio@csr.uvic.ca

Abstract

The composition tree of a given function, when it ex-
ists, provides a representation of the function revealing all
possible digunctive decompositions, thereby suggesting a
realization of thefunction at a minimal cost. Previously and
independently, the authorshad studied the class of multiple-
valued functions that are fully sensitive to their variables.
These functionsare useful for test generation purposes, and
almost all m-valued n-variablefunctionsbelongtothisclass
asn increases. All functionsin this class have composition
trees. This paper presents a recursive algorithm for gen-
erating the composition tree for any function in this class.
The construction proceeds top-down and makes immediate
use of any encountered decomposition, which reduces the
(in general exponential) computationtime.

1. Introduction

Most approaches to the logic synthesis of digita sys
tems consi st of two phases: atechnol ogy-independent phase
that mani pul ates and optimizesfunctions, and atechnol ogy-
mapping phase that maps functions onto a set of gates in
a specific target technology. The technol ogy-independent
phase for two-level synthesis, resulting in two-level devices
such as programmable logic arrays, is based on minimiza-
tion techniques [2]. For multi-level synthesis, decompo-
dition is the essentia step in the technol ogy-independent
phase, leading to devices with multi-level structure such as
field programmable gate arrays [3].

Generdly, the problem of decomposition of functions
can be formulated as follows. Given afunction f, express

*Supported in part by Research Grant No. 5711 from the Natural Sci-
ences and Engineering Research Council of Canada and by an equipment
loan from the Canadian Microelectronic Corporation.

t Supported by a Heisenberg grant from the Deutsche Forschungsge-
meinschaft (DFG).

B. von Stengel f
Theoretica Computer Science
ETH Zirich
CH-8092 Zurich, Switzerland
stengel @inf.ethz.ch

it as a composite function of some set of new functions.
Sometimes, a composite expression can be found in which
the new functionsare significantly smpler than f. Then the
design of alogic circuit redizing f may be accomplished
by designing circuits realizing the simpler functions of the
composite representation, thus reducing the overall cost of
implementing f.

However, the problem of selecting the “best” decompo-
sition minimizing the overal cost of realization of a given
function appears to be far too difficult to be solved exhaus-
tively. Therefore, al previous efforts to apply decompo-
sition theory to the design of Boolean and multiple-valued
logic circuits restrict the decomposition to be obtained to
a particular type. In our paper we consider digunctive
decompositions only. The basis for the different types of
digunctive decomposition is the simple digunctive decom-
positionwhere afunction f(z1, z2, .. ., z,) isexpressed as
a composite function of two functions g and h, namely

f(x,y) = g(h(z),y) (1)

with z and y being sets of variables forming a partition of
the set of variables {z1,2z2,...,2z,} of f. If f, g and h
are m-valued functions, then in (1) the origina function f
specifying an n-input, 1-output m-valued circuit isreplaced
by the specifications of two m-valued circuits, one having
p inputs and one output, and the other having 1 + n — p
inputs and one output (see Figure 1). Every set of variables
x such that f has adecomposition (1) is called a bound set
for f. Such a decomposition existstrivially for = given by
any singletonset {z;} or thedl-set {z1,z2,...,2,}.

If Cy m isan upper bound on the cost of realizing an m-
valued function of n variables, then thetotal cost of realizing
thesetwo circuitsisbounded above by Ci, 1 + Ci14n—p),m-
Because thecost bound ', ,,, increases nearly exponential ly
with n [12], the discovery of any nontrivial decomposition
of theform (1) grea{y reduces the cost of redlizing f. Once
such a decomposition has been selected, either g, h, or both
may be similarly decomposed, giving one of the following

In: Proc. 27th |EEE International Symposium on MultipleVaued Logic (1997) 19-26.

- _
X h M
p —
— g f(x, y)
p+1
y
| n

Figure 1. Simple disjunctive decomposition

complex digunctive decomposition types[7]:

J(@9,2) = g(h(2) k(w),2) o)
f(@,y,2) = g(h(k(2),v), 2)

or more generdly treelike decompositions as in
f(a,y, 2, w) = g(h(k(x), y), 1(2), w).

Clearly, since each decomposition of type (1) reduces
the overall cost of implementing f, the more f is decom-
posed, the more the cost is reduced. However, sometimes
a function can be decomposed in severa different ways,
depending on the bound set chosen, e.g. when two decom-
positions of the same function f(z,y) = g(h(z),y) and
f(z,v) = k(l(2),v) exist such that z N z # @. We call
such decompositions conflicting. Therefore, at this point, a
theory is heeded to decide which bound sets should be cho-
sen to obtain the “most decomposed” representation of f.
Such atheory was devel oped by Ashenhurst [1] for the case
of Boolean functions, and generalized by the third author of
the present paper to acertain class 2 of general n-ary opera-
tionson (not necessarily finite) sets[13]. Thedecomposition
properties of the functionsin X are as useful as possiblein
the sense that there isafinal decomposition that represents
any bound set of variables. The simple case isthat two such
bound sets are digoint or that one contains the other, which
gives rise to a multiple or iterative decomposition, respec-
tively. The interesting third possibility is that two bound
set are overlapping, i.e. given by (z,y) and (y, z) where z,
y, and z are nonempty sets of variables. Remarkably, this
impliesarepresentation of f intheform

fz,y,z,w) = g(a(z) e b(y) e c(z),w) (3

with an m-valued associative binary operation e, where the
two ways of writing parentheses, (a(z) e b(y)) o ¢(z) and
a(z)e(b(y)ec(z)), showthat (z, y) and (y, z) arebound sets
(as assumed), as well as (in consequence) their intersection
y, union (z,y, z), set-theoretic differences « and z, and
possibly (z, z) if e is commutative (as always for Boolean
functions).

Starting from these prototypical casesfor two bound sets,
the digunctive decomposition theory in [13] defines a com-
position tree of the function f which gives arepresentation

multiple:
iterative:

of the function reflecting any bound set of variables, thus
a “most decomposed” one. Hence, the redization of the
given function in correspondence with the composition tree
(with suitable assumption about the cost of logic elements)
should have a cost that is close to minimal. In the sixtiesit
was even conjectured that such an implementation must be
aminimal one. However, Paul [11] found a counterexample
demonstrating acircuit derived by other than decomposition
techniques that has smaller cost than the one implementing
the composition tree. Nonetheless, this seems to be the
exception.

This paper summarizes the results on composition trees
from[13] restricted to the case of m-valued n-variablefunc-
tions, defining composition trees and specifying a class of
functions X for which the composition tree exists. We show
the close connection between the class 3 and full sensitivity,
the discrete difference introduced in [5] for test generation
purposes, which allows us to apply some of the results for
full senditivity to the class > and vice versa. For exam-
ple, one of the results from [6], restated in the terminology
of the present paper, says that the percentage of m-valued
n-variable functions which are not in X tends to zero as n
increases.

Theresultsof [13] provethe existence of the composition
tree for aparticular class of functionsand give a description
of thistree. However, thisisnot a gorithmicand doesnot de-
scribe how to build the composition tree from aspecification
of the given function. In this paper we describe a recursive
algorithm for generating composition trees of functionsin
>. It is acombined top-down and depth-first construction
of thetree. In parts, it generalizes Curtis' approach [4] for
Boolean functionsto the m-valued case. A bottom-up con-
struction that could be adapted to our situation is described
in[10Q].

If al functions — or a least a large class of m-valued
functions— were digunctively decomposabl e, the algorithm
presented in our paper would have been more than adequate
for obtaining highly economical multi-level m-vaued cir-
cuits. However, the fraction of al Boolean functions of n
variables possessing nontrivia digunctive decompositions
of type (1) approaches zero as n approaches infinity [12,
p. 90]. It is straightforward to generalize this result to
m-valued functions for m > 2. However, this does not
mean that the digunctive decomposition theory devel oped
in[1] and [13] isof no practical value. First, the “practica”
functions are not randomly distributed through the space of
all functions. Second, in the Boolean case, Ashenhurst’s
digunctive decomposition theory led to the formulation in
[4] of the generd theory of nondigunctive decompositions,
a theory encompassing al switching functions on » vari-
ables regardless of the size of n. We hope that the theory
developed in [13] can serve as a base for more generd in-
vestigations of m-valued functions. Severa directions for

the extension of the theory are discussed in thefinal section.

The paper is organized as follows. Section 2 recalls the
definition of bound sets, which we study for the class 3 of
fully sensitivefunctions. Thisclassisdefined in[5], [6], and
independently considered for decomposition in [13]. The
main results on composition trees are summarized in Sec-
tion 3. For proofs we refer to [1], [10], [13]. Section 4
describes the new recursive algorithm. Section 5 contains
conclusionsand discusses possibledirectionsfor further re-
search.

2. Function class Z and full sensitivity

Let f(z1,z2, ..., z,) beacompletely specified multiple-
valued function. In genera, the multiple-valued functions
may be heterogeneous where the variables of the function
do not take values in the same set. However, in our paper
we consider only the case of homogeneousfunctionsof type
M"™ — M on afixed set M := {0,1,...,m — 1}, and
restrict all functions participating in the decomposition to
thistype.

Let theset of indicesof thevariablesbe N = {1,...,n}.
Any subset A of N defines a vector (z;);c4 of such vari-
ables, so that zy = (z1,...,2,) € M. Let M4 =
{(z:)ica | z; € M}. By arranging the varigbles as it is
suitable, we can postul ate

MN = MA x M4,

where A = N — A. A simple disjunctive decomposition
of f isgiven by a nonempty subset A of N and suitable
functionsh: M4 — M and g: M x M4 — M sothat

[z, y) = g(h(z),y) (1)

fordl € M4, y € M#. Recdl that every set A of
(indices of) variables such that f has such a decomposition
is called a bound set for f (equivaently, we may call the
set {z; | i € A} or thevector z = (z;);c4 abound set of
variables).

The classical method for recognizing a bound set is
based on representing the function by adecomposition chart
[1], [4]. The decomposition chart for f(z,y) is a two-
dimensiona tablewherethe columnsrepresent the elements
z of M# and the rows the elements y of M “. Then A is
abound set if and only if the chart has column multiplicity
at most m, i.e. there are at most m distinct columnsin the
chart [7]. The reason isthat each such columnisafunction
w f(z,y) for fixed z (called a subfunction of f of the
variables y) which by (1) is equal to 1 g(h(z),y) , SO
there cannot be more of these columnsthan 4 takes values.
Figure 2 shows such achart for the {z3} |{z1, 22} partition-
ing of the variables of f(z1, z2, z3), wherethe set {z1, 22}
isindeed a bound set.

ziz2 |00 01 02|10 11 12|20 21 22
2301 0 0|0 O O}|1 0 1
1170 1 2|2 1 1|0 1 O
2(1 1 1|1 1 11 1 1

Figure 2. Decomposition chart for an fin X

Using these charts, Ashenhurst [1] showed representa
tionslike(3) and constructed thecompositiontreefor any n-
variable Boolean function that is nondegenerate, i.e. which
actually depends on al n variables to determine its output.
We may call such afunction senditiveto al itsinputs. Call
afunction f fully sensitiveto avariable z; if there are fixed
values for the other variables such that any change in z;
causes achangeinthevaueof f.

Let 2 be the class of functions f: M™ — M for some
n > 1that are fully senditiveto al their variables. 1n[13],
it is shown (using different terminology) that the functions
in 3 have composition trees, generalizing this property of
nondegenerate Boolean functions. Note, that for m = 2,
sengitivity isthe same asfull sensitivity. Independently, full
sengitivity isintroduced in [5] for test generation purposes,
where this name denotes an algebraic expression that indi-
cates where the function isfully sensitive to a given input.

Let z; beavariableof f(z1,...,z,) andz = (z;);2; be
the vector of remaining variables. Full sensitivity of f to z;
means that for some fixed z, the subfunction z; — f(z;, z)
isinjective, in fact bijective (a permutation of A) since z;
and f have only m possiblevalues. For f(z1, z2, z3) inFig-
ure 2, the subfunctionsz; +— f(z1,2,1), z2 — (0, z2,1),
and z3 — f(0, 2, z3) are such bijections, so thisfunction f
is fully sensitive to all its variables. In the decomposition
chart for f(z;, z) where the possible values for z and z;
denote rows and columns, this means that at |east one row
(fixed z) hasm distinct elements. Thisisnot necessarily the
case, even if this chart has m distinct columns. However,
aresult from [6] states that the percentage of m-valued n-
variable functions which are not fully sensitive to all their
variables tends to zero as n increases (intuitively, because
it becomes unlikely not to find a bijection among the m” ~1
rows of the chart).

Subfunctionsof f of one variable are used to define full
sengitivity. Subfunctions of severa variables (like the rows
and columns in any decomposition chart) can be used for
representing ¢ and A in (1), which is the central idea of the
decomposition theory in [13]:

Lemmal Let f €3, f: MY — M,and@ # A C N.
Then the following are equivalent:

(a) Aisabound set for f,

(b) f hasadecomposition (1) where h(z) isa subfunction

of f of thevariablesz € M4,
(c) f hasadecomposition (1) where g(x;, y) isa subfunc-

tionof f of thevariablesz; € M andy € MA, for any
1 €A

Here, (b) means that A(z) = f(z,y) for some fixed
§ € MA. That is, ¢ is a suitable row of the decompo-
sition chart for f(z,y). In Figure 2 where A = {1, 2},
we can choose §j = #3 = 1 and observe f(z1, 2, 23) =
g(f(z1,22,1), 23) s0 the second row f(z1, 2, 1) of the
chart isa suitable representation of h(z1, z2).

Condition () is dightly more complicated. In (1), ¢ has
1+| A variablessinceonevariableissubstituted by (). To
obtain g(z;, y) asasubfunction of f, any variable z; of the
vector z can be chosen, i € A. That is, ¢ = (z;,v) where
v = (xj)jea, j#i,S0that (c) assertsg(xi, y) = f((2:,7),y)
for some fixed 9. In Figure 2, we can choose z; = x5,
v = %1 = 0and let g(x2,y) = g(x2,23) = f(O, z2, x3)
(theleft of thethree squares of the chart, which represents a
sample of the m columnsthat can occur).

As an extension to Lemma 1, one can show that the
fixed values y and o in these representations can be any
vector (¢, g) such that z; — f((z;,?),y) isabijection (as
used for full sensitivity), likez, — f(0, z2, 1) in Figure 2.
Hence, if f € Z and we know a fixed vector Z = (Z;);;
such that z; — f(z;,Z2) is bijective (as a “witness’ for
the full sensitivity to z;), then the functions ¢ and h in a
decomposition (1) of f are found very simply by just fixing
somevariablesof f atthelevelsin z. Furthermore, Lemmal
impliesthe following.

Corollary 2. ¥ isclosed under composition and decompo-
sition: If g and ~ in f(z,y) = g(h(x),y) belongto X, then
so0 does f, and vice versa.

The class X of fully sensitive functions does not include
all functions for which the composition tree can be built.
However, we have not yet found a simpleweaker condition.
Ingeneral, arbitrary m-valued n-ary functionsmay not have
composition trees, contrary to a conjecture in [7]. When
looking for functions that do not have a composition tree,
full sengitivity must be violated. Such counterexamples
exist but are not easy to find. Thisisno coincidence since,
as mentioned, n-variablefunctionsnot in > arerarefor large
n [6]. The connections of full sengitivity as defined in [5]
and [6] and the structural decomposition theory in [13] are
fruitful in many other respects. For example, the procedure
for agebraic calculation of full sensitivity from [5] can be
used for checking whether agiven f isin 2. Apart fromthe
existence of the compositiontree, Corollary 2 isaniceresult
in terms of circuit testing since, as shown in [6], a circuit
implementing a function fully sensitive to al its variables
can betested for al single stuck-at faults on primary inputs
with two tests only.

3. Composition Trees

Throughout, let f € =, f: MY — M, N ={1,... n}.
A function f that has only the trivial bound sets N and {:}
for: € N (sothat g or h in (1) is unary) is caled non-
decomposable or prime, as for exampleif n < 2. If A is
a nontrivial bound set and (1) holds, then other bound sets
that are subsets or supersets of A or digointto A relate to
decompositionsof h and g:

Lemma 3. Let A be a bound set with decomposition (1),
where h: M4 — M and g: M13U4 — Af for somei € A.
Thenfor all setsC C A, D C A:

(8 Cisboundfor f <= (' isbound for h,
() AuCisboundfor f <= {i} U D isboundfor g,
(¢) D isboundfor f <= D isboundfor g.

Several bound setsfor f, asin Lemma 3, lead to iterative
or multiple decompositions of f asin (2). Call a bound
set A for f strong if any other bound set is either a subset
or superset of A or digointto A. For example, the trivia
bound sets N and {i} are strong. Clearly, the partial order
of inclusion among these strong bound sets defines a tree.
Thistree with strong bound sets as nodes (suitably label ed)
is called the composition tree of f.

Each node of the compositiontreeislabeled with afunc-
tion that has as many variables as the node has children.
Leaves are labeled with unary functions, which may be the
identity. The hierarchica term of these functions repre-
sents f. For atreelikein Figure 3 (which will be described
more fully below), thisterm may be

f(za, ..., ze) = g(h(a(z1, x2), 3, 24), z5,26). (4)

If all thesefunctionsare prime, then all bound setsare strong
and the composition tree isfully described. The interesting
case is therefore that some bound sets are overlapping with
others.

Figure 3. Example of a composition tree

Theorem 4. Let f € ~ and A, B be bound sets for f that
overlap,ie C=A—-B,D=ANB,andE = B— A are
not empty. Then

(8 AuBandC, D, F arebound sets,

(b) f has a representation (3) for x € M€, y € MP,
z € MF and remaining variables w where e is an
associative function in %, which is commutative if and
onlyif C'U E isabound set.

In Theorem 4, A and B are not strong bound sets, but
AU B anditspartitionclasses C, D, £ may be. Inthat case,
thenode A U B of the composition tree is labeled with the
function a e b e ¢ of the three variables a, b, ¢ (with values
in M). Infact, it suffices to store with the node A U B the
binary function e (with m? values) and to specify a linear
order among its children showing how to take the product
withe, likea e b e c Sincetheorder b e a e ¢ isnot alowed
if @ isnot commutative. If e iscommutative, then the order
of taking the product isirrelevant. For m > 2, > may have
non-commutative associative operations e like

aob:{z

For example, f in (4) may aso have the overlapping bound
sets {1,2,3} and {3,4}, which are bound sets for ~ by
Lemma 3(a). Then Theorem 4 asserts

ifb=0
ifb> 0.

h(a(z1, z2), x3, x4) = h(a(z1, 22), b(x3), c(24))

= a(z1,22) @ b(z3) @ c(4)

(5)

with an associative binary operation o. The unary functions
b and ¢ are bijectionswhich in general are necessary for this
representation (but would be unnecessary if h was prime).
Thefunctionsh and & in (5) arecaledisotopicsincethey are
identical except for such bijections M — M of variable or
function values. Isotopy leaves decompositions invariant:
If £, g,0r hin(1)isreplaced by an isotopic function, then
the other functions can be replaced by isotopic functions
such that (1) till holds. As a stronger notion, two, say,
binary operations x and e are called isomorphicif thereisa
bijection¢: M — M suchthat ¢(a * b) = ¢(a) e ¢(b).

A maximal bound set is an inclusion-maximal bound set
not equal to N. Then either

al maximal bound sets are pairwisedigoint, (6)
or
two maximal bound sets A, B overlap. (7)

In(7), AU B = N because of Theorem 4(a). Starting with
this case distinction, one can show the following.

Theorem 5. Let T'(f) bethecompositiontree of f given by
the strong bound sets as nodes, related by inclusion. Any
node of the tree can be labeled “ digjoint” (which holds for

all nodes with at most two children) or “ full” or “linear”,
such that A isa bound set for f if and only if

(a) A isanode of thetree, or

(b) A is the arbitrary union |J;c, B; of the children
Bi,...,Br ofa“full” node, @ # L C {1,...,k},

or
(c) A isthe union Ui.:j B; of an interval of the children
By, ..., By (specifiedinthat linear order) of a“ linear”

node 1< j<I<k.

The children of a “digoint” node A are the maximal,
pairwise digoint bound sets contained in A asin (6). We
assume k£ > 3in (b) and (c) to distinguish these cases
from a“digoint” node. The number of bound sets may be
exponential, asin (b), but they are efficiently coded by this
labeled tree, which has sizelinear in n [10].

Theorem 6. Let 7'(f) bethe compositiontree of f: MY —
M and By, ..., By, bethechildren of theroot N. Then

Frs - u) = g(ha(va), - - - hi(yr)) (8)

for functionsh; : MPi — M (1<i<k)andg: M* — M

in Z where

(a) gisprimeif N islabeled” digoint”,

(b) g(as,...,ap) =are---eay (fora; € M,1<i<k)
with an associative and commutative operation in X if
N islabeled “ full”,

(©) g(a1,...,ar) = a1 e ---ea; with an associative and
non-commutative operation in X if N islabeled “lin-

ear”.
(d) In (@), ¢ is unique up to isotopy. In (b) and (c), e is
unique up to isomorphy.

This is the main representation theorem of [13]. It is
applied by induction, which ends if f is prime. Using the
treesT'(h1), ..., T(hy) withthe children By, ..., B, of N
asroots, (8) givesthefully decomposed representation of f.
By Theorem 5, the resulting hierarchical term contains any
decomposition (1) as a subterm, where h(z) is possibly
obtained by suitable arrangement of “products’ with an op-
eration e.

An example of a composition tree is shown in Figure 3.
Abbreviations“D”, “F’ and “L” stand for labels “digoint”,
“full” and “linear”, respectively. The linear order among
the children of the “L” node is from left to right. Letters
a,b, c,d, e denote the functions associated with the nodes,
and e and o denote the operations. In accordance with the
tree, the complete decomposition of the function f is

f(za, ..., z6) = (a(z1, 22) o b(x3) o c(x4)) @ d(z5) ® e(26)

with e being an associative and commutative operation and
o being associ ative and non-commutative.

4. Constructing Composition Trees

Assume an m-vaued n-variable f is specified in some
way, and f € Z. Wewant to find its compositiontree 7'(f).
The problem of finding a simple digunctive decomposition,
i.e. determining a bound set for an m-valued function f and
obtaining suitablefunctionsgand hin f(z, y) = g(h(z),y),
iswidely studied with anumber of a gorithmsdevel oped for
its solution including those in [8], [9], [14]. So we assume
the existence of the following function:

IsBoundSet(A4, f, N)

input: f:MN - MinZ, ACN

output: “true’ if A isabound set for f,
“false” otherwise.

We assume this function has worst-case time complexity
m". One may hope that the output “false” is produced
faster, if more than m columns in the decomposition chart
are detected early. Aslong as al arguments of f have to
be evaluated, m™ is the worst-case running time [10]. It
might be interesting to analyze the expected time needed to
recognizethat a“random” functionisprime, withall caveats
that such functions are not those used in practice.

We check successively al sets A with cardinality n — 1,
n — 2, ...,2until abound set isfound. If f isprime, this
requires2” — n — 2 many calsto IsBoundSet and overall
running time O(2"m”"). However, this is the worst-case
time complexity. It will become apparent that there is a
significant speedup as soon as decompositions are found.

If fisprime, then wereturn

TrivialTree(f, N)

whichisjust onenodeif N isasingleton, otherwiseroot N
with children {i} for i € N. Theroot islabeled “digoint”
and with thefunction f to takethe place of ¢ in (8), and the
children B; = {i} arelabeled with h(z;) = =;.

If abound set A isfound, then it is maxima since we
examine the largest subsets of V first. We construct a spec-
ification of h and ¢ in (1), for example by Lemma 1. Recall
that for that purpose, it is useful to know explicitly where f
isfully sensitiveto all itsvariables.

If A isnot overlapping with any other bound set, then A
is by definition a node of the compositiontree 7" = T'(f).
Using Lemma 3, we can recursively compute

Ti=T(h), T2=T(g) 9)

and return

T = Append(T1, A, T2, {i}, A).

The function Append takes two trees, 71 with root A and
Ty with root {i} U A, as input and returns 7" obtained by
replacing theleaf {:} of T by T3, and new root AU A. The

labels of the nodes are not changed. Then Lemma 3 and
Theorem 6 imply 7' = T'(f).

However, thisisnot correct if another bound set B over-
laps with A, asin (7). Then AU B = N because A is
maximal, hence A = N — A = B — A and Theorem 4(a)
implies:

A — Band AN B arebound setsfor f,

‘A isabound set for f.

By Lemma 3(a) and (c), these necessary conditions are
equivaent to

A — Band AN B arebound setsfor A,

‘A isabound set for g.

Asbefore, these conditionscan be verified from the compo-
sitiontrees 731 and 75 of h and ¢ in (9) if these are computed
recursively first. The conditionsfail if theroot of either tree
islabeled “digoint” and has three or more children, by (6).
Otherwise, weinvoke

PossiblyMerge(T1, A, Ty, {i}, A)

input: ~ composition trees 71 = T'(h) with root A and
T, = T(g) withroot {i} U A. Assume (1).
output: If nobound set B for f overlapswith A, thenthe

same as Append(Tx, A, T», {i}, A).
Otherwise, T' = T'(f) withtherootsof 77 and 7>
merged, the leaf {:} of T, omitted, and new root
AUA labeled “full” or “linear”.

We describe this procedure in more detail. The root of
T> = T(g) is labeled “digoint” since {i} is a maximal
bound set for ¢ (by Lemma 3(b), since A is maximal for
). Suppose theroot of 7> has two children {i} and A, and
the root of 77 = T'(h) has two children C, D. Then the
functions G and H for these roots (which are stored with
the trees) show

he M, ye M*

(10)
u €]MC7 ve MP
so that f(u,v,y) = G(H(a(u),b(v)), c(y)). We have to
check for the possibility that G and H are isotopic to an
operation e. Rather than trying out the bijections M — M
for verifying such an isotopy, wetest if B = D U A (i.e. the
variables v, y) and B = C' U A (i.e. the variadbles u, y) are
bound sets for f(u,v,y). Itisnot necessary to apply this
testto f. Equivalently, wetestif {b, ¢} and {a, ¢} are bound
setsfor thefunction F'(a, b, ¢) = G(H(a, b), ¢) of thethree
variablesa, b, c withvaluesin M. Thiscan be done quickly
intimem?3. Then if
(i) {b,c}and {a,c} arebound: merge the roots and label
the new root A U A “full”, with children C, D, A.
(i) {b,c}isbound,{a, c}isnot: merge, withlabel “linear”
and children C, D, A.
(iii) {a,c}isbound,{b, c} isnot: merge, withlabel “linear”
and children D, C, A.

(iv) Otherwise, just append 77 to T5.
In cases (i)—iii), the root obtained by merging is labeled
withtheoperation e, which can befoundsimilar toLemma 1
[13]. Furthermore, it may be necessary to apply a bijective
transformation to the val ues of thefunctions of the children,
as when changing from A to & in (5).

PossiblyMergeisalso applied if theroot of 73 islabeled
“full” or “linear” with children By, ..., B;. Inthat case,
weleeC = Biand D = B, U ---U By, and let H be
the operation e a the root of 71, so that (10) holds, and
proceed as before. In case (ii), the children of the new root
are By, ..., By, A. Incase (iii), they are By, ..., By, A. In
any case, PossiblyM er ge has time complexity O(m?).

The great advantage of the recursion (9) isthat it saves
computationtime. If |[A| = p asin Figure 1, each test of a
bound set for h or g with 1sSBoundSet requires up to m? or
m*" =P many steps, much fewer than the m” stepsfor f.

For the computation of 7> = T'(g), some care is neces-
sary to avoid duplicate computations. First, {i} isaleaf of
T>», soonly subsetsof A haveto be checked. Second, subsets
D of Awith|D| > p can dsobedisregarded sincethey have
already been checked for f and Lemma 3(c) holds. (Even
certain subsets D of A with|D| = p may have been checked
before A, and can be disregarded by a careful implementa-
tion of the algorithm.) The second point is relevant only
whenp < |A| = n — p,i.e.p < n/2. Inthat case (which
includesp = | A]) it isalso unnecessary to invoke Possibly-
Merge sincethen | B| > p for the bound set B of f that is
sought there, which is not possible.

In order to compute 7>, efficiently, we therefore pass
S := A and p as additiona parameters to the algorithm,
which looks as follows. Preconditions and assertions at
various stages are given in {...). The procedure terminates
at each return statement with the indicated output.

CompositionTreg(f, N, S, p)

input: FiMYN — Min%, S CN,integer p

assumption: (A C S and |A] < p for any bound set A
of f,A#N)

output: the compositiontree 7' = T'(f)

initial call: ~ CompositionTree(f, N, N,n — 1).

1 if |N| < 2then
return 7' := TrivialTree(f, N);
2. whilep > 1
for dl A C Swith|A|=1p
if IsBoundSet(A, f, N) then goto 3;
end for;
pi=p—1
end whileg;
(fisprime)
return 7' := TrivialTree(f, N);
3. (Aisaboundsetfor f, |A| =p)
let f(z,y) = g(h(z),y) asin(1),i € A

Ty := CompositionTreg(h, A, A,p — 1);
T, := CompositionTree(g, {i} U (N — A),
S—A, min{p,|S—A|});
4. if N#£S
or p<|N|[-p
or Ty or T, hasa“digoint” root with
more than two children
then
T := Append(T1, A, To, {i}, N — A)
dse
T := PossblyMerge(T1, A, T2, {i}, N — A);
return 7.

When computing 75, we exploit that 7% has a“digoint”
root when weinvoke CompositionTreewiththird parameter
S =S5 — Aratherthan N — A, sinceall elementsof N — A
(as singletons) will be children of the root. For example,
suppose N = 12345678 (as shorthand for {1, ..., 8} with
digoint maximal bound sets 123, 45, 67, 8. Assumei € A
instep 3isthefirst element of A. Then theparameters N, S
of CompositionTreefor computing 7% are

after 123 isfound: N = 145678, S = 45678,

after 45 isfound: N = 14678, S = 678,

after 67 isfound: N = 1468, S =8.

Similarly, the test N # S in step 4 revedls if the current
computation isfor some tree 75.

To illustrate the recursive calls for computing 73, con-
sider Figure 3 where N = 123456. In succession, we
find the bound sets 12345, 1234, 123, 12. (In this exam-
ple, T is therefore always the trivial tree by step 1.) Let
k(z1, z2, 3) bethefunction withroot 123, k(z1, z2, 23) =
K(a(z1,z2), x3). Because K and a are binary functions,
PossiblyMerge(T'(a), {1,2}, T(K), {1}, {3}) is caled,
whichisthesame as Append since (case (iv) above) neither
{2,3} nor {1,3} are bound sets for k. After this recur-
sion terminates, the function [for node 1234 is checked
with, say, PossiblyMerge(T'(k), {1,2,3},7(L), {1}, {4})
which merges 123 into 1234 (case (ii) above), making thisa
“linear” node. Next, via PossiblyMerge, case (iv), 1234 is
just appended to 12345, and then 12345 is merged via case
(i) into 123456 which islabeled “full”.

The agorithm exploits the structure of bound sets as
stated in Theorems 4 and 5, and there seems to be no obvi-
ousway to do thisbetter. Furthermore, it is readily adapted
to bound sets A that are apparent from a modular specifi-
cation of the function, where h and ¢ in (1) are explicitly
given. After computing 71 = T'(h) and T2 = T'(g), these
trees could possibly be merged. The above procedure Pos-
siblyMerge can easily be modified for that purpose so that
it works with arbitrary composition trees 7.

Making use of decompositions that are found along the
way reducestherunning timesubstantially. If fiscomposed
only of binary functions, for example, then f has a bound
set of sizen — 1, which isfound after nm™ or fewer steps,

and the same holdsfor any function ~ (with correspondingly
smaller number n of variables). Thus, the complete treeis
computed in > _.im' = O(nm™) time. The expensive
cost m™ of finding abound set is still there, but with afactor
of n rather than 2" for a non-decomposable function.

5. Conclusions

This paper summarizes the results on composition trees
from[13] restricted to the case of m-valued n-variablefunc-
tions, defining composition trees and specifying a class of
functions X for which the composition tree exists. The
composition tree provides a representation for the function
showing al its digunctive decompositions, which substan-
tially reduce the overall cost of realizing the function. The
class 2 is connected to full sensitivity, a concept introduced
independently in [5] as the discrete difference for test gen-
eration purposes. This shows the practical importance of
theclass 2, and alowsto apply the results obtained for test
generation as well as the decomposition theory.

Some extension of the algorithm seems desirable. First,
since the class Z does not include al functions for which
the composition tree can be built, the present algorithm is
incapable of constructing the composition tree for the de-
composablefunctionswhich arenotin Z. An open problem
remains how to generdize this class so that it includes all
decomposable functions. Second, the functionsincluded in
class 3 are restricted to homogeneous functions only. If
the theory developed in [13] can be extended to the case of
heterogeneous functions, then it would have a direct appli-
cation to Boolean circuit synthesis, since it would cover as
a special case the decomposition of type

f(z,y) = g(h(2),y)

with f:{0,1}* — {0, 1}, h:{0,1}» — {0,1,...,m — 1}
and ¢:{0,1,....m — 1} x {0,1}"? — {0,1}. Insuch a
decomposition the m-vaued function h of 2-valued vari-
ables can be coded by & = [log, m] Boolean functions
hi, ha, ..., hg, giving a decomposition of theform

f(z,y) = g(ha(2), ho(z), ... hi(2),y) (11)

with al functions being Boolean. The decomposition of
type (11) includes as a subclass simple digunctive de-
compositions (k = 1) as well as nondigunctive decom-
positions. Aslong as f is a function of more than three
variables, such a decomposition can aways be found with
hi(z), ho(z), . .., hy(z) and g each having fewer arguments
than f, for there always exists a decomposition of the form

Flxa, .. zn) = f(z,20) = g(ha(2), ha(2), zn)

with z = (21,...,2,-1). Thus, a decomposition (11) a-
lowssimplifying any Boolean function. Therefore, atheory

of composition trees for this extended case would be a base
for systematic synthesis of multi-level Boolean circuits.

References

[1] R. L. Ashenhurst. The decomposition of switching
functions. Proc. Int. Symp. Theory of Switching, Part I,
Ann. Comput. Lab. Harvard Univ. 29:74-116, 1959.

[2] M. Bolton. Digital Systems Design with Pro-
grammable Logic. Addison-Wesley Pub. Co., 1990.

[3] S.D.Brown,R.J. Francis, J. Roseand Z. G. Vranesic.
Field-Programmable Gate Arrays. Kluwer Academic
Publishers, 1992.

[4] H.A. Curtis. ANew Approach to the Design of Switch-
ing Circuits. Van Nostrand, Princeton, 1962.

[5] E. V. Dubrova, D. B. Gurov and J. C. Muzio. Full
sensitivit andtestgfeneratlonformuIUpIe-valuedIo ic
circuits. Proc. 24thInt. Symp. on MVL, 284-289, 1994.

[6] E.V.Dubrova D.B.GurovandJ.C.Muzio. Theevau-
ationof full sensitivity for test generationin MVL Cir-
VL, 104-109, 1995.

[7] R. M. Karp. Functiona decomposition and switchin
(fgrggn design. J. Soc. Indust. Appl. Math. 11:291-335,

[8] D. M. Miller. Decomposition in Many-Valued Logic
?987S|69n. Ph.D. Thesis, University of Manitoba, March

[9] D. M. Miller and J. C. Muzio. Decomposition and
the synthesis of many-valued swﬂchmg circuits. Proc.
1976 Int. Symp. on MVL, 164-168, 1976.

[10] R. H. Mohring. Algorithmic aspects of the substitu-
tion decomposition in optimization over relations, set
a/stems and Boolean functions. Annals of Operations

esearch 4:195-225, 1985.

[11] W.Paul.Realizing Boolean functionson digoint setsof
\1/8r7| gbl es. Theoretical Computer Science 2:383-396,

[12] C. E. Shannon. The synthesis of two-terminal switch-
ing circuits. Bell System Technical J. 28:59-98, 1949.

[13] B. von Stengel. Eine Dekompositionstheorie fur
mehrstellige Funktionen. Mathematical Systems in
Economics, Vol. 123, Anton Hain, Frankfurt, 1991.

[14] K. M. Waliuzzaman and Z. G. Vranesic. Decomposi-
tion of multiple-val ued switching functions. Computer
Journal 13(4):359-362, 1970.

cuits. Proc. 25th Int. p. on

